summaryrefslogtreecommitdiff
path: root/2223/CH3/EX3.5/Ex3_5.sce
diff options
context:
space:
mode:
Diffstat (limited to '2223/CH3/EX3.5/Ex3_5.sce')
-rwxr-xr-x2223/CH3/EX3.5/Ex3_5.sce61
1 files changed, 61 insertions, 0 deletions
diff --git a/2223/CH3/EX3.5/Ex3_5.sce b/2223/CH3/EX3.5/Ex3_5.sce
new file mode 100755
index 000000000..f2c6cb2b6
--- /dev/null
+++ b/2223/CH3/EX3.5/Ex3_5.sce
@@ -0,0 +1,61 @@
+// scilab Code Exa 3.5 Calculations on Gas Turbine Plant
+
+P=10e4; // Power Output in kW
+T1=310; // Minimum cycle Temperature in Kelvin
+p1=1.013; // Compressor Inlet Pressure in bar
+pr_c=8; // Compressor pressure ratio
+gamma=1.4;
+gamma_g=1.33;
+R=0.287;
+p2=pr_c*p1; // Compressor Exit Pressure in bar
+T3=1350; // Maximum cycle Temperature(Turbine inlet temp) in Kelvin
+n_c=0.85; // Compressor Efficiency
+p3=0.98*p2; // turbine inlet pressure
+p4=1.02; // turbine exit pressure in bar
+CV=40*10e2; // Calorific Value of fuel in kJ/kg;
+n_B=0.98; // Combustion Efficiency
+n_m=0.97; // Mechanical efficiency
+n_t=0.9; // Turbine Efficiency
+n_G=0.98; // Generator Efficiency
+cp_a=1.005; // Specific Heat of air at Constant Pressure in kJ/(kgK)
+
+// Air Compressor
+T2s=T1*(pr_c^((gamma-1)/gamma));
+T2=T1+((T2s-T1)/n_c);
+w_c=cp_a*(T2-T1);
+
+// Gas Turbine
+n_g=(gamma_g-1)/gamma_g;
+cp_g=1.157; // Specific Heat of gas at Constant Pressure in kJ/(kgK)
+pr_t=p3/p4;
+T4s=T3/(pr_t^((gamma_g-1)/gamma_g));
+T4=T3-(n_t*(T3-T4s));
+w_t=cp_g*(T3-T4);
+w_net=w_t-w_c;
+w_g=n_m*n_G*w_net;
+
+// part(a) Determining Gas Flow Rate
+m_g=P/w_g;
+disp ("kg/s",m_g,"(a)Gas flow rate is")
+
+// part(b) Determining Fuel-Air Ratio
+F_A=((cp_g*T3)-(cp_a*T2))/((CV*n_B)-(cp_g*T3));
+disp(F_A,"(b)Fuel-Air Ratio is")
+
+// part(c) Air flow rate
+m_a=m_g/(1+F_A);
+disp("kg/s",m_a,"(c)Air flow rate is")
+
+// part(d) Determining thermal efficiency of the plant
+m_f=m_g-m_a;
+n_th=m_g*w_net/(m_f*CV);
+disp ("%",n_th*100,"(d)thermal efficiency of the plant is")
+
+// part(e) Determining Overall efficiency of the plant
+n_o=n_m*n_G*n_th;
+disp ("%",n_o*100,"(e)overall efficiency of the plant is")
+
+// part(f) Determining ideal Joule cycle efficiency
+n_Joule=1-(1/(pr_c^((gamma-1)/gamma)));
+disp ("%",n_Joule*100,"(f)efficiency of the ideal Joule cycle is")
+