summaryrefslogtreecommitdiff
path: root/3772/CH4
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:27:19 +0530
committerprashantsinalkar2017-10-10 12:27:19 +0530
commit7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch)
treedbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3772/CH4
parentb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff)
downloadScilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip
initial commit / add all books
Diffstat (limited to '3772/CH4')
-rw-r--r--3772/CH4/EX4.1/Ex4_1.sce75
-rw-r--r--3772/CH4/EX4.10/Ex4_10.sce75
-rw-r--r--3772/CH4/EX4.11/Ex4_11.sce77
-rw-r--r--3772/CH4/EX4.12/Ex4_12.sce83
-rw-r--r--3772/CH4/EX4.13/Ex4_13.sce110
-rw-r--r--3772/CH4/EX4.14/Ex4_14.sce82
-rw-r--r--3772/CH4/EX4.15/Ex4_15.sce85
-rw-r--r--3772/CH4/EX4.16/Ex4_16.sce99
-rw-r--r--3772/CH4/EX4.2/Ex4_2.sce61
-rw-r--r--3772/CH4/EX4.3/Ex4_3.sce58
-rw-r--r--3772/CH4/EX4.4/Ex4_4.sce73
-rw-r--r--3772/CH4/EX4.5/Ex4_5.sce87
-rw-r--r--3772/CH4/EX4.6/Ex4_6.sce90
-rw-r--r--3772/CH4/EX4.7/Ex4_7.sce85
-rw-r--r--3772/CH4/EX4.8/Ex4_8.sce95
-rw-r--r--3772/CH4/EX4.9/Ex4_9.sce82
16 files changed, 1317 insertions, 0 deletions
diff --git a/3772/CH4/EX4.1/Ex4_1.sce b/3772/CH4/EX4.1/Ex4_1.sce
new file mode 100644
index 000000000..f9059dad9
--- /dev/null
+++ b/3772/CH4/EX4.1/Ex4_1.sce
@@ -0,0 +1,75 @@
+// Problem no 4.4.1,Page No.89
+
+clc;clear;
+close;
+
+F_B=-10 //KN //Force at pt B
+F_D=-20 //KN //Force at pt D
+w_CB=5 //KN/m //u.d.l at CB
+w_AE=40 //KN/m //u.d.l at AE
+L_ED=2;L_CB=2 //m //Length of ED & CB
+L_CD=1;L_DC=1 //m //Length of CD
+L_AE=3 //m //Length of AE
+L=8 //m //span of beam
+
+
+//Calculations
+
+//Shear Force Calculations
+
+//Shear Force at B
+V_B=F_B //KN
+
+//Shear Force at C
+V_C=F_B-(w_CB*L_CB)
+
+//Shear Force at D
+V_D1=V_C
+V_D2=V_C+F_D
+
+//Shear Force at E
+V_E=V_D2
+
+//Shear Force at A
+V_A=V_D2-(w_AE*L_AE)
+
+//Bending Moment Calculations
+
+//Bending Moment at B
+M_B=0
+
+//Bending Moment at C
+M_C=F_B*L_CB-w_CB*L_CB**2*2**-1
+
+//Bending Moment at D
+M_D=F_B*(L_CB+L_CD)-w_CB*L_CB*(L_CB*2**-1+L_CD)
+
+//Bending Moment at E
+M_E=F_B*(L_CB+L_CD+L_ED)-w_CB*L_CB*(L_CB*2**-1+L_CD+L_ED)+F_D*L_ED
+
+//Bending Moment at A
+M_A=F_B*L-w_CB*L_CB*(L_CB*2**-1+L_CD+L_ED+L_AE)+F_D*(L_AE+L_ED)-w_AE*(L_AE**2*2**-1)
+
+//Result
+printf("The Shear Force and Bending Moment Diagrams are the results")
+
+//Plotting the Shear Force Diagram
+subplot(2,1,1)
+X1=[0,L_CB,L_CB+L_DC,L_CB+L_DC,L_CB+L_DC+L_ED,L_CB+L_DC+L_ED+L_AE,L_CB+L_DC+L_ED+L_AE]
+Y1=[V_B,V_C,V_D1,V_D2,V_E,V_A,0]
+Z1=[0,0,0,0,0,0,0]
+plot(X1,Y1,X1,Z1)
+xlabel("Length x in m")
+ylabel("Shear Force in kN")
+title("the Shear Force Diagram")
+
+subplot(2,1,2)
+//Plotting the Bending Moment Diagram
+
+Y2=[M_B,M_C,M_D,M_E,M_A]
+X2=[0,L_CB,L_CB+L_DC,L_CB+L_DC+L_ED,L_CB+L_DC+L_ED+L_AE]
+Z2=[0,0,0,0,0]
+plot(X2,Y2)
+xlabel("Lenght in m")
+ylabel("Bending Moment in kN.m")
+title("the Bending Moment Diagram")
diff --git a/3772/CH4/EX4.10/Ex4_10.sce b/3772/CH4/EX4.10/Ex4_10.sce
new file mode 100644
index 000000000..937f7b1b7
--- /dev/null
+++ b/3772/CH4/EX4.10/Ex4_10.sce
@@ -0,0 +1,75 @@
+// Problem no 4.4.10,Page No.100
+
+clc;clear;
+close;
+w=10 //KNm //u.d.l on L_AD
+F_D=20 //KN //Pt Load at D
+M_C=240 //KNm //moment at Pt C
+L_DC=2;L_CB=2 //m //Length of DC and CB
+L_AD=4 //m //Length of AD
+L=8 //m //Length of Beam
+
+//Calculations
+
+//Calculations
+
+//Let R_A & R_B be the reactions at A & B
+//R_A+R_B=60
+
+//Taking Moment at A
+//M_A=0=-R_B*L-M_C+F_D*L_AD+w*L_AD**2*2**-1
+R_B=-(M_C-F_D*L_AD-w*L_AD**2*2**-1)*L**-1
+R_A=60-R_B
+
+//Shear Force Calculations
+
+//Shear Force at B
+V_B=R_B
+
+//Shear Force at C
+V_C=V_B
+
+//Shear Force at D
+V_D1=V_B
+V_D2=V_D1-F_D
+
+//Shear Force at A
+V_A=V_D2-w*L_AD
+
+//Bending Moment Calculations
+
+//Bending Moment at B
+M_B=0
+
+//Bending Moment at C
+M_C1=R_B*L_CB
+M_C2=M_C+R_B*L_CB
+
+//Bending Moment at D
+M_D=R_B*(L_DC+L_CB)+M_C
+
+//Bending Moment at A
+M_A=R_B*L+M_C-w*L_AD**2*2**-1-F_D*L_AD
+
