summaryrefslogtreecommitdiff
path: root/1871/CH4
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /1871/CH4
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '1871/CH4')
-rwxr-xr-x1871/CH4/EX4.1/Ch04Ex1.sce15
-rwxr-xr-x1871/CH4/EX4.10/Ch04Ex10.sce11
-rwxr-xr-x1871/CH4/EX4.11/Ch04Ex11.sce14
-rwxr-xr-x1871/CH4/EX4.12/Ch04Ex12.sce17
-rwxr-xr-x1871/CH4/EX4.13/Ch04Ex13.sce10
-rwxr-xr-x1871/CH4/EX4.14/Ch04Ex14.sce13
-rwxr-xr-x1871/CH4/EX4.15/Ch04Ex15.sce12
-rwxr-xr-x1871/CH4/EX4.16/Ch04Ex16.sce14
-rwxr-xr-x1871/CH4/EX4.17/Ch04Ex17.sce10
-rwxr-xr-x1871/CH4/EX4.18/Ch04Ex18.sce22
-rwxr-xr-x1871/CH4/EX4.19/Ch04Ex19.sce20
-rwxr-xr-x1871/CH4/EX4.2/Ch04Ex2.sce13
-rwxr-xr-x1871/CH4/EX4.20/Ch04Ex20.sce13
-rwxr-xr-x1871/CH4/EX4.21/Ch04Ex21.sce12
-rwxr-xr-x1871/CH4/EX4.22/Ch04Ex22.sce11
-rwxr-xr-x1871/CH4/EX4.23/Ch04Ex23.sce20
-rwxr-xr-x1871/CH4/EX4.24/Ch04Ex24.sce21
-rwxr-xr-x1871/CH4/EX4.25/Ch04Ex25.sce11
-rwxr-xr-x1871/CH4/EX4.26/Ch04Ex26.sce11
-rwxr-xr-x1871/CH4/EX4.27/Ch04Ex27.sce13
-rwxr-xr-x1871/CH4/EX4.28/Ch04Ex28.sce14
-rwxr-xr-x1871/CH4/EX4.29/Ch04Ex29.sce17
-rwxr-xr-x1871/CH4/EX4.30/Ch04Ex30.sce11
-rwxr-xr-x1871/CH4/EX4.31/Ch04Ex31.sce11
-rwxr-xr-x1871/CH4/EX4.32/Ch04Ex32.sce10
-rwxr-xr-x1871/CH4/EX4.33/Ch04Ex33.sce21
-rwxr-xr-x1871/CH4/EX4.34/Ch04Ex34.sce13
-rwxr-xr-x1871/CH4/EX4.35/Ch04Ex35.sce10
-rwxr-xr-x1871/CH4/EX4.36/Ch04Ex36.sce9
-rwxr-xr-x1871/CH4/EX4.4/Ch04Ex4.sce11
-rwxr-xr-x1871/CH4/EX4.6/Ch04Ex6.sce10
-rwxr-xr-x1871/CH4/EX4.7/Ch04Ex7.sce12
-rwxr-xr-x1871/CH4/EX4.8/Ch04Ex8.sce12
-rwxr-xr-x1871/CH4/EX4.9/Ch04Ex9.sce15
34 files changed, 459 insertions, 0 deletions
diff --git a/1871/CH4/EX4.1/Ch04Ex1.sce b/1871/CH4/EX4.1/Ch04Ex1.sce
new file mode 100755
index 000000000..387b55fe6
--- /dev/null
+++ b/1871/CH4/EX4.1/Ch04Ex1.sce
@@ -0,0 +1,15 @@
+// Scilab code Ex4.1 : Pg:139 (2008)
+clc;clear;
+I_max = 36; // Maxiumum intensity of interfering waves
+I_min = 1; // Minimum intensity of interfering waves
+// As (a + b)/(a - b) = sqrt(I_max/I_min), solving for a/b
+a1 = sqrt(I_max)+1; // Amplitude of first wave, unit
+a2 = sqrt(I_max)-1; // Amplitude of second wave, unit
+I1 = a1^2; // Intensity of the first wave, unit
+I2 = a2^2; // Intensity of the second wave, unit
+printf("\nThe ratio between the amplitudes of the two interfering waves, a1:a2 = %d:%d", a1, a2);
+printf("\nThe ratio between the intensities of the two interfering waves, I1:I2 = %d:%d", I1, I2);
+
+// Result
+// The ratio between the amplitudes of the two interfering waves, a1:a2 = 7:5
+// The ratio between the intensities of the two interfering waves, I1:I2 = 49:25 \ No newline at end of file
diff --git a/1871/CH4/EX4.10/Ch04Ex10.sce b/1871/CH4/EX4.10/Ch04Ex10.sce
new file mode 100755
index 000000000..671b6f686
--- /dev/null
+++ b/1871/CH4/EX4.10/Ch04Ex10.sce
@@ -0,0 +1,11 @@
+// Scilab code Ex4.10: Pg:147 (2008)
+clc;clear;
+delta_D = 5e-002; // Distance through which the screen is moved, m
+delta_omega = 3e-005; // Change in fringe width as a result of motion of screen, m
+d = 1e-003/2; // Half of the separation distance between the slits, m
+// As delta_omega = lambda*delta_D/(2*d), solving for lambda
+lambda = delta_omega*(2*d)/delta_D; // Wavelength of light used, m
+printf("\nThe wavelength of light used = %4d angstrom", lambda/1e-010);
+
+// Result
+// The wavelength of light used = 6000 angstrom
diff --git a/1871/CH4/EX4.11/Ch04Ex11.sce b/1871/CH4/EX4.11/Ch04Ex11.sce
new file mode 100755
index 000000000..a34d39d99
--- /dev/null
+++ b/1871/CH4/EX4.11/Ch04Ex11.sce
@@ -0,0 +1,14 @@
+// Scilab code Ex4.11: Pg:148 (2008)
+clc;clear;
+x0 = 12.34; // Position of zero order fringe, mm
+Lambda = 6000; // Wavelength of light, angstrom
+Lambda_prime = 5000; // New wavelength of light, angstrom
+omega = 0.239; // Fringe width, mm
+omega_prime = Lambda_prime/Lambda*omega; // New fringe width, mm
+d_20 = 20*omega_prime; // Separation of 20th fringe, mm
