diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /3035/CH10 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '3035/CH10')
-rwxr-xr-x | 3035/CH10/EX10.1/Ex10_1.sce | 17 | ||||
-rwxr-xr-x | 3035/CH10/EX10.2/Ex10_2.sce | 34 | ||||
-rwxr-xr-x | 3035/CH10/EX10.3/Ex10_3.sce | 28 |
3 files changed, 79 insertions, 0 deletions
diff --git a/3035/CH10/EX10.1/Ex10_1.sce b/3035/CH10/EX10.1/Ex10_1.sce new file mode 100755 index 000000000..28e4460ee --- /dev/null +++ b/3035/CH10/EX10.1/Ex10_1.sce @@ -0,0 +1,17 @@ + +// Variable Declaration +max_dm_kW = 150.0 //Maximum demand(kW) +pf = 0.85 //Average power factor +rate = 90.0 //Cost of maximum demand(Rs/kVA) +E_rate = 0.3 //Cost of energy consumed(Rs) +lf = 0.65 //Annual load factor + +// Calculation Section +max_dm_kVA = max_dm_kW/pf //Maximum demand(kVA) +annual_chg_kVA = rate*max_dm_kVA //Annual fixed charges based on max demand(Rs) +E_kWh = lf*365*24*max_dm_kW //Energy consumed per annum(kWh) +annual_E_chg = E_kWh*E_rate //Annual energy charges(Rs) +annual_elect_charge = annual_chg_kVA + annual_E_chg //Annual electricity charge to be paid(Rs) + +// Result Section +printf('Annual electricity charges to be paid by consumer = Rs %.2f' ,annual_elect_charge) diff --git a/3035/CH10/EX10.2/Ex10_2.sce b/3035/CH10/EX10.2/Ex10_2.sce new file mode 100755 index 000000000..a68ca8439 --- /dev/null +++ b/3035/CH10/EX10.2/Ex10_2.sce @@ -0,0 +1,34 @@ + +// Variable Declaration +P = 75.0 //Power(kW) +cost_plant = 3000.0 //Cost of plant(Rs/kW) +cost_td = 30.0*10**5 //Cost of transmission & distribution(Rs) +interest = 0.15 //Interest,insurance charges(/annum) +depreciation = 0.05 //Depreciation(/annum) +cost_fix_mt = 4.0*10**5 //Fixed maintainance(Rs) +cost_var_mt = 6.0*10**5 //Variable maintainance(Rs) +cost_fuel = 10.0*10**6 //Fuel cost(Rs/annum) +cost_opr = 3.0*10**6 //Operation cost(Rs/annum) +max_demand = 70.0 //Maximum demand(MW) +df = 1.6 //Diversity factor b/w consumers +lf = 0.6 //Annual load factor +dividend = 10**6 //Dividend to shareholders(Rs/annum) +per_L = 0.10 //Total energy loss(% of generated energy) + + +// Calculation Section +cost = cost_plant*P*1000 //Cost of plant(Rs) +per_value = interest+depreciation //Total interest & depreciation(/annum) +cost_fix_ann = (cost+cost_opr)*per_value+cost_fix_mt+dividend //Total fixed cost(Rs) +cost_var_ann = cost_fuel+cost_opr+cost_var_mt //Total running cost(Rs) +E_gen_ann = max_demand*1000*24*365*lf //Energy generated per annum(kWh) +E_loss = per_L*E_gen_ann //Energy losses(kWh) +E_sold = E_gen_ann - E_loss //Energy sold(kWh) +sum_max_demand = df*max_demand*1000 //Sum of maximum demand of consumers(kW) +charge_max_demand = cost_fix_ann/sum_max_demand //Charge to consumers per kW of max demand per year(Rs) +charge_energy = cost_var_ann/E_sold*100 //Charge for energy(paise per kWh) + + +// Result Section +printf('Two-part tariff is :') +printf('Rs %.2f per kW of maximum demand per year + %.1f paise per kWh consumed' ,charge_max_demand,charge_energy) diff --git a/3035/CH10/EX10.3/Ex10_3.sce b/3035/CH10/EX10.3/Ex10_3.sce new file mode 100755 index 000000000..70ecc09d6 --- /dev/null +++ b/3035/CH10/EX10.3/Ex10_3.sce @@ -0,0 +1,28 @@ + +// Variable Declaration +P_D = 500.0 //Total load(MW) +b_1 = 15.0 //Beta value of controllable thermal plant C1 +g_1 = 0.012 //Gamma value of controllable thermal plant C1 +b_2 = 16.0 //Beta value of controllable thermal plant C2 +g_2 = 0.018 //Gamma value of controllable thermal plant C2 +b_3 = 19.0 //Beta value of controllable thermal plant C3 +g_3 = 0.020 //Gamma value of controllable thermal plant C3 + + +// Calculation Section +l = (P_D+((b_1/(2*g_1))+(b_2/(2*g_2))+(b_3/(2*g_3))))/((1/(2*g_1))+(1/(2*g_2))+(1/(2*g_3))) //Lambda value which is a Lagrange multiplier +P_G1 = (l - b_1)/(2*g_1) //(MW) +P_G2 = (l - b_2)/(2*g_2) //(MW) +P_G3 = (l - b_3)/(2*g_3) //(MW) +C1 = 1500.0 + b_1*P_G1 + g_1*P_G1**2 //Fuel cost of plant C1(Rs/hr) +C2 = 2000.0 + b_2*P_G2 + g_2*P_G2**2 //Fuel cost of plant C2(Rs/hr) +C3 = 1000.0 + b_3*P_G3 + g_3*P_G3**2 //Fuel cost of plant C3(Rs/hr) +C = C1 + C2 + C3 //Total fuel cost(Rs/hr) + + +// Result Section +printf('Value of λ from equation(10.14) = %.3f' ,l) +printf('Optimal scheduling of thermal plant C1 = %.2f MW' ,P_G1) +printf('Optimal scheduling of thermal plant C2 = %.2f MW' ,P_G2) +printf('Optimal scheduling of thermal plant C3 = %.2f MW' ,P_G3) +printf('Total cost , C = Rs %.2f/hr' ,C) |