+//Result
+printf("The Shear Force and Bending Moment Diagrams are the results")
+
+//Plotting the Shear Force Diagram
+subplot(2,1,1)
+X1=[0,L_CB,L_CB+L_DC,L_CB+L_DC,L_CB+L_DC+L_AD]
+Y1=[V_B,V_C,V_D1,V_D2,V_A]
+Z1=[0,0,0,0,0]
+plot(X1,Y1,X1,Z1)
+xlabel("Length x in m")
+ylabel("Shear Force in kN")
+title("the Shear Force Diagram")
+
+//Plotting the Bending Moment Diagram
+subplot(2,1,2)
+X2=[0,L_CB,L_CB,L_CB+L_DC,L_CB+L_DC+L_AD,L_CB+L_DC+L_AD]
+Y2=[M_B,M_C1,M_C2,M_D,M_A,0]
+Z2=[0,0,0,0,0,0]
+plot(X2,Y2,X2,Z2)
+xlabel("Length in m")
+ylabel("Bending Moment in kN.m")
+title("the Bending Moment Diagram")
diff --git a/3772/CH4/EX4.11/Ex4_11.sce b/3772/CH4/EX4.11/Ex4_11.sce
new file mode 100644
index 000000000..2857af64f
--- /dev/null
+++ b/3772/CH4/EX4.11/Ex4_11.sce
@@ -0,0 +1,77 @@
+// Problem no 4.4.11,Page No.101
+
+clc;clear;
+close;
+F_C=5 //KN //Force at C
+w=2 //KNm //u.d.l on beam
+L_BC=3 //m //Length of BC
+L_AB=6 //m //Length of AB
+L=9 //m //Length of Beam
+
+//Calculations
+
+//Let R_A & R_B be the reactions at A & B
+//R_A+R_B=23
+
+//Taking Moment at A
+//M_A=0=F_C*L-R_B*L_AB+w*L**2*2**-1
+R_B=-(-F_C*L-w*L**2*2**-1)*L_AB**-1
+R_A=23-R_B
+
+//Shear Force Calculations
+
+//Shear Force at C
+V_C1=0
+V_C2=-F_C
+
+//Shear Force at B
+V_B=V_C2-w*L_BC**2*2**-1
+
+//Shear Force at A
+V_A=F_C*L+R_B*L_AB-w*L**2*2**-1
+
+//Pt of contraflexure
+//Let D be the pt And L_AD=x
+//V_D=0=R_A+w*L_AD
+L_AD=R_A*w**-1
+x=L_AD
+//Bending Moment Calculations
+
+//Bending Moment at C
+M_C=0
+
+//Bending Moment at B
+M_B=-F_C*L_BC-w*L_BC**2*2**-1
+
+//Bending Moment at A
+M_A=-F_C*L-w*L**2*2**-1+R_B*L_AB
+
+//Bending Moment at D
+L_DC=L-L_AD
+L_DB=L_DC-L_BC
+M_D=-R_A*L_AD+w*L_AD**2*2**-1
+
+//Result
+printf("The Shear Force and Bending Moment Diagrams are the results")
+
+//Plotting the Shear Force Diagram
+subplot(2,1,1)
+X1=[0,L_BC,L_BC+L_AB,L_BC+L_AB]
+Y1=[V_C2,V_B,V_A,0]
+Z1=[0,0,0,0]
+plot(X1,Y1,X1,Z1)
+xlabel("Length x in m")
+ylabel("Shear Force in kN")
+title("the Shear Force Diagram")
+
+//Plotting the Bending Moment Diagram
+subplot(2,1,2)
+X2=[0,L_BC,L_BC+L_DB,L_BC+L_AB]
+Y2=[M_C,M_B,M_D,M_A]
+Z2=[0,0,0,0]
+plot(X2,Y2,X2,Z2)
+xlabel("Length in m")
+ylabel("Bending Moment in kN.m")
+title("the Bending Moment Diagram")
+
+//The Bending moment in book is incorrect
diff --git a/3772/CH4/EX4.12/Ex4_12.sce b/3772/CH4/EX4.12/Ex4_12.sce
new file mode 100644
index 000000000..b39aaa1da
--- /dev/null
+++ b/3772/CH4/EX4.12/Ex4_12.sce
@@ -0,0 +1,83 @@
+// Problem no 4.4.12,Page No.102
+
+clc;clear;
+close;
+F_C=5 //KN //Pt Load at C
+F_D=4 //KN //Pt Load at D
+L_BC=1.25 //m //Length of BC
+L_DB=1 //m //Length of DB
+L_AD=3 //m //Length of AD
+w=2 //KN/m //u.d.l
+L=5.25 //m //Length of beam
+
+//Calculations
+
+//Let R_A & R_B be the reactions at A & B
+//R_A+R_B=15
+
+//Taking Moment at A
+//M_A=0=F_C*L-R_B*(L_DB+L_AD)+F_D*L_AD+w*L_AD**2*2**-1
+R_B=-(-F_C*L-F_D*L_AD-w*L_AD**2*2**-1)*(L_DB+L_AD)**-1
+R_A=15-R_B
+
+//Shear Force Calculations
+
+//Shear Force at C
+V_C=-F_C
+
+//Shear Force at B
+V_B1=V_C
+V_B2=V_C+R_B
+
+//Shear Force at D
+V_D1=V_B2
+V_D2=V_B2-F_D
+
+//Shear Force at A
+V_A=-(w*L_AD)-F_D-F_C+R_B
+
+//Pt of contraflexure
+//Let E be the pt and BE=x
+//V_E=0=-F_C+R_B-F_D-w*(L_BE-L_DB)
+L_BE=-((F_C-R_B+F_D)*w**-1-L_DB);
+x=L_BE;
+//Bending Moment Calculations
+
+//Bending Moment at C
+M_C=0
+
+//Bending Moment at B
+M_B=-F_C*L_BC
+
+//Bending Moment at D
+M_D=-F_C*(L_DB+L_BC)-R_B*L_DB
+
+//Bending Moment at A
+M_A=-F_C*L+R_B*(L_DB+L_AD)-F_D*L_AD-w*L_AD**2*2**-1
+
+//Bending Moment at E
+L_ED=L_BE-L_DB
+M_E=-F_C*(L_BC+L_BE)+R_B*L_BE-F_D*(L_BE-L_DB)-w*(L_BE-L_DB)**2*2**-1
+
+//Result
+printf("The Shear Force and Bending Moment Diagrams are the results")
+
+//Plotting the Shear Force Diagram
+subplot(2,1,1)
+X1=[0,L_BC,L_BC,L_BC+L_DB,L_BC+L_DB,L_BC+L_DB+L_AD,L_BC+L_DB+L_AD]
+Y1=[V_C,V_B1,V_B2,V_D1,V_D2,V_A,0]
+Z1=[0,0,0,0,0,0,0]
+plot(X1,Y1,X1,Z1)
+xlabel("Length x in m")
+ylabel("Shear Force in kN")
+title("the Shear Force Diagram")
