From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 1871/CH7/EX7.1/Ch07Ex1.sce | 15 +++++++++++++++ 1871/CH7/EX7.10/Ch07Ex10.sce | 20 ++++++++++++++++++++ 1871/CH7/EX7.11/Ch07Ex11.sce | 14 ++++++++++++++ 1871/CH7/EX7.12/Ch07Ex12.sce | 11 +++++++++++ 1871/CH7/EX7.13/Ch07Ex13.sce | 12 ++++++++++++ 1871/CH7/EX7.14/Ch07Ex14.sce | 14 ++++++++++++++ 1871/CH7/EX7.15/Ch07Ex15.sce | 10 ++++++++++ 1871/CH7/EX7.16/Ch07Ex16.sce | 13 +++++++++++++ 1871/CH7/EX7.2/Ch07Ex2.sce | 14 ++++++++++++++ 1871/CH7/EX7.3/Ch07Ex3.sce | 12 ++++++++++++ 1871/CH7/EX7.4/Ch07Ex4.sce | 12 ++++++++++++ 1871/CH7/EX7.5/Ch07Ex5.sce | 14 ++++++++++++++ 1871/CH7/EX7.6/Ch07Ex6.sce | 9 +++++++++ 1871/CH7/EX7.7/Ch07Ex7.sce | 17 +++++++++++++++++ 1871/CH7/EX7.8/Ch07Ex8.sce | 18 ++++++++++++++++++ 1871/CH7/EX7.9/Ch07Ex9.sce | 21 +++++++++++++++++++++ 16 files changed, 226 insertions(+) create mode 100755 1871/CH7/EX7.1/Ch07Ex1.sce create mode 100755 1871/CH7/EX7.10/Ch07Ex10.sce create mode 100755 1871/CH7/EX7.11/Ch07Ex11.sce create mode 100755 1871/CH7/EX7.12/Ch07Ex12.sce create mode 100755 1871/CH7/EX7.13/Ch07Ex13.sce create mode 100755 1871/CH7/EX7.14/Ch07Ex14.sce create mode 100755 1871/CH7/EX7.15/Ch07Ex15.sce create mode 100755 1871/CH7/EX7.16/Ch07Ex16.sce create mode 100755 1871/CH7/EX7.2/Ch07Ex2.sce create mode 100755 1871/CH7/EX7.3/Ch07Ex3.sce create mode 100755 1871/CH7/EX7.4/Ch07Ex4.sce create mode 100755 1871/CH7/EX7.5/Ch07Ex5.sce create mode 100755 1871/CH7/EX7.6/Ch07Ex6.sce create mode 100755 1871/CH7/EX7.7/Ch07Ex7.sce create mode 100755 1871/CH7/EX7.8/Ch07Ex8.sce create mode 100755 1871/CH7/EX7.9/Ch07Ex9.sce (limited to '1871/CH7') diff --git a/1871/CH7/EX7.1/Ch07Ex1.sce b/1871/CH7/EX7.1/Ch07Ex1.sce new file mode 100755 index 000000000..4559115b0 --- /dev/null +++ b/1871/CH7/EX7.1/Ch07Ex1.sce @@ -0,0 +1,15 @@ +// Scilab code Ex7.1: Pg:275 (2008) +clc;clear; +M_He = 4.001265; // Mass of helium nucleus, amu +M_P = 1.007277; // Mass of proton, amu +M_N = 1.008666; // Mass of neutron, amu +amu = 931.4812; // One amu +M = 2*M_P+2*M_N; // Total initial mass of two protons and two neutrons, amu +delta_m = M-M_He; // Mass defect, amu +BE = delta_m * amu; // Binding energy of alpha particle, MeV +printf("\nThe binding energy of an alpha particle = %7.4f Mev", BE); +printf("\nThe binding energy per nucleon = %8.6f Mev", BE/4); + +// Result +// The binding energy of an alpha particle = 28.5229 Mev +// The binding energy per nucleon = 7.130721 Mev \ No newline at end of file diff --git a/1871/CH7/EX7.10/Ch07Ex10.sce b/1871/CH7/EX7.10/Ch07Ex10.sce new file mode 100755 index 000000000..98bba02bc --- /dev/null +++ b/1871/CH7/EX7.10/Ch07Ex10.sce @@ -0,0 +1,20 @@ +// Scilab code Ex7.10: Pg:306 (2008) +clc;clear; +m_u = 235.0439; // Mass of uranium, amu +m_n = 1.0087; // Mass of neutron, amu +m_Ba = 140.9139; // Mass of Barium, amu +m_Kr = 91.8937; // Mass of Krypton, amu +M_1 = m_u + m_n; // Sum of masses before reaction, amu +M_2 = m_Ba + m_Kr + 3*m_n; // Sum of masses after reaction, amu +delta_m = M_1 -M_2; // Mass lost in the fission, amu +// Since the number of atoms in 235 g of Uranium is 6.02e+023 +N = 6.02e+023/235; // Number of atoms in one gm of U-235 +// Since energy equivalent of 1 amu is 931.5MeV +E_MeV = delta_m*N*931.5; // Energy released in fission of Uranium 235, MeV +printf("\nTotal energy in fission of uranium reaction in MeV = %4.2e MeV ", E_MeV); +E_kWh = E_MeV*1.6e-013/3.6e+06; // Energy released in fission of Uranium 235, kWh +printf("\nTotal energy in fission of uranium reaction in kiloWatt hour = %4.2e kWh", E_kWh); + +// Result +// Total energy in fission of uranium reaction in MeV = 5.22e+023 MeV +// Total energy in fission of uranium reaction in kiloWatt hour = 2.32e+004 kWh \ No newline at end of file diff --git a/1871/CH7/EX7.11/Ch07Ex11.sce b/1871/CH7/EX7.11/Ch07Ex11.sce new file mode 100755 index 000000000..ba8e1567b --- /dev/null +++ b/1871/CH7/EX7.11/Ch07Ex11.sce @@ -0,0 +1,14 @@ +// Scilab code Ex7.11: Pg:307 (2008) +clc;clear; +P = 3.2e+07/1.6e-013; // Power developed by the reactor, MeV +E = 200; // Energy released by the reactor per fission, MeV +n = P/E; // Number of fissions occuring in the reactor per second, per sec +N = n*1000*3600; // Number of atoms or nuclei of Uranium 235 consumed in 1000 hours +// Since the number of atoms in 235 g of Uranium is 6e+023 +M = N/6e+023*235/1000; // Mass of Uranium 235 consumed in 1000 hours, kg +printf("\nThe number of atoms of Uranium 235 undergoing fission per second = %4.1e ", N); +printf("\nThe mass of Uranium 235 consumed in 1000 hours = %4.2f kg ", M); + +// Result +// The number of atoms of Uranium 235 undergoing fission per second = 3.6e+024 +// The mass of Uranium 235 consumed in 1000 hours = 1.41 kg \ No newline at end of file diff --git a/1871/CH7/EX7.12/Ch07Ex12.sce b/1871/CH7/EX7.12/Ch07Ex12.sce new file mode 100755 index 000000000..094eef7b0 --- /dev/null +++ b/1871/CH7/EX7.12/Ch07Ex12.sce @@ -0,0 +1,11 @@ +// Scilab code Ex7.12: Pg:307 (2008) +clc;clear; +c = 3e+08; // Velocity of light, m/s +delta_m =0.1/100*1; // Mass lost in one kg of substance, kg +delta_E = delta_m*c^2; // Energy liberated by the fission of one kg of substance, joule +// Since 1kWh = 1000 watt*3600 sec = 3.6e+06 joule +delta_E = delta_m*c^2/3.6e+06; // Energy liberated by the fission of one kg of substance, kWh +printf("\nThe energy liberated by the fission of one kg of substance = %3.2e kWh", delta_E); + +// Result +// The energy liberated by the fission of one kg of substance = 2.50e+007 kWh \ No newline at end of file diff --git a/1871/CH7/EX7.13/Ch07Ex13.sce b/1871/CH7/EX7.13/Ch07Ex13.sce new file mode 100755 index 000000000..a5ca60b26 --- /dev/null +++ b/1871/CH7/EX7.13/Ch07Ex13.sce @@ -0,0 +1,12 @@ +// Scilab code Ex7.13: Pg:308 (2008) +clc;clear; +P = 2/1.6e-013; // Power to be produced, MeV/sec +E_bar = 200; // Energy released per fission, MeV +n = P/E_bar; // Required number of fissions per second +// Since the number of atoms in 235gm of Uranium is 6.02e+023 +N = (6.02e+023/235)*500; // Number of atoms in 500 gm of U-235 +E = E_bar*N; // Total energy released in the complete fission of 500gm of uranium 235, MeV +printf("\nThe total energy released in the complete fission of 500gm of uranium 235 = %4.2e MeV", E); + +// Result +// The total energy released in the complete fission of 500gm of uranium 235 = 2.56e+026 MeV \ No newline at end of file diff --git a/1871/CH7/EX7.14/Ch07Ex14.sce