summaryrefslogtreecommitdiff
path: root/1871/CH7
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /1871/CH7
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '1871/CH7')
-rwxr-xr-x1871/CH7/EX7.1/Ch07Ex1.sce15
-rwxr-xr-x1871/CH7/EX7.10/Ch07Ex10.sce20
-rwxr-xr-x1871/CH7/EX7.11/Ch07Ex11.sce14
-rwxr-xr-x1871/CH7/EX7.12/Ch07Ex12.sce11
-rwxr-xr-x1871/CH7/EX7.13/Ch07Ex13.sce12
-rwxr-xr-x1871/CH7/EX7.14/Ch07Ex14.sce14
-rwxr-xr-x1871/CH7/EX7.15/Ch07Ex15.sce10
-rwxr-xr-x1871/CH7/EX7.16/Ch07Ex16.sce13
-rwxr-xr-x1871/CH7/EX7.2/Ch07Ex2.sce14
-rwxr-xr-x1871/CH7/EX7.3/Ch07Ex3.sce12
-rwxr-xr-x1871/CH7/EX7.4/Ch07Ex4.sce12
-rwxr-xr-x1871/CH7/EX7.5/Ch07Ex5.sce14
-rwxr-xr-x1871/CH7/EX7.6/Ch07Ex6.sce9
-rwxr-xr-x1871/CH7/EX7.7/Ch07Ex7.sce17
-rwxr-xr-x1871/CH7/EX7.8/Ch07Ex8.sce18
-rwxr-xr-x1871/CH7/EX7.9/Ch07Ex9.sce21
16 files changed, 226 insertions, 0 deletions
diff --git a/1871/CH7/EX7.1/Ch07Ex1.sce b/1871/CH7/EX7.1/Ch07Ex1.sce
new file mode 100755
index 000000000..4559115b0
--- /dev/null
+++ b/1871/CH7/EX7.1/Ch07Ex1.sce
@@ -0,0 +1,15 @@
+// Scilab code Ex7.1: Pg:275 (2008)
+clc;clear;
+M_He = 4.001265; // Mass of helium nucleus, amu
+M_P = 1.007277; // Mass of proton, amu
+M_N = 1.008666; // Mass of neutron, amu
+amu = 931.4812; // One amu
+M = 2*M_P+2*M_N; // Total initial mass of two protons and two neutrons, amu
+delta_m = M-M_He; // Mass defect, amu
+BE = delta_m * amu; // Binding energy of alpha particle, MeV
+printf("\nThe binding energy of an alpha particle = %7.4f Mev", BE);
+printf("\nThe binding energy per nucleon = %8.6f Mev", BE/4);
+
+// Result
+// The binding energy of an alpha particle = 28.5229 Mev
+// The binding energy per nucleon = 7.130721 Mev \ No newline at end of file
diff --git a/1871/CH7/EX7.10/Ch07Ex10.sce b/1871/CH7/EX7.10/Ch07Ex10.sce
new file mode 100755
index 000000000..98bba02bc
--- /dev/null
+++ b/1871/CH7/EX7.10/Ch07Ex10.sce
@@ -0,0 +1,20 @@
+// Scilab code Ex7.10: Pg:306 (2008)
+clc;clear;
+m_u = 235.0439; // Mass of uranium, amu
+m_n = 1.0087; // Mass of neutron, amu
+m_Ba = 140.9139; // Mass of Barium, amu
+m_Kr = 91.8937; // Mass of Krypton, amu
+M_1 = m_u + m_n; // Sum of masses before reaction, amu
+M_2 = m_Ba + m_Kr + 3*m_n; // Sum of masses after reaction, amu
+delta_m = M_1 -M_2; // Mass lost in the fission, amu
+// Since the number of atoms in 235 g of Uranium is 6.02e+023
+N = 6.02e+023/235; // Number of atoms in one gm of U-235
+// Since energy equivalent of 1 amu is 931.5MeV
+E_MeV = delta_m*N*931.5; // Energy released in fission of Uranium 235, MeV
+printf("\nTotal energy in fission of uranium reaction in MeV = %4.2e MeV ", E_MeV);
+E_kWh = E_MeV*1.6e-013/3.6e+06; // Energy released in fission of Uranium 235, kWh
+printf("\nTotal energy in fission of uranium reaction in kiloWatt hour = %4.2e kWh", E_kWh);
+
+// Result
+// Total energy in fission of uranium reaction in MeV = 5.22e+023 MeV
+// Total energy in fission of uranium reaction in kiloWatt hour = 2.32e+004 kWh \ No newline at end of file
diff --git a/1871/CH7/EX7.11/Ch07Ex11.sce b/1871/CH7/EX7.11/Ch07Ex11.sce
new file mode 100755
