summaryrefslogtreecommitdiff
path: root/1850/CH5
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /1850/CH5
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '1850/CH5')
-rwxr-xr-x1850/CH5/EX5.1/exa_5_1.sce30
-rwxr-xr-x1850/CH5/EX5.10/exa_5_10.sce18
-rwxr-xr-x1850/CH5/EX5.11/exa_5_11.sce20
-rwxr-xr-x1850/CH5/EX5.12/exa_5_12.sce19
-rwxr-xr-x1850/CH5/EX5.13/exa_5_13.sce18
-rwxr-xr-x1850/CH5/EX5.14/exa_5_14.sce32
-rwxr-xr-x1850/CH5/EX5.15/exa_5_15.sce31
-rwxr-xr-x1850/CH5/EX5.2/exa_5_2.sce14
-rwxr-xr-x1850/CH5/EX5.3/exa_5_3.sce19
-rwxr-xr-x1850/CH5/EX5.4/exa_5_4.sce17
-rwxr-xr-x1850/CH5/EX5.5/exa_5_5.sce12
-rwxr-xr-x1850/CH5/EX5.6/exa_5_6.sce12
-rwxr-xr-x1850/CH5/EX5.7/exa_5_7.sce31
-rwxr-xr-x1850/CH5/EX5.9/exa_5_9.sce17
14 files changed, 290 insertions, 0 deletions
diff --git a/1850/CH5/EX5.1/exa_5_1.sce b/1850/CH5/EX5.1/exa_5_1.sce
new file mode 100755
index 000000000..5fc37c4e7
--- /dev/null
+++ b/1850/CH5/EX5.1/exa_5_1.sce
@@ -0,0 +1,30 @@
+// Exa 5.1
+clc;
+clear;
+close;
+// Given data
+fo= 15;// in kHz
+fo= fo*10^3;// in Hz
+C=0.01;// in micro F
+C=C*10^-6;// in F
+L= 1/(4*%pi^2*fo^2*C);// in H
+L=ceil(L*10^3);// in mH
+// Let L be of 12 mH and internal resistance 30 ohm
+R=30;// internal resistance in ohm
+XL= 2*%pi*L*10^-3*fo;
+Q= XL/R;
+R_P= Q^2*R;// in ohm
+// If
+R1=100;// in ohm
+// Formula L= R_f*R_P/(R1*(R_f+R_P));
+R_f= R1*L*R_P/(R_P-R1*L);// in ohm
+R_f=R_f*10^3;// in kohm
+R_f= 1.2;// in k ohm (Standard value)
+disp("The values of component chosen are:-");
+disp(L,"Value of L in mH")
+disp(C*10^6,"Value of C in micro F")
+disp(R_f,"Value of L in k ohm")
+disp(R1,"Value of L in ohm")
+
+
+
diff --git a/1850/CH5/EX5.10/exa_5_10.sce b/1850/CH5/EX5.10/exa_5_10.sce
new file mode 100755
index 000000000..6f418eee4
--- /dev/null
+++ b/1850/CH5/EX5.10/exa_5_10.sce
@@ -0,0 +1,18 @@
+// Exa 5.10
+clc;
+clear;
+close;
+// Given data
+Vin= 10;// in volt
+R=2.2;// in k ohm
+R=R*10^3;//in ohm
+Ad=10^5;// voltage gain
+T= 1;// in ms
+T=T*10^-3;// in second
+C=1;// in micro F
+C=C*10^-6;// in F
+I= Vin/R;// in volt
+V= I*T/C;// in V
+disp(V,"The output voltage at the end of the pulse in volt");
+RC_desh= R*C*Ad;
+disp(RC_desh,"The closed-loop time constant in second is");
diff --git a/1850/CH5/EX5.11/exa_5_11.sce b/1850/CH5/EX5.11/exa_5_11.sce
new file mode 100755
index 000000000..f4c1e7a29
--- /dev/null
+++ b/1850/CH5/EX5.11/exa_5_11.sce
@@ -0,0 +1,20 @@
+// Exa 5.11
+clc;
+clear;
+close;
+// Given data
+C=0.01;// in micro F
+C=C*10^-6;// in F
+omega= 10000;// in rad/second
