From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 1850/CH5/EX5.1/exa_5_1.sce | 30 ++++++++++++++++++++++++++++++ 1850/CH5/EX5.10/exa_5_10.sce | 18 ++++++++++++++++++ 1850/CH5/EX5.11/exa_5_11.sce | 20 ++++++++++++++++++++ 1850/CH5/EX5.12/exa_5_12.sce | 19 +++++++++++++++++++ 1850/CH5/EX5.13/exa_5_13.sce | 18 ++++++++++++++++++ 1850/CH5/EX5.14/exa_5_14.sce | 32 ++++++++++++++++++++++++++++++++ 1850/CH5/EX5.15/exa_5_15.sce | 31 +++++++++++++++++++++++++++++++ 1850/CH5/EX5.2/exa_5_2.sce | 14 ++++++++++++++ 1850/CH5/EX5.3/exa_5_3.sce | 19 +++++++++++++++++++ 1850/CH5/EX5.4/exa_5_4.sce | 17 +++++++++++++++++ 1850/CH5/EX5.5/exa_5_5.sce | 12 ++++++++++++ 1850/CH5/EX5.6/exa_5_6.sce | 12 ++++++++++++ 1850/CH5/EX5.7/exa_5_7.sce | 31 +++++++++++++++++++++++++++++++ 1850/CH5/EX5.9/exa_5_9.sce | 17 +++++++++++++++++ 14 files changed, 290 insertions(+) create mode 100755 1850/CH5/EX5.1/exa_5_1.sce create mode 100755 1850/CH5/EX5.10/exa_5_10.sce create mode 100755 1850/CH5/EX5.11/exa_5_11.sce create mode 100755 1850/CH5/EX5.12/exa_5_12.sce create mode 100755 1850/CH5/EX5.13/exa_5_13.sce create mode 100755 1850/CH5/EX5.14/exa_5_14.sce create mode 100755 1850/CH5/EX5.15/exa_5_15.sce create mode 100755 1850/CH5/EX5.2/exa_5_2.sce create mode 100755 1850/CH5/EX5.3/exa_5_3.sce create mode 100755 1850/CH5/EX5.4/exa_5_4.sce create mode 100755 1850/CH5/EX5.5/exa_5_5.sce create mode 100755 1850/CH5/EX5.6/exa_5_6.sce create mode 100755 1850/CH5/EX5.7/exa_5_7.sce create mode 100755 1850/CH5/EX5.9/exa_5_9.sce (limited to '1850/CH5') diff --git a/1850/CH5/EX5.1/exa_5_1.sce b/1850/CH5/EX5.1/exa_5_1.sce new file mode 100755 index 000000000..5fc37c4e7 --- /dev/null +++ b/1850/CH5/EX5.1/exa_5_1.sce @@ -0,0 +1,30 @@ +// Exa 5.1 +clc; +clear; +close; +// Given data +fo= 15;// in kHz +fo= fo*10^3;// in Hz +C=0.01;// in micro F +C=C*10^-6;// in F +L= 1/(4*%pi^2*fo^2*C);// in H +L=ceil(L*10^3);// in mH +// Let L be of 12 mH and internal resistance 30 ohm +R=30;// internal resistance in ohm +XL= 2*%pi*L*10^-3*fo; +Q= XL/R; +R_P= Q^2*R;// in ohm +// If +R1=100;// in ohm +// Formula L= R_f*R_P/(R1*(R_f+R_P)); +R_f= R1*L*R_P/(R_P-R1*L);// in ohm +R_f=R_f*10^3;// in kohm +R_f= 1.2;// in k ohm (Standard value) +disp("The values of component chosen are:-"); +disp(L,"Value of L in mH") +disp(C*10^6,"Value of C in micro F") +disp(R_f,"Value of L in k ohm") +disp(R1,"Value of L in ohm") + + + diff --git a/1850/CH5/EX5.10/exa_5_10.sce b/1850/CH5/EX5.10/exa_5_10.sce new file mode 100755 index 000000000..6f418eee4 --- /dev/null +++ b/1850/CH5/EX5.10/exa_5_10.sce @@ -0,0 +1,18 @@ +// Exa 5.10 +clc; +clear; +close; +// Given data +Vin= 10;// in volt +R=2.2;// in k ohm +R=R*10^3;//in ohm +Ad=10^5;// voltage gain +T= 1;// in ms +T=T*10^-3;// in second +C=1;// in micro F +C=C*10^-6;// in F +I= Vin/R;// in volt +V= I*T/C;// in V +disp(V,"The output voltage at the end of the pulse in volt"); +RC_desh= R*C*Ad; +disp(RC_desh,"The closed-loop time constant in second is"); diff --git a/1850/CH5/EX5.11/exa_5_11.sce b/1850/CH5/EX5.11/exa_5_11.sce new file mode 100755 index 000000000..f4c1e7a29 --- /dev/null +++ b/1850/CH5/EX5.11/exa_5_11.sce @@ -0,0 +1,20 @@ +// Exa 5.11 +clc; +clear; +close; +// Given data +C=0.01;// in micro F +C=C*10^-6;// in F +omega= 10000;// in rad/second +// Vout/V1= (Rf/R1)/(1+s*C*Rf) +// substituting s= j*omega we have +// Vout/V1 = (Rf/R1)/sqrt((omega*C*Rf)^2+1) +// At omega=0 +// Vout/V1= Rf/R1 +// Formula omega= 1/(C*Rf) +Rf= 1/(C*omega);// in ohm +Rf= Rf*10^-3;// in k ohm +// 20*log10(Rf/R1) = 20 +R1= Rf/10;// in k ohm +disp(Rf,"Value of Rf in k ohm"); +disp(R1,"Value of R1 in k ohm"); diff --git a/1850/CH5/EX5.12/exa_5_12.sce b/1850/CH5/EX5.12/exa_5_12.sce new file mode 100755 index 000000000..a08f45a4a --- /dev/null +++ b/1850/CH5/EX5.12/exa_5_12.sce @@ -0,0 +1,19 @@ +// Exa 5.12 +clear; +clc; +close; +//Given Data : +R=40*1000;//in ohm(assumed) +C=0.2*10^-6;//IN FARAD +Vout=3;//in Volt +V1=Vout;//in Volt +V2=Vout;//in Volt +t1=0.0001:50;//in msec +t1=t1*10^-3;//in sec +vout=-1/R/C*integrate('2','t',0,t1)+Vout; +t1=0.0001:50;//in msec +plot(t1,vout); +title("Output Voltage"); +xlabel("Time in MilliSecond"); +ylabel("Output Voltage in Volts"); +disp("Assuming Ideal op-amp, sketch for Vout is shown in figure."); diff --git a/1850/CH5/EX5.13/exa_5_13.sce b/1850/CH5/EX5.13/exa_5_13.sce new file mode 100755 index 000000000..027a77c99 --- /dev/null +++ b/1850/CH5/EX5.13/exa_5_13.sce @@ -0,0 +1,18 @@ +// Exa 5.13 +clc; +clear; +close; +// Given data +R=50;// in k ohm +R=R*10^3;// in ohm +C=2;// in micro F +C=C*10^-6;// in F +f=2;// in kHz +f=f*10^3;// in Hz +Vmax= 10;// in micro volt +CR= C*R; +v_in= 'Vmax*sind(2*%pi*f*t)' +v_in= '10*sind(4000*%pi*t)';// in micro volt +// v_out= -CR*diff(v_in) = -0.1*10*diff(sind(4000*%pi*t))// in micro volt +disp("Output Voltage") +disp("12.56 cos(4000*pi*t)") diff --git a/1850/CH5/EX5.14/exa_5_14.sce b/1850/CH5/EX5.14/exa_5_14.sce new file mode 100755 index 000000000..f8e281110 --- /dev/null +++ b/1850/CH5/EX5.14/exa_5_14.sce @@ -0,0 +1,32 @@ +// Exa 5.14 +clc; +clear; +close; +// Given data +fa= 1;// in kHz +fa=fa*10^3;// in Hz +Vp=1.5;// in volt +f= 200;// in Hz +C=0.1;// in micro F +C=C*10^-6;// in F +R= 1/(2*%pi*fa*C);// in ohm +R=R*10^-3;// in k ohm +R=floor(R*10)/10;// in k ohm +fb= 20*fa;// in Hz +R_desh= 1/(2*%pi*fb*C);// in ohm +// Let +R_desh= 82;// in ohm +R_OM= R;// in k ohm +disp(R_OM,"Value of R_OM in k ohm") +CR= C*R; +// Vin= Vp*sin(omega*t)= 