summaryrefslogtreecommitdiff
path: root/2223/CH3
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /2223/CH3
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '2223/CH3')
-rwxr-xr-x2223/CH3/EX3.1/Ex3_1.savbin0 -> 38736 bytes
-rwxr-xr-x2223/CH3/EX3.1/Ex3_1.sce25
-rwxr-xr-x2223/CH3/EX3.2/Ex3_2.savbin0 -> 33432 bytes
-rwxr-xr-x2223/CH3/EX3.2/Ex3_2.sce38
-rwxr-xr-x2223/CH3/EX3.3/Ex3_3.savbin0 -> 32128 bytes
-rwxr-xr-x2223/CH3/EX3.3/Ex3_3.sce19
-rwxr-xr-x2223/CH3/EX3.4/Ex3_4.savbin0 -> 32128 bytes
-rwxr-xr-x2223/CH3/EX3.4/Ex3_4.sce21
-rwxr-xr-x2223/CH3/EX3.5/Ex3_5.savbin0 -> 39208 bytes
-rwxr-xr-x2223/CH3/EX3.5/Ex3_5.sce61
10 files changed, 164 insertions, 0 deletions
diff --git a/2223/CH3/EX3.1/Ex3_1.sav b/2223/CH3/EX3.1/Ex3_1.sav
new file mode 100755
index 000000000..792c1b874
--- /dev/null
+++ b/2223/CH3/EX3.1/Ex3_1.sav
Binary files differ
diff --git a/2223/CH3/EX3.1/Ex3_1.sce b/2223/CH3/EX3.1/Ex3_1.sce
new file mode 100755
index 000000000..adcbf9c38
--- /dev/null
+++ b/2223/CH3/EX3.1/Ex3_1.sce
@@ -0,0 +1,25 @@
+// scilab Code Exa 3.1 Constant Pressure Gas Turbine Plant
+
+t1=50; // Minimum Temperature in degree C
+T1=t1+273; // in Kelvin
+t3=950; // Maximum Temperature in degree C
+T3=t3+273; // in Kelvin
+n_c=0.82; // Compressor Efficiency
+n_t=0.87; // Turbine Efficiency
+gamma=1.4; // Specific Heat Ratio
+cp=1.005; // Specific Heat at Constant Pressure in kJ/(kgK)
+beeta=T3/T1;
+alpha=beeta*n_c*n_t;
+T_opt=sqrt(alpha); // For maximum power output, the temperature ratios in the turbine and compressor
+
+// part(a) Determining pressure ratio of the turbine and compressor
+pr=T_opt^(gamma/(gamma-1));
+disp(pr,"(a)Pressure Ratio is")
+
+// part(b) Determining maximum power output per unit flow rate
+wp_max=cp*T1*((T_opt-1)^2)/n_c;
+disp("kW/(kg/s)",wp_max,"(b)maximum power output per unit flow rate is")
+
+// part(c) Determining thermal efficiency of the plant for maximum power output
+n_th=(T_opt-1)^2/((beeta-1)*n_c-(T_opt-1));
+disp("%",n_th*100,"(c)thermal efficiency of the plant for maximum power output is")
diff --git a/2223/CH3/EX3.2/Ex3_2.sav b/2223/CH3/EX3.2/Ex3_2.sav
new file mode 100755
index 000000000..4dfccdf81
--- /dev/null
+++ b/2223/CH3/EX3.2/Ex3_2.sav
Binary files differ
diff --git a/2223/CH3/EX3.2/Ex3_2.sce b/2223/CH3/EX3.2/Ex3_2.sce
new file mode 100755
index 000000000..d76388239
--- /dev/null
+++ b/2223/CH3/EX3.2/Ex3_2.sce
@@ -0,0 +1,38 @@
+// scilab Code Exa 3.2 Gas Turbine Plant with an exhaust HE
+T1=300; // Minimum cycle Temperature in Kelvin
+funcprot(0);
+pr=10; // pressure ratio of the turbine and compressor
+T3=1500; // Maximum cycle Temperature in Kelvin
+m=10; // mass flow rate through the turbine and compressor in kg/s
