diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3681/CH5 | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3681/CH5')
-rw-r--r-- | 3681/CH5/EX5.12/Ans5_12.PNG | bin | 0 -> 5162 bytes | |||
-rw-r--r-- | 3681/CH5/EX5.12/Ex5_12.sce | 13 | ||||
-rw-r--r-- | 3681/CH5/EX5.13/Ans5_13.PNG | bin | 0 -> 6455 bytes | |||
-rw-r--r-- | 3681/CH5/EX5.13/Ex5_13.sce | 21 | ||||
-rw-r--r-- | 3681/CH5/EX5.14/Ans5_14.PNG | bin | 0 -> 4704 bytes | |||
-rw-r--r-- | 3681/CH5/EX5.14/Ex5_14.sce | 20 | ||||
-rw-r--r-- | 3681/CH5/EX5.16/Ans5_16.PNG | bin | 0 -> 9980 bytes | |||
-rw-r--r-- | 3681/CH5/EX5.16/Ex5_16.sce | 21 | ||||
-rw-r--r-- | 3681/CH5/EX5.17/Ans5_17.PNG | bin | 0 -> 10673 bytes | |||
-rw-r--r-- | 3681/CH5/EX5.17/Ex5_17.sce | 27 | ||||
-rw-r--r-- | 3681/CH5/EX5.18/Ans5_18.PNG | bin | 0 -> 5656 bytes | |||
-rw-r--r-- | 3681/CH5/EX5.18/Ex5_18.sce | 29 | ||||
-rw-r--r-- | 3681/CH5/EX5.20/Ans5_20.PNG | bin | 0 -> 5728 bytes | |||
-rw-r--r-- | 3681/CH5/EX5.20/Ex5_20.sce | 30 | ||||
-rw-r--r-- | 3681/CH5/EX5.3/Ans5_3.PNG | bin | 0 -> 5321 bytes | |||
-rw-r--r-- | 3681/CH5/EX5.3/Ex5_3.sce | 22 | ||||
-rw-r--r-- | 3681/CH5/EX5.6/Ans5_6.PNG | bin | 0 -> 7661 bytes | |||
-rw-r--r-- | 3681/CH5/EX5.6/Ex5_6.sce | 23 | ||||
-rw-r--r-- | 3681/CH5/EX5.9/Ans5_9.PNG | bin | 0 -> 6082 bytes | |||
-rw-r--r-- | 3681/CH5/EX5.9/Ex5_9.sce | 21 |
20 files changed, 227 insertions, 0 deletions
diff --git a/3681/CH5/EX5.12/Ans5_12.PNG b/3681/CH5/EX5.12/Ans5_12.PNG Binary files differnew file mode 100644 index 000000000..d36b75aaf --- /dev/null +++ b/3681/CH5/EX5.12/Ans5_12.PNG diff --git a/3681/CH5/EX5.12/Ex5_12.sce b/3681/CH5/EX5.12/Ex5_12.sce new file mode 100644 index 000000000..11d6ef3dd --- /dev/null +++ b/3681/CH5/EX5.12/Ex5_12.sce @@ -0,0 +1,13 @@ +// Calculating the resistance of secondary winding
+clc;
+disp('Example 5.12, Page No. = 5.89')
+// Given Data
+sp = 2.2;// Current density of primary winding(in Ampere per mm square)
+ss = 2.1;// Current density of secondary winding(in Ampere per mm square)
+rp = 8;// Resistance of primary inding (in ohm)
+R1 = 1/1.1;// Since length of mean turn of primary is 10% than that of the secondary
+R2 = 1/10;// Since ratio of transformation is 10:1
+// Calculation of the resistance of secondary winding
+rs = R2*R2*(ss/sp)*R1*rp;// Resistance of secondary winding (ohm)
+disp(rs,'Resistance of secondary winding (ohm)=');
+//in book answer is 0.0694 ohm. The answers vary due to round off error
diff --git a/3681/CH5/EX5.13/Ans5_13.PNG b/3681/CH5/EX5.13/Ans5_13.PNG Binary files differnew file mode 100644 index 000000000..9e6f37822 --- /dev/null +++ b/3681/CH5/EX5.13/Ans5_13.PNG diff --git a/3681/CH5/EX5.13/Ex5_13.sce b/3681/CH5/EX5.13/Ex5_13.sce new file mode 100644 index 000000000..601315a10 --- /dev/null +++ b/3681/CH5/EX5.13/Ex5_13.sce @@ -0,0 +1,21 @@ +// Calculating the leakage reactance of the transformer referred to the h.v. side
+clc;
+disp('Example 5.13, Page No. = 5.89')
+// Given Data
+// 6600/400 V, delta/star 3-phase core type transformer
+Q = 300;// kVA rating
+f = 50;// Frequency (in Hz)
+u0 = 4*%pi*10^(-7);
+Tp = 830;// h.v winding turns
+Lmt = 0.9;// Length of mean turn (in meter)
+Lc = 0.5;// Height of coils (in meter)
+a = 0.015;// Width of duct between h.v and l.v. windings (in meter)
+bp = 0.025;// Width of h.v. winding (in meter)