+// Vout/V1= (Rf/R1)/(1+s*C*Rf)
+// substituting s= j*omega we have
+// Vout/V1 = (Rf/R1)/sqrt((omega*C*Rf)^2+1)
+// At omega=0
+// Vout/V1= Rf/R1
+// Formula omega= 1/(C*Rf)
+Rf= 1/(C*omega);// in ohm
+Rf= Rf*10^-3;// in k ohm
+// 20*log10(Rf/R1) = 20
+R1= Rf/10;// in k ohm
+disp(Rf,"Value of Rf in k ohm");
+disp(R1,"Value of R1 in k ohm");
diff --git a/1850/CH5/EX5.12/exa_5_12.sce b/1850/CH5/EX5.12/exa_5_12.sce
new file mode 100755
index 000000000..a08f45a4a
--- /dev/null
+++ b/1850/CH5/EX5.12/exa_5_12.sce
@@ -0,0 +1,19 @@
+// Exa 5.12
+clear;
+clc;
+close;
+//Given Data :
+R=40*1000;//in ohm(assumed)
+C=0.2*10^-6;//IN FARAD
+Vout=3;//in Volt
+V1=Vout;//in Volt
+V2=Vout;//in Volt
+t1=0.0001:50;//in msec
+t1=t1*10^-3;//in sec
+vout=-1/R/C*integrate('2','t',0,t1)+Vout;
+t1=0.0001:50;//in msec
+plot(t1,vout);
+title("Output Voltage");
+xlabel("Time in MilliSecond");
+ylabel("Output Voltage in Volts");
+disp("Assuming Ideal op-amp, sketch for Vout is shown in figure.");
diff --git a/1850/CH5/EX5.13/exa_5_13.sce b/1850/CH5/EX5.13/exa_5_13.sce
new file mode 100755
index 000000000..027a77c99
--- /dev/null
+++ b/1850/CH5/EX5.13/exa_5_13.sce
@@ -0,0 +1,18 @@
+// Exa 5.13
+clc;
+clear;
+close;
+// Given data
+R=50;// in k ohm
+R=R*10^3;// in ohm
+C=2;// in micro F
+C=C*10^-6;// in F
+f=2;// in kHz
+f=f*10^3;// in Hz
+Vmax= 10;// in micro volt
+CR= C*R;
+v_in= 'Vmax*sind(2*%pi*f*t)'
+v_in= '10*sind(4000*%pi*t)';// in micro volt
+// v_out= -CR*diff(v_in) = -0.1*10*diff(sind(4000*%pi*t))// in micro volt
+disp("Output Voltage")
+disp("12.56 cos(4000*pi*t)")
diff --git a/1850/CH5/EX5.14/exa_5_14.sce b/1850/CH5/EX5.14/exa_5_14.sce
new file mode 100755
index 000000000..f8e281110
--- /dev/null
+++ b/1850/CH5/EX5.14/exa_5_14.sce
@@ -0,0 +1,32 @@
+// Exa 5.14
+clc;
+clear;
+close;
+// Given data
+fa= 1;// in kHz
+fa=fa*10^3;// in Hz
+Vp=1.5;// in volt
+f= 200;// in Hz
+C=0.1;// in micro F
+C=C*10^-6;// in F
+R= 1/(2*%pi*fa*C);// in ohm
+R=R*10^-3;// in k ohm
+R=floor(R*10)/10;// in k ohm
+fb= 20*fa;// in Hz
+R_desh= 1/(2*%pi*fb*C);// in ohm
+// Let
+R_desh= 82;// in ohm
+R_OM= R;// in k ohm
+disp(R_OM,"Value of R_OM in k ohm")
+CR= C*R;
+// Vin= Vp*sin(omega*t)= 1.5*sin(400*t)
+// v_out= -CR*diff(v_in) = -0.2827 Cos(400*%pi*t)// in micro volt
+disp("Output Voltage")
+disp("-0.2827 Cos(400*%pi*t)");
+t=-1/800:0.00001:1/200;//
+v_out=-0.2827*cos(400*%pi*t)// in micro volt
+plot(t,v_out);
+title("Output Voltage Waveform");
+xlabel("Time in ms");
+ylabel("Vout in Volts");
+disp("Output Voltage waveform is shown in figure.")