index 000000000..ba8e1567b
--- /dev/null
+++ b/1871/CH7/EX7.11/Ch07Ex11.sce
@@ -0,0 +1,14 @@
+// Scilab code Ex7.11: Pg:307 (2008)
+clc;clear;
+P = 3.2e+07/1.6e-013; // Power developed by the reactor, MeV
+E = 200; // Energy released by the reactor per fission, MeV
+n = P/E; // Number of fissions occuring in the reactor per second, per sec
+N = n*1000*3600; // Number of atoms or nuclei of Uranium 235 consumed in 1000 hours
+// Since the number of atoms in 235 g of Uranium is 6e+023
+M = N/6e+023*235/1000; // Mass of Uranium 235 consumed in 1000 hours, kg
+printf("\nThe number of atoms of Uranium 235 undergoing fission per second = %4.1e ", N);
+printf("\nThe mass of Uranium 235 consumed in 1000 hours = %4.2f kg ", M);
+
+// Result
+// The number of atoms of Uranium 235 undergoing fission per second = 3.6e+024
+// The mass of Uranium 235 consumed in 1000 hours = 1.41 kg \ No newline at end of file
diff --git a/1871/CH7/EX7.12/Ch07Ex12.sce b/1871/CH7/EX7.12/Ch07Ex12.sce
new file mode 100755
index 000000000..094eef7b0
--- /dev/null
+++ b/1871/CH7/EX7.12/Ch07Ex12.sce
@@ -0,0 +1,11 @@
+// Scilab code Ex7.12: Pg:307 (2008)
+clc;clear;
+c = 3e+08; // Velocity of light, m/s
+delta_m =0.1/100*1; // Mass lost in one kg of substance, kg
+delta_E = delta_m*c^2; // Energy liberated by the fission of one kg of substance, joule
+// Since 1kWh = 1000 watt*3600 sec = 3.6e+06 joule
+delta_E = delta_m*c^2/3.6e+06; // Energy liberated by the fission of one kg of substance, kWh
+printf("\nThe energy liberated by the fission of one kg of substance = %3.2e kWh", delta_E);
+
+// Result
+// The energy liberated by the fission of one kg of substance = 2.50e+007 kWh \ No newline at end of file
diff --git a/1871/CH7/EX7.13/Ch07Ex13.sce b/1871/CH7/EX7.13/Ch07Ex13.sce
new file mode 100755
index 000000000..a5ca60b26
--- /dev/null
+++ b/1871/CH7/EX7.13/Ch07Ex13.sce
@@ -0,0 +1,12 @@
+// Scilab code Ex7.13: Pg:308 (2008)
+clc;clear;
+P = 2/1.6e-013; // Power to be produced, MeV/sec
+E_bar = 200; // Energy released per fission, MeV
+n = P/E_bar; // Required number of fissions per second
+// Since the number of atoms in 235gm of Uranium is 6.02e+023
+N = (6.02e+023/235)*500; // Number of atoms in 500 gm of U-235
+E = E_bar*N; // Total energy released in the complete fission of 500gm of uranium 235, MeV
+printf("\nThe total energy released in the complete fission of 500gm of uranium 235 = %4.2e MeV", E);
+
+// Result
+// The total energy released in the complete fission of 500gm of uranium 235 = 2.56e+026 MeV \ No newline at end of file
diff --git a/1871/CH7/EX7.14/Ch07Ex14.sce b/1871/CH7/EX7.14/Ch07Ex14.sce
new file mode 100755
index 000000000..204998819
--- /dev/null
+++ b/1871/CH7/EX7.14/Ch07Ex14.sce
@@ -0,0 +1,14 @@
+// Scilab code Ex7.14: Pg:309 (2008)
+clc;clear;
+amu = 931.5; // Energy equivalent of 1 amu, MeV
+M_He = 4.00260; // Mass of helium, amu
+m_e = 0.00055; // Mass of electron, amu
+M_C = 12.000; // Mass of carbon, amu
+m_He = M_He - 2*m_e; // Mass of helium nucleus, amu
+m_C = M_C - 6*m_e; // Mass of carbon nucleus, amu