+bs = 0.016;// Width of l.v. winding (in meter)
+// Calculation of the leakage reactance of the transformer referred to the h.v. side
+Xp = 2*%pi*f*u0*Tp*Tp*Lmt/Lc*(a+(bp+bs)/3);// Leakage reactance referred to the primary side (ohm)
+disp(Xp,'(a) Leakage reactance referred to the primary side (ohm)=');
+// If the l.v. winding divided into two parts, one on each side of h.v. winding
+Xp = %pi*f*u0*Tp*Tp*Lmt/Lc*(a+(bp+bs)/6);// Leakage reactance referred to the primary side (ohm)
+disp(Xp,'(b) Leakage reactance referred to the primary side (ohm)=');
+//in book answers are 14 ohm and 5.36 ohm respectively. The answers vary due to round off error
diff --git a/3681/CH5/EX5.14/Ans5_14.PNG b/3681/CH5/EX5.14/Ans5_14.PNG Binary files differnew file mode 100644 index 000000000..e6e6ff8be --- /dev/null +++ b/3681/CH5/EX5.14/Ans5_14.PNG diff --git a/3681/CH5/EX5.14/Ex5_14.sce b/3681/CH5/EX5.14/Ex5_14.sce new file mode 100644 index 000000000..a5e47dcf7 --- /dev/null +++ b/3681/CH5/EX5.14/Ex5_14.sce @@ -0,0 +1,20 @@ +// Calculating the per unit leakage reactance
+clc;
+disp('Example 5.14, Page No. = 5.90')
+// Given Data
+// 2000/400 V, single phase shell type transformer
+Q = 100;// kVA rating
+f = 50;// Frequency (in Hz)
+u0 = 4*%pi*10^(-7);
+Tp = 200;// h.v winding turns
+Lmt = 1.5;// Length of mean turn (in meter)
+W = 0.12;// Width of winding (in meter)
+a = 0.016;// Width of duct between h.v and l.v. windings (in meter)
+bp = 0.04;// Width of h.v. winding (in meter)
+bs = 0.036;// Width of l.v. winding (in meter)
+// Calculation of the per unit leakage reactance
+Xp = %pi*f*u0*Tp*Tp/2*Lmt/W*(a+(bp+bs)/6);// Leakage reactance referred to the primary side (ohm)
+I_hv = Q*10^(3)/2000;// H.V. winding current at full load (in ampere)
+Xp_pu = Xp*I_hv/2000;// Per unit leakage reactance
+disp(Xp_pu,'Per unit leakage reactance=');
+//in book answer is 0.0353. The answers vary due to round off error
diff --git a/3681/CH5/EX5.16/Ans5_16.PNG b/3681/CH5/EX5.16/Ans5_16.PNG Binary files differnew file mode 100644 index 000000000..5b3164df8 --- /dev/null +++ b/3681/CH5/EX5.16/Ans5_16.PNG diff --git a/3681/CH5/EX5.16/Ex5_16.sce b/3681/CH5/EX5.16/Ex5_16.sce new file mode 100644 index 000000000..a25af31af --- /dev/null +++ b/3681/CH5/EX5.16/Ex5_16.sce @@ -0,0 +1,21 @@ +// Calculating the instantaneous radial force on the h.v. winding if a short circuit occurs at the terminals of the l.v. winding with h.v. energised and the force at full load
+clc;
+disp('Example 5.16, Page No. = 5.97')
+// Given Data
+// 6600/400 V, delta/star 3-phase core type transformer
+Q = 1000;// kVA rating
+f = 50;// Frequency (in Hz)
+u0 = 4*%pi*10^(-7);
+T = 500;// h.v winding turns
+Lmt = 1.3;// Length of mean turn (in meter)
+Lc = 0.6;// Height of winding (in meter)
+m = 1.8;// Doubling effect multiplier
+// Calculation of the per unit leakage reactance
+I_fl = Q*1000/(3*6600);// Full load current per phase on h.v. side (in Ampere)
+i = m*2^(1/2)*(1/0.05)*I_fl;// Instantaneous peak value of short circuit current (in Ampere)
+Fr = u0/2*(i*T)^(2)*Lmt/Lc;// Total instantaneous radial force on the h.v. coil (in N)
+disp(Fr,'Total instantaneous radial force on the h.v. coil (N)=');
+Fr = u0/2*(I_fl*T)^(2)*Lmt/Lc;// Force at full load (in N)
+disp(Fr,'Force at full load (N)=');
