diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /2921 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '2921')
83 files changed, 2188 insertions, 0 deletions
diff --git a/2921/CH1/EX1.2/Ex1_2.sce b/2921/CH1/EX1.2/Ex1_2.sce new file mode 100755 index 000000000..c571fe7a9 --- /dev/null +++ b/2921/CH1/EX1.2/Ex1_2.sce @@ -0,0 +1,31 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-1.2 Page 13 ') //Example 1.2 + +Sy=61000 //[psi] Tensile strength of AISI 1020 cold drawn steel from Appendix 4 Page no 470 +SF=2; //[] safety factor +F=300; //[lb] Weight of the ball +L=36; //[in] Length of round bar +Sy=61000; //[psi] Tensile strength from Appendix 4 +M=F*L; //[in*lb] Bending moment Appendix 2 + +Sall=Sy/SF; //[psi] Allowable stress +Z=M/Sall; //[in^3] Section modulus for bending Sall=M/Z +D=(32*Z/%pi)^(1/3); //[in] Diameter of bar + +//Use 13/8 in bar +D1=1.625; + +mprintf('\n\n Diameter of Bar is %f in',D1); + +//Checking Deflection +I=%pi*D1^4/64; //[in^4] Moment of inertia Appendix 3 +E=30*10^6; //[lb/in^2] Modulus of elasticity +Delta=F*L^3/(3*E*I); //[in] Deflection + +//Note- In the book I=0.342 in^4 is used instead of I=0.3422814 in^4 + +mprintf('\n The deflection of bar is %f in',Delta); + + +//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken) diff --git a/2921/CH10/EX10.1/Ex10_1.sce b/2921/CH10/EX10.1/Ex10_1.sce new file mode 100755 index 000000000..201aa19dc --- /dev/null +++ b/2921/CH10/EX10.1/Ex10_1.sce @@ -0,0 +1,38 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-10.1 Page No.195\n'); + +P=100; //[lb/in^2] Hydraulic pressure +F=450; //[lb] Extension force +Fr=400; //[lb] Retraction force + +A=F/P; //[in^2] Cross section area +D=sqrt(4*A/%pi); //[in] Bore of cylinder + +mprintf('\n The bore of cylinder is %f in.',D); + +//Use 2.5in bore cylinder + +Dm=2.5; //[in] Bore of cylinder +Dr=1; //[in] Diameter of rod +A2=%pi*Dm^2/4-%pi*Dr^2/4; //[in^2] +F2=P*A2; //[lb] Force + +if F2>=Fr then + mprintf('\n The diameter of rod is %f in.',Dr); +else + mprintf('\n This would not meet requirement'); +end + +//This would meet requirement + +Ab=%pi*Dm^2/4; //[in^2] Cross section area +//Note-In the book V=180.7 is used instead of V=180.64158 +d=20; //[in] stroke +V=Ab*d+A2*d; //[in^3] Volume per cycle +t=2; //[s] Cycle time +FR=V/t; //[in^3/s] Flowrate + +FR=FR*7.48*60/1728; //[gal/min] Flowrate + +mprintf('\n Flow rate required is %f gal/min.',FR); diff --git a/2921/CH10/EX10.2/Ex10_2.sce b/2921/CH10/EX10.2/Ex10_2.sce new file mode 100755 index 000000000..ce24fa1dc --- /dev/null +++ b/2921/CH10/EX10.2/Ex10_2.sce @@ -0,0 +1,35 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-10.2 Page No.198\n'); + +Pa=100; //[lb/in^2] Air pressure +Da=4; //[in] Diameter +Aa=%pi*Da^2/4; //[in^2] Cross section area + +F1=Pa*Aa; //[lb] +Do=1; //[in] +Ao=%pi*Do^2/4; //[in] +Po=F1/Ao; //[lb/in^2] + +mprintf('\n The oil pressure is %f lb/in^2.',Po); + +D2o=3; //[in] +A2o=%pi*D2o^2/4; //[in^2] +F2=Po*A2o; + +mprintf('\n Force F on piston rod is %f lb.',F2); + +D=1; //[in] +d=4; //[in] +A=%pi*D^2/4; //[in^2] + +V=A*d; //[in^3] + +mprintf('\n The volume in 1-inch cylinder for the 4-inch travel is %f in^3.',V); + +A3=%pi*3^2/4; //[in^2] +l3=V/A3; //[in] + +mprintf('\n Travel for 3-inch cylinder is %f in.',l3); + + diff --git a/2921/CH11/EX11.1/Ex11_1.sce b/2921/CH11/EX11.1/Ex11_1.sce new file mode 100755 index 000000000..6c745a8f1 --- /dev/null +++ b/2921/CH11/EX11.1/Ex11_1.sce @@ -0,0 +1,32 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-11.1 Page No.217\n'); + +N2=60; +N1=20; +N3=20; +N4=60; + +Vr=(N2/N1)*(N4/N3); + +//Output speed +n1=3600; +n4=n1/Vr; + +mprintf('\n The output speed is %f rpm.',n4); + +//Output torque +T1=200; +T4=T1*Vr; + +mprintf('\n The output torque is %f lb*in.',T4); + +//Input horsepower +hpi=T1*n1/63000; + +mprintf('\n The input horsepower is %f hp.',hpi); + +//Output horsepower +hpo=T4*n4/63000; + +mprintf('\n The output horsepower is %f hp.',hpo); diff --git a/2921/CH11/EX11.2/Ex11_2.sce b/2921/CH11/EX11.2/Ex11_2.sce new file mode 100755 index 000000000..77829670e --- /dev/null +++ b/2921/CH11/EX11.2/Ex11_2.sce @@ -0,0 +1,35 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-11.2 Page No.219\n'); + +Na=20; +Nb=65; +Nc=20; +Nd=22; +Ne=60; + +//train value +Vr=(Nb/Na)*(Nd/Nc)*(Ne/Nd); + +mprintf('\n Train value = %f ',Vr); + +//Output speed +na=3000; +ne=na/Vr; + +mprintf('\n \Output speed = %f rpm.',ne); + +//Output torque +Ta=10; +Te=Ta*Vr; + +mprintf('\n Output torque = %f lb*in.',Te); + +//Direction + +mprintf('\n Direction\n If Gear A is clockwise,\n Gear B is counterclockwise.\n Gear C is counterclockwise.\n Gear D is clockwise. \n Gear E is counterclockwise.'); + +//Output power +P=Te*ne; +P=P*%pi/60; + mprintf('\n Output power = %f W.',P); diff --git a/2921/CH11/EX11.3/Ex11_3.sce b/2921/CH11/EX11.3/Ex11_3.sce new file mode 100755 index 000000000..f5d15d0a1 --- /dev/null +++ b/2921/CH11/EX11.3/Ex11_3.sce @@ -0,0 +1,26 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-11.3 Page No.231\n'); + +Np=16; +Ng=32; +Pd=8; + +//Pitch diameter +Dp=Np/Pd; + +mprintf('\n Pinion pitch diameter is %f in.',Dp); + +Dg=Ng/Pd; + +mprintf('\n Gear pitch diameter is %f in.',Dg); + +//Circular pitch +Pc=%pi*Dp/Np; + +mprintf('\n Circular pitch is %f in.',Pc); + +//Centerline distance +CC=(Dp+Dg)/2; + +mprintf('\n Centerline distance is %f in.',CC); diff --git a/2921/CH11/EX11.4/Ex11_4.sce b/2921/CH11/EX11.4/Ex11_4.sce new file mode 100755 index 000000000..74fc1bad5 --- /dev/null +++ b/2921/CH11/EX11.4/Ex11_4.sce @@ -0,0 +1,25 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-11.4 Page No.236\n'); + +//Torque in input shaft +hp=1.5; +n=3450; +T=63000*hp/n; + +mprintf('\n Torque in input shaft is %f lb*in.',T); + +//Note-In the book T=27.4 in-lb is used instead of T=27.391304 + +//Output torque +Ng=24; +Np=10; +Tout=(Ng/Np)*T; + +mprintf('\n Output torque is %f lb*in.',Tout); + +//Output speed +nout=(Np/Ng)*n; + +mprintf('\n Output speed is %f rpm.',nout); + diff --git a/2921/CH11/EX11.5/Ex11_5.sce b/2921/CH11/EX11.5/Ex11_5.sce new file mode 100755 index 000000000..a7d6df016 --- /dev/null +++ b/2921/CH11/EX11.5/Ex11_5.sce @@ -0,0 +1,37 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-11.5 Page No.241\n'); + +//Gear train value +Na=12; +Nb=36; +Nc=16; +Nd=64; +Vr=(Nb/Na)*(Nd/Nc); + +mprintf('\n Gear train value is %f ',Vr); + +//Motor torque +hp=1.5; +n=1750; +T=63000*hp/n; + +mprintf('\n Motor torque is %f in-lb.',T); + +//Output torque +Tout=T*Vr; + +mprintf('\n Output torque is %f in-lb.',Tout); + +//Output speed +nout=n/Vr; + +mprintf('\n Output speed is %f rpm.',nout); + +//Directions +mprintf('\n Directions\n Gear A is clockwise.\n Gear B is counterclockwise.\n Gear C is counterclockwise.