+x_20 = [d_20, -d_20]; // Position of 20th order fringe, mm
+x = x0 + x_20; // Positions of 20th order fringe relative to zero order fringe, mm
+printf("\nThe positions of 20th order fringe relative to zero order fringe are %5.2f mm or %4.2f mm", x(1), x(2));
+
+// Result
+// The positions of 20th order fringe relative to zero order fringe are 16.32 mm or 8.36 mm \ No newline at end of file
diff --git a/1871/CH4/EX4.12/Ch04Ex12.sce b/1871/CH4/EX4.12/Ch04Ex12.sce
new file mode 100755
index 000000000..98d486a4a
--- /dev/null
+++ b/1871/CH4/EX4.12/Ch04Ex12.sce
@@ -0,0 +1,17 @@
+// Scilab code Ex4.12: Pg:149 (2008)
+clc;clear;
+Lambda = 6500e-007; // Wavelength of light, mm
+Lambda_prime = 5200e-007; // New wavelength of light, mm
+n = 3; // Order of bright fringe
+D = 1200; // Distance between the source and the slits, mm
+d = 2/2; // Separation between teh slits, mm
+x3 = n*Lambda*D/(2*d); // The distance of the third bright fringe from the central maximum, mm
+n = 5; // Minimum value of n
+m = Lambda_prime/Lambda*n; // Minimum value of m
+x4 = m*Lambda*D/(2*d); // The least distance from the central maximum at which bright fringes duw to both the wavelengths coincide, mm
+printf("\nThe distance of the third bright fringe from the central maximum = %4.2f mm", x3);
+printf("\nThe least distance from the central maximum at which bright fringes duw to both the wavelengths coincide = %5.3f cm", x4/10);
+
+// Result
+// The distance of the third bright fringe from the central maximum = 1.17 mm
+// The least distance from the central maximum at which bright fringes duw to both the wavelengths coincide = 0.156 cm \ No newline at end of file
diff --git a/1871/CH4/EX4.13/Ch04Ex13.sce b/1871/CH4/EX4.13/Ch04Ex13.sce
new file mode 100755
index 000000000..dbca8ac2a
--- /dev/null
+++ b/1871/CH4/EX4.13/Ch04Ex13.sce
@@ -0,0 +1,10 @@
+// Scilab code Ex4.13 : Pg:155 (2008)
+clc;clear;
+D = 80; // Distance between the biprism and narrow slit, cm
+Lambda = 5890e-08; // Wavelength of light, cm
+d = 0.05/2; // Half of the distance between the sources, cm
+omega = D*Lambda/(2*d); // Fringe width, cm
+printf("\nThe width of the fringes observed with the biprism = %5.3e cm", omega);
+
+// Result
+// The width of the fringes observed with the biprism = 9.424e-002 cm \ No newline at end of file
diff --git a/1871/CH4/EX4.14/Ch04Ex14.sce b/1871/CH4/EX4.14/Ch04Ex14.sce
new file mode 100755
index 000000000..9533006f4
--- /dev/null
+++ b/1871/CH4/EX4.14/Ch04Ex14.sce
@@ -0,0 +1,13 @@
+// Scilab code Ex4.14 : Pg:155 (2008)
+clc;clear;
+D = 110; // Distance between the biprism and narrow slit, cm
+Lambda = 5500e-08; // Wavelength of light, cm
+mu = 1.5; // refractive index of glass biprism
+a = 10; // Distance of slit from biprism, cm
+alpha = 2*%pi/180; // Angle between the inclined faces and base of prism, degree
+d = a*(mu-1)*alpha; // Separation between two virtual sources, cm
+omega = D*Lambda/(2*d); // Fringe width at a distance of one meter from biprism, cm
+printf("\nThe width of the fringes in the eye-piece from the biprism = %6.4f cm", omega);
+
+// Result
+// The width of the fringes in the eye-piece from the biprism = 0.0173 cm \ No newline at end of file
diff --git a/1871/CH4/EX4.15/Ch04Ex15.sce b/1871/CH4/EX4.15/Ch04Ex15.sce
new file mode 100755
index 000000000..0a8528e92
--- /dev/null
+++ b/1871/CH4/EX4.15/Ch04Ex15.sce
@@ -0,0 +1,12 @@
+// Scilab code Ex4.15 : Pg:156 (2008)
+clc;clear;
+d1 = 0.45; // Position of the first lens placed between the biprism and the eye-piece, cm
+d2 = 0.29; // Position of the second lens placed between the biprism and the eye-piece, cm
+omega = 0.0326; // Fringe width, cm
+D = 200; // Distance between the biprism and narrow slit, cm
+d = sqrt(d1*d2)/2; // Separation between two virtual sources, cm
+Lambda = 2*d*omega/D; // Wavelength of light used, cm
+printf("\nThe wavelength of light used = %4.2e cm", Lambda);