b/1871/CH7/EX7.14/Ch07Ex14.sce new file mode 100755 index 000000000..204998819 --- /dev/null +++ b/1871/CH7/EX7.14/Ch07Ex14.sce @@ -0,0 +1,14 @@ +// Scilab code Ex7.14: Pg:309 (2008) +clc;clear; +amu = 931.5; // Energy equivalent of 1 amu, MeV +M_He = 4.00260; // Mass of helium, amu +m_e = 0.00055; // Mass of electron, amu +M_C = 12.000; // Mass of carbon, amu +m_He = M_He - 2*m_e; // Mass of helium nucleus, amu +m_C = M_C - 6*m_e; // Mass of carbon nucleus, amu +d_m = 3*m_He - m_C; // Mass defect, amu +E = d_m*amu; // Equivalent energy of mass defect, MeV +printf("\nThe energy invloved in each fusion reaction inside the star = %4.2f MeV", E); + +// Result +// The energy invloved in each fusion reaction inside the star = 7.27 MeV \ No newline at end of file diff --git a/1871/CH7/EX7.15/Ch07Ex15.sce b/1871/CH7/EX7.15/Ch07Ex15.sce new file mode 100755 index 000000000..95814720d --- /dev/null +++ b/1871/CH7/EX7.15/Ch07Ex15.sce @@ -0,0 +1,10 @@ +// Scilab code Ex7.15: Pg:311 (2008) +clc;clear; +r = 500; // Counting rate of Geiger-Muller counter, counts/minute +n = r*1e+08; // Number of electrons collected per minute +q = n*1.6e-019; // Charge per minute, coulomb per minute +I = q/60; // Charge per second, coulomb per second +printf("\nThe average current in the Geiger-Muller counter circuit = %4.2e ampere ", I); + +// Result +// The average current in the Geiger-Muller counter circuit = 1.33e-010 ampere \ No newline at end of file diff --git a/1871/CH7/EX7.16/Ch07Ex16.sce b/1871/CH7/EX7.16/Ch07Ex16.sce new file mode 100755 index 000000000..3273f6f0b --- /dev/null +++ b/1871/CH7/EX7.16/Ch07Ex16.sce @@ -0,0 +1,13 @@ +// Scilab code Ex7.16: Pg 315 (2008) +clc;clear; +m1 = 12; // Mass of first trace, unit +m2 = 16; // Mass of second trace, unit +d = 4.8; // Distance between the traces, cm +D = [8.4, -8.4]; // Distance of the mark from the trace of mass 16 +x = poly(0, 'x'); +x = roots(m1*x-m2*(x-d)); // The distance of the mark from the trace of mass 16 +M = m2*(x+D)/x; // Mass of the particle whose trace is at a distance of 8.4 cm from the trace of mass 16 +printf("\nThe mass of the particle whose trace is at a distance of 8.4 cm from the trace of mass 16 = %d or %d", M(1), M(2)); + +// Result +// The mass of the particle whose trace is at a distance of 8.4 cm from the trace of mass 16 = 23 or 9 \ No newline at end of file diff --git a/1871/CH7/EX7.2/Ch07Ex2.sce b/1871/CH7/EX7.2/Ch07Ex2.sce new file mode 100755 index 000000000..e4340ec72 --- /dev/null +++ b/1871/CH7/EX7.2/Ch07Ex2.sce @@ -0,0 +1,14 @@ +// Scilab code Ex7.2: Pg:275 (2008) +clc;clear; +M_H = 1e-03; // Mass of hydrogen, kg +M_He = 0.993e-03; // Mass of helium, kg +delta_m = M_H-M_He; // Mass defect, amu +c = 3e+08; // Velocity of light, m/s +E = delta_m*c^2; // Energy released, joules +EL = (5/100)*E/36e+05; // Electrical energy, kilowatt hour +printf("\nThe energy released in joule in a thermonuclear reaction = %4.1e joule", E); +printf("\nThe electrical energy in kilowatt hours in a thermonuclear reaction = %4.2e kilowatt hour", EL); + +// Result +// The energy released in joule in a thermonuclear reaction = 6.3e+011 joule +// The electrical energy in kilowatt hours in a thermonuclear reaction = 8.75e+003 kilowatt