diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /2528/CH8 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '2528/CH8')
-rwxr-xr-x | 2528/CH8/EX8.1/Ex8_1.sce | 15 | ||||
-rwxr-xr-x | 2528/CH8/EX8.2/Ex8_2.sce | 29 | ||||
-rwxr-xr-x | 2528/CH8/EX8.3/Ex8_3.sce | 12 | ||||
-rwxr-xr-x | 2528/CH8/EX8.4/Ex8_4.sce | 18 | ||||
-rwxr-xr-x | 2528/CH8/EX8.5/Ex8_5.sce | 37 | ||||
-rwxr-xr-x | 2528/CH8/EX8.6/Ex8_6.sce | 26 | ||||
-rwxr-xr-x | 2528/CH8/EX8.7/Ex8_7.sce | 14 |
7 files changed, 151 insertions, 0 deletions
diff --git a/2528/CH8/EX8.1/Ex8_1.sce b/2528/CH8/EX8.1/Ex8_1.sce new file mode 100755 index 000000000..9f582d514 --- /dev/null +++ b/2528/CH8/EX8.1/Ex8_1.sce @@ -0,0 +1,15 @@ +// Chapter8
+// Page.No-263
+// Example8_1
+// Figure 8.4
+// Output of Voltage and Current
+// Given
+clear;clc;
+R1=5000; //In Ohm
+R2=20000; //In Ohm
+R3=10000; //In Ohm
+Vz=3.9; //In V
+Vl=Vz*(R2+R3)/R3;
+printf("\n Output Load Voltage Vl is = %.2f V\n",Vl); // Result
+Iz=(Vl-Vz)/R1;
+printf("\n Output Zener Current Iz is = %.5f A \n",Iz); // Result
diff --git a/2528/CH8/EX8.2/Ex8_2.sce b/2528/CH8/EX8.2/Ex8_2.sce new file mode 100755 index 000000000..9c693fc0c --- /dev/null +++ b/2528/CH8/EX8.2/Ex8_2.sce @@ -0,0 +1,29 @@ +// Chapter8
+// Page.No-264
+// Example8_2
+// Figure 8.4
+// Power dissipation for Q1
+// Page.No-264
+// Example_8_2
+// Figure 8.4
+// Given
+clear;clc;
+Vl=11.7; //in V
+Rl=20; //in Ohm
+Il=Vl/Rl;
+printf("\n Output Load Current Il is = %.3f A \n",Il); // Result
+Vc=20; Ve=11.7; //in V
+Vce=Vc-Ve;
+printf("\n Output Load Voltage Vce is = %.2f V\n",Vce); // Result
+Pd=Il*Vce;
+printf("\n Power dissiption Pd is = %.2f W \n",Pd); // Result
+Ib=0.020; //in Amp
+B=Il/Ib;
+printf("\n Beta is = %.2f \n",B); // Result
+Pl=Il*Vl;
+printf("\n Power dissiption across load ,Pl is = %.3f W \n",Pl); // Result
+Vin=20; //in V
+Pin=Il*Vin; //Iin=Il
+printf("\n Input Power dissiption ,Pin is = %.2f W \n",Pin); // Result
+n=Pl/Pin;
+printf("\n Efficiency is = %.3f or %.1f percent \n",n,n*100); // Result
diff --git a/2528/CH8/EX8.3/Ex8_3.sce b/2528/CH8/EX8.3/Ex8_3.sce new file mode 100755 index 000000000..d006efe2c --- /dev/null +++ b/2528/CH8/EX8.3/Ex8_3.sce @@ -0,0 +1,12 @@ +// Chapter8
+// Value of R2
+// Page.No-272
+// Example8_3
+// Given
+clear;clc;
+Vm=1.25; //in V
+Vout=15; //in V
+R1=240; //in Ohm
+R2=R1*((Vout/Vm)-1);
+printf("\n Value for R2 is = %.2f Ohm\n",R2); // Result
+
diff --git a/2528/CH8/EX8.4/Ex8_4.sce b/2528/CH8/EX8.4/Ex8_4.sce new file mode 100755 index 000000000..0cbd8b4b2 --- /dev/null +++ b/2528/CH8/EX8.4/Ex8_4.sce @@ -0,0 +1,18 @@ +// Chapter8
+// 12V Voltage Regulator
+// Page.No-279
+// Example8_4
+//Figure 8.17
+// Given
+clear;clc;
+Vref=7.15; //in V
+Vout=12; //in V
+Ilimit=0.050; //in Amp
+R2=10000; //in Ohm
+R1=Vout*R2/Vref-R2;
+printf("\n Value of R1 is = %.f Ohm\n",R1); // Result
+Vsense=0.65; //in V
+Rsc=Vsense/Ilimit;
