summaryrefslogtreecommitdiff
path: root/3843/CH6
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:27:19 +0530
committerprashantsinalkar2017-10-10 12:27:19 +0530
commit7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch)
treedbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3843/CH6
parentb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff)
downloadScilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip
initial commit / add all books
Diffstat (limited to '3843/CH6')
-rw-r--r--3843/CH6/EX6.1/Ex6_1.sce15
-rw-r--r--3843/CH6/EX6.10/Ex6_10.sce21
-rw-r--r--3843/CH6/EX6.11/Ex6_11.sce19
-rw-r--r--3843/CH6/EX6.2/Ex6_2.sce13
-rw-r--r--3843/CH6/EX6.3/Ex6_3.sce20
-rw-r--r--3843/CH6/EX6.4/Ex6_4.sce15
-rw-r--r--3843/CH6/EX6.5/Ex6_5.sce26
-rw-r--r--3843/CH6/EX6.6/Ex6_6.sce27
-rw-r--r--3843/CH6/EX6.7/Ex6_7.sce8
-rw-r--r--3843/CH6/EX6.8/Ex6_8.sce19
-rw-r--r--3843/CH6/EX6.9/Ex6_9.sce23
11 files changed, 206 insertions, 0 deletions
diff --git a/3843/CH6/EX6.1/Ex6_1.sce b/3843/CH6/EX6.1/Ex6_1.sce
new file mode 100644
index 000000000..f891cd7fe
--- /dev/null
+++ b/3843/CH6/EX6.1/Ex6_1.sce
@@ -0,0 +1,15 @@
+// Example 6_1
+clc;funcprot(0);
+// Given data
+T_1=20;// °C
+p_1=200;// kPa
+W=720;// kJ
+V_1=2;// m^3
+R=0.287;// kJ/kg.K
+c_v=0.717;// kJ/kg.K
+
+// Calculation
+m=(p_1*V_1)/(R*(T_1+273));// The mass in kg
+T_2=(W/(m*c_v))+(T_1+273);// K
+delS=m*c_v*log(T_2/(T_1+273));// kJ/K
+printf("\nThe increase in entropy,delS=%1.3f kJ/K",delS);
diff --git a/3843/CH6/EX6.10/Ex6_10.sce b/3843/CH6/EX6.10/Ex6_10.sce
new file mode 100644
index 000000000..ca1ae4d08
--- /dev/null
+++ b/3843/CH6/EX6.10/Ex6_10.sce
@@ -0,0 +1,21 @@
+// Example 6_10
+clc;funcprot(0);
+// Given data
+P_1=140;// The steam pressure at turbine inlet in psia
+T_1=1000;// The temperature at turbine inlet in °F
+P_2=2;// The steam pressure at turbine exit in psia
+m=4;// lbm/sec
+
+// Calculation
+// From steam tables
+h_1=1531;// Btu/lbm
+s_2=1.8827;// Btu/lbm.°R
+s_1=s_2;// Btu/lbm.°R
+s_f2=0.1750;// Btu/lbm.°R
+s_fg2=1.7448;// Btu/lbm.°R
+x_2=(s_2-s_f2)/s_fg2;// Btu/lbm.°R
+h_f2=94.02;// Btu/lbm
+h_fg2=1022.1;// Btu/lbm
+h_2=h_f2+(x_2*h_fg2);// Btu/lbm
+W_T=m*(h_1-h_2);// Btu/sec
+printf("\nThe power output,W_T=%4.0f Btu/sec or %4.0f hp",W_T,W_T*1.414);
diff --git a/3843/CH6/EX6.11/Ex6_11.sce b/3843/CH6/EX6.11/Ex6_11.sce
new file mode 100644
index 000000000..b1a8b1bc5
--- /dev/null
+++ b/3843/CH6/EX6.11/Ex6_11.sce
@@ -0,0 +1,19 @@
+// Example 6_11
+clc;funcprot(0);
+// Given data
+// From example 6.10
+P_1=140;// The steam pressure at turbine inlet in psia
+T_1=1000;// The temperature at turbine inlet in °F
+P_2=2;// The steam pressure at turbine exit in psia
+m=4;// lbm/sec
+W_s=1748;// Btu/sec
+n_t=0.80;// The isentropic efficiency of the turbine
+h_1=1521;// Btu/lbm
+
+// Calculation
+W_a=n_t*W_s;// Btu/sec
+h_2a=h_1-(W_a/m);// Btu/lbm