hour \ No newline at end of file diff --git a/1871/CH7/EX7.3/Ch07Ex3.sce b/1871/CH7/EX7.3/Ch07Ex3.sce new file mode 100755 index 000000000..4fdf074e5 --- /dev/null +++ b/1871/CH7/EX7.3/Ch07Ex3.sce @@ -0,0 +1,12 @@ +// Scilab code Ex7.3: Pg:276 (2008) +clc;clear; +M_n = 1.6747e-027; // Mass of neutron, kg +M_p = 1.6725e-027; // Mass of proton, kg +M_e = 9e-031; // Mass of electron, kg +c = 3e+08; // Velocity of light, m/s +delta_m = M_n-(M_p + M_e); // Mass defect, kg +E = delta_m*c^2/1.6e-013; // Energy released, MeV +printf("\nThe energy produced when a neutron breaks into a proton and an electron = %4.2f MeV", E); + +// Result +// The energy produced when a neutron breaks into a proton and an electron = 0.73 MeV \ No newline at end of file diff --git a/1871/CH7/EX7.4/Ch07Ex4.sce b/1871/CH7/EX7.4/Ch07Ex4.sce new file mode 100755 index 000000000..c8e138f27 --- /dev/null +++ b/1871/CH7/EX7.4/Ch07Ex4.sce @@ -0,0 +1,12 @@ +// Scilab code Ex7.4: Pg:288 (2008) +clc;clear; +f0 = 8e+06; // Cyclotron frequency, c/s +c = 3e+010; // Speed of light, cm/s +m = 1.67e-024; // Mass of proton, gm +q = 4.8e-010/c; // Charge on a proton, esu +// Since the cyclotron frequency is given by fo = q*B/2*%pi*m. On solving it for B, we have +B = 2*%pi*m*f0/q; // Magnetic field, Weber per meter square +printf("\nThe magnetic field to accelerate protons = %5.3f Wb per Sq. m", B/1e+04); + +// Result +// The magnetic field to accelerate protons = 0.525 Wb per Sq. m \ No newline at end of file diff --git a/1871/CH7/EX7.5/Ch07Ex5.sce b/1871/CH7/EX7.5/Ch07Ex5.sce new file mode 100755 index 000000000..330e83e12 --- /dev/null +++ b/1871/CH7/EX7.5/Ch07Ex5.sce @@ -0,0 +1,14 @@ +// Scilab code Ex7.5: Pg:288 (2008) +clc;clear; +m = 3.34e-027; // Mass of deutron, gm +q = 1.6e-019; // Charge, coulomb +r = 0.2; // Radius of the path of deutron, meter +B = 1.5; // Magnetic field, weber per meter square +v = q*B*r/m; // velocity of the deutron, m/s +E = 1/2*m*v^2/1.6e-013; // Energy of the deutron, MeV +printf("\nThe velocity of deutron = %5.3e m/s ", v); +printf("\nThe energy of deutron = %5.3f MeV ", E); + +// Result +// The velocity of deutron = 1.437e+007 m/s +// The energy of deutron = 2.156 MeV \ No newline at end of file diff --git a/1871/CH7/EX7.6/Ch07Ex6.sce b/1871/CH7/EX7.6/Ch07Ex6.sce new file mode 100755 index 000000000..e6c794cee --- /dev/null +++ b/1871/CH7/EX7.6/Ch07Ex6.sce @@ -0,0 +1,9 @@ +// Scilab code Ex7.6: Pg:293 (2008) +clc;clear; +dE = 15/1e+006; // Increase in energy per revolution, MeV +n = 1e+006; // Number of revolutions +E = dE*n; // Final energy of an electron after 10e+06 revolutions, MeV +printf("\nThe energy of an electron undergoing revolutions = %2.0f MeV ", E); + +// Result +// The energy of an electron undergoing revolutions = 15 MeV \ No newline at end of file diff --git a/1871/CH7/EX7.7/Ch07Ex7.sce b/1871/CH7/EX7.7/Ch07Ex7.sce new file mode 100755 index 000000000..9f78ebc68 --- /dev/null +++ b/1871/CH7/EX7.7/Ch07Ex7.sce @@ -0,0 +1,17 @@ +// Scilab code Ex7.7: Pg:294 (2008) +clc;clear; +c = 3e+08; // Velocity of light, m/s +e = 1.6e-019; // Charge of an electron, coulomb +B = 0.5; // Maximum magnetic field at the electron orbit, Weber per meter square +R = 0.75; // Radius