\n Gear D is clockwise.'); + +//Output power +hp=T*n/63000; + +mprintf('\n Output power is %f hp.',hp); diff --git a/2921/CH11/EX11.6/Ex11_6.sce b/2921/CH11/EX11.6/Ex11_6.sce new file mode 100755 index 000000000..a6aeda841 --- /dev/null +++ b/2921/CH11/EX11.6/Ex11_6.sce @@ -0,0 +1,12 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-11.6 Page No.243\n'); + +//Velocity ratio +N2=2400; +N1=20; +Vr=N2/N1; + +mprintf('\n Velocity ratio = %f ',Vr); + +mprintf('\n Possible Solution: \n Three sets of gears \n -20 tooth and 80 tooth\n -20 tooth and 100 tooth\n -20 tooth and 120 tooth.'); diff --git a/2921/CH12/EX12.1/Ex12_1.sce b/2921/CH12/EX12.1/Ex12_1.sce new file mode 100755 index 000000000..b5269c579 --- /dev/null +++ b/2921/CH12/EX12.1/Ex12_1.sce @@ -0,0 +1,30 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-12.1 Page No.254\n'); + +P=5; +n=1725; +T=63000*P/n; + +//Pitch circle diameter +Np=20; +Pd=8; +Dp=Np/Pd; + +mprintf('\n Pitch circle diameter = %f in.',Dp); + +//Transmitted force +Ft=2*T/Dp; + +mprintf('\n Transmitted force = %f lb.',Ft); + +//Separating force +theta=20*%pi/180; +Fn=Ft*tan(theta); + +mprintf('\n Separating force = %f lb.',Fn); + +//Maximum force +Fr=Ft/cos(theta); + +mprintf('\n Maximum force = %f lb.',Fr); diff --git a/2921/CH12/EX12.2/Ex12_2.sce b/2921/CH12/EX12.2/Ex12_2.sce new file mode 100755 index 000000000..5ef68a3f6 --- /dev/null +++ b/2921/CH12/EX12.2/Ex12_2.sce @@ -0,0 +1,10 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-12.2 Page No.256\n'); + +//Surface speed +Dp=2.5; +n=1725; +Vm=%pi*Dp*n/12; + +mprintf('\n Surface speed = %f ft/min.',Vm); diff --git a/2921/CH12/EX12.3/Ex12_3.sce b/2921/CH12/EX12.3/Ex12_3.sce new file mode 100755 index 000000000..ad2d8bdf6 --- /dev/null +++ b/2921/CH12/EX12.3/Ex12_3.sce @@ -0,0 +1,20 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-12.3 Page No.258\n'); +//Pinion +Su=95*10^3; +Sn=0.5*Su; +Y=0.320; +b=1; +Pd=8; + +Fsp=Sn*b*Y/Pd; + +mprintf('\n Force allowable for pinion = %f lb.',Fsp); + +//Gear +Sn=0.5*88*10^3; +Y=0.421; +Fsg=Sn*b*Y/Pd; + +mprintf('\n Force allowable for gear = %f lb.',Fsg); diff --git a/2921/CH12/EX12.4/Ex12_4.sce b/2921/CH12/EX12.4/Ex12_4.sce new file mode 100755 index 000000000..6e4981960 --- /dev/null +++ b/2921/CH12/EX12.4/Ex12_4.sce @@ -0,0 +1,19 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-12.4 Page No.262\n'); + +//Dynamic load +Vm=1129; +Ft=146; +Fd=(600+Vm)*Ft/600; + +mprintf('\n Dynamic load = %f lb.',Fd); + +Fs=1900; +Nsf=2; + +//Comparing to the allowable stress + +if (Fs/Nsf)>Fd then + mprintf('\n This is an acceptable design.'); +end diff --git a/2921/CH12/EX12.5/Ex12_5.sce b/2921/CH12/EX12.5/Ex12_5.sce new file mode 100755 index 000000000..33e7126b5 --- /dev/null +++ b/2921/CH12/EX12.5/Ex12_5.sce @@ -0,0 +1,41 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-12.5 Page No.263\n'); + +Su=55*10^3; +Sn=0.5*Su; + +Np=24; +Pd=12; +Dp=Np/Pd; + +mprintf('\n Pitch circle diameter = %f in.',Dp); + +n=1800; +Vm=%pi*Dp*n/12; + +mprintf('\n Surface speed = %f ft/min.',Vm); + +b=3/4; +Y=0.302; +Fs=Sn*b*Y/Pd; + +mprintf('\n Allowable stress = %f lb.',Fs); + +Fd=Fs; +Ft=600*Fd/(600+Vm); + +mprintf('\n Force transmitted = %f lb.',Ft); + +T=Ft*Dp/2; + +P=T*n/63000; + +mprintf('\n Power transmitted = %f hp.',P); + +//Compared to catalog +hp_catalog=4.14; + +Nsf=P/hp_catalog; + +mprintf('\n Safety factor = %f .',Nsf); diff --git a/2921/CH12/EX12.6/Ex12_6.sce b/2921/CH12/EX12.6/Ex12_6.sce new file mode 100755 index 000000000..7522f0026 --- /dev/null +++ b/2921/CH12/EX12.6/Ex12_6.sce @@ -0,0 +1,41 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-12.6 Page No.266\n'); + +//Miscellaneous properties +Np=48; +Pd=12; +Dp=Np/Pd; +Vr=3; +Ng=Np*Vr; + +//Surface speed +n=900; +Vm=%pi*Dp*n/12; + +mprintf('\n Surface speed = %f ft/min.',Vm); + +//Force on teeth +hp=2; +Ft=33000*hp/Vm; + +mprintf('\n Force on teeth = %f lb.',Ft); + +//Dynamic force +Fd=(600+Vm)*Ft/600; + +mprintf('\n Dynamic force = %f lb.',Fd); + +//Width +Su=30*10^3; +Sn=0.4*Su; +Y=0.344; +Nsf=2; +b=Fd*Nsf*Pd/(Sn*Y); +b=round(b); + +mprintf('\n Width = %f in.',b); + +if (8/Pd)<b&b<(12.5/Pd) then + mprintf('\n This is an acceptable design.'); +end diff --git a/2921/CH12/EX12.7/Ex12_7.sce b/2921/CH12/EX12.7/Ex12_7.sce new file mode 100755 index 000000000..984811df9 --- /dev/null +++ b/2921/CH12/EX12.7/Ex12_7.sce @@ -0,0 +1,42 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-12.7 Page No.270\n'); + +Su=95*10^3; +Sn=0.5*Su; +Np=24; +Pd=16; +Dp=Np/Pd; + +//Torque +n=3450; +P=3; +T=P*63000/n; + +mprintf('\n Torque = %f in-lb.',T); + +//Force transmitted +Ft=2*T/Dp; + +mprintf('\n Force transmitted = %f lb.',Ft); + +//Surface speed +Vm=%pi*Dp*n/12; + +mprintf('\n Surface speed = %f ft/min.',Vm); + +//Force allowable +Y=0.337; +b=1; +Fs=Sn*b*Y/Pd; + +mprintf('\n Force allowable = %f lb.',Fs); + +//Dynamic load using Buckingham's equation +C=830; +Fd=Ft+0.05*Vm*(b*C+Ft)/(0.05*Vm+(b*C+Ft)^0.5); + +Nsf=1.4; +if (Fs/Nsf)>Fd then + mprintf('\n This is a suitable design'); +end diff --git a/2921/CH12/EX12.8/Ex12_8.sce b/2921/CH12/EX12.8/Ex12_8.sce new file mode 100755 index 000000000..e16e376d5 --- /dev/null +++ b/2921/CH12/EX12.8/Ex12_8.sce @@ -0,0 +1,29 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-12.8 Page No.272\n'); + +Ng=42; +Np=24; +Q=2*Ng/(Ng+Np); + +Kg=270; +Dp=1.5; +b=1; + +Fw=Dp*b*Q*Kg; +Fd=699; +Nsf=1.2; + +if (Fw/Nsf)<Fd then + mprintf('\n (Fw/Nsf)<Fd So this would not be suitable design'); +end + +//If the surfaces each had a BHN = 450 + +Kg=470; +Fw=Dp*b*Q*Kg; + +if(Fw/Nsf)>Fd then + mprintf('\n\n If the surfaces each had a BHN = 450'); + mprintf('\n (Fw/Nsf)>Fd So this would be suitable design.'); +end diff --git a/2921/CH13/EX13.1/Ex13_1.sce b/2921/CH13/EX13.1/Ex13_1.sce new file mode 100755 index 000000000..5ff997cdd --- /dev/null +++ b/2921/CH13/EX13.1/Ex13_1.sce @@ -0,0 +1,31 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-13.1 Page No.280\n'); + +//Pitch-line velocity +Nt=24; +Pd=12; +Dp=Nt/Pd; +n=1750; +Vm=%pi*Dp*n/12; + +mprintf('\n Pitch-line velocity = %f ft/min.',Vm); + +//Transmitted force +hp=5; +Ft=33000*hp/Vm; + +mprintf('\n Transmitted force = %f lb.',Ft); + +//Axial force +psi=15*%pi/180; +Fa=Ft*tan(psi); + +mprintf('\n Axial force = %f lb.',Fa); + +//Separating force +theta=20*%pi/180; +psit=atan(tan(theta)/cos(psi)); +Fn=Ft*tan(psit); + +mprintf('\n Separating force = %f lb.',Fn); diff --git a/2921/CH13/EX13.2/Ex13_2.sce b/2921/CH13/EX13.2/Ex13_2.sce new file mode 100755 index 000000000..6beca29b7 --- /dev/null +++ b/2921/CH13/EX13.2/Ex13_2.sce @@ -0,0 +1,35 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-13.2 Page No.282\n'); + +//Normal plane pitch +Pd=16; +psi=45*%pi/180; +Pdn=Pd/cos(psi); + +mprintf('\n Normal plane pitch = %f in.',Pdn); + +N=24; +S=30000; +b=0.5; +Ne=N/cos(psi)^3; +Y=0.427; +Fs=S*b*Y/Pdn; + +mprintf('\n Allowable force = %f lb.',Fs); + +Dp=24/16; +n=600; +Vm=%pi*Dp*n/12; + +mprintf('\n Surface speed = %f ft/min.',Vm); + +Ft=Fs/((600+Vm)/600); + +mprintf('\n Force transmitted = %f lb.',Ft); + +P=Ft*Vm/33000; + +mprintf('\n Power rating = %f hp.',P); + +//Note-There is an error in the answer given in textbook diff --git a/2921/CH13/EX13.3/Ex13_3.sce b/2921/CH13/EX13.3/Ex13_3.sce new file mode 100755 index 000000000..9f5096f42 --- /dev/null +++ b/2921/CH13/EX13.3/Ex13_3.sce @@ -0,0 +1,44 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-13.3 Page No.286\n'); + +Np=24; +Ng=36; +Pd=8; +Yp=33.7*%pi/180; +Yg=56.3*%pi/180; +theta=14.5*%pi/180; + +//Pitch diameter +Dp=Np/Pd; + +mprintf('\n Pitch diameter = %f in.',Dp); + +//Transmitted force +n=2200; +P=8; +T=63000*P/n; + +Ft=2*T/Dp; + +mprintf('\n Transmitted force = %f lb.',Ft); + +//Separating force - Pinion +Fnp=Ft*tan(theta)*cos(Yp); + +mprintf('\n Separating force-Pinion = %f lb.',Fnp); + +//Separating force-Gear +Fng=Ft*tan(theta)*cos(Yg); + +mprintf('\n Separating force = %f lb.',Fng); + +//Axial