+
+// Result
+// The wavelength of light used = 5.89e-005 cm \ No newline at end of file
diff --git a/1871/CH4/EX4.16/Ch04Ex16.sce b/1871/CH4/EX4.16/Ch04Ex16.sce
new file mode 100755
index 000000000..4b72c1cfb
--- /dev/null
+++ b/1871/CH4/EX4.16/Ch04Ex16.sce
@@ -0,0 +1,14 @@
+// Scilab code Ex4.16 : Pg:156 (2008)
+clc;clear;
+omega = 0.0196; // Fringe width, cm
+D = 100; // Distance between the biprism and narrow slit, cm
+I = 0.70; // Separation of the two coherent sources, cm
+u = 30; // Distance of the lens from the slit, cm
+v = D - u; // Distance of image from the lens, cm
+// As magnification, M = I/O = v/u and O = 2*d, solving for d
+d = I*u/(2*v); // Half the distance between two coherent sources, cm
+Lambda = 2*d*omega/D; // Wavelength of light used, cm
+printf("\nThe wavelength of light used = %4.2e cm", Lambda);
+
+// Result
+// The wavelength of light used = 5.88e-005 cm \ No newline at end of file
diff --git a/1871/CH4/EX4.17/Ch04Ex17.sce b/1871/CH4/EX4.17/Ch04Ex17.sce
new file mode 100755
index 000000000..56cdec3b5
--- /dev/null
+++ b/1871/CH4/EX4.17/Ch04Ex17.sce
@@ -0,0 +1,10 @@
+// Scilab code Ex4.17 : Pg:156 (2008)
+clc;clear;
+omega = 1.888/20; // Fringe width, cm
+D = 120; // Distance between the biprism and narrow slit, cm
+d = 0.075/2; // Half the distance between two coherent sources, cm
+Lambda = 2*d*omega/D; // Wavelength of light used, cm
+printf("\nThe wavelength of the light of the source = %4d angstrom", Lambda/1e-008);
+
+// Result
+// The wavelength of the light of the source = 5900 angstrom \ No newline at end of file
diff --git a/1871/CH4/EX4.18/Ch04Ex18.sce b/1871/CH4/EX4.18/Ch04Ex18.sce
new file mode 100755
index 000000000..13eb6244d
--- /dev/null
+++ b/1871/CH4/EX4.18/Ch04Ex18.sce
@@ -0,0 +1,22 @@
+// Scilab code Ex4.18 : Pg:157 (2008)
+clc;clear;
+D = 1; // For simplicity assume the distance between the biprism and narrow slit to be unity, unit
+d = 1; // Assume half the distance between two coherent sourcesto be unity, unit
+lambda = 5893; // Mean wavelength of sodium light, angstrom
+lambda1 = 5461 // Wavelength of green color, angstrom
+lambda2 = 4358; // Wavelength of violet color, angstrom
+omega = lambda*D/(2*d); // Fringe width with yellow color, unit
+omega1 = lambda1*D/(2*d); // Fringe width with green color, unit
+omega2 = lambda2*D/(2*d); // Fringe width with violet color, unit
+n = 62; // Number of fringes obtained with light from sodium lamp
+// As n1*omega1 = n*omega, solving for n1
+n1 = n*omega/omega1; // Number of fringes obtained with green color
+// As n2*omega2 = n*omega, solving for n2
+n2 = n*omega/omega2; // Number of fringes obtained with violet color
+printf("\nThe number of fringes with green filter = %2d", ceil(n1));
+printf("\nThe number of fringes with violet filter = %2d", ceil(n2));
+
+// Result
+// The number of fringes with green filter = 67
+// The number of fringes with violet filter = 84
+// The second answer is given wrong in the textbook \ No newline at end of file
diff --git a/1871/CH4/EX4.19/Ch04Ex19.sce b/1871/CH4/EX4.19/Ch04Ex19.sce
new file mode 100755
index 000000000..4f83855f8
--- /dev/null
+++ b/1871/CH4/EX4.19/Ch04Ex19.sce
@@ -0,0 +1,20 @@
+// Scilab code Ex4.19 : Pg:158 (2008)
+clc;clear;
+x1 = 100; // Position of eye-piece, cm
+x2 = 67; // Position of first lens, cm
+x3 = 34; // Position of second lens, cm
+v1 = x1 - x2; // Distance between eye-piece and the second position of the lens, cm
+u = v1;
+x = x3 - u; // The reading of the slit on the bench, cm
+D = x1 - x; // The distance between the focal plane of the eye-piece and the plane of the interfering sources, cm
+d1 = 0.12; // Position of the first lens placed between the biprism and the eye-piece, cm
+d2 = 0.03; // Position of the second lens placed between the biprism and the eye-piece, cm
+omega = 0.972/10; // Fringe width, cm
+d = sqrt(d1*d2)/2; // Separation between two virtual sources, cm