+e(1)=0.8; // thermal ratio of the heat exchanger
+e(2)=1;
+n_c=0.82; // Compressor Efficiency
+n_t=0.85; // Turbine Efficiency
+gamma=1.4; // Specific Heat Ratio
+cp=1.005; // Specific Heat at Constant Pressure in kJ/(kgK)
+beeta=T3/T1;
+T2s=T1*(pr^((gamma-1)/gamma));
+T2=T1+((T2s-T1)/n_c);
+T4s=T3*(pr^(-((gamma-1)/gamma)));
+T4=T3-((T3-T4s)*n_t);
+
+for i=1:2
+T5=T2+e(i)*(T4-T2);
+T6=T4-(T5-T2);
+Q_s=cp*(T3-T5);
+Q_r=cp*(T6-T1);
+// part(a) Determining power developed
+w_p=Q_s-Q_r;
+P=m*w_p;
+printf("for effectiveness=%f, \n (a)the power developed is %f kW",e(i),P)
+
+// part(b) Determining thermal efficiency of the plant
+n_th=1-(Q_r/Q_s);
+disp ("%",n_th*100,"(b)thermal efficiency of the plant is")
+end
+
+// part(c) Determining efficiencies of the ideal Joules cycle
+n_Joule=1-(pr^((gamma-1)/gamma)/beeta);
+disp("%",n_Joule*100,"(c)efficiency of the ideal Joules cycle with perfect heat exchange is")
+n_Carnot=1-(T1/T3);
+disp("%",n_Carnot*100,"and the Carnot cycle efficiency is")
diff --git a/2223/CH3/EX3.3/Ex3_3.sav b/2223/CH3/EX3.3/Ex3_3.sav
new file mode 100755
index 000000000..bb26e4468
--- /dev/null
+++ b/2223/CH3/EX3.3/Ex3_3.sav
Binary files differ
diff --git a/2223/CH3/EX3.3/Ex3_3.sce b/2223/CH3/EX3.3/Ex3_3.sce
new file mode 100755
index 000000000..56681d5dc
--- /dev/null
+++ b/2223/CH3/EX3.3/Ex3_3.sce
@@ -0,0 +1,19 @@
+// scilab Code Exa 3.3 ideal reheat cycle gas turbine
+T1=300; // Minimum cycle Temperature in Kelvin
+r=25; // pressure ratio of the turbine and compressor
+gamma=1.4;
+T3=1500; // Maximum cycle Temperature in Kelvin
+cp=1.005; // Specific Heat at Constant Pressure in kJ/(kgK)
+beeta=T3/T1;
+n=(gamma-1)/gamma;
+t=(r^n);
+d=1/sqrt(t);
+// part(a) Determining mass flow rate through the turbine and compressor
+c=2*beeta*[1-d];
+wp_max=cp*T1*(c+1-t);
+m=1000/wp_max;
+disp ("kg/s",m,"(a)mass flow rate through the turbine and compressor is")
+
+// part(b) Determining thermal efficiency of the plant
+n_th=(c+1-t)/(2*beeta-t-(beeta/sqrt(t)));
+disp ("%",n_th*100,"(b)thermal efficiency of the plant is")
diff --git a/2223/CH3/EX3.4/Ex3_4.sav b/2223/CH3/EX3.4/Ex3_4.sav
new file mode 100755
index 000000000..6768f704e
--- /dev/null
+++ b/2223/CH3/EX3.4/Ex3_4.sav
Binary files differ
diff --git a/2223/CH3/EX3.4/Ex3_4.sce b/2223/CH3/EX3.4/Ex3_4.sce
new file mode 100755
index 000000000..aa3a340fe
--- /dev/null
+++ b/2223/CH3/EX3.4/Ex3_4.sce
@@ -0,0 +1,21 @@
+// scilab Code Exa 3.4 Calculations on Gas Turbine Plant for an ideal reheat cycle with optimum reheat pressure and perfect exhaust heat exchange
+T1=300; // Minimum cycle Temperature in Kelvin
+r=25; // pressure ratio of the turbine and compressor
+T3=1500; // Maximum cycle Temperature in Kelvin
+gamma=1.4; // Specific Heat Ratio