+d_m = 3*m_He - m_C; // Mass defect, amu
+E = d_m*amu; // Equivalent energy of mass defect, MeV
+printf("\nThe energy invloved in each fusion reaction inside the star = %4.2f MeV", E);
+
+// Result
+// The energy invloved in each fusion reaction inside the star = 7.27 MeV \ No newline at end of file
diff --git a/1871/CH7/EX7.15/Ch07Ex15.sce b/1871/CH7/EX7.15/Ch07Ex15.sce
new file mode 100755
index 000000000..95814720d
--- /dev/null
+++ b/1871/CH7/EX7.15/Ch07Ex15.sce
@@ -0,0 +1,10 @@
+// Scilab code Ex7.15: Pg:311 (2008)
+clc;clear;
+r = 500; // Counting rate of Geiger-Muller counter, counts/minute
+n = r*1e+08; // Number of electrons collected per minute
+q = n*1.6e-019; // Charge per minute, coulomb per minute
+I = q/60; // Charge per second, coulomb per second
+printf("\nThe average current in the Geiger-Muller counter circuit = %4.2e ampere ", I);
+
+// Result
+// The average current in the Geiger-Muller counter circuit = 1.33e-010 ampere \ No newline at end of file
diff --git a/1871/CH7/EX7.16/Ch07Ex16.sce b/1871/CH7/EX7.16/Ch07Ex16.sce
new file mode 100755
index 000000000..3273f6f0b
--- /dev/null
+++ b/1871/CH7/EX7.16/Ch07Ex16.sce
@@ -0,0 +1,13 @@
+// Scilab code Ex7.16: Pg 315 (2008)
+clc;clear;
+m1 = 12; // Mass of first trace, unit
+m2 = 16; // Mass of second trace, unit
+d = 4.8; // Distance between the traces, cm
+D = [8.4, -8.4]; // Distance of the mark from the trace of mass 16
+x = poly(0, 'x');
+x = roots(m1*x-m2*(x-d)); // The distance of the mark from the trace of mass 16
+M = m2*(x+D)/x; // Mass of the particle whose trace is at a distance of 8.4 cm from the trace of mass 16
+printf("\nThe mass of the particle whose trace is at a distance of 8.4 cm from the trace of mass 16 = %d or %d", M(1), M(2));
+
+// Result
+// The mass of the particle whose trace is at a distance of 8.4 cm from the trace of mass 16 = 23 or 9 \ No newline at end of file
diff --git a/1871/CH7/EX7.2/Ch07Ex2.sce b/1871/CH7/EX7.2/Ch07Ex2.sce
new file mode 100755
index 000000000..e4340ec72
--- /dev/null
+++ b/1871/CH7/EX7.2/Ch07Ex2.sce
@@ -0,0 +1,14 @@
+// Scilab code Ex7.2: Pg:275 (2008)
+clc;clear;
+M_H = 1e-03; // Mass of hydrogen, kg
+M_He = 0.993e-03; // Mass of helium, kg
+delta_m = M_H-M_He; // Mass defect, amu
+c = 3e+08; // Velocity of light, m/s
+E = delta_m*c^2; // Energy released, joules
+EL = (5/100)*E/36e+05; // Electrical energy, kilowatt hour
+printf("\nThe energy released in joule in a thermonuclear reaction = %4.1e joule", E);
+printf("\nThe electrical energy in kilowatt hours in a thermonuclear reaction = %4.2e kilowatt hour", EL);
+
+// Result
+// The energy released in joule in a thermonuclear reaction = 6.3e+011 joule
+// The electrical energy in kilowatt hours in a thermonuclear reaction = 8.75e+003 kilowatt hour \ No newline at end of file
diff --git a/1871/CH7/EX7.3/Ch07Ex3.sce b/1871/CH7/EX7.3/Ch07Ex3.sce
new file mode 100755
index 000000000..4fdf074e5
--- /dev/null
+++ b/1871/CH7/EX7.3/Ch07Ex3.sce
@@ -0,0 +1,12 @@
+// Scilab code Ex7.3: Pg:276 (2008)
+clc;clear;
+M_n = 1.6747e-027; // Mass of neutron, kg