+
+//Plotting the Bending Moment Diagram
+subplot(2,1,2)
+X2=[0,L_BC,L_BC+L_DB,L_BC+L_DB+L_ED,L_BC+L_DB+L_AD]
+Y2=[M_C,M_B,M_D,M_E,M_A]
+Z2=[0,0,0,0,0]
+plot(X2,Y2,X2,Z2)
+xlabel("Length in m")
+ylabel("Bending Moment in kN.m")
+title("the Bending Moment Diagram")
diff --git a/3772/CH4/EX4.13/Ex4_13.sce b/3772/CH4/EX4.13/Ex4_13.sce
new file mode 100644
index 000000000..eea654f0b
--- /dev/null
+++ b/3772/CH4/EX4.13/Ex4_13.sce
@@ -0,0 +1,110 @@
+// Problem no 4.4.13,Page No.103
+
+clc;clear;
+close;
+F_E=20 //KN //Pt Load at E
+F_C=30 //KN //Pt Load at C
+F_B=60 //KN //Pt Load at B
+L_AB=1.5;L_BC=1.5;L_CD=1.5 //m //Length of AB,BC,CD respectively
+L_DE=2.5 //m //Length od DE
+L_AD=4.5 //m //Length of AD
+L=7 //m //Length of beam
+w=30 //KN/m
+
+//Calculations
+
+//LEt R_A and R_D be the reactions at A and D
+//R_A+R_D=245
+
+//Taking moment at A
+//M_A=0=-R_D*(L_BC+L_AB+L_CD)+F_E*L+w*L_Ad**2*2**-1+F_C*(L_AB+L_BC)+F_B*L_AB
+R_D=-(-(F_E*L)-(w*L_AD**2*2**-1)-F_C*(L_AB+L_BC)-F_B*L_AB)*(L_BC+L_AB+L_CD)**-1
+R_A=245-R_D
+
+//Shear Force Calculations
+
+//Shear Force at C
+V_E1=0
+V_E2=-F_E
+
+//Shear Force at D
+V_D1=V_E2
+V_D2=V_E2+R_D
+
+//Shear Force at C
+V_C1=V_D2
+V_C2=V_D2-F_C-w*L_CD
+
+//Shear Force at B
+V_B1=V_C2
+V_B2=-F_E+R_D-F_C-w*(L_BC+L_CD)-F_B
+
+//Shear Force at A
+V_A=-F_E-F_C-F_B-w*L_AD+R_D
+
+//Pt of contraflexure
+//Let F be the pt and EF=x
+//V_F=-F_E-F_C+R_D-w*L_FE+w*L_DE
+L_FE=-(F_E+F_C-R_D-w*L_DE)*w**-1
+L_FD=L_FE-L_DE
+L_FC=L_FE-L_CD-L_DE
+
+//Bending Moment Calculations
+
+//Bending Moment at E
+M_E=0
+
+//Bending Moment at D
+M_D=-F_E*L_DE
+
+//Bending Moment at C
+M_C=-F_E*(L_CD+L_DE)+R_D*L_CD-w*L_CD**2*2**-1
+
+//Bending Moment at F
+M_F=-w*L_FD**2*2**-1-F_C*L_FC+R_D*L_FD-F_E*L_FE
+
+//Bending Moment at B
+M_B=-F_E*(L_DE+L_CD+L_BC)-F_C*L_BC+R_D*(L_CD+L_BC)-w*(L_BC+L_CD)**2*2**-1
+
+//Bending Moment at A
+M_A=-F_E*L+R_D*(L_AD)-F_C*(L_BC+L_AB)-F_B*L_AB-w*(L_AD)**2*2**-1
+
+//Bending Moment at F
+M_F=-F_E*L_FE+R_D*L_FD-F_C*L_FC-w*L_FD**2*2**-1
+
+//Pt of contraflexure
+//Let G be the pt and GE=y
+//M_G=-F_E*L_GE+R_D*(L_GE-L_DE)-F_C*(L_GE-L_DE)**2*2**-1
+//After substituting values and further simplifying we get
+//y**2-12.9+29.35=0
+a=1
+b=-12.9
+c=29.35
+
+X=b**2-4*a*c
+
+y1=(-b+X**0.5)*(2*a)**-1
+y2=(-b-X**0.5)*(2*a)**-1
+
+//Result
+printf("The Shear Force and Bending Moment Diagrams are the results")
+
+//Plotting the Shear Force Diagram
+subplot(2,1,1)
+X1=[0,0,L_DE,L_DE,L_DE+L_CD,L_DE+L_CD,L_DE+L_CD+L_BC,L_DE+L_CD+L_BC,L_DE+L_CD+L_BC+L_AB,L_DE+L_CD+L_BC+L_AB]
+Y1=[V_E1,V_E2,V_D1,V_D2,V_C1,V_C2,V_B1,V_B2,V_A,0]
+Z1=[0,0,0,0,0,0,0,0,0,0]
+plot(X1,Y1,X1,Z1)
+xlabel("Length x in m")
+ylabel("Shear Force in kN")
+title("the Shear Force Diagram")
+
+//Plotting the Bending Moment Diagram
+subplot(2,1,2)
+X2=[0,L_DE,L_DE+L_CD,L_DE+L_CD+L_FC,L_DE+L_CD+L_BC,L_DE+L_CD+L_BC+L_AB]
+Y2=[M_E,M_D,M_C,M_F,M_B,M_A]
+Z2=[0,0,0,0,0,0]
+plot(X2,Y2,X2,Z2)
+xlabel("Length in m")
+ylabel("Bending Moment in kN.m")
+title("the Bending Moment Diagram")
diff --git a/3772/CH4/EX4.14/Ex4_14.sce b/3772/CH4/EX4.14/Ex4_14.sce
new file mode 100644
index 000000000..30bbe8db7
--- /dev/null
+++ b/3772/CH4/EX4.14/Ex4_14.sce
@@ -0,0 +1,82 @@
+// Problem no 4.4.14,Page No.105
+
+
+clc;clear;
+close;
+L_DE=2.5;L_BC=2.5 //m //Length of DE & BC
+L_CD=5;L_FE=5;L_AB=5 //m //Length of CD & AB
+F_C=80;F_B=80 //KN //Pt Load at C & B
+w1=16 //KN/m //u.d.l on L_DE
+w2=10 //KN/m //u.d.l on L_AB
+L=10 //m //Length of beam
+
+//Calculations
+
+//LEt R_A and R_D be the reactions at A and D
+//R_A+R_D=250
+
+//Taking moment at A
+//M_A=0=w1*L_DE*(L_DE*2**-1+L_CD+L_BC+L_AB)-R_D*(L_CD+L_BC+L_AB)+F_C*(L_BC+L_AB)+F_C*(L_BC+L_AB)+F_B*L_AB+w2*L_AB**2*2**-1
+R_D=-(-w1*L_DE*(L_DE*2**-1+L_CD+L_BC+L_AB)-F_C*(L_BC+L_AB)-F_B*(L_AB)-w2*L_AB**2*2**-1)*(L_CD+L_BC+L_AB)**-1
+R_A=250-R_D
+
+//Shear Force Calculations
+
+//Shear Force at E
+V_E=0
+
+//Shear Force at D
+V_D1=-w1*L_DE
+V_D2=-w1*L_DE+R_D
+
+//Shear Force at C
+V_C1=V_D2
+V_C2=V_D2-F_C