force-Pinion +Fap=Ft*tan(theta)*sin(Yp); + +mprintf('\n Axial force-Pinion= %f lb.',Fap); + +//Axial force-Gear +Fag=Ft*tan(theta)*sin(Yg); + +mprintf('\n Axial force-Gear = %f lb.',Fag); diff --git a/2921/CH13/EX13.4/Ex13_4.sce b/2921/CH13/EX13.4/Ex13_4.sce new file mode 100755 index 000000000..d34c6ac06 --- /dev/null +++ b/2921/CH13/EX13.4/Ex13_4.sce @@ -0,0 +1,42 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-13.4 Page No.288\n'); + +//Pitch diameter +Ng=60; +Pd=6; +Dp=Ng/Pd; + +mprintf('\n Pitch diameter = %f in.',Dp); + +//Circular pitch +Pc=%pi*Dp/Ng; + +mprintf('\n Circular pitch = %f in.',Pc); + +L=Pc; + +//Lead angle +D=2; +LA=atan(L/(%pi*D)); +LA=LA*180/%pi; + +mprintf('\n Lead angle = %f deg.',LA); + +//Centerline distance +CC=(D+Dp)/2; + +mprintf('\n Centerline distance = %f in.',CC); + +//Velocity ratio +Ntgear=60; +Nstarts_worm=1; +Vr=Ntgear/Nstarts_worm; + +mprintf('\n Velocity ratio = %f',Vr); + +//Output speed +nin=1750; +nout=nin/Vr; + +mprintf('\n Output speed = %f rpm.',nout); diff --git a/2921/CH13/EX13.5/Ex13_5.sce b/2921/CH13/EX13.5/Ex13_5.sce new file mode 100755 index 000000000..4d5f6d9fa --- /dev/null +++ b/2921/CH13/EX13.5/Ex13_5.sce @@ -0,0 +1,42 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-13.5 Page No.292\n'); + +//Normal circular pitch +Pc=0.524; +LA=4.77*%pi/180; +Pcn=Pc*cos(LA); + +mprintf('\n Normal circular pitch = %f in.',Pcn); + +//Force transmitted +hp=5; +n=29.2; +T=63000*hp/n; +Dp=10; +Ft=2*T/Dp; + +mprintf('\n Force transmitted = %f lb.',Ft); + +Vm=%pi*Dp*n/12; + +//Dynamic load +Fd=(1200+Vm)*Ft/1200; + +mprintf('\n Dynamic load = %f lb.',Fd); + +//Force allowable +Su=95*10^3; +Y=0.392; +b=1; +Sn=0.5*Su; +Fs=Sn*Y*b*Pcn/%pi; + +mprintf('\n Force allowable = %f lb.',Fs); + +//Safty factor +Nsf=Fs/Fd; + +mprintf('\n Safty factor = %f .',Nsf); + +//Note-There is an error in the answer given in textbook diff --git a/2921/CH13/EX13.6/Ex13_6.sce b/2921/CH13/EX13.6/Ex13_6.sce new file mode 100755 index 000000000..7d1876b1a --- /dev/null +++ b/2921/CH13/EX13.6/Ex13_6.sce @@ -0,0 +1,22 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-13.6 Page No.294\n'); + +//Efficiency +LA=4.77*%pi/180; +f=0.03; +e=tan(LA)*(1-f*tan(LA))/(f+tan(LA)); + +mprintf('\n Efficiency = %f .',e); + +//Torque input +hp=5; +n=1750; +T=63000*hp/n; + +mprintf('\n Torque input = %f in-lb.',T); + +Vr=60; +Tout=0.73*Vr*T; + +mprintf('\n Output torque = %f in-lb.',Tout); diff --git a/2921/CH13/EX13.7/Ex13_7.sce b/2921/CH13/EX13.7/Ex13_7.sce new file mode 100755 index 000000000..beb0e3326 --- /dev/null +++ b/2921/CH13/EX13.7/Ex13_7.sce @@ -0,0 +1,11 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-13.7 Page No.296\n'); + +hpin=5 +e=0.73; +Q=(1-e)*hpin*2544; + +mprintf('\n Heat generated by system = %f Btu/hr.',Q); + +//Note-There is an error in the answer given in textbook diff --git a/2921/CH14/EX14.1/Ex14_1.sce b/2921/CH14/EX14.1/Ex14_1.sce new file mode 100755 index 000000000..25851493f --- /dev/null +++ b/2921/CH14/EX14.1/Ex14_1.sce @@ -0,0 +1,42 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-14.1 Page No.306\n'); + +//Torque on small pulley +hp=2; +n=2450; +T=63000*hp/n; + +mprintf('\n Torque on small pulley = %f in-lb.',T); +r=6/2; +Fd=T/r; + +//Front force +Fb=10; +Ff=Fd+Fb; + +mprintf('\n Front force = %f lb.',Ff); + +//Force pulling the shafts +Ft=Ff+Fb + +mprintf('\n Force pulling the shafts = %f lb.',Ft); + +//Surface speed +D=2*r; +Vm=%pi*D*n/12; + +mprintf('\n Surface speed = %f ft/min.',Vm); + +//Ratio +D2=10; +Mw=D2/D; + +mprintf('\n Ratio = %f .',Mw); + +//Output speed +no=n/Mw; + +mprintf('\n Output speed = %f rpm.',no); + +//Note-There is an error in the answer given in textbook diff --git a/2921/CH14/EX14.2/Ex14_2.sce b/2921/CH14/EX14.2/Ex14_2.sce new file mode 100755 index 000000000..465ddf592 --- /dev/null +++ b/2921/CH14/EX14.2/Ex14_2.sce @@ -0,0 +1,39 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-14.2 Page No.310\n'); + +//Length of belt +C=19; +D1=4; +D2=6; + +L1=2*C+1.57*(D1+D2)+(D2-D1)^2/(4*C); + +//Assuming a 54-inch belt is available +L=54; + +mprintf('\n Length of belt = %f in.',L); + +//Centerline distance +B=4*L-6.28*(D2+D1); + +C=(B+sqrt(B^2-32*(D2-D1)^2))/16; + +mprintf('\n Centerline distance = %f in.',C); + +//Ratio +Mw=D2/D1; + +mprintf('\n Ratio = %f.',Mw); + +//Surface speed +n=1800; +Vm=%pi*D1*n/12; + +mprintf('\n Surface speed = %f ft/min.',Vm); + +//Angle of contact + +theta=180-2*(180/%pi)*asin((D2-D1)/(2*C)); + +mprintf('\n Angle of contact = %f deg.',theta); diff --git a/2921/CH14/EX14.3/Ex14_3.sce b/2921/CH14/EX14.3/Ex14_3.sce new file mode 100755 index 000000000..c4921112e --- /dev/null +++ b/2921/CH14/EX14.3/Ex14_3.sce @@ -0,0 +1,22 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-14.3 Page No.315\n'); + +//Power rating of belt +P1=27+2.98; +SF=1.5; +P=P1/SF; +P=round(P); + +mprintf('\n Power rating = %f hp.',P); + +//Length of belt +C=20; +D1=8; +D2=16; +L1=2*C+1.57*(D1+D2)+(D2-D1)^2/(4*C); + +//Use an 80-inch belt +L=80; + +mprintf('\n Length of belt = %f in.',L); diff --git a/2921/CH14/EX14.4/Ex14_4.sce b/2921/CH14/EX14.4/Ex14_4.sce new file mode 100755 index 000000000..6522ab95d --- /dev/null +++ b/2921/CH14/EX14.4/Ex14_4.sce @@ -0,0 +1,48 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-14.4 Page No.321\n'); + +P=5.31; + +mprintf('\n Horsepower rating = %f hp.',P); + +Nti=12; +N1=1800; +N2=900; + +//Output sprocket +Nto=(N1/N2)*Nti; + +mprintf('\n Number of tooth on output sprocket = %f.',Nto); + +//Surface speed +Pc=0.5; +D1=Pc*Nti/%pi; +n=1800; +Vm=%pi*D1*n/12; + +mprintf('\n Surface speed = %f ft/min.',Vm); + +mprintf('\n Type of lubrication - Bath or disc lubrication'); + +//Length of chain +C=10; +D2=Pc*Nto/%pi; + +L1=2*C+1.57*(D1+D2)+(D2-D1)^2/(4*C); + +//Use 29 or 30 inch chain + +L=30; + +mprintf('\n Length of chain = %f in.', L); + +hp=5.31; + +T=63000*hp/n; + +F=2*T/D1; + +mprintf('\n Force in chain = %f lb.',F); + +//Comparism with ultimate strength 3700 lb - not a valid comparison because of speed etc. diff --git a/2921/CH15/EX15.1/Ex15_1.sce b/2921/CH15/EX15.1/Ex15_1.sce new file mode 100755 index 000000000..13a06ceb0 --- /dev/null +++ b/2921/CH15/EX15.1/Ex15_1.sce @@ -0,0 +1,31 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-15.1 Page No.332\n'); + +//Torque +P=5; +n=1750; +T=63000*P/n; + +mprintf('\n Torque = %f in-lb.',T); + +//Length of key for shear +Su=61000; +Ss=0.5*Su; +b=0.125; +D=0.5; +Ls1=2*T/(Ss*b*D); +SF=2.5; + +Ls=SF*Ls1; + +mprintf('\n Length of key for shear = %f in.',Ls); + +//Length of key for compression +Sc=51000; +t=0.125; +Lc1=4*T/(Sc*t*D); + +Lc=SF*Lc1; + +mprintf('\n Length of key for compression = %f in.',Lc); diff --git a/2921/CH15/EX15.2/Ex15_2.sce b/2921/CH15/EX15.2/Ex15_2.sce new file mode 100755 index 000000000..bf2070c96 --- /dev/null +++ b/2921/CH15/EX15.2/Ex15_2.sce @@ -0,0 +1,25 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-15.2 Page No.335\n'); + +//Torque capacity +Ss=30500; +D=1; +L=2; +T1=Ss*%pi*D^2*L/16; + +SF=2; + +T=T1/SF; + +mprintf('\n Torque capacity 1 = %f in-lb.',T); +n=6; +d=0.81; +A=(D-d)*L*n/2; + +S=1000; +rm=(1+0.810)/4; + +T2=S*A*rm; + +mprintf('\n Torque capacity 2 = %f in-lb.',T2); diff --git a/2921/CH16/EX16.1/Ex16_1.sce b/2921/CH16/EX16.1/Ex16_1.sce new file mode 100755 index 000000000..d85c16d06 --- /dev/null +++ b/2921/CH16/EX16.1/Ex16_1.sce @@ -0,0 +1,18 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-16.1 Page No.358\n'); + +//Torque capacity +f=0.3; +N=120; +ro=12; +ri=9; +Tf=f*N*(ro+ri)/2; + +mprintf('\n Torque capacity = %f in-lb.',Tf); +n=2000; +//Power + +Pf=Tf*n/63000; + +mprintf('\n Power = %f hp.',Pf); diff --git a/2921/CH16/EX16.2/Ex16_2.sce b/2921/CH16/EX16.2/Ex16_2.sce new file mode 100755 index 000000000..d694e5192 --- /dev/null +++ b/2921/CH16/EX16.2/Ex16_2.sce @@ -0,0 +1,18 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-16.2 Page No.359\n'); + +//Normal force +W=100; +L=20; +a=4; +N=(W*L)/a; + +mprintf('\n Normal force = %f lb.',N); + +//Torque friction +f=0.4; +D=12; +Tf=f*N*D/2; + +mprintf('\n Torque friction = %f in-lb.',Tf); diff --git a/2921/CH16/EX16.3/Ex16_3.sce b/2921/CH16/EX16.3/Ex16_3.sce new file mode 100755 index 000000000..735ae09f2 --- /dev/null +++ b/2921/CH16/EX16.3/Ex16_3.sce @@ -0,0 +1,18 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-16.3 Page No.360\n'); + +//For alpha=20 deg. +alpha=20*(%pi/180); +f=0.35; +rm=12/2; +Fa=75; +Tf=(f*rm*Fa)/(sin(alpha)+f*cos(alpha)); + +mprintf('\n Torque capacity (alpha=20 deg.) = %f in-lb.',Tf); + +//For alpha=10 deg. +alpha=10*(%pi/180); +Tf=(f*rm*Fa)/(sin(alpha)+f*cos(alpha)); + +mprintf('\n Torque capacity (alpha=10 deg.) = %f in-lb.',Tf); diff --git a/2921/CH16/EX16.4/Ex16_4.sce b/2921/CH16/EX16.4/Ex16_4.sce new file mode 100755 index 000000000..969f6e581 --- /dev/null +++ b/2921/CH16/EX16.4/Ex16_4.sce @@ -0,0 +1,35 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-16.4 Page No.361\n'); + +//Stopping rate +V=60*5280/3600; +Va=0.5*V; +D=400; +t=D/Va; +a=V/t; + +mprintf('\n Stopping rate = %f ft/sec^2.',a); + +//Stopping force +W=40000; +g=32.2; +F=W*a/g; + +//Torque +r=36/2; +T=F*r; + +mprintf('\n Torque = %f in-lb.',T); + +//For each wheel +T=T/10; + +//Braking normal force +rm=10; +f=0.4; +N=T/(f*rm); + +mprintf('\n Braking normal force = %f lb.',N); + +//Note-There is an error in the answer given in textbook diff --git a/2921/CH16/EX16.5/Ex16_5.sce b/2921/CH16/EX16.5/Ex16_5.sce new file mode 100755 index 000000000..b00b8e7ea --- /dev/null +++ b/2921/CH16/EX16.5/Ex16_5.sce @@ -0,0 +1,33 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-16.5 Page No.365\n'); +W=3500; +V=73; +g=32.2; +V=50*5280/3600; +V=round(V); + +//Kinetic energy to be absorbed +KE=W*V^2/(2*g); + +mprintf('\n Kinetic energy to be absorbed = %f ft-lb.',KE); + +//Temperature rise +Uf=KE; +Wb=40; +c=93; +deltaT=Uf/(Wb*c); + +mprintf('\n Temperature rise = %f deg.',deltaT); + +//Stopping time +a=20; +t=V/a; + +mprintf('\n Stopping time = %f sec.',t); + +//Frictional power +t=round(t*10)/10; +fhp=Uf/(550*t); + +mprintf('\n Frictional power = %f hp.',fhp) diff --git a/2921/CH17/EX17.1/Ex17_1.sce b/2921/CH17/EX17.1/Ex17_1.sce new file mode 100755 index 000000000..b0e5f2a18 --- /dev/null +++ b/2921/CH17/EX17.1/Ex17_1.sce @@ -0,0 +1,47 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-17.1 Page No.379\n'); + +hp=5; +n=1750; +T=63000*hp/n; + +//Torsional stress in the shaft +D=0.75; +Z1=%pi*D^3/16; + +Ss=T/Z1; + +mprintf('\n Torsional stress in the shaft = %f lb/in^2.',Ss); + +//Load at the gear pitch circle +Nt=40; +Pd=10; +Dp=Nt/Pd; + +Ft=2*T/Dp; + +mprintf('\n Load at gear pitch circle = %f lb.',Ft); + +//Resultant force on the shaft +theta=20*%pi/180; +Fr=Ft/cos(theta); + +mprintf('\n Resultant force = %f lb.',Fr); + +//Maximum moment +L=15; +Mm=Fr*L/4; + +mprintf('\n Maximum moment = %f in-lb.',Mm); + +//Stress +D2=0.75; +Z2=%pi*D2^3/32; +Z2=round(Z2*1000)*10^-3; + +S=Mm/Z2; + +mprintf('\n Stress = %f lb/in^2.',S); + +//Note-There is an error in the answer given in textbook diff --git a/2921/CH17/EX17.2/Ex17_2.sce b/2921/CH17/EX17.2/Ex17_2.sce new file mode 100755 index 000000000..a9bcdffb9 --- /dev/null +++ b/2921/CH17/EX17.2/Ex17_2.sce @@ -0,0 +1,11 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-17.2 Page No.383\n'); + +//Combined stress using the maximum shear stress theorem + +Ss=2170; +S=8780; +Sr=sqrt(Ss^2+(S/2)^2); + +mprintf('\n Combined stress = %f lb/in^2.',Sr); diff --git a/2921/CH17/EX17.3/Ex17_3.sce b/2921/CH17/EX17.3/Ex17_3.sce new file mode 100755 index 000000000..d73d83e6d --- /dev/null +++ b/2921/CH17/EX17.3/Ex17_3.sce @@ -0,0 +1,12 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-17.3 Page No.383\n'); + +//Combined stress using the maximum normal stress theory +Ss=2170; +S=8780; +Sr=S/2+sqrt(Ss^2+(S/2)^2); + +mprintf('\n Combined stress = %f lb/in^2.',Sr); + +//Note-There is an error in the answer given in textbook diff --git a/2921/CH17/EX17.4/Ex17_4.sce b/2921/CH17/EX17.4/Ex17_4.sce new file mode 100755 index 000000000..ba28e5e9f --- /dev/null +++ b/2921/CH17/EX17.4/Ex17_4.sce @@ -0,0 +1,21 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-17.4 Page No.385\n'); + +//Modifying factors for Sn +Su=88000; +Csize=0.85; +Csurface=0.88; +Ctype=1; + +Sn=Csize*Csurface*Ctype*(0.5*Su); +Kt=2.3; +S=9300; + +N=Sn/(Kt*S); + +if N>2 then + mprintf('\n It would be an acceptable design.'); +else + mprintf('\n N<2,So this is not a suitable design for long term use.'); +end diff --git a/2921/CH17/EX17.5/Ex17_5.sce b/2921/CH17/EX17.5/Ex17_5.sce new file mode 100755 index 000000000..36f6e790c --- /dev/null +++ b/2921/CH17/EX17.5/Ex17_5.sce @@ -0,0 +1,16 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-17.5 Page No.388\n'); + +//Deflection +D=0.75; +E=30*10^6; +L=15; +F=96; +I=%pi*D^4/64; + +delta=F*L^4/(48*E*I); +delta=floor(100*delta)*10^-2; +Nc=188/sqrt(delta); + +mprintf('\n Critical speed = %f rpm.',Nc); diff --git a/2921/CH18/EX18.1/Ex18_1.sce b/2921/CH18/EX18.1/Ex18_1.sce new file mode 100755 index 000000000..a08dd93d6 --- /dev/null +++ b/2921/CH18/EX18.1/Ex18_1.sce @@ -0,0 +1,13 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-18.1 Page No.399\n'); + +//Torque +Dp=(1.5+1.208)/2; +F=5800; +L=1/3; +f=0.15; + +Tup=(F*Dp/4)*(L+%pi*f*Dp)/(%pi*Dp-f*L); + +mprintf('\n Torque up = %f in-lb.',Tup); diff --git a/2921/CH18/EX18.2/Ex18_2.sce b/2921/CH18/EX18.2/Ex18_2.sce new file mode 100755 index 000000000..52ce63d4d --- /dev/null +++ b/2921/CH18/EX18.2/Ex18_2.sce @@ -0,0 +1,28 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-18.2 Page No.400\n'); + +//Lead angle +L=1/3; +Dp=1.354; +LA=atan(L/(%pi*Dp)); + +mprintf('\n Lead angle = %f deg.',LA*180/%pi); + +//Efficiency +f=0.15; +e=tan(LA)*(1-f*tan(LA))/(tan(LA)+f); + +mprintf('\n Efficiency = %f',e*100); + +//Power +n=175; +T=454; +P=T*n/63000; +Pt=P*2; + +mprintf('\n Power = %f hp per lead screw.',P); + +if f>tan(LA) then + mprintf('\n It is self-locking'); +end diff --git a/2921/CH18/EX18.3/Ex18_3.sce b/2921/CH18/EX18.3/Ex18_3.sce new file mode 100755 index 000000000..58c71d643 --- /dev/null +++ b/2921/CH18/EX18.3/Ex18_3.sce @@ -0,0 +1,23 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-18.3 Page No.402\n'); +L=1/4; + +Dp=1.375; +LA=atan(L/(%pi*Dp)); + +mprintf('\n Lead angle = %f deg.',LA*180/%pi); + +//Torque +phi=14.5*%pi/180; +f=0.15; +F=5800; +Tup=(F*Dp/4)*(cos(phi)*tan(LA)+f)/(cos(phi)-f*tan(LA)); + +mprintf('\n Torque = %f in-lb.',Tup); + +//Power +n=175*4/3; +P=Tup*n/63000; + +mprintf('\n Power = %f hp per lead screw.',P) diff --git a/2921/CH18/EX18.4/Ex18_4.sce b/2921/CH18/EX18.4/Ex18_4.sce new file mode 100755 index 000000000..df93a3c52 --- /dev/null +++ b/2921/CH18/EX18.4/Ex18_4.sce @@ -0,0 +1,16 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-18.4 Page No.405\n'); + +//Torque +L=0.5; +F=5800/2; +T=0.177*F*L; + +mprintf('\n Torque = %f in-lb.',T); + +//Power +n=175*2/3; +P=T*n/63000; + +mprintf('\n Power = %f hp.',P); diff --git a/2921/CH19/EX19.1/Ex19_1.sce b/2921/CH19/EX19.1/Ex19_1.sce new file mode 100755 index 000000000..fa76375cb --- /dev/null +++ b/2921/CH19/EX19.1/Ex19_1.sce @@ -0,0 +1,27 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-19.1 Page No.417\n'); + +//Length +F=20; +n=500; +PV=3000; +L1=%pi*F*n/(12*PV); + +//Use 7/8-inch or longer bearing + +L=7/8; + +mprintf('\n Length of bearing = %f in.',L); + +//Maximum pressure +A=(3/4)*(7/8); +P=F/A; + +mprintf('\n Maximum pressure = %f lb/in^2.',P); + +//Maximum velocity +D=3/4; +V=%pi*D*n/12; + +mprintf('\n Maximum velocity = %f ft/min.',V); diff --git a/2921/CH19/EX19.2/Ex19_2.sce b/2921/CH19/EX19.2/Ex19_2.sce new file mode 100755 index 000000000..f58351e33 --- /dev/null +++ b/2921/CH19/EX19.2/Ex19_2.sce @@ -0,0 +1,14 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-19.2 Page No.421\n'); + +//Life in hours of operation +t=0.01; +K=12*10^-10; +P=30.5; +V=98; +T=t/(K*P*V); + +mprintf('\n Life = %f hours.',T); + +//Note-There is an error in the answer given in textbook diff --git a/2921/CH2/EX2.1/Ex2_1.sce b/2921/CH2/EX2.1/Ex2_1.sce new file mode 100755 index 000000000..bb6e0baf6 --- /dev/null +++ b/2921/CH2/EX2.1/Ex2_1.sce @@ -0,0 +1,9 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-2.1 Page 26 ') //Example 2.1 + +T=1080*12; //[in*lb] Torque in axle +d=30; //[in] Diameter of tire +F=T/(d/2); //[lb] Force exerted on the road surface + +mprintf('\n\n The tire exerts %f lb force on the road surface',F); diff --git a/2921/CH2/EX2.2/Ex2_2.sce b/2921/CH2/EX2.2/Ex2_2.sce new file mode 100755 index 000000000..395c3bc56 --- /dev/null +++ b/2921/CH2/EX2.2/Ex2_2.sce @@ -0,0 +1,28 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-2.2 Page 28 ') //Example 2.2 + +G=3.6; //Diffential ratio +N=3500/G; //[rpm] Axle rotational speed +d=30; //[in] Diameter of tire +dist=N/(60)*(%pi*d) //[in] Distance traveled in 1 sec +dist=dist/12; //[ft] Distance traveled in 1 sec +t=1; //[sec] Time period +F=864; //[lb] Force exerted by tire on road surface + +W=F*dist; //[ft*lb] Workdone in 1 sec +P=F*dist/t; //[ft*lb/sec] Power +hp=P/550; //[hp] Power in horse power 1hp=550 ft*lb/sec + +mprintf('\n\n Power to do work %f hp',hp); + +//Comparing it to motor output: + +Tm=300*12; //[in*lb] Engine torque +Nm=3500; //[rpm] Engine speed +Pm=Tm*Nm/63000; + +mprintf('\n Motor output %f hp',Pm); +mprintf('\n The power output equaled the power at tire/road surface.'); + +//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken) diff --git a/2921/CH2/EX2.3/Ex2_3.sce b/2921/CH2/EX2.3/Ex2_3.sce new file mode 100755 index 000000000..9fd946f0a --- /dev/null +++ b/2921/CH2/EX2.3/Ex2_3.sce @@ -0,0 +1,13 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-2.3 Page 29 ') //Example 2.3 + +T=300*12; //[in*lb] Engine torque +d=8; //[in] Crankshaft effective diameter + +F=T/(d/2); //[lb] Force exerted by piston + +A=%pi*(2^2)/4; //[in^2] Area of cross section of piston +P=F/A; //[lb/in^2] Pressure in cylinder + +mprintf('\n\n Pressure inside cylinder %f lb/in^2',P); diff --git a/2921/CH20/EX20.1/Ex20_1.sce b/2921/CH20/EX20.1/Ex20_1.sce new file mode 100755 index 000000000..315c9aaae --- /dev/null +++ b/2921/CH20/EX20.1/Ex20_1.sce @@ -0,0 +1,12 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-20.1 Page No.431\n'); + +//L10 design life +Cd=5050; +Pd=2400; +k=3; +Ld1=(Cd/Pd)^k*10^6; +Ld=Ld1/(1750*60); + +mprintf('\n L10 design life = %f hr.',Ld); diff --git a/2921/CH20/EX20.2/Ex20_2.sce b/2921/CH20/EX20.2/Ex20_2.sce new file mode 100755 index 000000000..af6c7f4df --- /dev/null +++ b/2921/CH20/EX20.2/Ex20_2.sce @@ -0,0 +1,18 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-20.2 Page No.432\n'); + +//Dynamic load capacity +T=200; +n=1750; +L=T*n*60/10^6; +Pd=2400; +Ld=21; +Lc=1; +k=1/3; + +Cd=Pd*(Ld/Lc)^k + +mprintf('\n Dynamic load capacity required = %f lb.',Cd); + +mprintf('\n Bearing 6211 meets this criterion.'); diff --git a/2921/CH20/EX20.3/Ex20_3.sce b/2921/CH20/EX20.3/Ex20_3.sce new file mode 100755 index 000000000..700ed0fab --- /dev/null +++ b/2921/CH20/EX20.3/Ex20_3.sce @@ -0,0 +1,52 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-20.3 Page No.434\n'); + +R=1200; +Ft=500; +n=1500; +L10=5000; + +//Assume thrust factor=1.6 + +Y=1.6; + +Pd=0.56*R+Y*Ft; + +Ld=n*L10*60/10^6; +Lc=1; +k=3; +Cd=Pd*(Ld/Lc)^(1/k); + +//For bearing number 6215 + +Cd1=11400; +Cs1=9700; + +//Verify the assumption for Y +Ft_Cs1=Ft/Cs1; + +Y=(0.056-Ft_Cs1)*(1.99-1.71)/(0.056-0.028)+1.71; + +Pd=0.56*R+Y*Ft; + +Cd=Pd*(Ld/Lc)^(1/k); + +if Cd>Cd1 then + mprintf('\n Since Cd of bearing < Cd required, So bearing number 6215 is not acceptable.'); +end + +//For bearing number 6216 +Cd2=12600; +Cs2=10500; + +Ft_Cs2=Ft/Cs2; +Y=(0.056-Ft_Cs2)*(1.99-1.71)/(0.056-0.028)+1.71; + +Pd=0.56*R+Y*Ft; + +Cd=Pd*(Ld/Lc)^(1/k); + +if Cd<Cd2 then + mprintf('\n Since Cd of bearing > Cd required, So bearing number 6215 meets the design criteria.'); +end diff --git a/2921/CH20/EX20.4/Ex20_4.sce b/2921/CH20/EX20.4/Ex20_4.sce new file mode 100755 index 000000000..fa42a02bb --- /dev/null +++ b/2921/CH20/EX20.4/Ex20_4.sce @@ -0,0 +1,26 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-20.4 Page No.436\n'); + +//Thrust factor +Ft=300; +Cs=2320; +Ft_Cs=Ft/Cs; + +Y=(0.17-Ft_Cs)*(1.45-1.31)/(0.17-0.11)+1.31; + +mprintf('\n Thrust factor = %f ',Y); + +V=1.2; +X=0.56; +R=1000; + +P=V*X*R+Y*Ft; + +Cd=3350; +Pd=1095; +k=3; + +Ld=(Cd/Pd)^k*10^6; + +mprintf('\n Life = %f revolutions.',Ld); diff --git a/2921/CH3/EX3.1/Ex3_1.sce b/2921/CH3/EX3.1/Ex3_1.sce new file mode 100755 index 000000000..7733b31a9 --- /dev/null +++ b/2921/CH3/EX3.1/Ex3_1.sce @@ -0,0 +1,24 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-3.1 Page No-41 \n'); + +F=20000; //[lb] Load applied to steel bar +L=6; //[in] Length of steel bar +d=1; //[in] Diameter of steel bar +A=%pi*(d^2)/4; //[in^2] Area of cross section of steel bar +E=30*10^6; //[lb/in^2] Modulus of elasticity for AISI 1020 hot-rolled steel +Sy=30000; //[lb/in^2] Yield limit + +S=F/A; //[lb/in^2] Stress in bar +mprintf('\na. Stress in bar=%f lb/in^2.',S); + +delta=F*L/(A*E); //[in] Change in length of bar +mprintf('\nb. bar shorten by %f in.',delta); + +if Sy>S then + mprintf('\nc. The stress of %f psi is less than Sy of %f psi, so it will\n return to its original size because the yield limit was not exceeded.',S,Sy); +else + mprintf('The bar will not return to its original length') +end + +//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken) diff --git a/2921/CH3/EX3.2/Ex3_2.sce b/2921/CH3/EX3.2/Ex3_2.sce new file mode 100755 index 000000000..ca43440b7 --- /dev/null +++ b/2921/CH3/EX3.2/Ex3_2.sce @@ -0,0 +1,45 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-3.2 Page No.43\n'); + +b=2; //[in] Width of beam +h=2; //[in] Height of beam +I=(b*h^3)/12; //[in^4] Moment of inertia +F=3000; //[lb] Load applied to beam +L=36; //[in] Length of beam +c=1; //[in] Distance of outer most fiber from neutral axis +E=30*10^6; //[lb/in^2] Modulus of elasticity +Sy=30000; //[lb/in^2] Yield strength +Su=55000; //[lb/in^2] Ultimate strength +SF=2; //[] Safety