summaryrefslogtreecommitdiff
path: root/3035/CH10
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /3035/CH10
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '3035/CH10')
-rwxr-xr-x3035/CH10/EX10.1/Ex10_1.sce17
-rwxr-xr-x3035/CH10/EX10.2/Ex10_2.sce34
-rwxr-xr-x3035/CH10/EX10.3/Ex10_3.sce28
3 files changed, 79 insertions, 0 deletions
diff --git a/3035/CH10/EX10.1/Ex10_1.sce b/3035/CH10/EX10.1/Ex10_1.sce
new file mode 100755
index 000000000..28e4460ee
--- /dev/null
+++ b/3035/CH10/EX10.1/Ex10_1.sce
@@ -0,0 +1,17 @@
+
+// Variable Declaration
+max_dm_kW = 150.0 //Maximum demand(kW)
+pf = 0.85 //Average power factor
+rate = 90.0 //Cost of maximum demand(Rs/kVA)
+E_rate = 0.3 //Cost of energy consumed(Rs)
+lf = 0.65 //Annual load factor
+
+// Calculation Section
+max_dm_kVA = max_dm_kW/pf //Maximum demand(kVA)
+annual_chg_kVA = rate*max_dm_kVA //Annual fixed charges based on max demand(Rs)
+E_kWh = lf*365*24*max_dm_kW //Energy consumed per annum(kWh)
+annual_E_chg = E_kWh*E_rate //Annual energy charges(Rs)
+annual_elect_charge = annual_chg_kVA + annual_E_chg //Annual electricity charge to be paid(Rs)
+
+// Result Section
+printf('Annual electricity charges to be paid by consumer = Rs %.2f' ,annual_elect_charge)
diff --git a/3035/CH10/EX10.2/Ex10_2.sce b/3035/CH10/EX10.2/Ex10_2.sce
new file mode 100755
index 000000000..a68ca8439
--- /dev/null
+++ b/3035/CH10/EX10.2/Ex10_2.sce
@@ -0,0 +1,34 @@
+
+// Variable Declaration
+P = 75.0 //Power(kW)
+cost_plant = 3000.0 //Cost of plant(Rs/kW)
+cost_td = 30.0*10**5 //Cost of transmission & distribution(Rs)
+interest = 0.15 //Interest,insurance charges(/annum)
+depreciation = 0.05 //Depreciation(/annum)
+cost_fix_mt = 4.0*10**5 //Fixed maintainance(Rs)
+cost_var_mt = 6.0*10**5 //Variable maintainance(Rs)
+cost_fuel = 10.0*10**6 //Fuel cost(Rs/annum)
+cost_opr = 3.0*10**6 //Operation cost(Rs/annum)
+max_demand = 70.0 //Maximum demand(MW)
+df = 1.6 //Diversity factor b/w consumers
+lf = 0.6 //Annual load factor
+dividend = 10**6 //Dividend to shareholders(Rs/annum)
+per_L = 0.10 //Total energy loss(% of generated energy)
+
+
+// Calculation Section
+cost = cost_plant*P*1000 //Cost of plant(Rs)
+per_value = interest+depreciation //Total interest & depreciation(/annum)
+cost_fix_ann = (cost+cost_opr)*per_value+cost_fix_mt+dividend //Total fixed cost(Rs)
+cost_var_ann = cost_fuel+cost_opr+cost_var_mt //Total running cost(Rs)
+E_gen_ann = max_demand*1000*24*365*lf //Energy generated per annum(kWh)
+E_loss = per_L*E_gen_ann //Energy losses(kWh)
+E_sold = E_gen_ann - E_loss //Energy sold(kWh)
+sum_max_demand = df*max_demand*1000 //Sum of maximum demand of consumers(kW)
+charge_max_demand = cost_fix_ann/sum_max_demand //Charge to consumers per kW of max demand per year(Rs)
+charge_energy = cost_var_ann/E_sold*100 //Charge for energy(paise per kWh)
+
+
+// Result Section
+printf('Two-part tariff is :')
+printf('Rs %.2f per kW of maximum demand per year + %.1f paise per kWh consumed' ,charge_max_demand,charge_energy)
diff --git a/3035/CH10/EX10.3/Ex10_3.sce b/3035/CH10/EX10.3/Ex10_3.sce
new file mode 100755
index 000000000..70ecc09d6
--- /dev/null
+++ b/3035/CH10/EX10.3/Ex10_3.sce
@@ -0,0 +1,28 @@
+
+// Variable Declaration
+P_D = 500.0 //Total load(MW)
+b_1 = 15.0 //Beta value of controllable thermal plant C1
+g_1 = 0.012 //Gamma value of controllable thermal plant C1
+b_2 = 16.0 //Beta value of controllable thermal plant C2
+g_2 = 0.018 //Gamma value of controllable thermal plant C2
+b_3 = 19.0 //Beta value of controllable thermal plant C3
+g_3 = 0.020 //Gamma value of controllable thermal plant C3
+
+
+// Calculation Section
+l = (P_D+((b_1/(2*g_1))+(b_2/(2*g_2))+(b_3/(2*g_3))))/((1/(2*g_1))+(1/(2*g_2))+(1/(2*g_3))) //Lambda value which is a Lagrange multiplier
+P_G1 = (l - b_1)/(2*g_1) //(MW)
+P_G2 = (l - b_2)/(2*g_2) //(MW)
+P_G3 = (l - b_3)/(2*g_3) //(MW)
+C1 = 1500.0 + b_1*P_G1 + g_1*P_G1**2 //Fuel cost of plant C1(Rs/hr)
+C2 = 2000.0 + b_2*P_G2 + g_2*P_G2**2 //Fuel cost of plant C2(Rs/hr)
+C3 = 1000.0 + b_3*P_G3 + g_3*P_G3**2 //Fuel cost of plant C3(Rs/hr)
+C = C1 + C2 + C3 //Total fuel cost(Rs/hr)
+
+
+// Result Section
+printf('Value of λ from equation(10.14) = %.3f' ,l)
+printf('Optimal scheduling of thermal plant C1 = %.2f MW' ,P_G1)
+printf('Optimal scheduling of thermal plant C2 = %.2f MW' ,P_G2)
+printf('Optimal scheduling of thermal plant C3 = %.2f MW' ,P_G3)
+printf('Total cost , C = Rs %.2f/hr' ,C)