From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 2223/CH3/EX3.1/Ex3_1.sav | Bin 0 -> 38736 bytes 2223/CH3/EX3.1/Ex3_1.sce | 25 +++++++++++++++++++ 2223/CH3/EX3.2/Ex3_2.sav | Bin 0 -> 33432 bytes 2223/CH3/EX3.2/Ex3_2.sce | 38 +++++++++++++++++++++++++++++ 2223/CH3/EX3.3/Ex3_3.sav | Bin 0 -> 32128 bytes 2223/CH3/EX3.3/Ex3_3.sce | 19 +++++++++++++++ 2223/CH3/EX3.4/Ex3_4.sav | Bin 0 -> 32128 bytes 2223/CH3/EX3.4/Ex3_4.sce | 21 ++++++++++++++++ 2223/CH3/EX3.5/Ex3_5.sav | Bin 0 -> 39208 bytes 2223/CH3/EX3.5/Ex3_5.sce | 61 +++++++++++++++++++++++++++++++++++++++++++++++ 10 files changed, 164 insertions(+) create mode 100755 2223/CH3/EX3.1/Ex3_1.sav create mode 100755 2223/CH3/EX3.1/Ex3_1.sce create mode 100755 2223/CH3/EX3.2/Ex3_2.sav create mode 100755 2223/CH3/EX3.2/Ex3_2.sce create mode 100755 2223/CH3/EX3.3/Ex3_3.sav create mode 100755 2223/CH3/EX3.3/Ex3_3.sce create mode 100755 2223/CH3/EX3.4/Ex3_4.sav create mode 100755 2223/CH3/EX3.4/Ex3_4.sce create mode 100755 2223/CH3/EX3.5/Ex3_5.sav create mode 100755 2223/CH3/EX3.5/Ex3_5.sce (limited to '2223/CH3') diff --git a/2223/CH3/EX3.1/Ex3_1.sav b/2223/CH3/EX3.1/Ex3_1.sav new file mode 100755 index 000000000..792c1b874 Binary files /dev/null and b/2223/CH3/EX3.1/Ex3_1.sav differ diff --git a/2223/CH3/EX3.1/Ex3_1.sce b/2223/CH3/EX3.1/Ex3_1.sce new file mode 100755 index 000000000..adcbf9c38 --- /dev/null +++ b/2223/CH3/EX3.1/Ex3_1.sce @@ -0,0 +1,25 @@ +// scilab Code Exa 3.1 Constant Pressure Gas Turbine Plant + +t1=50; // Minimum Temperature in degree C +T1=t1+273; // in Kelvin +t3=950; // Maximum Temperature in degree C +T3=t3+273; // in Kelvin +n_c=0.82; // Compressor Efficiency +n_t=0.87; // Turbine Efficiency +gamma=1.4; // Specific Heat Ratio +cp=1.005; // Specific Heat at Constant Pressure in kJ/(kgK) +beeta=T3/T1; +alpha=beeta*n_c*n_t; +T_opt=sqrt(alpha); // For maximum power output, the temperature ratios in the turbine and compressor + +// part(a) Determining pressure ratio of the turbine and compressor +pr=T_opt^(gamma/(gamma-1)); +disp(pr,"(a)Pressure Ratio is") + +// part(b) Determining maximum power output per unit flow rate +wp_max=cp*T1*((T_opt-1)^2)/n_c; +disp("kW/(kg/s)",wp_max,"(b)maximum power output per unit flow rate is") + +// part(c) Determining thermal efficiency of the plant for maximum power output +n_th=(T_opt-1)^2/((beeta-1)*n_c-(T_opt-1)); +disp("%",n_th*100,"(c)thermal efficiency of the plant for maximum power output is") diff --git a/2223/CH3/EX3.2/Ex3_2.sav b/2223/CH3/EX3.2/Ex3_2.sav new file mode 100755 index 000000000..4dfccdf81 Binary files /dev/null and b/2223/CH3/EX3.2/Ex3_2.sav differ diff --git a/2223/CH3/EX3.2/Ex3_2.sce b/2223/CH3/EX3.2/Ex3_2.sce new file mode 100755 index 000000000..d76388239 --- /dev/null +++ b/2223/CH3/EX3.2/Ex3_2.sce @@ -0,0 +1,38 @@ +// scilab Code Exa 3.2 Gas Turbine Plant with