+P_2a=2;// psia
+T_2a=(((1186-1182)/(1186-1168))*(280-240))+280;// °F
+s_2a=2.0526;// Btu/lbm.°R
+printf("\nThe temperature of the final state,T_2a=%3.0f°F \nThe entropy of thefinal state,s_2a=%1.4f Btu/lbm.°R",T_2a,s_2a);
diff --git a/3843/CH6/EX6.2/Ex6_2.sce b/3843/CH6/EX6.2/Ex6_2.sce
new file mode 100644
index 000000000..118275dbc
--- /dev/null
+++ b/3843/CH6/EX6.2/Ex6_2.sce
@@ -0,0 +1,13 @@
+// Example 6_2
+clc;funcprot(0);
+// Given data
+P_1=1200;// kPa
+P_2=140;// kPa
+T_1=350+273;// K
+c_v=0.717;// kJ/kg.K
+k=1.4;// The specific heat ratio
+
+// Calculation
+T_2=T_1*(P_2/P_1)^((k-1)/k);// K
+w=c_v*(T_1-T_2);// kJ/kg
+printf("The work done by the gases,w=%3.0f kJ/kg",w);
diff --git a/3843/CH6/EX6.3/Ex6_3.sce b/3843/CH6/EX6.3/Ex6_3.sce
new file mode 100644
index 000000000..52fb49911
--- /dev/null
+++ b/3843/CH6/EX6.3/Ex6_3.sce
@@ -0,0 +1,20 @@
+// Example 6_3
+clc;funcprot(0);
+// Given data
+T_1=20;// °C
+P_1=200;// kPa
+W=720;// kJ
+V_1=2;// m^3
+R=0.287;// kJ/kg.K
+c_v=0.717;// kJ/kg.K
+
+// Calculation
+m=(P_1*V_1)/(R*(T_1+273));// The mass in kg
+u_1=209.1;// kJ/kg
+u_2=-(W/m)+u_1;// kJ/kg
+T_2=501.2;// K
+phi_2=2.222;// The relative humidity at state 2
+phi_1=1.678;// The relative humidity at state 1
+P_2=P_1*(T_2/(T_1+273));// kPa
+delS=m*(phi_2-phi_1-(R*log(P_2/P_1)));// kJ/K
+printf("\nThe entropy change,delS=%1.3f kJ/K",delS);
diff --git a/3843/CH6/EX6.4/Ex6_4.sce b/3843/CH6/EX6.4/Ex6_4.sce
new file mode 100644
index 000000000..5adeed255
--- /dev/null
+++ b/3843/CH6/EX6.4/Ex6_4.sce
@@ -0,0 +1,15 @@
+// Example 6_4
+clc;funcprot(0);
+// Given data
+P_1=1200;// kPa
+T_1=350;// °C
+P_2=140;// kPa
+
+// Calculation
+P_r1=((1/20)*(20.64-18.36))+18.36;// The relative pressure at state 1
+P_r2=P_r1*(P_2/P_1);// The relative pressure at state 2
+T_2=(((2.182-2.149)/(2.626-2.149))*(360-340))+340;// K
+u_1=((3/20)*(465.5-450.1))+450.1;// kJ/kg
+u_2=(((2.182-2.149)/(2.626-2.149))*(257.2-242.8))+242.8;// kJ/kg
+w=u_1-u_2;// The work done by the gases in kJ/kg
+printf("\nThe work done by the gases,w=%3.1f kJ/kg",w);
diff --git a/3843/CH6/EX6.5/Ex6_5.sce b/3843/CH6/EX6.5/Ex6_5.sce
new file mode 100644
index 000000000..84245b01b
--- /dev/null
+++ b/3843/CH6/EX6.5/Ex6_5.sce
@@ -0,0 +1,26 @@
+// Example 6_5
+clc;funcprot(0);
+// Given data
+P_1=100;// The initial pressure in psia
+T_1=600;// The initial temperature in °F
+P_2=10;// The final pressure in psia
+
+// Calculation
+// From steam tables
+v_2=6.216;// ft^3/lbm
+v_1=v_2;// ft^3/lbm
+v_f2=0.0166;// ft^3/lbm
+v_g2=38.42;// ft^3/lbm
+x=(v_2-v_f2)/(v_g2-v_f2);// The quality of steam
+// From steam tables
+s_f2=0.2836;// Btu/lbm-°R
+s_fg2=1.5041;// Btu/lbm-°R
+s_1=1.7582;// Btu/lbm-°R
+s_2=s_f2+(x*s_fg2);// Btu/lbm-°R
+dels=s_2-s_1;// Btu/lbm-°R
+u_f2=161.2;// Btu/lbm
+u_fg2=911.01;// Btu/lbm
+u_1=1214.2;// Btu/lbm
+q=[u_f2+(x*u_fg2)]-u_1;// Btu/lbm
