// Problem no 4.4.15,Page No.105 clc;clear; close; L=8 //m //Length of beam L_AD=4 //m //Length of AD w=300 //KN //u.d.l //Calculations //Let R_A and R_C be the reactions at A and C //R_A+R_C=300 //Taking moment at A //LEt x be the distance from Pt B L_CB=x //R_C*(L-L_CB)=300*L*2**-1 //R_C=1200*(8-x)**-1 //After substituting values and further simplifying we get //R_A=300-R_C //R_A=1200-300*x*(8-x)**-1 //B.M at D //M_D=R_A*L_AD-w*2**-1*2=0 //Now substituting value of R_A we get //M_D=4*1200-300*x*(8-x)**-1-300=0 //Further on simplification we get L_CB=600*225**-1 x=L_CB; R_C=1200*(8-x)**-1 R_A=(1200-300*x)*(8-x)**-1 //Pt of contraflexure //Let E be the pt and BE=y //V_E=0=-R_A*2**-1*L_BE+R_C L_BE=R_C*(R_A*2**-1)**-1 L_AE=L-L_BE L_AC=L-L_CB L_EC=L_BE-L_CB //Shear Force at B V_B=0 //Shear Force at C V_C1=-w V_C2=-V_C1+R_C //Shear Force at A V_A=-w+R_C //B.M at C M_C=-w*L_CB //B.M at E M_E=-R_A*L_AE+w*L_AE //B.M at A M_A=0 //B.M at B M_B=0 //Result printf("The Shear Force and Bending Moment Diagrams are the results") //Plotting the Shear Force Diagram subplot(2,1,1) X1=[0,L_CB,L_CB,L_CB+L_AC,L_CB+L_AC] Y1=[V_B,V_C1,V_C2,V_A,0] Z1=[0,0,0,0,0] plot(X1,Y1,X1,Z1) xlabel("Length x in m") ylabel("Shear Force in kN") title("the Shear Force Diagram") //Plotting the Bending Moment Diagram subplot(2,1,2) X2=[0,L_CB,L_CB+L_EC,L_CB+L_AC] Y2=[M_B,M_C,M_E,M_A] Z2=[0,0,0,0] plot(X2,Y2,X2,Z2) xlabel("Length in m") ylabel("Bending Moment in kN.m") title("the Bending Moment Diagram")