1.5*sin(400*t) +// v_out= -CR*diff(v_in) = -0.2827 Cos(400*%pi*t)// in micro volt +disp("Output Voltage") +disp("-0.2827 Cos(400*%pi*t)"); +t=-1/800:0.00001:1/200;// +v_out=-0.2827*cos(400*%pi*t)// in micro volt +plot(t,v_out); +title("Output Voltage Waveform"); +xlabel("Time in ms"); +ylabel("Vout in Volts"); +disp("Output Voltage waveform is shown in figure.") diff --git a/1850/CH5/EX5.15/exa_5_15.sce b/1850/CH5/EX5.15/exa_5_15.sce new file mode 100755 index 000000000..c61fb05eb --- /dev/null +++ b/1850/CH5/EX5.15/exa_5_15.sce @@ -0,0 +1,31 @@ +// Exa 5.15 +clc; +clear; +close; +// Given data +fa= 1;// in kHz +fa=fa*10^3;// in Hz +Vp=1.5;// in volt +C=0.1;// in micro F +C=C*10^-6;// in F +// Part (a) +R= 1/(2*%pi*fa*C);// in ohm +R=R*10^-3;// in k ohm +R=floor(R*10)/10;// in k ohm +fb= 20*fa;// in Hz +R_desh= 1/(2*%pi*fb*C);// in ohm +// Let +R_desh= 82;// in ohm +R_OM= R;// in k ohm +disp(R_OM,"Value of R_OM in k ohm") + +// Part(b) +// given data +Vp=1.5;// in volt +f= 200;// in Hz +// v_in= Vp*sin(omega*t) = sin(2*%pi*f*t) = sin(2000*omega*t) +// v_out= -CR*diff(v_in) = -0.942 Cos(2000*%pi*t)// in micro volt +disp("Output Voltage") +disp("-0.942 Cos(2000*%pi*t)") + + diff --git a/1850/CH5/EX5.2/exa_5_2.sce b/1850/CH5/EX5.2/exa_5_2.sce new file mode 100755 index 000000000..348bbb48c --- /dev/null +++ b/1850/CH5/EX5.2/exa_5_2.sce @@ -0,0 +1,14 @@ +// Exa 5.2 +clc; +clear; +close; +// Given data +Rf= 12;// in k ohm +Rs1= 12;// in k ohm +Rs2= 2;// in k ohm +Rs3= 3;// in k ohm +Vi1= 9;// in volt +Vi2= -3;// in volt +Vi3= -1;// in volt +Vout= -Rf*[Vi1/Rs1+Vi2/Rs2+Vi3/Rs3];// in volt +disp(Vout,"Output voltage in volt"); diff --git a/1850/CH5/EX5.3/exa_5_3.sce b/1850/CH5/EX5.3/exa_5_3.sce new file mode 100755 index 000000000..2287c0fcf --- /dev/null +++ b/1850/CH5/EX5.3/exa_5_3.sce @@ -0,0 +1,19 @@ +// Exa 5.3 +clc; +clear; +close; +// Given expression Vout= -2*V1+3*V2+4*V3 +// For an operational amplifier +// Vout= -Rf*[V1/R1+V2/R2+V3/R3] +// Compare the above expression with the given expression for the output +r_1=2;// value of Rf/R1 +r_2=3;// value of Rf/R2 +r_3=4;// value of Rf/R3 +// Resistance R3 will be minimum value of 10 k ohm +R3=10;// in k ohm +Rf= r_3*R3;// in k ohm +R2= Rf/r_2;// in k ohm +R1= Rf/r_1;// in k ohm +disp(Rf,"Value of Rf in k ohm"); +disp(R2,"Value of R2 in k ohm"); +disp(R1,"Value of R1 in k ohm"); diff --git a/1850/CH5/EX5.4/exa_5_4.sce b/1850/CH5/EX5.4/exa_5_4.sce new file mode 100755 index 000000000..18a27f27e --- /dev/null +++ b/1850/CH5/EX5.4/exa_5_4.sce @@ -0,0 +1,17 @@ +// Exa 5.4 +clc; +clear; +close; +// Given data +V1= 2;// in volt +V2= -1;// in volt +// Let R1= (R||R)/(R+(R||R))= (R/2)/(R+R/2) = 1/3 +R1=1/3; +Vs1= V1*R1;// in volt +// Let