diff --git a/1850/CH5/EX5.15/exa_5_15.sce b/1850/CH5/EX5.15/exa_5_15.sce
new file mode 100755
index 000000000..c61fb05eb
--- /dev/null
+++ b/1850/CH5/EX5.15/exa_5_15.sce
@@ -0,0 +1,31 @@
+// Exa 5.15
+clc;
+clear;
+close;
+// Given data
+fa= 1;// in kHz
+fa=fa*10^3;// in Hz
+Vp=1.5;// in volt
+C=0.1;// in micro F
+C=C*10^-6;// in F
+// Part (a)
+R= 1/(2*%pi*fa*C);// in ohm
+R=R*10^-3;// in k ohm
+R=floor(R*10)/10;// in k ohm
+fb= 20*fa;// in Hz
+R_desh= 1/(2*%pi*fb*C);// in ohm
+// Let
+R_desh= 82;// in ohm
+R_OM= R;// in k ohm
+disp(R_OM,"Value of R_OM in k ohm")
+
+// Part(b)
+// given data
+Vp=1.5;// in volt
+f= 200;// in Hz
+// v_in= Vp*sin(omega*t) = sin(2*%pi*f*t) = sin(2000*omega*t)
+// v_out= -CR*diff(v_in) = -0.942 Cos(2000*%pi*t)// in micro volt
+disp("Output Voltage")
+disp("-0.942 Cos(2000*%pi*t)")
+
+
diff --git a/1850/CH5/EX5.2/exa_5_2.sce b/1850/CH5/EX5.2/exa_5_2.sce
new file mode 100755
index 000000000..348bbb48c
--- /dev/null
+++ b/1850/CH5/EX5.2/exa_5_2.sce
@@ -0,0 +1,14 @@
+// Exa 5.2
+clc;
+clear;
+close;
+// Given data
+Rf= 12;// in k ohm
+Rs1= 12;// in k ohm
+Rs2= 2;// in k ohm
+Rs3= 3;// in k ohm
+Vi1= 9;// in volt
+Vi2= -3;// in volt
+Vi3= -1;// in volt
+Vout= -Rf*[Vi1/Rs1+Vi2/Rs2+Vi3/Rs3];// in volt
+disp(Vout,"Output voltage in volt");
diff --git a/1850/CH5/EX5.3/exa_5_3.sce b/1850/CH5/EX5.3/exa_5_3.sce
new file mode 100755
index 000000000..2287c0fcf
--- /dev/null
+++ b/1850/CH5/EX5.3/exa_5_3.sce
@@ -0,0 +1,19 @@
+// Exa 5.3
+clc;
+clear;
+close;
+// Given expression Vout= -2*V1+3*V2+4*V3
+// For an operational amplifier
+// Vout= -Rf*[V1/R1+V2/R2+V3/R3]
+// Compare the above expression with the given expression for the output
+r_1=2;// value of Rf/R1
+r_2=3;// value of Rf/R2
+r_3=4;// value of Rf/R3
+// Resistance R3 will be minimum value of 10 k ohm
+R3=10;// in k ohm
+Rf= r_3*R3;// in k ohm
+R2= Rf/r_2;// in k ohm
+R1= Rf/r_1;// in k ohm
+disp(Rf,"Value of Rf in k ohm");
+disp(R2,"Value of R2 in k ohm");
+disp(R1,"Value of R1 in k ohm");
diff --git a/1850/CH5/EX5.4/exa_5_4.sce b/1850/CH5/EX5.4/exa_5_4.sce
new file mode 100755
index 000000000..18a27f27e
--- /dev/null
+++ b/1850/CH5/EX5.4/exa_5_4.sce
@@ -0,0 +1,17 @@
+// Exa 5.4
+clc;
+clear;
+close;
+// Given data
+V1= 2;// in volt
+V2= -1;// in volt
+// Let R1= (R||R)/(R+(R||R))= (R/2)/(R+R/2) = 1/3
+R1=1/3;
+Vs1= V1*R1;// in volt
+// Let R2= (1+Rf/R)= (1+2*R/R)= 3
+R2= 3;
+Vo_desh= Vs1*R2;// in volt
+Vs2= V2*R1;// in volt
+Vo_doubleDesh= Vs2*R2;// in volt
+V_out= Vo_desh+Vo_doubleDesh;// in volt
+disp(V_out,"Output voltage in volt")
