summaryrefslogtreecommitdiff
path: root/3012/CH14
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /3012/CH14
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '3012/CH14')
-rwxr-xr-x3012/CH14/EX14.1/Ex14_1.sce48
-rwxr-xr-x3012/CH14/EX14.10/Ex14_10.sce17
-rwxr-xr-x3012/CH14/EX14.2/Ex14_2.sce34
-rwxr-xr-x3012/CH14/EX14.3/Ex14_3.sce15
-rwxr-xr-x3012/CH14/EX14.4/Ex14_4.sce24
-rwxr-xr-x3012/CH14/EX14.5/Ex14_5.sce28
-rwxr-xr-x3012/CH14/EX14.8/Ex14_8.sce22
7 files changed, 188 insertions, 0 deletions
diff --git a/3012/CH14/EX14.1/Ex14_1.sce b/3012/CH14/EX14.1/Ex14_1.sce
new file mode 100755
index 000000000..724e5a6d3
--- /dev/null
+++ b/3012/CH14/EX14.1/Ex14_1.sce
@@ -0,0 +1,48 @@
+
+// Given:-
+// The reaction is CO + .5O2 --- CO2
+// Part(a)
+T = 298.0 // in kelvin
+Rbar = 8.314 // universal gas constant in SI units
+// From table A-25
+
+hfbarCO2 = -393520.0 // in kj/kmol
+hfbarCO = -110530.0 // in kj/kmol
+hfbarO2 = 0 // in kj/kmol
+deltahbarCO2 = 0 // in kj/kmol
+deltahbarCO = 0 // in kj/kmol
+deltahbarO2 = 0 // in kj/kmol
+sbarCO2 = 213.69 // in kj/kmol.K
+sbarCO = 197.54 // in kj/kmol.K
+sbarO2 = 205.03 // in kj/kmol.K
+// From table A-27
+logKtable = 45.066
+// Calculations
+deltaG = (hfbarCO2-hfbarCO-.5*hfbarO2) + (deltahbarCO2-deltahbarCO-.5*deltahbarO2) - T*(sbarCO2-sbarCO-.5*sbarO2)
+lnK = -deltaG/(Rbar*T)
+logK = (1/log(10))*lnK
+// Results
+printf( ' Part(a) the value of equilibrium constant expressed as log10K is: %f',logK);
+printf( ' The value of equilibrium constant expressed as log10K from table A-27 is: %f ',logKtable);
+
+// Part(b)
+T = 2000.0 // in kelvin
+// From table A-23
+hfbarCO2 = -393520.0 // in kj/kmol
+hfbarCO = -110530.0 // in kj/kmol
+hfbarO2 = 0 // in kj/kmol
+deltahbarCO2 = 100804-9364 // in kj/kmol
+deltahbarCO = 65408 - 8669 // in kj/kmol
+deltahbarO2 = 67881 - 8682 // in kj/kmol
+sbarCO2 = 309.210 // in kj/kmol.K
+sbarCO = 258.6 // in kj/kmol.K
+sbarO2 = 268.655 // in kj/kmol.K
+// Calculations
+deltaG = (hfbarCO2-hfbarCO-.5*hfbarO2) + (deltahbarCO2-deltahbarCO-.5*deltahbarO2) - T*(sbarCO2-sbarCO-.5*sbarO2)
+lnK = -deltaG/(Rbar*T)
+logK = (1/log(10))*lnK
+// From table A-27
+logKtable = 2.884
+// Results
+printf( ' Part(b) the value of equilibrium constant expressed as log10K is: %f ',logK);
+printf( ' The value of equilibrium constant expressed as log10K from table A-27 is: %f ',logKtable);
diff --git a/3012/CH14/EX14.10/Ex14_10.sce b/3012/CH14/EX14.10/Ex14_10.sce
new file mode 100755
index 000000000..c18a8d761
--- /dev/null
+++ b/3012/CH14/EX14.10/Ex14_10.sce
@@ -0,0 +1,17 @@
+
+// Given:-
+// With data from Table A-2 at 20C,
+vf = 1.0018e-3 // in m^3/kg
+psat = 0.0239 // in bar
+p = 1.0 // in bar
+T = 293.15 // in kelvin
+Rbar = 8.314 // universal gas constant in SI units
+M = 18.02 // molat mass of water in kg/kmol
+e=2.715
+
+// Calculations
+pvbypsat = e**(vf*(p-psat)*10**5/((1000*Rbar/M)*T))
+percent = (pvbypsat-1)*100
+
+// Result
+printf( ' The departure, in percent, of the partial pressure of the water vapor from the saturation pressure of water at 20 is: %.3f',percent)
diff --git a/3012/CH14/EX14.2/Ex14_2.sce b/3012/CH14/EX14.2/Ex14_2.sce
new file mode 100755
index 000000000..23b2160e2
--- /dev/null
+++ b/3012/CH14/EX14.2/Ex14_2.sce
@@ -0,0 +1,34 @@
+
+// Given:-
+// Applying conservation of mass, the overall balanced chemical reaction equation is
+// CO + .5O2 ------ zCO + (z/2)O2 + (1-z)CO2
+
+// At 2500 K, Table A-27 gives
+log10K = -1.44
+// Part(a)
+p = 1.0 // in atm
+// Calculations
+K = (10.0)**(log10K) // equilibrium constant
+// Solving equation K = (z/(1-z))*(2/(2 + z))^.5 *(p/1)^.5 gives
+z = 0.129
+yCO = 2.0*z/(2.0 + z)
+yO2 = z/(2.0 + z)
+yCO2 = 2.0*(1.0 - z)/(2.0 + z)
+
+// Results