+printf("\n Value of current sense resistor is = %.f Ohm\n",Rsc); // Result
+R3=R1*R2/(R1+R2);
+printf("\n Value of minimum drift resistor is = %.f Ohm\n",R3); // Result
diff --git a/2528/CH8/EX8.5/Ex8_5.sce b/2528/CH8/EX8.5/Ex8_5.sce new file mode 100755 index 000000000..280f9c82b --- /dev/null +++ b/2528/CH8/EX8.5/Ex8_5.sce @@ -0,0 +1,37 @@ +// Chapter8
+// Design a contineously adjusted supply b/w 2V to 5 V
+// Page.No-279
+// Example8_5
+//Figure 8.15.1
+// Given
+clear;clc;
+Vref=7.15; //in V
+Vout=5; //in V
+//(R1b+R2)/R2=Vref/Vout;
+printf("\n For maximum case (R1b+R2)/R2 is = %.2f \n",Vref/Vout); // Result
+R2=1; // In Ohm (Assumption)
+R1b=Vref/Vout-1;
+printf("\n For R2=1 Ohm R1b:R2 is = %.2f:%.0f \n",R1b,R2); // Result
+Voutm=2; // in V
+printf("\n For maximum case (R1a+R1b+R2)/R2 is = %.3f \n",Vref/Voutm); // Result
+R1a=Vref/Voutm-1-0.43;
+printf("\n For R2=1 Ohm R1b:R2 is = %.3f:%.0f \n",R1a,R2); // Result
+R1a=10000; //in Ohm (Assumption)
+R2=R1a/2.145;
+printf("\n Value of R2 is = %.f Ohm\n",R2); // Result
+//Similarly
+R1b=R2*0.43;
+printf("\n Value of R1b is = %.f Ohm\n",R1b); // Result
+//Ilimit=Vsense/rsc;
+Vsense=0.65; //in V
+Ilimit=1; //in Amp
+Rsc=Vsense/Ilimit;
+printf("\n Value of current sense resistor is = %.f Ohm\n",Rsc); // Result
+R1=6000; //in Ohm
+R3=R1*R2/(R1+R2);
+printf("\n Value of minimum drift resistor is = %.f Ohm\n",R3); // Result
+Ic=1; //in Amp
+Ib=0.150; //in Amp
+B=Ic/Ib;
+printf("\n Value of B minimum = %.2f \n",B); // Result
+
diff --git a/2528/CH8/EX8.6/Ex8_6.sce b/2528/CH8/EX8.6/Ex8_6.sce new file mode 100755 index 000000000..432c4e3e0 --- /dev/null +++ b/2528/CH8/EX8.6/Ex8_6.sce @@ -0,0 +1,26 @@ +// Chapter8
+// Design a step down regulator
+// Page.No-288
+// Example8_6
+//Figure 8.27
+// Given
+clear;clc;
+Vout=12; //in V
+R2=10000; //in Ohm (Assumption)
+R1=R2*(Vout-1);
+printf("\n Value of R1 is = %.f Ohm\n",R1); // Result
+Isw=0.75; //in Amp
+R3=0.11/Isw;
+printf("\n Value of R3 is = %.2f Ohm\n",R3); // Result
+Iout=0.200; //in Amp
+Df=0.2;
+delI =2*Iout*Df;
+printf("\n Value of del I is = %.3f Amp\n",delI); // Result
+F=50000; //in Hz
+Vin=20; //in V
+L1=Vout*(Vin-Vout)/(delI*Vin*F);
+printf("\n Value of L1 is = %.4f H\n",L1); // Result
+Vripple=0.040; //in V
+C2=Vout*(Vin-Vout)/(8*F^2*Vin*Vripple*L1);
+printf("\n Value of C2 is = %.6f F\n",C2); // Result
+//C2 is ste a standard of 33microF or 47microF
diff --git a/2528/CH8/EX8.7/Ex8_7.sce b/2528/CH8/EX8.7/Ex8_7.sce new file mode 100755 index 000000000..3da1fc8a9 --- /dev/null +++ b/2528/CH8/EX8.7/Ex8_7.sce @@ -0,0 +1,14 @@ +// Chapter8
+// Determine appropiate heat sink rating
+// Page.No-296
+// Example8_7
+//Figure 8.34
+// Given
+clear;clc;
+Tj=150; // in degree C
+Ta=40; // in degree C
+Qjc=3.0; // in C/W
+Qcs=1.6; // in C/W
+PD=6; //in W
+Qsa=(Tj-Ta)/PD - Qjc-Qcs;
+printf("\n Value of Qsa = %.2f C/W\n",Qsa); // Result
|