+Lambda = 2*d*omega/D; // Wavelength of light used, cm
+printf("\nThe distance between the focal plane of the eye-piece and the plane of the interfering sources = %2d cm", D);
+printf("\nThe wavelength of light used = %5.3e cm", Lambda);
+
+// Result
+// The distance between the focal plane of the eye-piece and the plane of the interfering sources = 99 cm
+// The wavelength of light used = 5.891e-005 cm \ No newline at end of file
diff --git a/1871/CH4/EX4.2/Ch04Ex2.sce b/1871/CH4/EX4.2/Ch04Ex2.sce
new file mode 100755
index 000000000..4d3555d75
--- /dev/null
+++ b/1871/CH4/EX4.2/Ch04Ex2.sce
@@ -0,0 +1,13 @@
+// Scilab code Ex4.2 : Pg:139 (2008)
+clc;clear;
+I1 = 100; // Maxiumum intensity of interfering waves
+I2 = 1; // Minimum intensity of interfering waves
+a1_ratio_a2 = sqrt(I1/I2); // Ratio of two amplitudes
+a2 = 1; // Assume the amplitude of second wave to be unity
+a1 = a2*a1_ratio_a2; // The amplitude of second wave
+I_max = (a1+a2)^2; // Maximum intensity of interfering waves
+I_min = (a1-a2)^2; // Minimum intensity of interfering waves
+printf("\nThe ratio of maximum intensity to minimum intensity of the two interfering waves, I_max:I_min = %d:%d", I_max, I_min);
+
+// Result
+// The ratio of maximum intensity to minimum intensity of the two interfering waves, I_max:I_min = 121:81 \ No newline at end of file
diff --git a/1871/CH4/EX4.20/Ch04Ex20.sce b/1871/CH4/EX4.20/Ch04Ex20.sce
new file mode 100755
index 000000000..d5ec478de
--- /dev/null
+++ b/1871/CH4/EX4.20/Ch04Ex20.sce
@@ -0,0 +1,13 @@
+// Scilab code Ex4.20 : Pg:159 (2008)
+clc;clear;
+D = 10; // The distance between the slits and the screen, cm
+d = 0.2/2; // Half the separation between two slits, cm
+lambda = 6000e-008; // Wavelength of light used, cm
+t = 0.05; // Thickness of transparent plate, cm
+x0 = 0.5; // The shift of interference pattern, cm
+// As x0 = D/(2*d)*(mu - 1)*t, solving for mu
+mu = 2*d*x0/(D*t)+1; // The refractive index of transparent plate
+printf("\nThe refractive index of transparent plate = %3.1f", mu);
+
+// Result
+// The refractive index of transparent plate = 1.2 \ No newline at end of file
diff --git a/1871/CH4/EX4.21/Ch04Ex21.sce b/1871/CH4/EX4.21/Ch04Ex21.sce
new file mode 100755
index 000000000..963d017db
--- /dev/null
+++ b/1871/CH4/EX4.21/Ch04Ex21.sce
@@ -0,0 +1,12 @@
+// Scilab code Ex4.21 : Pg:159 (2008)
+clc;clear;
+D = 50; // The distance between the slits and the screen, cm
+d = 0.1/2; // Half the separation between two slits, cm
+mu = 1.58; // The refractive index of mica sheet
+x0 = 0.2; // The shift of interference pattern, cm
+// As x0 = D/(2*d)*(mu - 1)*t, solving for t
+t = 2*d*x0/(D*(mu-1)); // Thickness of mica sheet, cm
+printf("\nThe thickness of mica sheet = %3.1e cm", t);
+
+// Result
+// The thickness of mica sheet = 6.9e-004 cm \ No newline at end of file
diff --git a/1871/CH4/EX4.22/Ch04Ex22.sce b/1871/CH4/EX4.22/Ch04Ex22.sce
new file mode 100755
index 000000000..05878cf9c
--- /dev/null
+++ b/1871/CH4/EX4.22/Ch04Ex22.sce
@@ -0,0 +1,11 @@
+// Scilab code Ex4.22 : Pg:159 (2008)
+clc;clear;
+lambda = 5890e-008; // Wavelength of light used, cm
+n = 12; // Number of bright fringe to which the central fringe shifts
+mu = 1.60; // The refractive index of transparent material
+t = n*lambda/(mu-1); // Thickness of transparent material, cm
+printf("\nThe thickness of the transparent material = %5.3e cm", t);
+
+// Result
+// The thickness of the transparent material = 1.178e-003 cm
+// The answer is given wrong in the textbook \ No newline at end of file
diff --git a/1871/CH4/EX4.23/Ch04Ex23.sce b/1871/CH4/EX4.23/Ch04Ex23.sce
new file mode 100755
index 000000000..1c2f4477e
--- /dev/null
+++ b/1871/CH4/EX4.23/Ch04Ex23.sce
@@ -0,0 +1,20 @@
+// Scilab code Ex4.23 : Pg:159 (2008)
+clc;clear;
+a = 1; // Assume amplitude of the wave from coherent sources to be unity