+printf("\nThe entropy change,dels=%1.3f Btu/lbm-°R \nThe heat transfer,q=%3.0f Btu/lbm",dels,q);
+
diff --git a/3843/CH6/EX6.6/Ex6_6.sce b/3843/CH6/EX6.6/Ex6_6.sce
new file mode 100644
index 000000000..9ee772a00
--- /dev/null
+++ b/3843/CH6/EX6.6/Ex6_6.sce
@@ -0,0 +1,27 @@
+// Example 6_6
+clc;funcprot(0);
+// Given data
+P_1=20;// kPa
+P_2=1000;// kPa
+P_3=P_2;// kPa
+P_4=P_1;// kPa
+x_4=0.88;// The quality of steam
+m=1;// kg
+
+// Calculation
+// From steam tables
+T_B=179.9;// °C
+T_C=60.1;// °C
+x_1=0.18;// The quality of steam at inlet
+h_2=763;// kJ/kg
+h_3=2778;// kJ/kg
+Q_B=m*(h_3-h_2);// kJ
+h_f4=251;// kJ/kg
+h_fg4=2358;// kJ/kg
+h_4=h_f4+(x_4*h_fg4);// kJ/kg
+h_f1=251;// kJ/kg
+h_fg1=2358;// kJ/kg
+h_1=h_f1+(x_1*h_fg1);// kJ/kg
+Q_C=m*(h_4-h_1);// kJ
+dQbyT=(Q_B/(T_B+273))-(Q_C/(T_C+273));// kJ/K
+printf("\ndQ/T=%0.3f kJ/K.This is negative,as it must be if the proposed power plant is to satisfy the inequality of Clausius.",dQbyT);
diff --git a/3843/CH6/EX6.7/Ex6_7.sce b/3843/CH6/EX6.7/Ex6_7.sce
new file mode 100644
index 000000000..e18cee862
--- /dev/null
+++ b/3843/CH6/EX6.7/Ex6_7.sce
@@ -0,0 +1,8 @@
+// Example 6_7
+clc;funcprot(0);
+// Given data
+R=53.3/778;// Btu/lbm-°R
+
+// Calculation
+delS=R*log(2);// The entropy change in Btu/lbm-°R
+printf("\nThe entropy change,delS=%0.5f Btu/lbm-°R",delS);
diff --git a/3843/CH6/EX6.8/Ex6_8.sce b/3843/CH6/EX6.8/Ex6_8.sce
new file mode 100644
index 000000000..7b5aad6a6
--- /dev/null
+++ b/3843/CH6/EX6.8/Ex6_8.sce
@@ -0,0 +1,19 @@
+// Example 6_8
+clc;funcprot(0);
+// Given data
+m=2;// The mass of steam in kg
+T=400;// °C
+P=600;// kPa
+T_0=25+273;// K
+
+// Calculation
+// From steam tables
+s_1=7.7086;// kJ/kg.K
+s_2=1.9316;// kJ/kg.K
+dS_sys=m*(s_2-s_1);// kJ/K
+h_1=3270.2;// kJ/kg
+h_2=670.6;// kJ/kg
+Q=m*(h_1-h_2);// The heat transfer in kJ
+dS_surr=Q/T_0;// kJ/K
+dS_univ=dS_surr+dS_sys;// kJ/K
+printf("\nThe net entropy change of the process,dS_univ=%1.2f kJ/K",dS_univ);
diff --git a/3843/CH6/EX6.9/Ex6_9.sce b/3843/CH6/EX6.9/Ex6_9.sce
new file mode 100644
index 000000000..ed478949d
--- /dev/null
+++ b/3843/CH6/EX6.9/Ex6_9.sce
@@ -0,0 +1,23 @@
+// Example 6_9
+clc;funcprot(0);
+// Given data
+m_1=4;// kg/s
+m_2=0.5;// kg/s
+T_1=45;// °C
+T_2=250;// °C
+P=600;// kPa
+
+// Calculation
+m_3=m_2+m_1;// kg/s
+// From steam tables
+h_2=2957.2;// kJ/kg
+h_1=188.4;// kJ/kg
+h_3=((m_2*h_2)+(m_1*h_1))/m_3;// kJ/kg
+// The exiting water temperature is interpolated from the saturated steam tables
+h_f=496;// kJ/kg
+T_3=(((496-461.3)/(503.7-461.3))*(110-100))+110;// The exiting water temperature in °C
+s_3=1.508;// kJ/kg.K
+s_2=7.182;// The entropy of the entering superheated steam in kJ/kg.K
+s_1=0.639;// The entering entropy of the subcooled water in kJ/kg.K
+S_prod=(m_3*s_3)-(m_2*s_2)-(m_1*s_1);// kW/K
+printf("\nThe rate of entropy production,S_prod=%0.3f kW/K",S_prod);