+M_p = 1.6725e-027; // Mass of proton, kg
+M_e = 9e-031; // Mass of electron, kg
+c = 3e+08; // Velocity of light, m/s
+delta_m = M_n-(M_p + M_e); // Mass defect, kg
+E = delta_m*c^2/1.6e-013; // Energy released, MeV
+printf("\nThe energy produced when a neutron breaks into a proton and an electron = %4.2f MeV", E);
+
+// Result
+// The energy produced when a neutron breaks into a proton and an electron = 0.73 MeV \ No newline at end of file
diff --git a/1871/CH7/EX7.4/Ch07Ex4.sce b/1871/CH7/EX7.4/Ch07Ex4.sce
new file mode 100755
index 000000000..c8e138f27
--- /dev/null
+++ b/1871/CH7/EX7.4/Ch07Ex4.sce
@@ -0,0 +1,12 @@
+// Scilab code Ex7.4: Pg:288 (2008)
+clc;clear;
+f0 = 8e+06; // Cyclotron frequency, c/s
+c = 3e+010; // Speed of light, cm/s
+m = 1.67e-024; // Mass of proton, gm
+q = 4.8e-010/c; // Charge on a proton, esu
+// Since the cyclotron frequency is given by fo = q*B/2*%pi*m. On solving it for B, we have
+B = 2*%pi*m*f0/q; // Magnetic field, Weber per meter square
+printf("\nThe magnetic field to accelerate protons = %5.3f Wb per Sq. m", B/1e+04);
+
+// Result
+// The magnetic field to accelerate protons = 0.525 Wb per Sq. m \ No newline at end of file
diff --git a/1871/CH7/EX7.5/Ch07Ex5.sce b/1871/CH7/EX7.5/Ch07Ex5.sce
new file mode 100755
index 000000000..330e83e12
--- /dev/null
+++ b/1871/CH7/EX7.5/Ch07Ex5.sce
@@ -0,0 +1,14 @@
+// Scilab code Ex7.5: Pg:288 (2008)
+clc;clear;
+m = 3.34e-027; // Mass of deutron, gm
+q = 1.6e-019; // Charge, coulomb
+r = 0.2; // Radius of the path of deutron, meter
+B = 1.5; // Magnetic field, weber per meter square
+v = q*B*r/m; // velocity of the deutron, m/s
+E = 1/2*m*v^2/1.6e-013; // Energy of the deutron, MeV
+printf("\nThe velocity of deutron = %5.3e m/s ", v);
+printf("\nThe energy of deutron = %5.3f MeV ", E);
+
+// Result
+// The velocity of deutron = 1.437e+007 m/s
+// The energy of deutron = 2.156 MeV \ No newline at end of file
diff --git a/1871/CH7/EX7.6/Ch07Ex6.sce b/1871/CH7/EX7.6/Ch07Ex6.sce
new file mode 100755
index 000000000..e6c794cee
--- /dev/null
+++ b/1871/CH7/EX7.6/Ch07Ex6.sce
@@ -0,0 +1,9 @@
+// Scilab code Ex7.6: Pg:293 (2008)
+clc;clear;
+dE = 15/1e+006; // Increase in energy per revolution, MeV
+n = 1e+006; // Number of revolutions
+E = dE*n; // Final energy of an electron after 10e+06 revolutions, MeV
+printf("\nThe energy of an electron undergoing revolutions = %2.0f MeV ", E);
+
+// Result
+// The energy of an electron undergoing revolutions = 15 MeV \ No newline at end of file
diff --git a/1871/CH7/EX7.7/Ch07Ex7.sce b/1871/CH7/EX7.7/Ch07Ex7.sce
new file mode 100755
index 000000000..9f78ebc68
--- /dev/null
+++ b/1871/CH7/EX7.7/Ch07Ex7.sce
@@ -0,0 +1,17 @@
+// Scilab code Ex7.7: Pg:294 (2008)
+clc;clear;
+c = 3e+08; // Velocity of light, m/s
+e = 1.6e-019; // Charge of an electron, coulomb
+B = 0.5; // Maximum magnetic field at the electron orbit, Weber per meter square
+R = 0.75; // Radius of the orbit, meter
+omega = 50; // frequency of alternating current through electromagnetic coils, Hz
+N = c/(4*2*%pi*omega*R); // Number of revolutions