diff --git a/1850/CH5/EX5.5/exa_5_5.sce b/1850/CH5/EX5.5/exa_5_5.sce
new file mode 100755
index 000000000..bbcd58398
--- /dev/null
+++ b/1850/CH5/EX5.5/exa_5_5.sce
@@ -0,0 +1,12 @@
+// Exa 5.5
+clc;
+clear;
+close;
+// Given expression Vout= 10*(V2-V1)
+// For a differential amplifier circuit
+// Vout= Rf/R*(V2-V1)
+// Compare the above expression with the given expression for the output, we have
+RfbyR= 10;
+R=10;// minimum value of resistancce to be used in kohm
+Rf= RfbyR * R;// in k ohm
+disp(Rf,"Value of Rf in k ohm");
diff --git a/1850/CH5/EX5.6/exa_5_6.sce b/1850/CH5/EX5.6/exa_5_6.sce
new file mode 100755
index 000000000..a8a2dc352
--- /dev/null
+++ b/1850/CH5/EX5.6/exa_5_6.sce
@@ -0,0 +1,12 @@
+// Exa 5.6
+clc;
+clear;
+close;
+// Given data
+R= 10;// in k ohm
+Rp= 1;// in k ohm
+// Let R1= (1+2*R/Rp)
+R1= (1+2*R/Rp);
+// output voltage, V5= R1*(V2-V1)
+disp("Output voltage in volt is : "+string(R1)+"*(V2-V1)");
+
diff --git a/1850/CH5/EX5.7/exa_5_7.sce b/1850/CH5/EX5.7/exa_5_7.sce
new file mode 100755
index 000000000..5cbaa7b1c
--- /dev/null
+++ b/1850/CH5/EX5.7/exa_5_7.sce
@@ -0,0 +1,31 @@
+// Exa 5.7
+clc;
+clear;
+close;
+// Given data
+R1= 50;// in kohm
+// Let us choose
+R3= 15;// in k ohm
+R4= R3;
+// Ad= 1+2*R2/R1 (i)
+// Ad= ((1+2*R2/R1)*(V2-V1))/(V2-V1)= 1+2*R2/R1
+// For minimum differential voltage gain
+Ad_min=5;
+Ad= Ad_min;
+R1_max= R1;// since Ad will be minimum only when R1 will be maximum
+// Putting values of Ad and R1 in eq(i)
+R2= (Ad-1)*R1/2;// in k ohm
+// For maximum differential voltage gain
+Ad_max=200;
+Ad= Ad_min;
+// Putting values of Ad and R2 in eq(i)
+R1= 2*R2/(Ad-1);// in k ohm
+R1=floor(R1);
+// For maximum value of Ad, R1 will have minimum value , therefore
+R1_min= 1;// in kohm
+disp("Value of R1_min is : "+string(R1_min)+" k ohm");
+disp("Value of R1 is : "+string(R1)+"-50 k ohm");
+disp("Value of R2 is : "+string(R2)+" k ohm");
+disp("Value of R3 is : "+string(R3)+" k ohm");
+disp("Value of R4 is : "+string(R4)+" k ohm");
+
diff --git a/1850/CH5/EX5.9/exa_5_9.sce b/1850/CH5/EX5.9/exa_5_9.sce
new file mode 100755
index 000000000..ea641d88c
--- /dev/null
+++ b/1850/CH5/EX5.9/exa_5_9.sce
@@ -0,0 +1,17 @@
+// Exa 5.9
+clc;
+clear;
+close;
+// Given data
+R=50;// in k ohm
+R=R*10^3;// in ohm
+C=2;// in micro F
+C=C*10^-6;// in F
+f=2;// in kHz
+f=f*10^3;// in Hz
+Vrms= 10;// in mV
+RC= R*C;
+// v_out= -1/(RC)*integrate('sqrt(2)*10*sind(4000*%pi*t)','t',0,t)= 0.0113*(cosd(4000*t)-1) in mV
+disp("Output voltage in mV is : 0.0113*(cosd(4000*t)-1)")
+
+