+
+//Shear Force at B
+V_B1=V_C2
+V_B2=V_C2-F_B
+
+//Shear Force at A
+V_A1=V_B2-w2*L_AB
+V_A2=0
+
+//Bending Moment Calculations
+
+//Bending Moment at E
+M_E=0
+
+//Bending Moment at D
+M_D=-w1*L_DE**2*2**-1
+
+//Bending Moment at C
+M_C=R_D*L_CD-w1*L_DE*(L_DE*2**-1+L_CD)
+
+//Bending Moment at B
+M_B=-w1*L_DE*(L_DE*2**-1+L_CD+L_BC)+R_D*(L_CD+L_BC)-F_C*L_BC
+
+//Bending Moment at A
+M_A=-w1*L_DE*(L_DE*2**-1+L_CD+L_BC+L_AB)+R_D*(L_CD+L_BC+L_AB)-F_C*(L_BC+L_AB)-F_B*L_AB-w2*L_AB**2*2**-1
+
+//Result
+printf("The Shear Force and Bending Moment Diagrams are the results")
+
+//Plotting the Shear Force Diagram
+subplot(2,1,1)
+X1=[0,L_FE,L_FE,L_DE+L_CD,L_DE+L_CD,L_DE+L_CD+L_BC,L_DE+L_CD+L_BC,L_DE+L_CD+L_BC+L_AB,L_DE+L_CD+L_BC+L_AB]
+Y1=[V_E,V_D1,V_D2,V_C1,V_C2,V_B1,V_B2,V_A1,V_A2]
+Z1=[0,0,0,0,0,0,0,0,0]
+plot(X1,Y1,X1,Z1)
+xlabel("Length x in m")
+ylabel("Shear Force in kN")
+title("the Shear Force Diagram")
+
+//Plotting the Bending Moment Diagram
+subplot(2,1,2)
+X2=[0,L_DE,L_DE+L_CD,L_DE+L_CD+L_BC,L]
+Y2=[M_E,M_D,M_C,M_B,M_A]
+Z2=[0,0,0,0,0]
+plot(X2,Y2,X2,Z2)
+xlabel("Length in m")
+ylabel("Bending Moment in kN.m")
+title("the Bending Moment Diagram")
diff --git a/3772/CH4/EX4.15/Ex4_15.sce b/3772/CH4/EX4.15/Ex4_15.sce
new file mode 100644
index 000000000..94c3e3596
--- /dev/null
+++ b/3772/CH4/EX4.15/Ex4_15.sce
@@ -0,0 +1,85 @@
+// Problem no 4.4.15,Page No.105
+
+clc;clear;
+close;
+L=8 //m //Length of beam
+L_AD=4 //m //Length of AD
+w=300 //KN //u.d.l
+
+//Calculations
+
+//Let R_A and R_C be the reactions at A and C
+//R_A+R_C=300
+
+//Taking moment at A
+//LEt x be the distance from Pt B L_CB=x
+//R_C*(L-L_CB)=300*L*2**-1
+//R_C=1200*(8-x)**-1
+//After substituting values and further simplifying we get
+//R_A=300-R_C
+//R_A=1200-300*x*(8-x)**-1
+
+//B.M at D
+//M_D=R_A*L_AD-w*2**-1*2=0
+
+//Now substituting value of R_A we get
+//M_D=4*1200-300*x*(8-x)**-1-300=0
+
+//Further on simplification we get
+L_CB=600*225**-1
+x=L_CB;
+R_C=1200*(8-x)**-1
+R_A=(1200-300*x)*(8-x)**-1
+
+//Pt of contraflexure
+//Let E be the pt and BE=y
+//V_E=0=-R_A*2**-1*L_BE+R_C
+L_BE=R_C*(R_A*2**-1)**-1
+L_AE=L-L_BE
+L_AC=L-L_CB
+L_EC=L_BE-L_CB
+
+//Shear Force at B
+V_B=0
+
+//Shear Force at C
+V_C1=-w
+V_C2=-V_C1+R_C
+
+//Shear Force at A
+V_A=-w+R_C
+
+//B.M at C
+M_C=-w*L_CB
+
+//B.M at E
+M_E=-R_A*L_AE+w*L_AE
+
+//B.M at A
+M_A=0
+
+//B.M at B
+M_B=0
+
+//Result
+printf("The Shear Force and Bending Moment Diagrams are the results")
+
+//Plotting the Shear Force Diagram
+subplot(2,1,1)
+X1=[0,L_CB,L_CB,L_CB+L_AC,L_CB+L_AC]
+Y1=[V_B,V_C1,V_C2,V_A,0]
+Z1=[0,0,0,0,0]
+plot(X1,Y1,X1,Z1)
+xlabel("Length x in m")
+ylabel("Shear Force in kN")
+title("the Shear Force Diagram")
+
+//Plotting the Bending Moment Diagram
+subplot(2,1,2)
+X2=[0,L_CB,L_CB+L_EC,L_CB+L_AC]
+Y2=[M_B,M_C,M_E,M_A]
+Z2=[0,0,0,0]
+plot(X2,Y2,X2,Z2)
+xlabel("Length in m")
+ylabel("Bending Moment in kN.m")
+title("the Bending Moment Diagram")
diff --git a/3772/CH4/EX4.16/Ex4_16.sce b/3772/CH4/EX4.16/Ex4_16.sce
new file mode 100644
index 000000000..415028a08
--- /dev/null
+++ b/3772/CH4/EX4.16/Ex4_16.sce
@@ -0,0 +1,99 @@
+// Problem no 4.4.16,Page No.107
+
+clc;clear;
+close;
+F_C=250 //KN //Pt LOad at C
+M_D=120 //KNM //moment at Pt D
+w=50 //KN/m //u.d.l 0n L_AD
+L_DB=2;L_BC=2 //m //Length of DB & BC
+L_AD=4 //m //Length of AD
+L=8 //m //Length of beam
+
+//Calculations
+
+//LEt R_A and R_D be the reactions at A and D
+//R_A+R_D=450
+
+//Taking moment at A
+//M_A=0=-R_B*(L_DB+L_AD)+M_D+F_C*L+w*L_AD**2*2**-1
+R_B=-(-M_D-F_C*L-w*L_AD**2*2**-1)*(L_DB+L_AD)**-1
+R_D=450-R_B
+
+//Shear Force Calculations
+
+//Shear Force at C
+V_C=-F_C
+
+//Shear Force at B
+V_B1=V_C
+V_B2=R_B-F_C
+
+//Shear Force at D
+V_D=V_B2
+
+//Shear Force at A
+V_A=-F_C+R_B-w*L_AD
+
+//Pt of contralfexure
+//Let E be the pt and CE=x
+//V_E=0=-F_C+R_B-w*(L_EC-L_DB-L_BC)
+L_EC=-((+F_C-R_B)*w**-1-L_DB- L_BC)
+L_ED=L_EC-L_DB-L_BC
+
+//Bending Moment Calculations
+
+//Bending Moment at C
+M_C=0
+