+disp('This shows that the forces under short circuit conditions are considerably large as compared with forces at full load')
+//in book answers are 2330000 (N) and 866 (N). The answers vary due to round off error
diff --git a/3681/CH5/EX5.17/Ans5_17.PNG b/3681/CH5/EX5.17/Ans5_17.PNG Binary files differnew file mode 100644 index 000000000..63a2db3f8 --- /dev/null +++ b/3681/CH5/EX5.17/Ans5_17.PNG diff --git a/3681/CH5/EX5.17/Ex5_17.sce b/3681/CH5/EX5.17/Ex5_17.sce new file mode 100644 index 000000000..e1421e0e1 --- /dev/null +++ b/3681/CH5/EX5.17/Ex5_17.sce @@ -0,0 +1,27 @@ +// Calculating the instantaneous radial force and instantaneous axial force on the h.v. winding under short circuit conditions
+clc;
+disp('Example 5.17, Page No. = 5.98')
+// Given Data
+// 7500/435 V, single phase core type transformer
+Q = 575;// kVA rating
+f = 50;// Frequency (in Hz)
+u0 = 4*%pi*10^(-7);
+Z_pu = 0.036;// Per unit impedance
+T = 190;// h.v winding turns
+Lmt = 1.25;// Length of mean turn (in meter)
+Lc = 0.35;// Height of coils (in meter)
+m = 1.8;// Doubling effect multiplier
+a = 0.015;// Width of duct (in meter)
+bp = 0.027;// Width of h.v. winding (in meter)
+bs = 0.023;// Width of l.v. winding (in meter)
+k = 0.05;// Since the h.v. winding is 5% shorter than the l.v. winding at one end
+// Calculation of the instantaneous radial force
+I_fl = Q*1000/7500;// Rms value of full load current (in Ampere)
+i = m*2^(1/2)*(1/Z_pu)*I_fl;// Instantaneous peak value of short circuit current (in Ampere)
+Fr = u0/2*(i*T)^(2)*Lmt/Lc;// Instantaneous radial force on the h.v. coil (in N)
+disp(Fr,'(a) Instantaneous radial force on the h.v. winding (N)=');//in book answer is 2380000 (N). The answers vary due to round off error
+// Calculation of the instantaneous axial force
+Fa = u0/2*k*(i*T)^(2)*Lmt/(2*(a+bp+bs));// Total instantaneous radial force on the h.v. coil (in N)
+disp(Fa,'(b) Instantaneous axial force on the h.v. winding (N)=');
+//in book answer is 3200000 (N). The provided in the textbook is wrong
+disp('This shows that there is a very large axial force, even though one of the winding is only 5% shorter than the other at one end')
diff --git a/3681/CH5/EX5.18/Ans5_18.PNG b/3681/CH5/EX5.18/Ans5_18.PNG Binary files differnew file mode 100644 index 000000000..1a0613e2c --- /dev/null +++ b/3681/CH5/EX5.18/Ans5_18.PNG diff --git a/3681/CH5/EX5.18/Ex5_18.sce b/3681/CH5/EX5.18/Ex5_18.sce new file mode 100644 index 000000000..486fd9017 --- /dev/null +++ b/3681/CH5/EX5.18/Ex5_18.sce @@ -0,0 +1,29 @@ +// Calculating the maximum flux and no load current of the transformer
+clc;
+disp('Example 5.18, Page No. = 5.99')
+// Given Data
+Ep = 400;// Primary winding voltage (in volts)
+f = 50;// Frequency (in Hz)
+A = 2.5*10^(-3);// Area of cross section (in meter square)
+Sf = 0.9;// Stacking factor
+Tp = 800;// Primary winding turns
+li = 2.5;// Length of the flux path (in meter)
+u0 = 4*%pi*10^(-7);// Permeability of free space
+ur = 1000;// Relative ermeability
+D = 7.8*10^(3);// Density of iron (in kg per meter cube)
+FD_w = 2.6;// Working flux density (in W per kg)
+// Calculation of the maximum flux
+Ai = Sf*A;// Net iron area (in meter square)
+Bm = Ep/(4.44*f*Ai*Tp);// Maximum flux density of core (in Wb per meter square)
+Fm = Bm*Ai;// Maximum flux in the core (in Wb)