+D = 1; // The distance between the slits and the screen, m
+d = 5e-004/2; // Half the separation between two slits, m
+mu = 1.5; // The refractive index of glass plate
+t = 1.5e-006; // Thickness of glass plate, m
+lambda = 5000e-010; // Wavelength of light used, m
+x0 = D/(2*d)*(mu - 1)*t; // The lateral shift of central fringe, m
+delta = (mu - 1)*t; // Path difference created due to the introduction of the thin glass plate, m
+kro_delta = 2*%pi/lambda*delta; // Phase difference, rad
+a1 = a, a2 = a; // Amplitude of waves from coherent sources
+I = a1^2 + a2^2 + 2*a1*a2*cos(kro_delta); // Intensity of central fringe
+printf("\nThe lateral shift of central fringe = %4.2f cm", x0*100);
+printf("\nThe intensity of central fringe = %d", I);
+
+// Result
+// The lateral shift of central fringe = 0.15 cm
+// The intensity of central fringe = 0
+// The first answer is given wrong in the textbook \ No newline at end of file
diff --git a/1871/CH4/EX4.24/Ch04Ex24.sce b/1871/CH4/EX4.24/Ch04Ex24.sce
new file mode 100755
index 000000000..2b5977529
--- /dev/null
+++ b/1871/CH4/EX4.24/Ch04Ex24.sce
@@ -0,0 +1,21 @@
+// Scilab code Ex4.24 : Pg:160 (2008)
+clc;clear;
+lambda = 5.9e-005; // Wavelength of light, cm
+lambda_prime = 7.5e-005; // Chamged wavelength of light, cm
+t = 0.002; // Thickness of mica sheet, cm
+mu = 1.5; // Refractive index of mica
+x0 = 0.237; // Position of zeroth order fringe, cm
+x10 = 0.355; // Position of tenthth order fringe, cm
+omega = (x10-x0)/10; // Fringe width with original pattern, cm
+// As omega = lambda*D/(2*d), so
+omega_prime = omega*lambda_prime/lambda; // New fringe width with changed wavelength, cm
+x10_prime = x0+10*omega_prime; // Position of tenth order fringe due to changed wavelength, cm
+x_0 = omega/lambda*(mu - 1)*t; // Shift in the zeroth fringe, cm
+dx0 = [x_0 -x_0];
+x0_prime = x0+dx0; // Position of the zeroth order fringe due to changed path length, cm
+printf("\nThe position of tenth order fringe due to changed wavelength = %4.2f mm", x10_prime*10);
+printf("\nThe position of the zeroth order fringe due to changed path length = %4.2f mm or %4.2f mm", x0_prime(1)*10, x0_prime(2)*10);
+
+// Result
+// The position of tenth order fringe due to changed wavelength = 3.87 mm
+// The position of the zeroth order fringe due to changed path length = 4.37 mm or 0.37 mm \ No newline at end of file
diff --git a/1871/CH4/EX4.25/Ch04Ex25.sce b/1871/CH4/EX4.25/Ch04Ex25.sce
new file mode 100755
index 000000000..1f107cf89
--- /dev/null
+++ b/1871/CH4/EX4.25/Ch04Ex25.sce
@@ -0,0 +1,11 @@
+// Scilab code Ex4.25 : Pg:167 (2008)
+clc;clear;
+lambda = 5880e-008; // Wavelength of light, cm
+mu = 1.5; // Refractive index of mica
+r = 60; // Angle of reflection in the plate, degree
+n = 1; // Order of fringes for the smallest thickness
+t = n*lambda/(2*mu*cosd(r)); // The smallest thickness of the glass plate, cm
+printf("\nThe smallest thickness of the glass plate = %4.0f angstrom", t/1e-008);
+
+// Result
+// The smallest thickness of the glass plate = 3920 angstrom \ No newline at end of file
diff --git a/1871/CH4/EX4.26/Ch04Ex26.sce b/1871/CH4/EX4.26/Ch04Ex26.sce
new file mode 100755
index 000000000..81a5297a6
--- /dev/null
+++ b/1871/CH4/EX4.26/Ch04Ex26.sce
@@ -0,0 +1,11 @@
+// Scilab code Ex4.26 : Pg:167 (2008)
+clc;clear;
+lambda = 4000e-008; // Wavelength of light, cm
+mu = 1.4; // Refractive index of the film
+r = 0; // Angle of reflection in the plate, degree
+n = 1; // Order of firnges for the smallest thickness
+t = n*lambda/(4*mu*cosd(r)); // The thickness of the thinnest film, cm
+printf("\nThe thickness of the thinnest film for reflection from violet component = %4.1f angstrom", t/1e-008);
+
+// Result
+// The thickness of the thinnest film for reflection from violet component = 714.3 angstrom \ No newline at end of file
diff --git a/1871/CH4/EX4.27/Ch04Ex27.sce b/1871/CH4/EX4.27/Ch04Ex27.sce