+E = B*e*R*c/(e*1e+006); // Final energy of the electrons, MeV
+E_av = E*1e+06/N; // Average energy per revolution, eV
+printf("\nThe final energy of electron = %5.1f MeV ", E);
+printf("\nThe average energy of electron = %3.0f eV ", E_av);
+
+// Result
+// The final energy of electron = 112.5 MeV
+// The average energy of electron = 353 eV
+// The answer is wrong in the textbook \ No newline at end of file
diff --git a/1871/CH7/EX7.8/Ch07Ex8.sce b/1871/CH7/EX7.8/Ch07Ex8.sce
new file mode 100755
index 000000000..bc370f75b
--- /dev/null
+++ b/1871/CH7/EX7.8/Ch07Ex8.sce
@@ -0,0 +1,18 @@
+// Scilab code Ex7.8: Pg:295 (2008)
+clc;clear;
+c = 3e+08; // Velocity of light, m/s
+e = 1.6e-019; // Charge of an electron, coulomb
+B = 0.5; // Maximum magnetic field at the electron orbit, Weber per meter square
+D = 1.5; // Diameter of the orbit, meter
+R = D/2; // Radius of the orbit, meter
+omega = 50; // frequency of alternating current through electromagnetic coils, Hz
+N = c/(4*2*%pi*omega*R); // Number of revolutions
+E = B*e*R*c/1.6e-013; // Final energy of the electrons, MeV
+E_av = (E*1e+06)/N; // Average energy per revolution, eV
+printf("\nThe energy per revolution of the electron = %4.1f eV ", E);
+printf("\nThe average energy of electron = %3.0f eV ", E_av);
+
+// Result
+// The energy per revolution of the electron = 112.5 eV
+// The average energy of electron = 353 eV
+// The answer is given wrong in the textbook \ No newline at end of file
diff --git a/1871/CH7/EX7.9/Ch07Ex9.sce b/1871/CH7/EX7.9/Ch07Ex9.sce
new file mode 100755
index 000000000..4f19a0dc6
--- /dev/null
+++ b/1871/CH7/EX7.9/Ch07Ex9.sce
@@ -0,0 +1,21 @@
+// Scilab code Ex7.9: Pg:298 (2008)
+clc;clear;
+sigma = 2e+04*1e-028; // Nuclear reaction cross-section, Sq.m
+x = 1e-04; // Thickness of the sheet, meter
+m = 112; // Mean atomic mass of cadmium, amu
+rho = 8.64e+03; // Density of cadmium sheet, kg per cubic meter
+amu = 1.66e-027; // Mass equivalent of 1 amu, kg
+// Since cadmium 113 contains 12 percent of natural cadmium. Thus
+n = 12/100*rho/(m*amu); // Number of nuclei per unit volume, atoms per cubic meter
+n_sigma = n*sigma; // Microscopic cross-section, per length
+// As N = N0*exp(-n*sigma*x), so that (N - N0)/N0 = 1-exp(-n_sigma*x)
+frac_N = 1-exp(-n_sigma*x);
+N0 = 1; // For simlicity assume number of incident neutrons be unity
+N = 1/100*N0; // Given number of neutrons which pass through cadmium sheet
+x = -log(N/N0)/n_sigma*1e+003; // Thickness of the cadmium sheet when one percent of the incident neutrons pass through the cadmium sheet, mm
+printf("\nThe fraction of the incident thermal neutrons absorbed by the cadmium sheet = %4.2f ", frac_N);
+printf("\nThe thickness of the cadmium sheet when one percent of the incident neutrons pass through the cadmium sheet = %4.2f mm", x);
+
+// Result
+// The fraction of the incident thermal neutrons absorbed by the cadmium sheet = 0.67
+// The thickness of the cadmium sheet when one percent of the incident neutrons pass through the cadmium sheet = 0.41 mm \ No newline at end of file