R2= (1+Rf/R)= (1+2*R/R)= 3 +R2= 3; +Vo_desh= Vs1*R2;// in volt +Vs2= V2*R1;// in volt +Vo_doubleDesh= Vs2*R2;// in volt +V_out= Vo_desh+Vo_doubleDesh;// in volt +disp(V_out,"Output voltage in volt") diff --git a/1850/CH5/EX5.5/exa_5_5.sce b/1850/CH5/EX5.5/exa_5_5.sce new file mode 100755 index 000000000..bbcd58398 --- /dev/null +++ b/1850/CH5/EX5.5/exa_5_5.sce @@ -0,0 +1,12 @@ +// Exa 5.5 +clc; +clear; +close; +// Given expression Vout= 10*(V2-V1) +// For a differential amplifier circuit +// Vout= Rf/R*(V2-V1) +// Compare the above expression with the given expression for the output, we have +RfbyR= 10; +R=10;// minimum value of resistancce to be used in kohm +Rf= RfbyR * R;// in k ohm +disp(Rf,"Value of Rf in k ohm"); diff --git a/1850/CH5/EX5.6/exa_5_6.sce b/1850/CH5/EX5.6/exa_5_6.sce new file mode 100755 index 000000000..a8a2dc352 --- /dev/null +++ b/1850/CH5/EX5.6/exa_5_6.sce @@ -0,0 +1,12 @@ +// Exa 5.6 +clc; +clear; +close; +// Given data +R= 10;// in k ohm +Rp= 1;// in k ohm +// Let R1= (1+2*R/Rp) +R1= (1+2*R/Rp); +// output voltage, V5= R1*(V2-V1) +disp("Output voltage in volt is : "+string(R1)+"*(V2-V1)"); + diff --git a/1850/CH5/EX5.7/exa_5_7.sce b/1850/CH5/EX5.7/exa_5_7.sce new file mode 100755 index 000000000..5cbaa7b1c --- /dev/null +++ b/1850/CH5/EX5.7/exa_5_7.sce @@ -0,0 +1,31 @@ +// Exa 5.7 +clc; +clear; +close; +// Given data +R1= 50;// in kohm +// Let us choose +R3= 15;// in k ohm +R4= R3; +// Ad= 1+2*R2/R1 (i) +// Ad= ((1+2*R2/R1)*(V2-V1))/(V2-V1)= 1+2*R2/R1 +// For minimum differential voltage gain +Ad_min=5; +Ad= Ad_min; +R1_max= R1;// since Ad will be minimum only when R1 will be maximum +// Putting values of Ad and R1 in eq(i) +R2= (Ad-1)*R1/2;// in k ohm +// For maximum differential voltage gain +Ad_max=200; +Ad= Ad_min; +// Putting values of Ad and R2 in eq(i) +R1= 2*R2/(Ad-1);// in k ohm +R1=floor(R1); +// For maximum value of Ad, R1 will have minimum value , therefore +R1_min= 1;// in kohm +disp("Value of R1_min is : "+string(R1_min)+" k ohm"); +disp("Value of R1 is : "+string(R1)+"-50 k ohm"); +disp("Value of R2 is : "+string(R2)+" k ohm"); +disp("Value of R3 is : "+string(R3)+" k ohm"); +disp("Value of R4 is : "+string(R4)+" k ohm"); + diff --git a/1850/CH5/EX5.9/exa_5_9.sce b/1850/CH5/EX5.9/exa_5_9.sce new file mode 100755 index 000000000..ea641d88c --- /dev/null +++ b/1850/CH5/EX5.9/exa_5_9.sce @@ -0,0 +1,17 @@ +// Exa 5.9 +clc; +clear; +close; +// Given data +R=50;// in k ohm +R=R*10^3;// in ohm +C=2;// in micro F +C=C*10^-6;// in F +f=2;// in kHz +f=f*10^3;// in Hz +Vrms= 10;// in mV +RC= R*C; +// v_out= -1/(RC)*integrate('sqrt(2)*10*sind(4000*%pi*t)','t',0,t)= 0.0113*(cosd(4000*t)-1) in mV +disp("Output voltage in mV is : 0.0113*(cosd(4000*t)-1)") + + -- cgit