factor based on ultimate stress + +M=F*L/4; //[lb*in] Bending moment +S=(M/I)*c; //[lb/in^2] Bending stress + +//Note-In the book I=1.33 in^4 is used instead of I=1.3333333 in^2 + +mprintf('\na. The maximum stress in beam is %f lb/in^2',S); + +delta=-F*L^3/(48*E*I); //[in] Maximum deflection in this beam + +mprintf('\nb. The maximum deflection in this beam is %f in.',delta); + +if Sy>S then + mprintf('\nc. Yes, the stress of %f lb/in^2 is less than the yield of Sy=%f lb/in^2.',S,Sy); +else + mprintf('\nc. No, the stress of %f lb/in^2 is greater than the yield of Sy=%f lb/in^2',S,Sy); +end + +Sall=Su/SF; //[lb/in^2] Allowable stress + +if Sall>S then + mprintf('\nd. It is acceptable because allowable stress is greater than the acttual stress of %f lb/in^2.',S); +else + mprintf('\nd. Design is not acceptable because allowable stress is less than the actual stress of %f lb/in^2.',S) +end + +//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken) + + + + diff --git a/2921/CH3/EX3.3/Ex3_3.sce b/2921/CH3/EX3.3/Ex3_3.sce new file mode 100755 index 000000000..4ecf77239 --- /dev/null +++ b/2921/CH3/EX3.3/Ex3_3.sce @@ -0,0 +1,16 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-3.3 Page No.45\n'); + +Su=80*10^3; //[lb/in^2] Ultimate strength +d=0.5; //[in] Diameter of pin +As=%pi*d^2/4; //[in^2] Area of cross section of pin +F=20*10^3; //[lb] Load acting + +Ss=F/(2*As); //[lb/in^2] Shear stress + +if 0.5*Su>=Ss & 0.6*Su>=Ss then + mprintf('Pin would not fail'); +else + mprintf('\n Actual stress is too high and the pin would fail.'); +end diff --git a/2921/CH3/EX3.4/Ex3_4.sce b/2921/CH3/EX3.4/Ex3_4.sce new file mode 100755 index 000000000..ff6d87e2c --- /dev/null +++ b/2921/CH3/EX3.4/Ex3_4.sce @@ -0,0 +1,32 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-3.4 Page No.46\n'); + +hp=10; //[hp] Power transmitted +rpm=1750; //[rpm] Turning speed +d=0.5; //[in] Diameter of shaft +L=12; //[in] Length of shaft +G=11.5*10^6 //[lb/in^2] shear modulus of elasticity +Su=62000; //[lb/in^2] + +T=63000*hp/rpm; //[in*lb] Torque transmitted +Z=%pi*d^3/16; //[in^3] Polar section modulus +Ss=T/Z; //[lb/in^2] Torsional shear stress + +//Note- In the book Z=0.025 in^3 is used instead of Z=0.0245437 in^3 + +mprintf('\na. Stress in the shaft is %f lb/in^2.',Ss) + +J=%pi*d^4/32; //[in^4] Polar moment of inertia +theta=T*L/(J*G); //[radians] + +//Note- In the book J=0.0061 in^4 is used instead of J=0.0061359 in^4 + +mprintf('\nb. The angular deflection of shaft would be %f radians',theta); + +SF=3; //[] Safety factor based on ultimate strength + +Zd=T/(0.5*Su/SF); //[in^3] Polar section modulus required for SF=3 +Dd=(16*Zd/%pi)^(1/3); //[in] Diameter of shaft required Z=%pi*d^3/16 + +mprintf('\nc. Diameter of shaft required is %f in.',Dd); diff --git a/2921/CH3/EX3.5/Ex3_5.sce b/2921/CH3/EX3.5/Ex3_5.sce new file mode 100755 index 000000000..2648cc2e5 --- /dev/null +++ b/2921/CH3/EX3.5/Ex3_5.sce @@ -0,0 +1,43 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-3.5 Page No.53\n'); + +L=30; //[in] Length of link +d=5/8; //[in] Diameter of link +I=%pi*d^4/64; //[in^4] Moment of inertia +A=%pi*d^2/4; //[in^2] Area of cross section +E=30*10^6; //[lb/in^2] Modulus of elasticity + +r=sqrt(I/A); //[in] Radius of gyration + +mprintf('\n The radius of gyration %f in.',r); + +K=1; //[] End support condition factor + +Le=K*L; //[in] Effective length + +mprintf('\n Effective length is %f in',Le); + +SR=Le/r; //[] Slenderness ratio + +mprintf('\n Slenderness ratio is %f.',SR) + +Sy=42000; //[lb/in^2] Yield strength + +Cc=sqrt(2*%pi^2*E/Sy); //[] Column constant + +mprintf('The column constant is %f.',Cc); + +if SR>Cc then + mprintf('\n Slenderness ratio is greater than column constant, so use the euler formula') +end + +I=%pi*d^4/64; //[in^4] Moment of inertia + +mprintf('\n The moment of inertia is %f in^4',I); + +Pc=%pi^2*E*I/Le^2; //[lb] Critical force + +//Note- In the book I=0.0075 in^4 is used instead of I=0.0074901 in^4 + +mprintf('\n The critical force is %f lb.',Pc); diff --git a/2921/CH3/EX3.6/Ex3_6.sce b/2921/CH3/EX3.6/Ex3_6.sce new file mode 100755 index 000000000..f62d9a4a8 --- /dev/null +++ b/2921/CH3/EX3.6/Ex3_6.sce @@ -0,0 +1,34 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-3.6 Page No.55\n'); + +L=60; //[in] Length of column +Sy=36000; //[lb/in^2] Yield strength +SF=2; //[]Safty factor +E=30*10^6; //[lb/in^2] Modulus of elasticity + +A=2.26; //[in^2] Area of cross section (Appendix 5.4) +I=0.764; //[in^4] Moment of inertia (Appendix 5.4) + +r=sqrt(I/A); //[in] Radius of gyration + +K=0.65; //[] End support condition factor from Figure 3.8 +Le=K*L; //[in] Effective length + +mprintf('\n The effective length is %f in.',Le); + +SR=Le/r; //[] Slenderness ratio + +mprintf('\n The slenderness ratio is %f.',SR); + +Cc=sqrt(2*%pi^2*E/Sy); //[] Column constant + +mprintf('\n The column constant is %f.',Cc); + +if Cc>SR then + mprintf('\n The column constant is greater than slenderness ratio, so use the Johnson formula.'); +end + +F=(A*Sy/SF)*(1-Sy*SR^2/(4*%pi^2*E)); + +mprintf('\n The acceptable load for a safty factor of 2 is %f lb.',F); diff --git a/2921/CH4/EX4.1/Ex4_1.sce b/2921/CH4/EX4.1/Ex4_1.sce new file mode 100755 index 000000000..1dd82f3eb --- /dev/null +++ b/2921/CH4/EX4.1/Ex4_1.sce @@ -0,0 +1,21 @@ +clc;
+clear;
+mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-4.1 Page 66 ')
+
+D=2; //[in] Dia. of short column
+F=10000; //[lb] Load applied
+L=15; //[in] Length of column
+e=2; //[in] Offset of load
+
+A=(%pi*D^2)/4; //[in^2] Area of cross section of column
+SA=F/A; //[lb/in^2] Axial Stress
+
+Z=(%pi*D^3)/32; //[in^4] Section modulus for bending
+M=F*e; //[lb*in] Bending moment
+SB=M/Z; //[lb/in^2] Bemding stress
+
+S=-SA-SB; //S=(+-)SA+(+-)SB Max. stress
+
+//The bending stress and axial stress are added on inner side of column
+
+mprintf('\n\n Maximum stress in column is %f lb/in^2.\n',S)
diff --git a/2921/CH4/EX4.2/Ex4_2.sce b/2921/CH4/EX4.2/Ex4_2.sce new file mode 100755 index 000000000..3c943b29b --- /dev/null +++ b/2921/CH4/EX4.2/Ex4_2.sce @@ -0,0 +1,14 @@ +clc;
+clear;
+mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-4.2 Page 67 ')
+
+F1=800; //[lb] Vertical force
+F2=600; //[lb] Horizontal force
+D=0.5; //[in] Pin diameter
+A=(%pi*D^2)/4; //[in^2] Area of cross section of pin
+
+F=sqrt(F1^2+F2^2); //[lb] Resultant force on pin
+S=F/A; //[lb/in^2] Shear stress in pin
+
+//If forces were not perpendicular, they would be added vectorially.
+mprintf('\n\n Shear stress in pin is %f lb/in^2.',S);
diff --git a/2921/CH4/EX4.3/Ex4_3.sce b/2921/CH4/EX4.3/Ex4_3.sce new file mode 100755 index 000000000..b1e9d0f19 --- /dev/null +++ b/2921/CH4/EX4.3/Ex4_3.sce @@ -0,0 +1,25 @@ +clc;
+clear;
+mprintf('MACHINE DESIGN\n Timothy H. Wentzell, P.E.\n Example 4.3 Page no 68');
+
+P=50; //[hp] Power transmitted
+N=300; //[rpm] Speed
+D=10; //[in] Effective pitch diameter of sprocket
+d=1; //[in] Diameter of shaft from figure 4.3
+Z=(%pi*d^3)/16; //[in^3] Section modulus of shaft
+A=(%pi*d^2)/4; //[in^2] Area of cross section
+
+T=(63000/N)*P; //[lb*in] Torque required to transmit power
+F=T/(D/2); //[lb] Driving force in chain
+
+Ss=F/A; //[lb/in^2] Shear stress in shaft
+
+St=T/Z; //[lb/in^2] Torsional stress in shaft
+
+S=Ss+St; //[lb/in^2] Resultant stress
+
+//Note-There is mistake in addition of Ss and St.