+disp(Fm,'Maximum flux in the core (Wb)=');
+// Calculation of the no load current
+AT0 = li/(ur*u0)*Bm;// Magnetic mmf (in A)
+Im = AT0/(2^(1/2)*Tp);// Magnetising current (in A)
+V = Ai*li;// Volume of the core (in meter cube)
+W = V*D;// Weight of core (in kg)
+Pi = W*FD_w;// Iron loss (in W)
+Il = Pi/Ep;// Loss component of no load current (in A)
+I0 =(Im*Im+Il*Il)^(1/2);// No load current (in A)
+disp(I0,'No load current (Ampere)=');
+//in book answers are 0.00225 (Wb) and 1.77 (Ampere) respectively. The answers vary due to round off error
diff --git a/3681/CH5/EX5.20/Ans5_20.PNG b/3681/CH5/EX5.20/Ans5_20.PNG Binary files differnew file mode 100644 index 000000000..05a99d7d7 --- /dev/null +++ b/3681/CH5/EX5.20/Ans5_20.PNG diff --git a/3681/CH5/EX5.20/Ex5_20.sce b/3681/CH5/EX5.20/Ex5_20.sce new file mode 100644 index 000000000..4f3410a03 --- /dev/null +++ b/3681/CH5/EX5.20/Ex5_20.sce @@ -0,0 +1,30 @@ +// Calculating the number of turns and no load current
+clc;
+disp('Example 5.20, Page No. = 5.101')
+// Given Data
+E = 6600;// Primary winding voltage (in volts)
+f = 60;// Frequency (in Hz)
+Ai = 22.6*10^(-3);// Area of cross section (in meter square)
+Bm = 1.1;// Maximum flux density of core (in Wb per meter square)
+Af = 1.52;// Amplitude factor
+Tp = 800;// Primary winding turns
+l = 2.23;// Mean length (in meter)
+mmf =232;// mmf per meter (in A per meter)
+n = 4;// Number of lap joints
+Gs = 7.5*10^(3);// Specific gravity of plates
+Ls = 1.76;// Specific loss (in W per kg)
+// Calculation of the number of turns
+Tp = E/(4.44*f*Ai*Bm);// Number of turns
+disp(Tp,'(a) Number of turns=');
+// Calculation of the no load current
+mmf_iron = mmf*l;// Mmf required for iron parts
+mmf_joints = 4*(1/4)*mmf;// Mmf required for joints. Since lap joints takes 1/4 times reactive mmf as required per meter of core
+AT0 = mmf_iron+mmf_joints;// Total magnetising mmf (in A)
+Kpk = Af*2^(1/2);// Peak factor
+Im = AT0/(Kpk*Tp);// Magnetising current (in A)
+W = Ai*l*Gs;// Weight of core (in kg)
+Pi = Ls*W;// Iron loss (in W)
+Il = Pi/E;// Loss component of no load current (in A)
+I0 =(Im*Im+Il*Il)^(1/2);// No load current (in A)
+disp(I0,'(b) No load current (Ampere)=');
+//in book answers are 1100 and 0.333 (A) respectively. The provided in the textbook is wrong
diff --git a/3681/CH5/EX5.3/Ans5_3.PNG b/3681/CH5/EX5.3/Ans5_3.PNG Binary files differnew file mode 100644 index 000000000..2a6909480 --- /dev/null +++ b/3681/CH5/EX5.3/Ans5_3.PNG diff --git a/3681/CH5/EX5.3/Ex5_3.sce b/3681/CH5/EX5.3/Ex5_3.sce new file mode 100644 index 000000000..2c1bf0a53 --- /dev/null +++ b/3681/CH5/EX5.3/Ex5_3.sce @@ -0,0 +1,22 @@ +// Calculating the kVA output of a single phase transformer
+clc;
+disp('Example 5.3, Page No. = 5.78')
+// Given Data
+D = 0.4;// Distance between core centres (in meter)
+f = 50;// Frequency (in Hz)
+Bm = 1.2;// Flux density of core (in Wb per meter square)
+Kw = 0.27;// Window space factor
+s = 2.3;// Current density (in Ampere per mm square)
+R1 = 2.8;// Ratio of core height and distance between core centres
+R2 = 0.56;// Ratio of circumscribing circle and distance between core centres
+R3 = 0.7;// Ratio of net iron area and area of circumscribing circle
+// Calculation of the kVA output of a single phase transformer