+//Bending Moment at B
+M_B=-F_C*L_BC
+
+//Bending Moment at D
+M_D1=-F_C*(L_BC+L_DB)+R_B*L_DB
+M_D2=M_D1-M_D
+
+//Bending Moment at E
+M_E=-F_C*L_EC+R_B*(L_ED+L_DB)-w*L_ED**2*2**-1-M_D
+
+//Bending Moment at A
+M_A=0
+
+//Pt of contraflexure
+//Let F be the pt and CF=y
+//M_F=0=- F_C*L_FC+R_B*(L_FC-L_BC)-M_D-w*(L_FC-L_DB-L_BC)
+//After substituting values and further simplifying we get equation as
+//y**2-14.8*y+54.5=0
+
+a=1
+b=-14.8
+c=54.4
+
+X=b**2-4*a*c
+
+y1=(-b+X**0.5)*(2*a)**-1
+y2=(-b-X**0.5)*(2*a)**-1
+
+//From above two equations y2 is taken into consideration
+
+//Result
+printf("The Shear Force and Bending Moment Diagrams are the results")
+
+//Plotting the Shear Force Diagram
+subplot(2,1,1)
+X1=[0,L_BC,L_BC,L_BC+L_DB,L_BC+L_DB+L_AD,L_BC+L_DB+L_AD]
+Y1=[V_C,V_B1,V_B2,V_D,V_A,0]
+Z1=[0,0,0,0,0,0]
+plot(X1,Y1,X1,Z1)
+xlabel("Length x in m")
+ylabel("Shear Force in kN")
+title("the Shear Force Diagram")
+
+//Plotting the Bending Moment Diagram
+subplot(2,1,2)
+X2=[0,L_BC,L_BC+L_DB,L_BC+L_DB,L_BC+L_DB+L_ED,L_BC+L_DB+L_AD,]
+Y2=[M_C,M_B,M_D1,M_D2,M_E,M_A]
+Z2=[0,0,0,0,0,0]
+plot(X2,Y2,X2,Z2)
+xlabel("Length in m")
+ylabel("Bending Moment in kN.m")
+title("the Bending Moment Diagram")
diff --git a/3772/CH4/EX4.2/Ex4_2.sce b/3772/CH4/EX4.2/Ex4_2.sce
new file mode 100644
index 000000000..ee3b4394a
--- /dev/null
+++ b/3772/CH4/EX4.2/Ex4_2.sce
@@ -0,0 +1,61 @@
+// Problem no 4.4.2,Page No.90
+
+clc;clear;
+close;
+w_CB=1 //KN/m //u.d.l on Length CB
+F_D=2 //KN //Pt Load at D
+L_AD=1;L_DC=1 //m //Length of AD & DC
+L_CB=2 //m //Length of CB
+
+//Calculations
+
+//Shear Force at B
+V_B=0 //KN
+
+//Shear Force at C
+V_C=-(w_CB*L_CB)
+
+//Shear Force at D
+V_D1=V_C
+V_D2=V_C-F_D
+
+//Shear Force at A
+V_A=V_D2
+
+//Bending Moment Calculations
+
+//Bending Moment at B
+M_B=0
+
+//Bending Moment at C
+M_C=-w_CB*L_CB**2*2**-1
+
+//Bending Moment at D
+M_D=-w_CB*L_CB*(L_CB*2**-1+L_DC)
+
+//Bending Moment at A
+M_A=-w_CB*L_CB*(L_CB*2**-1+L_DC+L_AD)-F_D*L_AD
+
+//Result
+printf("The Shear Force and Bending Moment Diagrams are the results")
+
+//Plotting the Shear Force Diagram
+subplot(2,1,1)
+X1=[0,L_CB,L_CB+L_DC,L_CB+L_DC,L_CB+L_DC+L_AD,L_CB+L_DC+L_AD]
+Y1=[0,V_C,V_D1,V_D2,V_A,0]
+Z1=[0,0,0,0,0,0]
+plot(X1,Y1,X1,Z1)
+xlabel("Length x in m")
+ylabel("Shear Force in kN")
+title("the Shear Force Diagram")
+
+
+//Plotting the Bending Moment Diagram
+subplot(2,1,2)
+Y2=[M_B,M_C,M_D,M_A]
+X2=[0,L_CB,L_CB+L_DC,L_CB+L_DC+L_AD]
+Z2=[0,0,0,0]
+plot(X2,Y2)
+xlabel("Length in m")
+ylabel("Bending Moment in kN.m")
+title("the Bending Moment Diagram")
diff --git a/3772/CH4/EX4.3/Ex4_3.sce b/3772/CH4/EX4.3/Ex4_3.sce
new file mode 100644
index 000000000..6c09379c6
--- /dev/null
+++ b/3772/CH4/EX4.3/Ex4_3.sce
@@ -0,0 +1,58 @@
+// Problem no 4.4.3,Page No.91
+
+clc;clear;
+close;
+AC=5000 //N/m //u.v.l
+L_AB=4 //m //Length of AB
+
+//Calculations
+
+//Consider a section at Distance x from B
+//DB=x
+//By similar triangles (triangle ABC and BDE) we get
+
+//Shear Force at x
+//F_x=-DB*DE*2**-1
+//After substituting values in above equation we get
+//F_x=625*x**2
+
+//shear Force at B where x=0
+V_B=0
+
+//shear Force at A where x=L_AB=4
+V_A=625*L_AB**2
+
+//Bending Moment Calculation
+
+//M_x=DB*DE*DB*3**-1*2**-1
+//Substituting values in above equation we get
+//M_x=-625*x**3*3**-1
+
+//Bending Moment at B where x=0
+M_B=0
+
+//Bending Moment at A where x=L_AB=4
+M_A=-625*L_AB**3*3**-1
+
+//Result
+printf("The Shear Force and Bending Moment Diagrams are the results")
+
+//Plotting the Shear Force Diagram
+subplot(2,1,1)
+X1=[0,L_AB]
+Y1=[V_B,V_A]
+Z1=[0,0]
+plot(X1,Y1,X1,Z1)
+xlabel("Length x in m")
+ylabel("Shear Force in kN")
+title("the Shear Force Diagram")
+
+//Plotting the Bending Moment Diagram
+subplot(2,1,2)
+Y2=[M_B,M_A]
+X2=[0,L_AB]
+Z2=[0,0]
+plot(X2,Y2)
+xlabel("Length in m")
+ylabel("Bending Moment in kN.m")
+title("the Bending Moment Diagram")
diff --git a/3772/CH4/EX4.4/Ex4_4.sce b/3772/CH4/EX4.4/Ex4_4.sce
new file mode 100644