+
+//This value would be compared to shear stress allowable for shaft material
+
+mprintf('\n\n The combined stress in 1 inch diameter shaft is %f lb/in^2.',S);
diff --git a/2921/CH4/EX4.4/Ex4_4.sce b/2921/CH4/EX4.4/Ex4_4.sce new file mode 100755 index 000000000..f80a3856e --- /dev/null +++ b/2921/CH4/EX4.4/Ex4_4.sce @@ -0,0 +1,35 @@ +clc; +clear; +mprintf('MACHINE DESIGN\n Timothy H. Wentzell, P.E.\n Example 4.4 Page no 71') + +P=20; //[hp] Power transmitted by chain drive +n=500; //[rpm] speed +d=8; //[in] Pitch diameter of sprocket +fos=2; +D=1.25; //[in] Diameter of shaft +L=12; //[in] Distance between two supporting bearings +Z1=%pi*D^3/16; //[in^3] Section modulus for torsion +Z2=%pi*D^3/32; //[in^3] Section modulus for bending + +T=63000*P/n; //[in*lb] Torque on shaft + +F=T/(d/2); //[lb] Force in chain + +M=F*L/4; //[in*lb] Bending moment in shaft + +Ss=T/Z1; //[lb/in^2] Torsional shear stress + +Sb=M/Z2; //[lb/in^2] Bending normal stress + +//Note- In the book Sb=9860 lb/in^2 is used instead of Sb=9856.7075 lb/in^2 + +S=(Sb/2)+sqrt(Ss^2+(Sb/2)^2); //[lb/in^2] Combined max. stress + +Sy=30000; //[lb/in^2]From APPENDIX 4 Page no-470 for AISI 1020 and Hot-rolled steel +FOS=(Sy/2)/S; //[]Actual factor of safty + +if S < Sy/2 then //Strength is greater than combined stress so design is safe + mprintf('\n\n Design is acceptable and Combined stress is %f lb/in^2',S); +else + mprintf('\n\n Design is not acceptable'); +end diff --git a/2921/CH5/EX5.1/Ex5_1.sce b/2921/CH5/EX5.1/Ex5_1.sce new file mode 100755 index 000000000..1ecd0a97e --- /dev/null +++ b/2921/CH5/EX5.1/Ex5_1.sce @@ -0,0 +1,34 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-5.1 Page No.93\n'); + +SF=2; //[] Safety factor +F=500; //[lb] Load +L=40; //[in] Length of shaft +Su=95000; //[lb/in^2] Ultimate strength (Appendix 4) +Sy=60000; //[lb/in^2] Yield strength (Appendix 4) + +Mmax=F*L/4; //[lb*in] Maximum bending moment +Mmin=-F*L/4; //[lb/in^2] Minimum bending moment + +Csurface=1; //[] As surface is polished +Csize=0.85; //[] Assuming 0.5<D<2 +Ctype=1; //[] Bending stress + +Sn=Csize*Csurface*Ctype*(0.5*Su); //[lb/in^2] Endurance limit + +if Mmax==abs(Mmin) then + Sm=0; //[lb/in^2] Mean stress +end + +Sa=Sn/SF; //[lb/in^2] As (1/SF)=(Sm/Sy)+(Sa/Sn) from soderberg equation + +Sa_Z=(Mmax-Mmin)/2; //[lb*in^2] Product of altenating stress and section modulus + +Z=Sa_Z/Sa; //[in^4] Section modulus + +D=(32*Z/%pi)^(1/3); //[in] Diameter of shaft + +D1=1.375; //[in] Next higher available is 1.375 in. so use D1 + +mprintf('\n The required diameter of rotating shaft is %f in.', D1); diff --git a/2921/CH5/EX5.2/Ex5_2.sce b/2921/CH5/EX5.2/Ex5_2.sce new file mode 100755 index 000000000..3f7c59791 --- /dev/null +++ b/2921/CH5/EX5.2/Ex5_2.sce @@ -0,0 +1,30 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-5.2 Page No.95\n'); + +Su=90000; //[lb/in^2] Ultimate strength (Appendix 8) +Sy=37000; //[lb/in^2] Yield strength (Appendix 8) +Sni=34000; //[lb/in^2] Endurance limit (Appendix 8) +SF=1.6; //[] Safety factor + +F=1000; //[lb] Load +L=12; //[in] Length of cantilever beam + +Mmax=F*L; //[lb*in] Maximum bending moment +Mmin=0; //[lb*in] Minimum bending moment + +Csize=0.85 //[] Assuming 0.5<D<2 in +Ctype=1; //[] Bending stress +Csurface=1; //[] As surface is polished + +Malt=(Mmax-Mmin)/2; //[lb*in] Alternating bending moment + +Mmean=(Mmax+Mmin)/2; //[lb*in] Mean bending moment + +Sn=Csize*Csurface*Ctype*Sni; //[lb/in^2] Modified endurance limit + +Z=((Mmean/Sy)+(Malt/Sn))*SF; //[in^3] Section modulus + +D=(32*(Z)/%pi)^(1/3); //[in] Diameter of bar + +mprintf('\n The required diameter of bar using the soderberg method is %f in.',D); diff --git a/2921/CH5/EX5.3/Ex5_3.sce b/2921/CH5/EX5.3/Ex5_3.sce new file mode 100755 index 000000000..c97f70acc --- /dev/null +++ b/2921/CH5/EX5.3/Ex5_3.sce @@ -0,0 +1,32 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-5.3 Page No.97\n'); + +Su=90000; //[lb/in^2] Ultimate strength (Appendix 8) +Sy=37000; //[lb/in^2] Yield strength (Appendix 8) +Sni=34000; //[lb/in^2] Endurance limit (Appendix 8) +SF=1.6; //[] Safety factor + +F=1000; //[lb] Load +L=12; //[in] Length of cantilever beam + +Mmax=F*L; //[lb*in] Maximum bending moment +Mmin=0; //[lb*in] Minimum bending moment + +Csize=0.85 //[] Assuming 0.5<D<2 in +Ctype=1; //[] Bending stress +Csurface=1; //[] As surface is polished + +Malt=(Mmax-Mmin)/2; //[lb*in] Alternating bending moment + +Mmean=(Mmax+Mmin)/2; //[lb*in] Mean bending moment + +Sn=Csize*Csurface*Ctype*Sni; //[lb/in^2] Modified endurance limit + +Z=((Mmean/Su)+(Malt/Sn))*SF; //[in^3] Section modulus + +D=(32*(Z)/%pi)^(1/3); //[in] Diameter of bar + +mprintf('\n The required diameter of bar using the soderberg method is %f in.',D); + +//Note that the modified Goodman results in a less conservative size as would be expected from figure 5.10 diff --git a/2921/CH5/EX5.4/Ex5_4.sce b/2921/CH5/EX5.4/Ex5_4.sce new file mode 100755 index 000000000..40714fa23 --- /dev/null +++ b/2921/CH5/EX5.4/Ex5_4.sce @@ -0,0 +1,26 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-5.4 Page No.98\n'); + +Su=95000; //[lb/in^2] Ultimate strength +Sy=60000; //[lb/in^2] Yield strength +SF=1.5; //[] Safety factor + +Fmax=1000; //[lb] Maximum load +Fmin=-6000; //[lb] Minimum load + +Fmean=(Fmax+Fmin)/2; //[lb] Mean load +Fmean=abs(Fmean); //[lb] Considering absolute value +Falt=(Fmax-Fmin)/2; //[lb] Alternating load + +Csize=1 //[] Assuming b<0.5 in +Ctype=0.8 //[] Axial stress +Csurface=0.86 //[] Machined surface Figure 5.7b + +Sn=Csize*Csurface*Ctype*(0.5*Su); //[lb/in^2] Modified endurance limit + +A=((Fmean/Sy)+(Falt/Sn))*SF; //[in^2] Area of cross section of rod + +b=sqrt(A); //[in] Side of square cross section + +mprintf('\n The required square size in the center section is %f in.',b); diff --git a/2921/CH5/EX5.5/Ex5_5.sce b/2921/CH5/EX5.5/Ex5_5.sce new file mode 100755 index 000000000..2810d5d77 --- /dev/null +++ b/2921/CH5/EX5.5/Ex5_5.sce @@ -0,0 +1,31 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-5.5 Page No.100\n'); + +Su=80000; //[lb/in^2] Ultimate strength +Sy=71000; //[lb/in^2] Yield strength + +D=0.6; //[in] Diameter of shaft +d=0.5; //[in] Diameter of shaft at notch +r=0.05; //[in] Radius of notch +Z=%pi*d^3/16; //[in^3] Polar section modulus +Tmax=200; //[lb*in] Maximum load +Tmin=0; //[lb*in] Minimum load + +Smax=Tmax/Z; //[lb/in^2] Maximum stress +Smin=Tmin/Z; //[lb/in^2] Minimum stress + +Smean=(Smax+Smin)/2; //[lb/in^2] Mean stress +Salt=(Smax-Smin)/2; //[lb/in^2] Alternating stress + +Csize=0.85; //[] Assume 0.5<D<2 in +Csurface=0.88; //[] Machined surface Figure 5.7b +Ctype=0.6; //[] Torsional stress + +Sn=Csize*Csurface*Ctype*(0.5*Su); //[lb/in^2] Modified endurance limit + +Kt=1.32; //[] (D/d)=1.2, (r/d)=0.1 from Appendix 6c + +N=inv(Smean/(0.5*Sy)+Kt*Salt/Sn); //[] Safety factor + +mprintf('\n The factor of safety for this design is %f',N); diff --git a/2921/CH5/EX5.6/Ex5_6.sce b/2921/CH5/EX5.6/Ex5_6.sce new file mode 100755 index 000000000..9767b4732 --- /dev/null +++ b/2921/CH5/EX5.6/Ex5_6.sce @@ -0,0 +1,20 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-5.6 Page No.102\n'); + +//From Example Problem 5.5 +Sy=71000; //[lb/in^2] Yield strength +Smax=8148.7331 ; //[lb/in^2] Maximum stress +Smin=0; //[lb/in^2] Minimum stress +Smean=(Smax+Smin)/2; //[lb/in^2] Mean stress +Salt=(Smax-Smin)/2; //[lb/in^2] Alternating stress +Sn=18000; //[lb/in^2] Modified endurance strength +Kt=1.32 //[] Stress concentration factor + +Nd=100000; //[cycles] Desired life + +Snn=Sn*(10^6/Nd)^0.09; //[lb/in^2] + +N=inv(Smean/(0.5*Sy)+Kt*Salt/Snn); //[] Factor of safety + +mprintf('\n The new factor of safety for this condition is %f.',N); diff --git a/2921/CH6/EX6.1/Ex6_1.sce b/2921/CH6/EX6.1/Ex6_1.sce new file mode 100755 index 000000000..8bc582eae --- /dev/null +++ b/2921/CH6/EX6.1/Ex6_1.sce @@ -0,0 +1,14 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-6.1 Page No.120\n'); + +As=0.334; //[in^2] Tensile stress area (Table 6.1) +Sp=85000; //[lb/in^2] Proof strength (Table 6.3) +D=3/4; //[in] Nominal diameter of thread + +Fi=0.85*As*Sp; //[lb] Desired intial preload +C=0.2; //[] Torque coefficient + +T=C*D*Fi; //[in*lb] Torque + +mprintf('\n The required torque is %f lb*in.',T); diff --git a/2921/CH6/EX6.2/Ex6_2.sce b/2921/CH6/EX6.2/Ex6_2.sce new file mode 100755 index 000000000..c4d4f29b4 --- /dev/null +++ b/2921/CH6/EX6.2/Ex6_2.sce @@ -0,0 +1,16 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-6.2 Page No.121\n'); + +L=5; //[in] Length of engagement +E=30*10^6; //[lb/in^2] Modulus of elasticity +As=0.334; //[in^2] Tensile stress area (Table 6.1) +Sp=85000; //[lb/in^2] Proof strength (Table 6.3) +Fi=0.85*As*Sp; //[lb] Desired intial preload + +Delta=Fi*L/(As*E) //[in] Elongation + +pitch=0.1; //[in] Pitch for 3/4 UNC +TA=Delta*360/pitch; //[Degree] Torque angle + +mprintf('\n The angle of rotation needed is %f degree.',TA); diff --git a/2921/CH6/EX6.3/Ex6_3.sce b/2921/CH6/EX6.3/Ex6_3.sce new file mode 100755 index 000000000..ebaea175a --- /dev/null +++ b/2921/CH6/EX6.3/Ex6_3.sce @@ -0,0 +1,12 