new file mode 100755
index 000000000..b7125f39a
--- /dev/null
+++ b/1871/CH4/EX4.27/Ch04Ex27.sce
@@ -0,0 +1,13 @@
+// Scilab code Ex4.27 : Pg:167 (2008)
+clc;clear;
+lambda = 5890e-008; // Wavelength of light, cm
+mu = 1.5; // Refractive index of oil
+i = 30; // Angle of incidence, degree
+n = 8; // Order of dark band
+sin_r = sind(i)/mu; // Sine of angle of reflection from Snell's Law, degree
+cos_r = sqrt(1-sin_r^2); // Cosine of angle of reflection from the trigonometric identity, degree
+t = n*lambda/(2*mu*cos_r); // The thickness of the oil film, cm
+printf("\nThe thickness of the oil film = %5.3e cm", t);
+
+// Result
+// The thickness of the oil film = 1.666e-004 cm \ No newline at end of file
diff --git a/1871/CH4/EX4.28/Ch04Ex28.sce b/1871/CH4/EX4.28/Ch04Ex28.sce
new file mode 100755
index 000000000..f8209c814
--- /dev/null
+++ b/1871/CH4/EX4.28/Ch04Ex28.sce
@@ -0,0 +1,14 @@
+// Scilab code Ex4.28 : Pg:168 (2008)
+clc;clear;
+lambda1 = 6.1e-005; // Wavelength corresponding to the first dark band, cm
+lambda2 = 6.0e-005; // Wavelength corresponding to the second dark band, cm
+n = lambda2/(lambda1 - lambda2); // Order of dark band
+mu = 4/3; // Refractive index of the film
+sin_i = 4/5; // Sine of ngle of incidence
+sin_r = sin_i/mu; // Sine of angle of reflection from Snell's Law, degree
+cos_r = sqrt(1-sin_r^2); // Cosine of angle of reflection from the trigonometric identity, degree
+t = n*lambda1/(2*mu*cos_r); // The thickness of the oil film, cm
+printf("\nThe thickness of the soap film = %6.4f cm", t);
+
+// Result
+// The thickness of the soap film = 0.0017 cm \ No newline at end of file
diff --git a/1871/CH4/EX4.29/Ch04Ex29.sce b/1871/CH4/EX4.29/Ch04Ex29.sce
new file mode 100755
index 000000000..ecafde2b0
--- /dev/null
+++ b/1871/CH4/EX4.29/Ch04Ex29.sce
@@ -0,0 +1,17 @@
+// Scilab code Ex4.29 : Pg:168 (2008)
+clc;clear;
+lambda1 = 4e-005; // First wavelength, cm
+lambda2 = 7e-005; // Second wavelength, cm
+t = 0.001; // The thickness of the air film, cm
+mu = 1; // Refractive index of the air film
+i = 30; // Angle of incidence, degree
+// As mu = sin_i/sin_r = 1, so that sin_i = sin_r
+sin_r = sind(30); // Sine of angle of reflection from Snell's Law, degree
+cos_r = sqrt(1-sin_r^2); // Cosine of angle of reflection from the trigonometric identity, degree
+n1 = 2*mu*t*cos_r/lambda1; // Number of dark bands seen at first wavelength
+n2 = 2*mu*t*cos_r/lambda2; // Number of dark bands seen at second wavelength
+n = n1 - n2; // Number of dark bands observed within the given spectral range
+printf("\nThe number of dark bands observed within the given spectral range = %2d", ceil(n));
+
+// Result
+// The number of dark bands observed within the given spectral range = 19 \ No newline at end of file
diff --git a/1871/CH4/EX4.30/Ch04Ex30.sce b/1871/CH4/EX4.30/Ch04Ex30.sce
new file mode 100755
index 000000000..2c1c89a3b
--- /dev/null
+++ b/1871/CH4/EX4.30/Ch04Ex30.sce
@@ -0,0 +1,11 @@
+// Scilab code Ex4.30 : Pg:180 (2008)
+clc;clear;
+Lambda = 6000e-08; // Wavelength of light, cm
+d = 0.005; // Diameter of wire, mm
+x = 15; // Distance between the glass plates, cm
+theta = d/x; // Angle of the wedge, degree
+omega = Lambda/(2*theta); // Fringe width in air wedge for normal incidence, cm
+printf("\nThe fringe width in air-wedge for normal incidence = %4.2f cm", omega);
+
+// Result
+// The fringe width in air-wedge for normal incidence = 0.09 cm \ No newline at end of file
diff --git a/1871/CH4/EX4.31/Ch04Ex31.sce b/1871/CH4/EX4.31/Ch04Ex31.sce
new file mode 100755
index 000000000..cfd184651
--- /dev/null
+++ b/1871/CH4/EX4.31/Ch04Ex31.sce
@@ -0,0 +1,11 @@
+// Scilab code Ex4.31: : Pg:181 (2008)
+clc;clear;
+Lambda = 6000e-08; // Wavelength of light, cm
+mu = 1.35; // Refractive index of thin wedge shaped film
+omega = 0.20; // Fringe width, cm
+// As omega = Lambda/(2*mu*theta), solving for theta