index 000000000..4b4ade724
--- /dev/null
+++ b/3772/CH4/EX4.4/Ex4_4.sce
@@ -0,0 +1,73 @@
+// Problem no 4.4.4,Page No.92
+
+clc;clear;
+close;
+F_C=30;F_D=30;F_E=30 //KN //Pt Load at C,D,E respectively
+L_AE=1.5;L_ED=1.5;L_DC=1.5 //m //Length of AE,ED,DC respectively
+L_CB=0.5 //m //Length of CB
+L_AC=4.5 //m //Length of AC
+L_AD=3 //m //Length of AD
+w=10 //KN/m //u.d.l
+L=5 //m //Length of beam
+
+//Calculations
+
+//Shear Force Calculations
+
+//Shear Force at B
+V_B=0 //KN
+
+//Shear Force at C
+V_C1=-w*L_CB
+V_C2=-w*L_CB-F_C //KN
+
+//Shear Force at D
+V_D1=-w*(L_DC+L_CB)-F_C*L_DC
+V_D2=-w*(L_DC+L_CB)-F_C-F_D //KN
+
+//Shear Force at E
+V_E1=-w*(L_DC+L_CB+L_ED)-F_C*(L_DC+L_ED)
+V_E2=-F_C-F_D-F_E-w*(2*L_ED+L_CB)
+
+//Shear Force at A
+V_A=-w*L-F_C-F_D-F_E
+
+//Bending Moment Calculations
+
+//Bending Moment at B
+M_B=0
+
+//Bending Moment at C
+M_C=-w*L_CB**2*2**-1
+
+//Bending Moment at D
+M_D=-w*(L_DC+L_CB)**2*2**-1-F_C*L_DC
+
+//Bending Moment at E
+M_E=-w*(L_DC+L_CB+L_ED)**2*2**-1-F_C*(L_ED+L_DC)-F_D*L_ED
+
+//Bending Moment at A
+M_A=-w*L**2*2**-1-F_C*L_AC-F_D*L_AD-F_E*L_AE
+
+//Result
+printf("The Shear Force and Bending Moment Diagrams are the results")
+
+//Plotting the Shear Force Diagram
+subplot(2,1,1)
+X1=[0,L_CB,L_CB,L_CB+L_DC,L_CB+L_DC,L_CB+L_DC+L_ED,L_CB+L_DC+L_ED,L_CB+L_DC+L_ED+L_AE,L_CB+L_DC+L_ED+L_AE]
+Y1=[V_B,V_C1,V_C2,V_D1,V_D2,V_E1,V_E2,V_A,0]
+Z1=[0,0,0,0,0,0,0,0,0]
+plot(X1,Y1,X1,Z1)
+xlabel("Length x in m")
+ylabel("Shear Force in kN")
+title("the Shear Force Diagram")
+
+//Plotting the Bending Moment Diagram
+subplot(2,1,2)
+X2=[0,L_CB,L_CB+L_DC,L_CB+L_DC+L_ED,L_CB+L_DC+L_ED+L_AE,L_CB+L_DC+L_ED+L_AE]
+Y2=[M_B,M_C,M_D,M_E,M_A,0]
+Z2=[0,0,0,0,0,0]
+plot(X2,Y2)
+xlabel("Length in m")
+ylabel("Bending Moment in kN.m")
+title("the Bending Moment Diagram")
diff --git a/3772/CH4/EX4.5/Ex4_5.sce b/3772/CH4/EX4.5/Ex4_5.sce
new file mode 100644
index 000000000..0da209616
--- /dev/null
+++ b/3772/CH4/EX4.5/Ex4_5.sce
@@ -0,0 +1,87 @@
+// Problem no 4.4.5,Page No.93
+
+clc;clear;
+close;
+
+w1=30 //KN/m //u.d.l on L_CB
+F_C=120 //KN //Pt Load at C
+w2=50 //KN/m //u.d.l on L_AD
+L_DC=2;L_CB=2 //m //Length of DC and CB respectively
+L_AD=4 //m //Length of AD
+L_AB=8;L=8 //m //Length of beam
+
+
+//Calculations
+
+//Let R_A & R_B be the reactions at A & B
+//R_A+R_B=380
+
+//Taking Moment at A
+//M_A=-R_B*L+F_C(L_DC+L_AD)+w1*L_CB*(L_CB*2**-1+L_DC+L_AD)+w2*L_AD**2*2**-1=0
+
+//After Rearranging the terms we get
+R_B=(F_C*(L_DC+L_AD)+w1*L_CB*(L_CB*2**-1+L_DC+L_AD)+w2*L_AD**2*2**-1)*L**-1
+R_A=380-R_B
+
+//Shear Force Calculations
+
+//Shear Force at B
+V_B=R_B
+
+//Shear Force at C
+V_C1=-w1*L_CB+R_B
+V_C2=R_B-w1*L_CB-F_C
+
+//Shear Force at D
+V_D=V_C2
+
+//Shear Force at A
+V_A=V_D-w2*L_AD
+
+//Point of contraflexure
+//Let E be the point EB=x
+//Shear Force at E
+//V_E=0=R_B-F_C-w1*L_CB-w2*(L_EB-L_DC-L_CB)
+L_EB=-((-R_B+F_C+w1*L_CB)*w2**-1-L_DC-L_CB)
+V_E=0
+
+//Bending Moment Calculations
+
+//Bending Moment at B
+M_B=0
+
+//Bending Moment at C
+M_C=R_B*L_CB-w1*L_CB**2*2**-1
+
+//Bending Moment at D
+M_D=R_B*(L_CB+L_DC)-w1*L_CB*(L_CB*2**-1+L_DC)-F_C*L_DC
+
+//Bending Moment at A
+M_A=0
+
+//Bending Moment at E
+L_ED=L_EB-(L_DC+L_CB) //m //Length of ED
+M_E=-w1*L_CB*(L_ED+L_DC+L_CB*2**-1)-F_C*(L_DC+L_ED)+R_B*L_EB
+
+//Result
+printf("The Shear Force and Bending Moment Diagrams are the results")
+
+//Plotting the Shear Force Diagram
+subplot(2,1,2)
+X1=[0,L_CB,L_CB,L_CB+L_DC,L_CB+L_DC+L_AD,L_CB+L_DC+L_AD]
+Y1=[V_B,V_C1,V_C2,V_D,V_A,0]
+Z1=[0,0,0,0,0,0]
+plot(X1,Y1,X1,Z1)
+xlabel("Length x in m")
+ylabel("Shear Force in kN")
+title("the Shear Force Diagram")
+
+//Plotting the Bending Moment Diagram
+subplot(2,1,1)
+X2=[0,L_CB,L_CB+L_DC,L_CB+L_DC+L_ED,L_CB+L_DC+L_AD]
+Y2=[M_B,M_C,M_D,M_E,M_A]
+Z2=[0,0,0,0,0]
+plot(X2,Y2)
+xlabel("Length in m")
+ylabel("Bending Moment in kN.m")
+title("the Bending Moment Diagram")
diff --git a/3772/CH4/EX4.6/Ex4_6.sce b/3772/CH4/EX4.6/Ex4_6.sce
new file mode 100644