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-6.3 Page No.122\n'); + +Alpha=6.5*10^-6; //[in/(in*F)] Thermal expansion coefficient (Appendix 8) +L=5; //[in] Length of engagement + +Delta=0.01204; //[Degree] Elongation + +DT=Delta/(Alpha*L); //[F] The temperature we would need to heat this bolt above the sevice temperature + +mprintf('\n The temperature we would need to heat this bolt above the sevice temperature is %f F.',DT); diff --git a/2921/CH6/EX6.4/Ex6_4.sce b/2921/CH6/EX6.4/Ex6_4.sce new file mode 100755 index 000000000..94e51bf46 --- /dev/null +++ b/2921/CH6/EX6.4/Ex6_4.sce @@ -0,0 +1,30 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-6.4 Page No.124\n'); + +Dp=20; //[in] Pressure vessel head diameter +Ds=1.25; //[in] Stud diameter +Ls=6; //[in] Stud length +Af=50; //[in^2] Clamped area of flanges + +E=30*10^6; //[lb/in^2] Modulus of elasticity +C=0.15; //[] Torque coefficient +Si=120000; //[lb/in^2] Proof strength (Table 6.3) +A=1.073; //[in^2] Tensile stress area (Table 6.1) + +Fi=0.9*Si*A; //[lb] Desired intial load + +T=C*Ds*Fi; //[lb*in] Torque + +mprintf('\n1. The required torque is %f lb*in.',T); + +Pp=500; //[lb/in^2] Pressure inside the pressure vessel +Ap=%pi*Dp^2/4; //[in^2] Pressure vessel head cross section area + +Kb=A*E/Ls; //[lb/in] Stiffness per stud +Kf=Af*E/Ls; //[lb/in] Stiffness per flange +Fe=Pp*Ap; //[lb] Force on pressure vessel head + +Ft=10*Fi+(10*Kb/(10*Kb+Kf))*Fe; //[lb] Total load on the bolt + +mprintf('\n2. The total load on the bolt is %f lb.',Ft); diff --git a/2921/CH7/EX7.1/Ex7_1.sce b/2921/CH7/EX7.1/Ex7_1.sce new file mode 100755 index 000000000..892dd3810 --- /dev/null +++ b/2921/CH7/EX7.1/Ex7_1.sce @@ -0,0 +1,18 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-7.1 Page No.137\n'); + +D=2; //[in] Diameter of bar +W=500; //[lb] Weight +h=1; //[in] Height from which the weight falls +A=%pi*D^2/4; //[in^2] Area of cross section of bar +L=10; //[in] Length of bar +E=30*10^6; //[lb/in^2] Modulus of elasticity + +S=(W/A)+(W/A)*(1+(2*h*E*A/(L*W)))^(0.5); //[lb/in^2] Stress in the bar + +mprintf('\n Stress in the bar is %f lb/in^2.',S); + +Delta=S*L/E; //[in] Deflection + +mprintf('\n Deflecton in the bar is %f in.',Delta); diff --git a/2921/CH7/EX7.2/Ex7_2.sce b/2921/CH7/EX7.2/Ex7_2.sce new file mode 100755 index 000000000..b592e37fe --- /dev/null +++ b/2921/CH7/EX7.2/Ex7_2.sce @@ -0,0 +1,24 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-7.2 Page No.139\n'); + +W=2000; //[lb] Weight of automobile +L=36; //[in] Length of stop +D=2; //[in] Diameter of steel bar +V=5*5280*12/3600; //[in/s] Velocity of automobile + +A=%pi*D^2/4; //[in^2] Area of cross section of bar +E=30*10^6; //[lb/in^2] Modulus of elasticity + +k=A*E/L; //[lb/in] Stiffness of the bar +g=386; //[in/s^2] Acceleration due to gravity + +Delta=sqrt(2/k*W*(V^2/(2*g)+0)); //[in] Deflection + +mprintf('\n The deflection in the bar is %f in.',Delta); + +S=Delta*E/L; //[in] Stress in the bar + +//Note-In the book Delta=0.124 is used instead of Delta=0.123800 + +mprintf('\n The stress in the bar is %f lb/in^2.',S); diff --git a/2921/CH7/EX7.3/Ex7_3.sce b/2921/CH7/EX7.3/Ex7_3.sce new file mode 100755 index 000000000..a92161b0d --- /dev/null +++ b/2921/CH7/EX7.3/Ex7_3.sce @@ -0,0 +1,22 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-7.3 Page No.141\n'); + +W=3000; //[lb] Weight of automobile +L=40*12; //[in] Length of the beam +I=64.2; //[in^4] Moment of inertia of the beam +Sy=48000; //[lb/in^2] Yield strength of the beam +c=8/2; //[in] Distance from the outermost fiber to neutral axis +E=30*10^6; //[lb/in^2] Modulus of elasticity +g=32.2; //[ft/s^2] Acceleration due to gravity + +M=I*Sy/c; //[lb*in] Moment at which beam will yield +F=4*M/L; //[lb] Force at which beam will yield + +Delta=F*L^3/(48*E*I); //[in] Deflection +KE=F*Delta/2; //[lb*in] Kinetic energy + +V=sqrt(2*g*KE/W); //[in/s] Velocity +V=V/5280*3600; //[miles/hr] Velocity + +mprintf('\n At %f miles/hr velocity the beam will yield.',V); diff --git a/2921/CH7/EX7.4/Ex7_4.sce b/2921/CH7/EX7.4/Ex7_4.sce new file mode 100755 index 000000000..ce013fe1d --- /dev/null +++ b/2921/CH7/EX7.4/Ex7_4.sce @@ -0,0 +1,45 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-7.4 Page No.143\n'); + +D=3/4; //[in] Diameter of the bolt +At=0.334; //[in^2] Area of thread +As=%pi*D^2/4; //[in^2] Area of shank + +//Note-In the book As=0.442 in^2 is used instead of As=0.4417865 in. + +E=30*10^6; //[lb/in^2] Modulus of elasticity +Lt=2; //[in] Length of the thread +Ls=6; //[in] Length of the shank +h=0.03; //[in] Height from which the weight falls +W=500; //[lb] Falling load + +Kt=At*E/Lt; //[lb/in] Stiffness of threaded portion +Ks=As*E/Ls; //[lb/in] Stiffness of shank + +K=Kt*Ks/(Kt+Ks); //[lb/in] Overall stiffness + +Delta=(W/K)+(W/K)*sqrt(1+2*h*K/W); //[in] Deflection + +A=[Ls/E, Lt/E; 0.442, -0.334]; +b=[Delta; 0]; +S=A\b; + +S=max(S); //[lb/in^2] Maximum stress in the bolt + +//Note-In the book Delta=0.0048 in is used instead of Delta=0.0047619 in. + +mprintf('\n The maximum stress in this bolt is %f lb/in^2.',S); + +Ln=8; //[in] Length when shank has same area as threads +Kn=At*E/Ln; //[lb/in] Stiffness +Deltan=(W/Kn)+(W/Kn)*sqrt(1+2*h*Kn/W); //[in] Deflection +S=Deltan*E/Ln; //[ln/in^2] Stress + +mprintf('\n If shank has the same area as threads then stress is %f lb/in^2 and deflection is %f in.',S,Deltan); + + + + + + diff --git a/2921/CH8/EX8.1/Ex8_1.sce b/2921/CH8/EX8.1/Ex8_1.sce new file mode 100755 index 000000000..07372f967 --- /dev/null +++ b/2921/CH8/EX8.1/Ex8_1.sce @@ -0,0 +1,18 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-8.1 Page No.160\n'); + +Dm=0.625; //[in] Mean diameter of spring +F=35; //[lb] Load + + +K=1.25; //[] Wahl factor for Dm/Dw=6.25 (figure 8.8) +Q=190000; //[lb/in^2] Expected ultimate strength + +LF=0.263; //[] Loading factor + +Dw=(K*8*F*Dm/(LF*%pi*Q))^(1/2.846); //[in] Wire diameter + +mprintf('\n The wire diameter of spring is %f in.',Dw); + +//Use U.S Steel 12-gage wire: Dw=0.105 in. diff --git a/2921/CH8/EX8.2/Ex8_2.sce b/2921/CH8/EX8.2/Ex8_2.sce new file mode 100755 index 000000000..8bbc929c6 --- /dev/null +++ b/2921/CH8/EX8.2/Ex8_2.sce @@ -0,0 +1,29 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-8.2 Page No.163\n'); + +Dw=0.105; //[in] Wire diameter +Dm=0.620; //[in] Mean diameter of spring +F=35; //[lb] Load +G=11.85*10^6; //[lb/in^2] Shear modulus of elasticity +Delta=0.5; //[in] Deflection + +Na=Delta*G*Dw^4/(8*F*Dm^3); //[] Number of active coils + +Nat=Na+2; //[] Total number of coils + +Lf=2; //[in] Free length of spring + +P=(Lf-2*Dw)/Nat; //[in] Pitch (Table 8.1) + +mprintf('\n Pitch is %f in.',P); + +k=G*Dw^4/(8*Dm^3*Na); //[lb/in] Spring rate + +mprintf('\n Spring rate is %f lb/in.',k); + +mprintf('\n The total number of coils necessary to meet design criteria are %f.',Nat); + +//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken) + +//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken) diff --git a/2921/CH8/EX8.3/Ex8_3.sce b/2921/CH8/EX8.3/Ex8_3.sce new file mode 100755 index 000000000..7e257b3d6 --- /dev/null +++ b/2921/CH8/EX8.3/Ex8_3.sce @@ -0,0 +1,10 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-8.3 Page No.165\n'); +Lf=2; //[in] Free length of spring +Dm=0.620; //[in] Mean diameter of spring + +R=Lf/Dm; //[] Free lengtth to mean diameter ratio + +mprintf('\n The ratio of the free length of spring to mean diameter of spring is %f.',R); +mprintf(' From Figure 8.9 for squared and ground ends, this is a stable spring.'); diff --git a/2921/CH8/EX8.4/Ex8_4.sce b/2921/CH8/EX8.4/Ex8_4.sce new file mode 100755 index 000000000..0f35c966d --- /dev/null +++ b/2921/CH8/EX8.4/Ex8_4.sce @@ -0,0 +1,10 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-8.4 Page No.165\n'); + +F=35; //[lb] Load +k=73.3; //[lb/in] Spring rate + +x=F/k; //[in] Deflection + +mprintf('\n The deflection in the spring would be %f in.',x); diff --git a/2921/CH8/EX8.5/Ex8_5.sce b/2921/CH8/EX8.5/Ex8_5.sce new file mode 100755 index 000000000..d4fd3cae7 --- /dev/null +++ b/2921/CH8/EX8.5/Ex8_5.sce @@ -0,0 +1,23 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-8.5 Page No.166\n'); + +b=12; //[in] Width of plate +h=1; //[in] Thickness of plate +L=72; //[in] Length of plate +I=b*h^3/12; //[in^4] Moment of inertia + +Delta=4; //[in] Deflection +E=10*10^6; //[lb/in^2] Modulus of elasticity + +F=3*Delta*E*I/L^3; //[lb] Force + +mprintf('\n The force at this point is %f lb.',F); + +k=F/Delta; //[lb/in] Stiffness + +mprintf('\n stiffness is %f lb/in.',k); + +//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken) + +//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken) diff --git a/2921/CH8/EX8.6/Ex8_6.sce b/2921/CH8/EX8.6/Ex8_6.sce new file mode 100755 index 000000000..1e384df88 --- /dev/null +++ b/2921/CH8/EX8.6/Ex8_6.sce @@ -0,0 +1,10 @@ +clc; +clear; +mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-8.6 Page No.167\n'); + +F=322; //[lb] Force +Delta=4; //[in] Deflection + +U=F*Delta/2; //[in*lb] Energy + +mprintf('\n The energy from the 4-inch deflection was %f lb*in.',U); |