diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /3012/CH14 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '3012/CH14')
-rwxr-xr-x | 3012/CH14/EX14.1/Ex14_1.sce | 48 | ||||
-rwxr-xr-x | 3012/CH14/EX14.10/Ex14_10.sce | 17 | ||||
-rwxr-xr-x | 3012/CH14/EX14.2/Ex14_2.sce | 34 | ||||
-rwxr-xr-x | 3012/CH14/EX14.3/Ex14_3.sce | 15 | ||||
-rwxr-xr-x | 3012/CH14/EX14.4/Ex14_4.sce | 24 | ||||
-rwxr-xr-x | 3012/CH14/EX14.5/Ex14_5.sce | 28 | ||||
-rwxr-xr-x | 3012/CH14/EX14.8/Ex14_8.sce | 22 |
7 files changed, 188 insertions, 0 deletions
diff --git a/3012/CH14/EX14.1/Ex14_1.sce b/3012/CH14/EX14.1/Ex14_1.sce new file mode 100755 index 000000000..724e5a6d3 --- /dev/null +++ b/3012/CH14/EX14.1/Ex14_1.sce @@ -0,0 +1,48 @@ + +// Given:- +// The reaction is CO + .5O2 --- CO2 +// Part(a) +T = 298.0 // in kelvin +Rbar = 8.314 // universal gas constant in SI units +// From table A-25 + +hfbarCO2 = -393520.0 // in kj/kmol +hfbarCO = -110530.0 // in kj/kmol +hfbarO2 = 0 // in kj/kmol +deltahbarCO2 = 0 // in kj/kmol +deltahbarCO = 0 // in kj/kmol +deltahbarO2 = 0 // in kj/kmol +sbarCO2 = 213.69 // in kj/kmol.K +sbarCO = 197.54 // in kj/kmol.K +sbarO2 = 205.03 // in kj/kmol.K +// From table A-27 +logKtable = 45.066 +// Calculations +deltaG = (hfbarCO2-hfbarCO-.5*hfbarO2) + (deltahbarCO2-deltahbarCO-.5*deltahbarO2) - T*(sbarCO2-sbarCO-.5*sbarO2) +lnK = -deltaG/(Rbar*T) +logK = (1/log(10))*lnK +// Results +printf( ' Part(a) the value of equilibrium constant expressed as log10K is: %f',logK); +printf( ' The value of equilibrium constant expressed as log10K from table A-27 is: %f ',logKtable); + +// Part(b) +T = 2000.0 // in kelvin +// From table A-23 +hfbarCO2 = -393520.0 // in kj/kmol +hfbarCO = -110530.0 // in kj/kmol +hfbarO2 = 0 // in kj/kmol +deltahbarCO2 = 100804-9364 // in kj/kmol +deltahbarCO = 65408 - 8669 // in kj/kmol +deltahbarO2 = 67881 - 8682 // in kj/kmol +sbarCO2 = 309.210 // in kj/kmol.K +sbarCO = 258.6 // in kj/kmol.K +sbarO2 = 268.655 // in kj/kmol.K +// Calculations +deltaG = (hfbarCO2-hfbarCO-.5*hfbarO2) + (deltahbarCO2-deltahbarCO-.5*deltahbarO2) - T*(sbarCO2-sbarCO-.5*sbarO2) +lnK = -deltaG/(Rbar*T) +logK = (1/log(10))*lnK +// From table A-27 +logKtable = 2.884 +// Results +printf( ' Part(b) the value of equilibrium constant expressed as log10K is: %f ',logK); +printf( ' The value of equilibrium constant expressed as log10K from table A-27 is: %f ',logKtable); diff --git a/3012/CH14/EX14.10/Ex14_10.sce b/3012/CH14/EX14.10/Ex14_10.sce new file mode 100755 index 000000000..c18a8d761 --- /dev/null +++ b/3012/CH14/EX14.10/Ex14_10.sce @@ -0,0 +1,17 @@ + +// Given:- +// With data from Table A-2 at 20C, +vf = 1.0018e-3 // in m^3/kg +psat = 0.0239 // in bar +p = 1.0 // in bar +T = 293.15 // in kelvin +Rbar = 8.314 // universal gas constant in SI units +M = 18.02 // molat mass of water in kg/kmol +e=2.715 + +// Calculations +pvbypsat = e**(vf*(p-psat)*10**5/((1000*Rbar/M)*T)) +percent = (pvbypsat-1)*100 + +// Result +printf( ' The departure, in percent, of the partial pressure of the water vapor from the saturation pressure of water at 20 is: %.3f',percent) diff --git a/3012/CH14/EX14.2/Ex14_2.sce b/3012/CH14/EX14.2/Ex14_2.sce new file mode 100755 index 000000000..23b2160e2 --- /dev/null +++ b/3012/CH14/EX14.2/Ex14_2.sce @@ -0,0 +1,34 @@ + +// Given:- +// Applying conservation of mass, the overall balanced chemical reaction equation is +// CO + .5O2 ------ zCO + (z/2)O2 + (1-z)CO2 + +// At 2500 K, Table A-27 gives +log10K = -1.44 +// Part(a) +p = 1.0 // in atm +// Calculations +K = (10.0)**(log10K) // equilibrium constant +// Solving equation K = (z/(1-z))*(2/(2 + z))^.5 *(p/1)^.5 gives +z = 0.129 +yCO = 2.0*z/(2.0 + z) +yO2 = z/(2.0 + z) +yCO2 = 2.0*(1.0 - z)/(2.0 + z) + +// Results +printf( ' Part(a) mole fraction of CO is: %.3f ',yCO) +printf( ' Mole fraction of O2 is: %.3f',yO2) +printf( ' Mole fraction of CO2 is: %.3f',yCO2) + +// Part(b) +p = 10.0 // in atm +// Solving equation K = (z/(1-z))*(2/(2 + z))^.5 *(p/1)^.5 gives +z = 0.062 +yCO = 2.0*z/(2.0 + z) +yO2 = z/(2.0 + z) +yCO2 = 2.0*(1.0 - z)/(2.0 + z) + +// Results +printf( ' Part(b) mole fraction of CO is: %.3f',yCO) +printf( ' Mole fraction of O2 is: %.3f',yO2) +printf( ' Mole fraction of CO2 is: %.3f ',yCO2) diff --git a/3012/CH14/EX14.3/Ex14_3.sce b/3012/CH14/EX14.3/Ex14_3.sce new file mode 100755 index 000000000..4eec016b6 --- /dev/null +++ b/3012/CH14/EX14.3/Ex14_3.sce @@ -0,0 +1,15 @@ + +// Given:- +yCO = 0.298 +p = 1 // in atm +pref = 1 // in atm +// With this value of K, table A-27 gives +T = 2881 + +// Calculations +// Solving yCO = 2z/(2 + z) +z = 2*yCO/(2 - yCO) +K = (z/(1-z))*(z/(2 + z))**.5*(p/pref)**.5 + +// Result +printf( ' The temperature T of the mixture in kelvin is: %f',T); diff --git a/3012/CH14/EX14.4/Ex14_4.sce b/3012/CH14/EX14.4/Ex14_4.sce new file mode 100755 index 000000000..71190fea4 --- /dev/null +++ b/3012/CH14/EX14.4/Ex14_4.sce @@ -0,0 +1,24 @@ + +// Given:- +// For a complete reaction of CO with the theoretical amount of air +// CO + .5 O2 + 1.88N2 ---- CO2 + 1.88N2 +// Accordingly, the reaction of CO with the theoretical amount of air to form CO2, CO, O2, and N2 is +// CO + .5O2 + 1.88N2 -- zCO + z/2 O2 + (1-z)CO2 + 1.88N2 + +K = 0.0363 // equilibrium constant the solution to Example 14.2 +p =1.0 // in atm +pref = 1.0 // in atm + +// Calculations +// Solving K = (z*z^.5/(1-z))*((p/pref)*2/(5.76+z))^.5 gives +z = 0.175 +yCO = 2.0*z/(5.76 + z) +yO2 = z/(5.76 + z) +yCO2 = 2.0*(1.0-z)/(5.76 + z) +yN2 = 3.76/(5.76 + z) + +// Results +printf( ' The mole fraction of CO is: %.3f ',yCO) +printf( ' The mole fraction of O2 is: %.3f ',yO2) +printf( ' The mole fraction of CO2 is: %.3f',yCO2) +printf( ' The mole fraction of N2 is: %.3f',yN2) diff --git a/3012/CH14/EX14.5/Ex14_5.sce b/3012/CH14/EX14.5/Ex14_5.sce new file mode 100755 index 000000000..0d2047373 --- /dev/null +++ b/3012/CH14/EX14.5/Ex14_5.sce @@ -0,0 +1,28 @@ + +// Given:- +// Applying the conservation of mass principle, the overall dissociation reaction is described by +// CO2 --- zCO2 + (1-z)CO + ((1-z)/2)O2 + +p = 1.0 // in atm +pref = 1.0 // in atm +// At 3200 K, Table A-27 gives +log10k = -.189 +// Solving k = ((1-z)/2)*((1-z)/(3-z))^.5 gives +z = 0.422 + +// Calculations +k = 10**log10k +// From tables A-25 and A-23 +hfbarCO2 = -393520.0 // in kj/kmol +deltahbarCO2 = 174695-9364 // in kj/kmol +hfbarCO = -110530.0 // in kj/kmol +deltahbarCO = 109667-8669 // in kj/kmol +hfbarO2 = 0 // in kj/kmol +deltahbarO2 = 114809-8682 // in kj/kmol +hfbarCO2r = -393520.0 // in kj/kmol +deltahbarCO2r = 0 // in kj/kmol + +Qcvdot = 0.422*(hfbarCO2 + deltahbarCO2) + 0.578*(hfbarCO + deltahbarCO) + 0.289*(hfbarO2 + deltahbarO2)- (hfbarCO2r + deltahbarCO2r) + +// Result +printf( ' The heat transfer to the reactor, in kJ per kmol of CO2 entering is: %f', Qcvdot); diff --git a/3012/CH14/EX14.8/Ex14_8.sce b/3012/CH14/EX14.8/Ex14_8.sce new file mode 100755 index 000000000..3298fa8fb --- /dev/null +++ b/3012/CH14/EX14.8/Ex14_8.sce @@ -0,0 +1,22 @@ + +// Given:- +// The ionization of cesium to form a mixture of Cs, Cs+, and e- is described by +// Cs --- (1-z)Cs + zCs+ + Ze- + +K = 15.63 +z = 0.95 +pref =1 // in atm +// Calculation +p = pref*K*((1-z**2)/z**2) + +// Results +printf( ' The pressure if the ionization of CS is 95 percent complete is: %f atm',p); + +x = linspace(0,10,100) +for i = 1:100 + y(i)= 100*((1/(1+x(i)/K))**0.5) +end + +plot(x,y) +xlabel("Pressure (atm)") +ylabel("Ionization") |