+theta = Lambda/(2*mu*omega)*180/%pi; // Angle of the wedge, degree
+printf("\nThe angle of the wedge = %6.4f degree", theta);
+
+// Result
+// The angle of the wedge = 0.0064 degree \ No newline at end of file
diff --git a/1871/CH4/EX4.32/Ch04Ex32.sce b/1871/CH4/EX4.32/Ch04Ex32.sce
new file mode 100755
index 000000000..fb5f4e24c
--- /dev/null
+++ b/1871/CH4/EX4.32/Ch04Ex32.sce
@@ -0,0 +1,10 @@
+// Scilab code Ex4.32: : Pg:181 (2008)
+clc;clear;
+Lambda = 5890e-08; // Wavelength of light, cm
+n = 20; // Number of fringes
+// Since omega = Lambda*x/2*t and x = n*omega, solving for t
+t = n*Lambda/2; // Thickness of the wire, cm
+printf("\nThe thickness of the wire = %4.2e cm", t);
+
+// Result
+// The thickness of the wire = 5.89e-004 cm \ No newline at end of file
diff --git a/1871/CH4/EX4.33/Ch04Ex33.sce b/1871/CH4/EX4.33/Ch04Ex33.sce
new file mode 100755
index 000000000..7817e4c68
--- /dev/null
+++ b/1871/CH4/EX4.33/Ch04Ex33.sce
@@ -0,0 +1,21 @@
+// Scilab code Ex4.33: : Pg:182 (2008)
+clc;clear;
+Lambda = 5.46e-05; // Wavelength of light, cm
+n = 12; // Number of fringes
+d = 0.40; // Spacing between 12 fringes, cm
+omega = d/n; // Fringe width, cm
+// Since fringe width in air wedge for normal incidence is given by omega = Lambda/2*theta. On solving for theta, we have
+// As omega = Lambda/(2*theta), solving for theta
+theta = Lambda/(2*omega); // Angle of the wedge, radian
+l = 3; // Length of the plate, cm
+t = theta*l; // Thickness of the foil, cm
+mu = 1.33; // Refractive index of water
+omega_prime = Lambda/(2*mu*theta); // Fringe width if water is introduced in the wedge space in Newton's ring experiment, cm
+printf("\nThe angle of the wedge = %3.1e radian", theta);
+printf("\nThe thickness of the foil = %4.2e cm", t);
+printf("\nThe fringe width if water is introduced in the wedge space = %5.3f cm", omega_prime);
+
+// Result
+// The angle of the wedge = 8.2e-004 radian
+// The thickness of the foil = 2.46e-003 cm
+// The fringe width if water is introduced in the wedge space = 0.025 cm \ No newline at end of file
diff --git a/1871/CH4/EX4.34/Ch04Ex34.sce b/1871/CH4/EX4.34/Ch04Ex34.sce
new file mode 100755
index 000000000..23877e601
--- /dev/null
+++ b/1871/CH4/EX4.34/Ch04Ex34.sce
@@ -0,0 +1,13 @@
+// Scilab code Ex4.34: : Pg:188 (2008)
+clc;clear;
+Lambda = 5896e-08; // Wavelength of light, cm
+d = 0.3; // Path difference between the M1 and M2 mirrors, cm
+r = 0; // For central bright fringe
+// Since 2*d*cos(r) = n*Lambda and for r = 0 which gives 2*d = n*Lambda
+// 2*d*cos_theta = (n-6)*Lambda, solving for theta
+theta = acosd(1-6*Lambda/(2*d)); // Angular radius of the seventh bright fringe, degree
+D = 2*theta; // Angular diameter of the seventh bright fringe, degree
+printf("\nThe angular diameter of 7th bright fringe = %1.0f degree", D);
+
+// Result
+// The angular diameter of 7th bright fringe = 4 degree \ No newline at end of file
diff --git a/1871/CH4/EX4.35/Ch04Ex35.sce b/1871/CH4/EX4.35/Ch04Ex35.sce
new file mode 100755
index 000000000..e433ea0f4
--- /dev/null
+++ b/1871/CH4/EX4.35/Ch04Ex35.sce
@@ -0,0 +1,10 @@
+// Scilab code Ex4.35: : Pg:188 (2008)
+clc;clear;
+N = 500; // Number of fringes
+x = 0.01474; // Distance traversed by the mirror when N fringes cross the field of view, cm
+//Since x = N*Lambda/2, solving for Lambda
+Lambda = 2*x/(N*1e-08); // wavelngth of light, angstrom
+printf("\nThe wavelength of light = %4.0f angstrom", Lambda);
+
+// Result
+// The wavelength of light = 5896 angstrom \ No newline at end of file
diff --git a/1871/CH4/EX4.36/Ch04Ex36.sce b/1871/CH4/EX4.36/Ch04Ex36.sce
new file mode 100755
index 000000000..e195987d6
--- /dev/null
+++ b/1871/CH4/EX4.36/Ch04Ex36.sce
@@ -0,0 +1,9 @@
+// Scilab code Ex4.36: : Pg:188 (2008)
+clc;clear;
+x = 0.0289; // Distance traversed by the mirror between two successive disappearances, cm
+Lambda = 5890e-08; // Wavelength of light, cm