+printf( ' Part(a) mole fraction of CO is: %.3f ',yCO)
+printf( ' Mole fraction of O2 is: %.3f',yO2)
+printf( ' Mole fraction of CO2 is: %.3f',yCO2)
+
+// Part(b)
+p = 10.0 // in atm
+// Solving equation K = (z/(1-z))*(2/(2 + z))^.5 *(p/1)^.5 gives
+z = 0.062
+yCO = 2.0*z/(2.0 + z)
+yO2 = z/(2.0 + z)
+yCO2 = 2.0*(1.0 - z)/(2.0 + z)
+
+// Results
+printf( ' Part(b) mole fraction of CO is: %.3f',yCO)
+printf( ' Mole fraction of O2 is: %.3f',yO2)
+printf( ' Mole fraction of CO2 is: %.3f ',yCO2)
diff --git a/3012/CH14/EX14.3/Ex14_3.sce b/3012/CH14/EX14.3/Ex14_3.sce
new file mode 100755
index 000000000..4eec016b6
--- /dev/null
+++ b/3012/CH14/EX14.3/Ex14_3.sce
@@ -0,0 +1,15 @@
+
+// Given:-
+yCO = 0.298
+p = 1 // in atm
+pref = 1 // in atm
+// With this value of K, table A-27 gives
+T = 2881
+
+// Calculations
+// Solving yCO = 2z/(2 + z)
+z = 2*yCO/(2 - yCO)
+K = (z/(1-z))*(z/(2 + z))**.5*(p/pref)**.5
+
+// Result
+printf( ' The temperature T of the mixture in kelvin is: %f',T);
diff --git a/3012/CH14/EX14.4/Ex14_4.sce b/3012/CH14/EX14.4/Ex14_4.sce
new file mode 100755
index 000000000..71190fea4
--- /dev/null
+++ b/3012/CH14/EX14.4/Ex14_4.sce
@@ -0,0 +1,24 @@
+
+// Given:-
+// For a complete reaction of CO with the theoretical amount of air
+// CO + .5 O2 + 1.88N2 ---- CO2 + 1.88N2
+// Accordingly, the reaction of CO with the theoretical amount of air to form CO2, CO, O2, and N2 is
+// CO + .5O2 + 1.88N2 -- zCO + z/2 O2 + (1-z)CO2 + 1.88N2
+
+K = 0.0363 // equilibrium constant the solution to Example 14.2
+p =1.0 // in atm
+pref = 1.0 // in atm
+
+// Calculations
+// Solving K = (z*z^.5/(1-z))*((p/pref)*2/(5.76+z))^.5 gives
+z = 0.175
+yCO = 2.0*z/(5.76 + z)
+yO2 = z/(5.76 + z)
+yCO2 = 2.0*(1.0-z)/(5.76 + z)
+yN2 = 3.76/(5.76 + z)
+
+// Results
+printf( ' The mole fraction of CO is: %.3f ',yCO)
+printf( ' The mole fraction of O2 is: %.3f ',yO2)
+printf( ' The mole fraction of CO2 is: %.3f',yCO2)
+printf( ' The mole fraction of N2 is: %.3f',yN2)
diff --git a/3012/CH14/EX14.5/Ex14_5.sce b/3012/CH14/EX14.5/Ex14_5.sce
new file mode 100755
index 000000000..0d2047373
--- /dev/null
+++ b/3012/CH14/EX14.5/Ex14_5.sce
@@ -0,0 +1,28 @@
+
+// Given:-
+// Applying the conservation of mass principle, the overall dissociation reaction is described by
+// CO2 --- zCO2 + (1-z)CO + ((1-z)/2)O2
+
+p = 1.0 // in atm
+pref = 1.0 // in atm
+// At 3200 K, Table A-27 gives
+log10k = -.189
+// Solving k = ((1-z)/2)*((1-z)/(3-z))^.5 gives
+z = 0.422
+
+// Calculations
+k = 10**log10k
+// From tables A-25 and A-23
+hfbarCO2 = -393520.0 // in kj/kmol
+deltahbarCO2 = 174695-9364 // in kj/kmol
+hfbarCO = -110530.0 // in kj/kmol
+deltahbarCO = 109667-8669 // in kj/kmol
+hfbarO2 = 0 // in kj/kmol
+deltahbarO2 = 114809-8682 // in kj/kmol
+hfbarCO2r = -393520.0 // in kj/kmol
+deltahbarCO2r = 0 // in kj/kmol
+
+Qcvdot = 0.422*(hfbarCO2 + deltahbarCO2) + 0.578*(hfbarCO + deltahbarCO) + 0.289*(hfbarO2 + deltahbarO2)- (hfbarCO2r + deltahbarCO2r)
+
+// Result
+printf( ' The heat transfer to the reactor, in kJ per kmol of CO2 entering is: %f', Qcvdot);
diff --git a/3012/CH14/EX14.8/Ex14_8.sce b/3012/CH14/EX14.8/Ex14_8.sce
new file mode 100755
index 000000000..3298fa8fb
--- /dev/null
+++ b/3012/CH14/EX14.8/Ex14_8.sce
@@ -0,0 +1,22 @@
+
+// Given:-
+// The ionization of cesium to form a mixture of Cs, Cs+, and e- is described by
+// Cs --- (1-z)Cs + zCs+ + Ze-
+
+K = 15.63
+z = 0.95
+pref =1 // in atm
+// Calculation
+p = pref*K*((1-z**2)/z**2)
+
+// Results
+printf( ' The pressure if the ionization of CS is 95 percent complete is: %f atm',p);
+
+x = linspace(0,10,100)
+for i = 1:100
+ y(i)= 100*((1/(1+x(i)/K))**0.5)
+end
+
+plot(x,y)
+xlabel("Pressure (atm)")
+ylabel("Ionization")