of the orbit, meter +omega = 50; // frequency of alternating current through electromagnetic coils, Hz +N = c/(4*2*%pi*omega*R); // Number of revolutions +E = B*e*R*c/(e*1e+006); // Final energy of the electrons, MeV +E_av = E*1e+06/N; // Average energy per revolution, eV +printf("\nThe final energy of electron = %5.1f MeV ", E); +printf("\nThe average energy of electron = %3.0f eV ", E_av); + +// Result +// The final energy of electron = 112.5 MeV +// The average energy of electron = 353 eV +// The answer is wrong in the textbook \ No newline at end of file diff --git a/1871/CH7/EX7.8/Ch07Ex8.sce b/1871/CH7/EX7.8/Ch07Ex8.sce new file mode 100755 index 000000000..bc370f75b --- /dev/null +++ b/1871/CH7/EX7.8/Ch07Ex8.sce @@ -0,0 +1,18 @@ +// Scilab code Ex7.8: Pg:295 (2008) +clc;clear; +c = 3e+08; // Velocity of light, m/s +e = 1.6e-019; // Charge of an electron, coulomb +B = 0.5; // Maximum magnetic field at the electron orbit, Weber per meter square +D = 1.5; // Diameter of the orbit, meter +R = D/2; // Radius of the orbit, meter +omega = 50; // frequency of alternating current through electromagnetic coils, Hz +N = c/(4*2*%pi*omega*R); // Number of revolutions +E = B*e*R*c/1.6e-013; // Final energy of the electrons, MeV +E_av = (E*1e+06)/N; // Average energy per revolution, eV +printf("\nThe energy per revolution of the electron = %4.1f eV ", E); +printf("\nThe average energy of electron = %3.0f eV ", E_av); + +// Result +// The energy per revolution of the electron = 112.5 eV +// The average energy of electron = 353 eV +// The answer is given wrong in the textbook \ No newline at end of file diff --git a/1871/CH7/EX7.9/Ch07Ex9.sce b/1871/CH7/EX7.9/Ch07Ex9.sce new file mode 100755 index 000000000..4f19a0dc6 --- /dev/null +++ b/1871/CH7/EX7.9/Ch07Ex9.sce @@ -0,0 +1,21 @@ +// Scilab code Ex7.9: Pg:298 (2008) +clc;clear; +sigma = 2e+04*1e-028; // Nuclear reaction cross-section, Sq.m +x = 1e-04; // Thickness of the sheet, meter +m = 112; // Mean atomic mass of cadmium, amu +rho = 8.64e+03; // Density of cadmium sheet, kg per cubic meter +amu = 1.66e-027; // Mass equivalent of 1 amu, kg +// Since cadmium 113 contains 12 percent of natural cadmium. Thus +n = 12/100*rho/(m*amu); // Number of nuclei per unit volume, atoms per cubic meter +n_sigma = n*sigma; // Microscopic cross-section, per length +// As N = N0*exp(-n*sigma*x), so that (N - N0)/N0 = 1-exp(-n_sigma*x) +frac_N = 1-exp(-n_sigma*x); +N0 = 1; // For simlicity assume number of incident neutrons be unity +N = 1/100*N0; // Given number of neutrons which pass through cadmium sheet +x = -log(N/N0)/n_sigma*1e+003; // Thickness of the cadmium sheet when one percent of the incident neutrons pass through the cadmium sheet, mm +printf("\nThe fraction of the incident thermal neutrons absorbed by the cadmium sheet = %4.2f ", frac_N); +printf("\nThe thickness of the cadmium sheet when one percent of the incident neutrons pass through the cadmium sheet = %4.2f mm", x); + +// Result +// The fraction of the incident thermal neutrons absorbed by the cadmium sheet = 0.67 +// The thickness of the cadmium sheet when one percent of the incident neutrons pass through the cadmium sheet = 0.41 mm \ No newline at end of file -- cgit