+delta_Lambda = Lambda^2/(2*x); // Difference in the wavelengths of the D1 and D2 lines of the sodium lamp, cm
+printf("\nThe difference in the wavelengths of the D1 and D2 lines of the sodium lamp = %1.0e cm", delta_Lambda);
+
+// Result
+// The difference in the wavelengths of the D1 and D2 lines of the sodium lamp = 6e-008 cm \ No newline at end of file
diff --git a/1871/CH4/EX4.4/Ch04Ex4.sce b/1871/CH4/EX4.4/Ch04Ex4.sce
new file mode 100755
index 000000000..506a1b521
--- /dev/null
+++ b/1871/CH4/EX4.4/Ch04Ex4.sce
@@ -0,0 +1,11 @@
+// Scilab code Ex4.4 : Pg:140 (2008)
+clc;clear;
+I1 = 1.44; // Intensity of first wave
+I2 = 4.00; // Intensity of second wave
+I = 0.90; // Intensity of resultant wave
+// As I_delta = I1 + I2 + 2*sqrt(I1*I2)*cos(delta), solving for delta
+delta = acosd((I-I1-I2)/(2*sqrt(I1*I2)));
+printf("\nThe lowest phase difference between the waves at interfering point = %3d degree", delta);
+
+// Result
+// The lowest phase difference between the waves at interfering point = 161 degree \ No newline at end of file
diff --git a/1871/CH4/EX4.6/Ch04Ex6.sce b/1871/CH4/EX4.6/Ch04Ex6.sce
new file mode 100755
index 000000000..d1b5c8f66
--- /dev/null
+++ b/1871/CH4/EX4.6/Ch04Ex6.sce
@@ -0,0 +1,10 @@
+// Scilab code Ex4.6: : Pg:146 (2008)
+clc;clear;
+D = 60; // Distance between the source and the screen, cm
+Lambda = 5.9e-05; // Wavelength of light, cm
+d = 0.3/2; // Separation between the slits, cm
+omega = D*Lambda/(2*d); // Fringe width, cm
+printf("\nThe value of fringe width = %6.4f cm", omega);
+
+// Result
+// The value of fringe width = 0.0118 cm \ No newline at end of file
diff --git a/1871/CH4/EX4.7/Ch04Ex7.sce b/1871/CH4/EX4.7/Ch04Ex7.sce
new file mode 100755
index 000000000..536232870
--- /dev/null
+++ b/1871/CH4/EX4.7/Ch04Ex7.sce
@@ -0,0 +1,12 @@
+// Scilab code Ex4.7 : Pg:146 (2008)
+clc;clear;
+D = 80; // Distance between the source and the screen, cm
+d = 0.018/2; // Separation between two coherent sources, cm
+n = 4; // Number of the fringe
+x_n = 1.08; // Distance of nth bright fringe from the center of central fringe, cm
+// As x_n = n*Lambda*D/(2*d), solving for Lambda
+Lambda = x_n*2*d/(n*D); // wavelength of light, Angstorm
+printf("\nThe wavelength of light used = %4.0f angstrom", Lambda/1e-008);
+
+// Result
+// The wavelength of light used = 6075 angstrom \ No newline at end of file
diff --git a/1871/CH4/EX4.8/Ch04Ex8.sce b/1871/CH4/EX4.8/Ch04Ex8.sce
new file mode 100755
index 000000000..a3cc1039a
--- /dev/null
+++ b/1871/CH4/EX4.8/Ch04Ex8.sce
@@ -0,0 +1,12 @@
+// Scilab code Ex4.8 : Pg:146 (2008)
+clc;clear;
+D = 200; // Distance between the source and the screen, cm
+Lambda = 5100e-08; // Wavelength of light, cm
+x = 2; // Separation of fringes, cm
+n = 10; // number of fringes
+omega = x/n; // Fringe width, cm
+d = D*Lambda/(2*omega); // Double slit separation, mm
+printf("\nThe double slit separation = %4.2f mm", 2*d*10);
+
+// Result
+// The double slit separation = 0.51 mm \ No newline at end of file
diff --git a/1871/CH4/EX4.9/Ch04Ex9.sce b/1871/CH4/EX4.9/Ch04Ex9.sce
new file mode 100755
index 000000000..d29facdc2
--- /dev/null
+++ b/1871/CH4/EX4.9/Ch04Ex9.sce
@@ -0,0 +1,15 @@
+// Scilab code Ex4.9: Pg:147 (2008)
+clc;clear;
+D = 1000; // Distance between the source and the screen, mm
+omega = 1; // For simplicity assume fringe width to be unity, mm
+x9 = 9*omega; // Position of 9th bright fringe, mm
+x2_prime = 3/2*omega; // Position of 9th bright fringe, mm
+d = 0.5/2; // Separation between the slits, mm
+l = 8.835; // Distance between 9th bright fringe and second dark fringe
+// As x9 - x2_prime = 9*omega-3/2*omega = l, solving for omega
+omega = l/(x9 - x2_prime); // Fringe width, mm
+lambda = omega*2*d/D; // Wavelength of light used, mm
+printf("\nThe wavelength of light used = %4d angstrom", lambda/1e-007);
+
+// Result
+// The wavelength of light used = 5890 angstrom