+cp=1.005; // Specific Heat at Constant Pressure in kJ/(kgK)
+beeta=T3/T1;
+n=(gamma-1)/gamma;
+t=(r^n);
+d=1/sqrt(t);
+// part(a) Determining mass flow rate through the turbine and compressor
+c=2*beeta*[1-d];
+wp_max=cp*T1*(c+1-t);
+m=1000/wp_max;
+disp ("kg/s" ,m," mass flow rate through the turbine and compressor is")
+
+
+// part(b) Determining thermal efficiency of the plant
+c=sqrt(t)*(sqrt(t)+1)/(2*beeta);
+n_th=1-c;
+disp ("%",n_th*100," thermal efficiency of the plant is")
diff --git a/2223/CH3/EX3.5/Ex3_5.sav b/2223/CH3/EX3.5/Ex3_5.sav
new file mode 100755
index 000000000..c8cc278da
--- /dev/null
+++ b/2223/CH3/EX3.5/Ex3_5.sav
Binary files differ
diff --git a/2223/CH3/EX3.5/Ex3_5.sce b/2223/CH3/EX3.5/Ex3_5.sce
new file mode 100755
index 000000000..f2c6cb2b6
--- /dev/null
+++ b/2223/CH3/EX3.5/Ex3_5.sce
@@ -0,0 +1,61 @@
+// scilab Code Exa 3.5 Calculations on Gas Turbine Plant
+
+P=10e4; // Power Output in kW
+T1=310; // Minimum cycle Temperature in Kelvin
+p1=1.013; // Compressor Inlet Pressure in bar
+pr_c=8; // Compressor pressure ratio
+gamma=1.4;
+gamma_g=1.33;
+R=0.287;
+p2=pr_c*p1; // Compressor Exit Pressure in bar
+T3=1350; // Maximum cycle Temperature(Turbine inlet temp) in Kelvin
+n_c=0.85; // Compressor Efficiency
+p3=0.98*p2; // turbine inlet pressure
+p4=1.02; // turbine exit pressure in bar
+CV=40*10e2; // Calorific Value of fuel in kJ/kg;
+n_B=0.98; // Combustion Efficiency
+n_m=0.97; // Mechanical efficiency
+n_t=0.9; // Turbine Efficiency
+n_G=0.98; // Generator Efficiency
+cp_a=1.005; // Specific Heat of air at Constant Pressure in kJ/(kgK)
+
+// Air Compressor
+T2s=T1*(pr_c^((gamma-1)/gamma));
+T2=T1+((T2s-T1)/n_c);
+w_c=cp_a*(T2-T1);
+
+// Gas Turbine
+n_g=(gamma_g-1)/gamma_g;
+cp_g=1.157; // Specific Heat of gas at Constant Pressure in kJ/(kgK)
+pr_t=p3/p4;
+T4s=T3/(pr_t^((gamma_g-1)/gamma_g));
+T4=T3-(n_t*(T3-T4s));
+w_t=cp_g*(T3-T4);
+w_net=w_t-w_c;
+w_g=n_m*n_G*w_net;
+
+// part(a) Determining Gas Flow Rate
+m_g=P/w_g;
+disp ("kg/s",m_g,"(a)Gas flow rate is")
+
+// part(b) Determining Fuel-Air Ratio
+F_A=((cp_g*T3)-(cp_a*T2))/((CV*n_B)-(cp_g*T3));
+disp(F_A,"(b)Fuel-Air Ratio is")
+
+// part(c) Air flow rate
+m_a=m_g/(1+F_A);
+disp("kg/s",m_a,"(c)Air flow rate is")
+
+// part(d) Determining thermal efficiency of the plant
+m_f=m_g-m_a;
+n_th=m_g*w_net/(m_f*CV);
+disp ("%",n_th*100,"(d)thermal efficiency of the plant is")
+
+// part(e) Determining Overall efficiency of the plant
+n_o=n_m*n_G*n_th;
+disp ("%",n_o*100,"(e)overall efficiency of the plant is")
+
+// part(f) Determining ideal Joule cycle efficiency
+n_Joule=1-(1/(pr_c^((gamma-1)/gamma)));
+disp ("%",n_Joule*100,"(f)efficiency of the ideal Joule cycle is")
+