1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
|
// Problem no 4.4.15,Page No.105
clc;clear;
close;
L=8 //m //Length of beam
L_AD=4 //m //Length of AD
w=300 //KN //u.d.l
//Calculations
//Let R_A and R_C be the reactions at A and C
//R_A+R_C=300
//Taking moment at A
//LEt x be the distance from Pt B L_CB=x
//R_C*(L-L_CB)=300*L*2**-1
//R_C=1200*(8-x)**-1
//After substituting values and further simplifying we get
//R_A=300-R_C
//R_A=1200-300*x*(8-x)**-1
//B.M at D
//M_D=R_A*L_AD-w*2**-1*2=0
//Now substituting value of R_A we get
//M_D=4*1200-300*x*(8-x)**-1-300=0
//Further on simplification we get
L_CB=600*225**-1
x=L_CB;
R_C=1200*(8-x)**-1
R_A=(1200-300*x)*(8-x)**-1
//Pt of contraflexure
//Let E be the pt and BE=y
//V_E=0=-R_A*2**-1*L_BE+R_C
L_BE=R_C*(R_A*2**-1)**-1
L_AE=L-L_BE
L_AC=L-L_CB
L_EC=L_BE-L_CB
//Shear Force at B
V_B=0
//Shear Force at C
V_C1=-w
V_C2=-V_C1+R_C
//Shear Force at A
V_A=-w+R_C
//B.M at C
M_C=-w*L_CB
//B.M at E
M_E=-R_A*L_AE+w*L_AE
//B.M at A
M_A=0
//B.M at B
M_B=0
//Result
printf("The Shear Force and Bending Moment Diagrams are the results")
//Plotting the Shear Force Diagram
subplot(2,1,1)
X1=[0,L_CB,L_CB,L_CB+L_AC,L_CB+L_AC]
Y1=[V_B,V_C1,V_C2,V_A,0]
Z1=[0,0,0,0,0]
plot(X1,Y1,X1,Z1)
xlabel("Length x in m")
ylabel("Shear Force in kN")
title("the Shear Force Diagram")
//Plotting the Bending Moment Diagram
subplot(2,1,2)
X2=[0,L_CB,L_CB+L_EC,L_CB+L_AC]
Y2=[M_B,M_C,M_E,M_A]
Z2=[0,0,0,0]
plot(X2,Y2,X2,Z2)
xlabel("Length in m")
ylabel("Bending Moment in kN.m")
title("the Bending Moment Diagram")
|