index 000000000..cae05ca69
--- /dev/null
+++ b/3772/CH4/EX4.6/Ex4_6.sce
@@ -0,0 +1,90 @@
+// Problem no 4.4.6,Page No.95
+
+clc;clear;
+close;
+F_C=100 //KN //Pt Load at C
+F_E=50 //KN //Pt Load at E
+w=20 //KN/m
+L_AE=2;L_ED=2;L_DC=2;L_CB=2 //m //Length of AE,ED,DC,CB respectively
+L=8 //m //Length of Beam
+
+//Calculations
+
+//Let R_A & R_B be the reactions at A & B
+//R_A+R_B=190
+
+//Taking Moment at A
+//M_A=-R_B*L+F_C*(3*L_AE)+w*L_DC*(L_DC*2**-1+2*L_ED)+F_E*L_AE=0
+R_B=(F_C*(3*L_AE)+w*L_DC*(L_DC*2**-1+2*L_ED)+F_E*L_AE)*L**-1
+R_A=190-R_B
+
+//Shear Force Calculations
+
+//Shear Force at B
+V_B=R_B
+
+//Shear Force at C
+V_C1=R_B
+V_C2=R_B-F_C
+
+//Shear Force at D
+V_D=V_C2-w*L_DC
+
+//Shear Force at E
+V_E1=V_D
+V_E2=V_D-F_E
+
+//Shear Force at A
+V_A=V_E2
+
+//Point of contraflexure
+//Let F be the point BF=x
+//Shear Force at F
+//V_F=R_B-F_C-w*(L_BF-L_CB)
+L_FB=-((-R_B+F_C)*w**-1-L_CB)
+V_F=0
+
+//Bending Moment Calculations
+
+//Bending Moment at B
+M_B=0
+
+//Bending Moment at C
+M_C=R_B*L_CB
+
+//Bending Moment at D
+M_D=R_B*(L_CB+L_DC)-F_C*L_DC-w*L_DC**2*2**-1
+
+//Bending Moment at E
+M_E=R_B*(L_CB+L_DC+L_ED)-F_C*(L_ED+L_DC)-w*L_DC*(L_DC*2**-1+L_ED)
+
+//Bending Moment at A
+M_A=R_B*(L_ED+L_DC+L_AE+L_CB)-F_C*(L_ED+L_DC+L_AE)-w*L_DC*(L_DC*2**-1+L_ED+L_AE)-F_E*L_AE
+
+//Bending Moment at F
+L_FC=L_CB-L_CB
+M_F=R_B*L_FB-F_C*L_FC-w*L_FC**2*2**-1
+L_DF=L_DC-L_FC
+
+//Result
+printf("The Shear Force and Bending Moment Diagrams are the results")
+
+//Plotting the Shear Force Diagram
+subplot(2,1,1)
+X1=[0,L_CB,L_CB,L_CB+L_DC,L_CB+L_DC+L_ED,L_CB+L_DC+L_ED,L_CB+L_DC+L_ED+L_AE]
+Y1=[V_B,V_C1,V_C2,V_D,V_E1,V_E2,V_A]
+Z1=[0,0,0,0,0,0,0,]
+plot(X1,Y1,X1,Z1)
+xlabel("Length x in m")
+ylabel("Shear Force in kN")
+title("the Shear Force Diagram")
+
+//Plotting the Bending Moment Diagram
+subplot(2,1,2)
+X2=[0,L_CB,L_CB+L_FC,L_CB+L_DC,L_CB+L_DC+L_ED,L_CB+L_DC+L_ED]
+Y2=[M_B,M_C,M_F,M_D,M_E,M_A]
+Z2=[0,0,0,0,0,0]
+plot(X2,Y2)
+xlabel("Length in m")
+ylabel("Bending Moment in kN.m")
+title("the Bending Moment Diagram")
diff --git a/3772/CH4/EX4.7/Ex4_7.sce b/3772/CH4/EX4.7/Ex4_7.sce
new file mode 100644
index 000000000..de07ef10f
--- /dev/null
+++ b/3772/CH4/EX4.7/Ex4_7.sce
@@ -0,0 +1,85 @@
+// Problem no 4.4.7,Page No.96
+
+clc;clear;
+close;
+w=20 //KN/m //u.d.l on Length CB
+F_D= 50 //KN //Pt Load at D
+L_CB=5 //m //Length of CB
+L_DC=3 //M //Length of DC
+L_AD=2 //m //Length of AD
+L=10 //m //Length of Beam
+
+//Calculations
+
+theta=atan(4*3**-1)*(180*%pi**-1)
+F_DV=F_D*sin(theta*%pi*180**-1) //Force at Pt D vertically
+F_DH=F_D*cos(theta*%pi*180**-1) //Force at pt D horizontally
+
+//Let R_A & R_B be the reactions at A & B
+//R_A+R_B=140
+
+//Taking Moment at A
+//M_A=0=-R_B*L+w*L_CB*(L_CB*2**-1+L_DC+L_AD)+F_DV*L_AD
+R_B=(w*L_CB*(L_CB*2**-1+L_DC+L_AD)+F_DV*L_AD)*L**-1
+R_A=140-R_B
+
+//Shear Force Calculations
+
+//Shear Force at B
+V_B=R_B
+
+//Shear Force at C
+V_C=V_B-w*L_CB
+
+//Shear Force at D
+V_D1=V_C
+V_D2=V_C-F_DV
+
+//Shear Force at A
+V_A=V_D2
+
+//Pt of Contraflexure
+//Let E be the pt And BE=x
+//V_E=0=R_B-w*x
+x=R_B*w**-1;
+L_BE=R_B*w**-1
+
+//Bending Moment Calculations
+
+//Bending Moment at B
+M_B=0
+
+//Bending Moment at C
+M_C=R_B*L_CB-w*L_CB**2*2**-1
+
+//Bending Moment at D
+M_D=R_B*(L_CB+L_DC)-w*L_CB*(L_CB*2**-1+L_DC)
+
+//Bending Moment at A
+M_A=R_B*L-w*L_CB*(L_CB*2**-1+L_DC+L_AD)-F_DV*L_AD
+
+//Bending Moment at E
+M_E=R_B*L_BE-w*L_BE**2*2**-1
+
+//Result
+printf("The Shear Force and Bending Moment Diagrams are the results")
+
+//Plotting the Shear Force Diagram
+subplot(2,1,1)
+X1=[0,L_CB,L_CB+L_DC,L_CB+L_DC,L_CB+L_DC+L_AD]
+Y1=[V_B,V_C,V_D1,V_D2,V_A]
+Z1=[0,0,0,0,0]
+plot(X1,Y1,X1,Z1)
+xlabel("Length x in m")
+ylabel("Shear Force in kN")
+title("the Shear Force Diagram")
+
+//Plotting the Bending Moment Diagram
+subplot(2,1,2)
+X2=[0,L_BE,L_CB,L_CB+L_DC,L_CB+L_DC+L_AD]
+Y2=[M_B,M_E,M_C,M_D,M_A]
+Z2=[0,0,0,0,0,0]
+plot(X2,Y2)
+xlabel("Length in m")
+ylabel("Bending Moment in kN.m")