an exhaust HE +T1=300; // Minimum cycle Temperature in Kelvin +funcprot(0); +pr=10; // pressure ratio of the turbine and compressor +T3=1500; // Maximum cycle Temperature in Kelvin +m=10; // mass flow rate through the turbine and compressor in kg/s +e(1)=0.8; // thermal ratio of the heat exchanger +e(2)=1; +n_c=0.82; // Compressor Efficiency +n_t=0.85; // Turbine Efficiency +gamma=1.4; // Specific Heat Ratio +cp=1.005; // Specific Heat at Constant Pressure in kJ/(kgK) +beeta=T3/T1; +T2s=T1*(pr^((gamma-1)/gamma)); +T2=T1+((T2s-T1)/n_c); +T4s=T3*(pr^(-((gamma-1)/gamma))); +T4=T3-((T3-T4s)*n_t); + +for i=1:2 +T5=T2+e(i)*(T4-T2); +T6=T4-(T5-T2); +Q_s=cp*(T3-T5); +Q_r=cp*(T6-T1); +// part(a) Determining power developed +w_p=Q_s-Q_r; +P=m*w_p; +printf("for effectiveness=%f, \n (a)the power developed is %f kW",e(i),P) + +// part(b) Determining thermal efficiency of the plant +n_th=1-(Q_r/Q_s); +disp ("%",n_th*100,"(b)thermal efficiency of the plant is") +end + +// part(c) Determining efficiencies of the ideal Joules cycle +n_Joule=1-(pr^((gamma-1)/gamma)/beeta); +disp("%",n_Joule*100,"(c)efficiency of the ideal Joules cycle with perfect heat exchange is") +n_Carnot=1-(T1/T3); +disp("%",n_Carnot*100,"and the Carnot cycle efficiency is") diff --git a/2223/CH3/EX3.3/Ex3_3.sav b/2223/CH3/EX3.3/Ex3_3.sav new file mode 100755 index 000000000..bb26e4468 Binary files /dev/null and b/2223/CH3/EX3.3/Ex3_3.sav differ diff --git a/2223/CH3/EX3.3/Ex3_3.sce b/2223/CH3/EX3.3/Ex3_3.sce new file mode 100755 index 000000000..56681d5dc --- /dev/null +++ b/2223/CH3/EX3.3/Ex3_3.sce @@ -0,0 +1,19 @@ +// scilab Code Exa 3.3 ideal reheat cycle gas turbine +T1=300; // Minimum cycle Temperature in Kelvin +r=25; // pressure ratio of the turbine and compressor +gamma=1.4; +T3=1500; // Maximum cycle Temperature in Kelvin +cp=1.005; // Specific Heat at Constant Pressure in kJ/(kgK) +beeta=T3/T1; +n=(gamma-1)/gamma; +t=(r^n); +d=1/sqrt(t); +// part(a) Determining mass flow rate through the turbine and compressor +c=2*beeta*[1-d]; +wp_max=cp*T1*(c+1-t); +m=1000/wp_max; +disp ("kg/s",m,"(a)mass flow rate through the turbine and compressor is") + +// part(b) Determining thermal efficiency of the plant +n_th=(c+1-t)/(2*beeta-t-(beeta/sqrt(t))); +disp ("%",n_th*100,"(b)thermal efficiency of the plant is") diff --git a/2223/CH3/EX3.4/Ex3_4.sav b/2223/CH3/EX3.4/Ex3_4.sav new file mode 100755 index 000000000..6768f704e Binary files /dev/null and b/2223/CH3/EX3.4/Ex3_4.sav differ diff --git a/2223/CH3/EX3.4/Ex3_4.sce b/2223/CH3/EX3.4/Ex3_4.sce new file mode 100755 index 000000000..aa3a340fe --- /dev/null +++ b/2223/CH3/EX3.4/Ex3_4.sce @@ -0,0 +1,21 @@ +// scilab Code Exa 3.4 Calculations on Gas Turbine Plant for an ideal reheat cycle with optimum reheat pressure and perfect exhaust heat exchange +T1=300; // Minimum cycle Temperature in Kelvin +r=25; // pressure ratio of the turbine and compressor +T3=1500; // Maximum cycle Temperature in Kelvin +gamma=1.4; // Specific Heat Ratio +cp=1.005; // Specific Heat at Constant Pressure in kJ/(kgK) +beeta=T3/T1; +n=(gamma-1)/gamma; +t=(r^n); +d=1/sqrt(t); +// part(a) Determining mass flow rate through the turbine and compressor +c=2*beeta*[1-d]; +wp_max=cp*T1*(c+1-t); +m=1000/wp_max; +disp ("kg/s" ,m," mass flow rate through the turbine and compressor is") + + +// part(b) Determining thermal efficiency of the plant +c=sqrt(t)*(sqrt(t)+1)/(2*beeta); +n_th=1-c; +disp ("%",n_th*100," thermal efficiency of the plant is") diff --git a/2223/CH3/EX3.5/Ex3_5.sav b/2223/CH3/EX3.5/Ex3_5.sav new file mode 100755 index 000000000..c8cc278da Binary files /dev/null and b/2223/CH3/EX3.5/Ex3_5.sav differ diff --git a/2223/CH3/EX3.5/Ex3_5.sce b/2223/CH3/EX3.5/Ex3_5.sce new file mode 100755 index 000000000..f2c6cb2b6 --- /dev/null +++ b/2223/CH3/EX3.5/Ex3_5.sce @@ -0,0 +1,61 @@ +// scilab Code Exa 3.5 Calculations on Gas Turbine Plant + +P=10e4; // Power Output in kW +T1=310; // Minimum cycle Temperature in Kelvin +p1=1.013; // Compressor Inlet Pressure in bar +pr_c=8; // Compressor pressure ratio +gamma=1.4; +gamma_g=1.33; +R=0.287; +p2=pr_c*p1; // Compressor Exit Pressure in bar +T3=1350; // Maximum cycle Temperature(Turbine inlet temp) in Kelvin +n_c=0.85; // Compressor Efficiency +p3=0.98*p2; // turbine inlet pressure +p4=1.02; // turbine exit pressure in bar +CV=40*10e2; // Calorific Value of fuel in kJ/kg; +n_B=0.98; // Combustion Efficiency +n_m=0.97; // Mechanical efficiency +n_t=0.9; // Turbine Efficiency +n_G=0.98; // Generator Efficiency +cp_a=1.005; // Specific Heat of air at Constant Pressure in kJ/(kgK) + +// Air Compressor +T2s=T1*(pr_c^((gamma-1)/gamma)); +T2=T1+((T2s-T1)/n_c); +w_c=cp_a*(T2-T1); + +// Gas Turbine +n_g=(gamma_g-1)/gamma_g; +cp_g=1.157; // Specific Heat of gas at Constant Pressure in kJ/(kgK) +pr_t=p3/p4; +T4s=T3/(pr_t^((gamma_g-1)/gamma_g)); +T4=T3-(n_t*(T3-T4s)); +w_t=cp_g*(T3-T4); +w_net=w_t-w_c; +w_g=n_m*n_G*w_net; + +// part(a) Determining Gas Flow Rate +m_g=P/w_g; +disp ("kg/s",m_g,"(a)Gas flow rate is") + +// part(b) Determining Fuel-Air Ratio +F_A=((cp_g*T3)-(cp_a*T2))/((CV*n_B)-(cp_g*T3)); +disp(F_A,"(b)Fuel-Air Ratio is") + +// part(c) Air flow rate +m_a=m_g/(1+F_A); +disp("kg/s",m_a,"(c)Air flow rate is") + +// part(d) Determining thermal efficiency of the plant +m_f=m_g-m_a; +n_th=m_g*w_net/(m_f*CV); +disp ("%",n_th*100,"(d)thermal efficiency of the plant is") + +// part(e) Determining Overall efficiency of the plant +n_o=n_m*n_G*n_th; +disp ("%",n_o*100,"(e)overall efficiency of the plant is") + +// part(f) Determining ideal Joule cycle efficiency +n_Joule=1-(1/(pr_c^((gamma-1)/gamma))); +disp ("%",n_Joule*100,"(f)efficiency of the ideal Joule cycle is") + -- cgit