+Hw = R1*D;// Core heightor window height (in meter)
+d = R2*D;// Diameter of circumscribing circle (in meter)
+Ww = D-d;// Width of window (in meter)
+Aw = Hw*Ww;// Area of window (in meter square)
+A = (%pi/4)*d*d;// Area of circumscribing circle (in meter square)
+Ai = R3*A;// Net iron area (in meter square)
+Q = 2.22*f*Bm*Kw*s*10^(6)*Aw*Ai*10^(-3);// kVA output of a single phase transformer
+disp(Q,'kVA output of a single phase transformer (kVA)=');
+//in book answer is 450 kVA. The answers vary due to round off error
diff --git a/3681/CH5/EX5.6/Ans5_6.PNG b/3681/CH5/EX5.6/Ans5_6.PNG Binary files differnew file mode 100644 index 000000000..5c475d26a --- /dev/null +++ b/3681/CH5/EX5.6/Ans5_6.PNG diff --git a/3681/CH5/EX5.6/Ex5_6.sce b/3681/CH5/EX5.6/Ex5_6.sce new file mode 100644 index 000000000..c602d176e --- /dev/null +++ b/3681/CH5/EX5.6/Ex5_6.sce @@ -0,0 +1,23 @@ +// Calculating the net iron area and window area and full load mmf
+clc;
+disp('Example 5.6, Page No. = 5.80')
+// Given Data
+Q = 400;// kVA rating
+R = 2.4*10^(-6);// Ratio of flux to full load mmf
+f = 50;// Frequency (in Hz)
+Bm = 1.3;// Maximum flux density of core (in Wb per meter square)
+Kw = 0.26;// Window space factor
+s = 2.7;// Current density (in Ampere per mm square)
+// Calculation of the net iron area
+K = (4.44*f*R*10^(3))^(1/2);
+Et = K*Q^(1/2);// Voltage per turn (in Volts)
+Flux = Et/(4.44*f);// Flux (in Wb)
+Ai = Flux/Bm;// Net iron area (in meter square)
+disp(Ai,'Net iron area (meter square)=');
+// Calculation of the net window area
+Aw = Q/(2.22*f*Bm*Kw*s*10^(6)*Ai*10^(-3));// Window area (in meter square)
+disp(Aw,'Window area (meter square)=');
+// Calculation of the full load mmf
+AT = Flux/R;// Full load mmf (in A)
+disp(AT,'Full load mmf (A)=');
+//in book answers are 0.0507 (meter square), 0.0777 (meter square) and 27500 (A) respectively. The answers vary due to round off error
diff --git a/3681/CH5/EX5.9/Ans5_9.PNG b/3681/CH5/EX5.9/Ans5_9.PNG Binary files differnew file mode 100644 index 000000000..419561861 --- /dev/null +++ b/3681/CH5/EX5.9/Ans5_9.PNG diff --git a/3681/CH5/EX5.9/Ex5_9.sce b/3681/CH5/EX5.9/Ex5_9.sce new file mode 100644 index 000000000..a54096047 --- /dev/null +++ b/3681/CH5/EX5.9/Ex5_9.sce @@ -0,0 +1,21 @@ +// Calculating the net iron area and window area
+clc;
+disp('Example 5.9, Page No. = 5.82')
+// Given Data
+Q = 400;// kVA rating
+f = 50;// Frequency (in Hz)
+Bm = 1.5;// Maximum flux density of core (in Wb per meter square)
+Kw = 0.12;// Copper space factor
+s = 2.2;// Current density (in Ampere per mm square)
+gc = 8.9*10^(3);// Density of copper (in kg per meter cube)
+gi = 7.8*10^(3);// Density of iron (in kg per meter cube)
+R1 = 0.5;// Ratio of length of mean turn of copper to length of mean flux path
+R2 = 4;// Ratio of weight of iron to weight of copper
+// Calculation of the net iron area
+C = (1/2.22*R1*gc/gi*10^(3))^(1/2);// Flux (in Wb)
+Ai = C*(Q*R2/(f*Bm*s*10^(6)))^(1/2);// Net iron area (in meter square)
+disp(Ai,'Net iron area (meter square)=');
+// Calculation of the net window area
+Aw = Q/(2.22*f*Bm*Kw*s*10^(6)*Ai*10^(-3));// Window area (in meter square)
+disp(Aw,'Window area (meter square)=');
+//in book answers are 0.0478 (meter square) and 0.183 (meter square) respectively. The answers vary due to round off error
|