+title("the Bending Moment Diagram")
diff --git a/3772/CH4/EX4.8/Ex4_8.sce b/3772/CH4/EX4.8/Ex4_8.sce
new file mode 100644
index 000000000..0ea0a8200
--- /dev/null
+++ b/3772/CH4/EX4.8/Ex4_8.sce
@@ -0,0 +1,95 @@
+// Problem no 4.4.8,Page No.97
+
+clc;clear;
+close;
+F_C=150 //KN //Pt LOad at C
+w=300 //KN //u.v.l
+L=6 //m //Length of beam
+L_AE=1;L_DC=2;L_CB=1;L_CD=1 //m //Lengthof AE,DC,CB
+L_ED=3 //m //Length of ED
+L_Ed=2 //m
+L_dD=1 //m
+
+//Calculations
+
+//Let R_A & R_B be the reactions at A & B
+//R_A+R_B=450
+
+//Taking Moment at A
+//M_A=0=R_B*L-F_C*(L_CD+L_ED+L_AE)-w*(2*3**-1*L_ED+L_AE)
+R_B=(F_C*(L_DC+L_ED+L_AE)+w*(2*3**-1*L_ED+L_AE))*L**-1
+R_A=450-R_B
+
+//Shear Force Calculations
+
+//Shear Force at B
+V_B=R_B
+
+//Shear Force at C
+V_C1=R_B
+V_C2=R_B-F_C
+
+//Shear Force at D
+V_D=V_C2
+
+//Shear Force at E
+V_E=V_D-w
+
+//Shear Force at A
+V_A=V_E
+
+//Pt of contraflexure
+//Let F be the pt and EF=x
+//Let w1 be the rate of Loading at D we get
+w1=w*2*3**-1
+//The rate of Loading at distance x is200*x*3**-1
+
+//V_F=0=-R_B+200*x*3**-1*x*2**-1
+//After substituting values and simplifying further we get
+L_EF=(R_A*3*100**-1)**0.5
+x=(R_A*3*100**-1)**0.5;
+//Bending Moment Calculations
+
+//Bending Moment at B
+M_B=0
+
+//Bending Moment at C
+M_C=R_B*L_CB
+
+//Bending Moment at D
+M_D=R_B*(L_CB+L_DC)-F_C*L_DC
+
+//Bending Moment at E
+M_E=R_B*(L_CB+L_DC+L_ED)-F_C*(L_DC+L_ED)-w*L_Ed
+
+//Bending Moment at A
+M_A=0
+
+//Bending Moment at F
+M_F=R_A*(L_AE+L_EF)-200*x*3**-1*x*2**-1*x*3**-1
+
+L_FD=L_ED-L_EF
+
+
+//Result
+printf("The Shear Force and Bending Moment Diagrams are the results")
+
+//Plotting the Shear Force Diagram
+subplot(2,1,1)
+X1=[0,L_CB,L_CB,L_CB+L_CD,L_CB+L_CD+L_ED,L_CB+L_CD+L_ED+L_AE,L_CB+L_CD+L_ED+L_AE]
+Y1=[V_B,V_C1,V_C2,V_D,V_E,V_A,0]
+Z1=[0,0,0,0,0,0,0]
+plot(X1,Y1,X1,Z1)
+xlabel("Length x in m")
+ylabel("Shear Force in kN")
+title("the Shear Force Diagram")
+
+//Plotting the Bending Moment Diagram
+subplot(2,1,2)
+X2=[0,L_CB,L_CB+L_DC,L_FD+L_DC+L_CB,L_CB+L_DC+L_ED,L_CB+L_DC+L_ED+L_AE]
+Y2=[M_B,M_C,M_D,M_F,M_E,M_A]
+Z2=[0,0,0,0,0,0]
+plot(X2,Y2)
+xlabel("Length in m")
+ylabel("Bending Moment in kN.m")
+title("the Bending Moment Diagram")
diff --git a/3772/CH4/EX4.9/Ex4_9.sce b/3772/CH4/EX4.9/Ex4_9.sce
new file mode 100644
index 000000000..71d2696cb
--- /dev/null
+++ b/3772/CH4/EX4.9/Ex4_9.sce
@@ -0,0 +1,82 @@
+// Problem no 4.4.9,Page No.99
+
+clc;clear;
+close;
+M_C=40 //KNM //Moment at Pt C
+w=20 //KNm //u.d.l on L_AD
+L=10 //m //Length of beam
+L_CB=5 //m //Length of CB
+L_DC=1 //m //Length of DC
+L_AD=4 //m //Length of AD
+
+//Calculations
+
+//Let R_A & R_B be the reactions at A & B
+//R_A+R_B=80
+
+//Taking Moment at A
+//M_A=0=R_B*L-M-w*L_AD**2*2**-1
+R_B=(w*L_AD**2*2**-1+M_C)*L**-1
+R_A=80-R_B
+
+//Shear Force Calculations
+
+//Shear Force at B
+V_B=R_B
+
+//Shear Force at C
+V_C=V_B
+
+//Shear Force at D
+V_D=V_C
+
+//Shear Force at A
+V_A=V_D-w*L_AD
+
+//Pt of contraflexure
+//Let E be the pt and BE=x
+//V_E=0=R_B-w*(L_BE-L_DC-L_CB)
+L_BE=R_B*w**-1+L_DC+L_CB;
+x=L_BE
+
+//Bending Moment Calculations
+
+//Bending Moment at B
+M_B=0
+
+//Bending Moment at C
+M_C1=R_B*L_CB
+M_C2=M_C1-M_C
+
+//Bending Moment at D
+M_D=R_B*(L_CB+L_DC)-M_C
+
+//Bending Moment at A
+M_A=R_B*L-M_C-w*L_AD**2*2**-1
+
+//Bending Moment at E
+L_ED=L_BE-(L_DC+L_CB)
+M_E=R_B*L_BE-M_C-w*L_ED**2*2**-1
+
+//Result
+printf("The Shear Force and Bending Moment Diagrams are the results")
+
+//Plotting the Shear Force Diagram
+subplot(2,1,1)
+X1=[0,L_CB,L_CB+L_DC,L_CB+L_DC+L_AD,L_CB+L_DC+L_AD]
+Y1=[V_B,V_C,V_D,V_A,0]
+Z1=[0,0,0,0,0]
+plot(X1,Y1,X1,Z1)
+xlabel("Length x in m")
+ylabel("Shear Force in kN")
+title("the Shear Force Diagram")
+
+//Plotting the Bending Moment Diagram
+subplot(2,1,2)
+X2=[0,L_CB,L_CB,L_CB+L_DC,L_CB+L_DC+L_ED,L_CB+L_DC+L_AD]
+Y2=[M_B,M_C1,M_C2,M_D,M_E,M_A]
+Z2=[0,0,0,0,0,0]
+plot(X2,Y2,X2,Z2)
+xlabel("Length in m")
+ylabel("Bending Moment in kN.m")
+title("the Bending Moment Diagram")