summaryrefslogtreecommitdiff
path: root/1808/CH6
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:27:19 +0530
committerprashantsinalkar2017-10-10 12:27:19 +0530
commit7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch)
treedbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /1808/CH6
parentb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff)
downloadScilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip
initial commit / add all books
Diffstat (limited to '1808/CH6')
-rw-r--r--1808/CH6/EX6.1/Chapter6_Exampl1.sce17
-rw-r--r--1808/CH6/EX6.10/Chapter6_Exampl10.sce75
-rw-r--r--1808/CH6/EX6.11/Chapter6_Exampl11.sce29
-rw-r--r--1808/CH6/EX6.12/Chapter6_Exampl12.sce46
-rw-r--r--1808/CH6/EX6.13/Chapter6_Exampl13.sce40
-rw-r--r--1808/CH6/EX6.14/Chapter6_Exampl14.sce38
-rw-r--r--1808/CH6/EX6.15/Chapter6_Exampl15.sce42
-rw-r--r--1808/CH6/EX6.16/Chapter6_Exampl16.sce45
-rw-r--r--1808/CH6/EX6.2/Chapter6_Exampl2.sce16
-rw-r--r--1808/CH6/EX6.3/Chapter6_Exampl3.sce17
-rw-r--r--1808/CH6/EX6.4/Chapter6_Exampl4.sce36
-rw-r--r--1808/CH6/EX6.5/Chapter6_Exampl5.sce31
-rw-r--r--1808/CH6/EX6.6/Chapter6_Exampl6.sce37
-rw-r--r--1808/CH6/EX6.7/Chapter6_Exampl7.sce40
-rw-r--r--1808/CH6/EX6.8/Chapter6_Exampl8.sce46
-rw-r--r--1808/CH6/EX6.9/Chapter6_Exampl9.sce52
16 files changed, 607 insertions, 0 deletions
diff --git a/1808/CH6/EX6.1/Chapter6_Exampl1.sce b/1808/CH6/EX6.1/Chapter6_Exampl1.sce
new file mode 100644
index 000000000..874963d77
--- /dev/null
+++ b/1808/CH6/EX6.1/Chapter6_Exampl1.sce
@@ -0,0 +1,17 @@
+clc
+clear
+//INPUT DATA
+Tmin=263;//lower temperature in K
+Tmax=322;//Higher temperature of refrigerant in K
+Re=10;//capacity in tonnes
+
+
+//CALCULATIONS
+COP=(Tmin/(Tmax-Tmin));//COP
+WD=(Re*210)/(60*COP)*3600;//workdone in kJ/s
+P=WD/3600;//Power required
+Q=(Re*210*60)+WD;//Heat rejected fro the system per hour
+
+//OUTPUT
+printf('(i)COP is %3.2f \n (ii)Heat rejected from the system per hour is %3.1f kJ/hr \n (iii)Power required is %3.3f kW',COP,Q,P)
+
diff --git a/1808/CH6/EX6.10/Chapter6_Exampl10.sce b/1808/CH6/EX6.10/Chapter6_Exampl10.sce
new file mode 100644
index 000000000..feba4ba78
--- /dev/null
+++ b/1808/CH6/EX6.10/Chapter6_Exampl10.sce
@@ -0,0 +1,75 @@
+clc
+clear
+//INPUT DATA
+cp1=1.00;//specific entropy in kJ/kgK
+cpv=0.733;//specific entropy in kJ/kgK
+t21=303;//condenser temperature in K
+t1=265;//evaporator temperature in K
+t31=293;//subcooled temperature in K
+p1=2.354;//pressure in Bar
+p2=7.451;//pressure in Bar
+hf1=28.72;//enthalpy in kJ/kg
+hg1=184.07;//enthalpy in kJ/kg
+hf2=64.59;//enthalpy in kJ/kg
+hg2=199.62;//enthalpy in kJ/kg
+sf1=0.1149;//entropy in kJ/kgK
+sf2=0.24;//entropy in kJ/kgK
+sg1=0.7007;//entropy in kJ/kgK
+sg2=0.6853;//entropy in kJ/kgK
+vg1=0.079;//entropy in kJ/kgK
+vg2=0.0235;//entropy in kJ/kgK
+v1b=0.772;//entropy in kJ/kgK
+t2=309.43;//temperature in K
+
+//CALCULATIONS
+//(i)WET COMPRESSION
+x=((sg2-sf1)/(sg1-sf1));//fraction
+h1b=hf1+x*(hg1-hf1);//enthalpy in kJ/kg
+h2=hg2+cpv*(t2-t21);//enthalpy in kJ/kg
+s1a=sg1+cpv*log(271/t1);//entropy in kJ/kgK
+t2a=(s1a-sg1)/(cpv*t21);//temperature in K
+h2a=hg2+cpv*(t2a-t21);//enthalpy in kJ/kg
+h1a=hg1+cpv*(271-t1);//enthalpy in kJ/kg
+h31=hf2-cpv*(t21-298);//enthalpy in kJ/kg
+Re1=h1b-hf2;//Refrigeration effect in wet condition
+Re2=hg1-hf2;//Refrigeration effect in wet condition
+Re3=h1b-hf2;//Refrigeration effect in wet condition
+Re4=hg1-hf2;//Refrigeration effect in wet condition
+wn1=hg2-h1b;//net workdone in kJ/kg
+wn2=h2-hg1;//net workdone in kJ/kg
+wn3=h2a-hg1;//net workdone in kJ/kg
+wn4=h2-hg1;//net workdone in kJ/kg
+cop1=Re1/wn1;//COP
+cop2=Re2/wn2;//COP
+cop3=Re3/wn3;//COP
+cop4=Re4/wn4;//COP
+m1=2100/Re1;//mass flow rate
+m2=2100/Re2;//mass flow rate
+m3=2100/Re3;//mass flow rate
+m4=2100/Re4;//mass flow rate
+P1=m1*wn1/60;//Power in kW
+P2=m2*wn2/60;//Power in kW
+P3=m3*wn3/60;//Power in kW
+P4=m4*wn4/60;//Power in kW
+Pt1=P1/10;//Power per TR
+Pt2=P2/10;//Power per TR
+Pt3=P3/10;//Power per TR
+Pt4=P4/10;//Power per TR
+d1=((m1*v1b/0.00084883)^(1/3))/100;//displacement in m
+d2=((m2*vg1/0.00084883)^(1/3))/100;//displacement in m
+d3=((m3*vg1/0.00084883)^(1/3))/100;//displacement in m
+d4=((m4*vg1/0.00084883)^(1/3))/100;//displacement in m
+l1=1.5*d1;//stroke in m
+l2=1.5*d2;//stroke in m
+l3=1.5*d3;//stroke in m
+l4=1.5*d4;//stroke in m
+
+
+//OUTPUT
+printf('((i)WET COMPRESSION \n (a)cop is %3.2f \n (b)The power is %3.3f kW/TR \n (c)Bore is %3.5f m \n stroke is %3.4f m \n (d)mass flow rate of refrigerant is %3.1f kg/min \n',cop1,P1,d1,l1,m1)
+
+printf('((ii)DRY COMPRESSION \n (a)cop is %3.2f \n (b)The power is %3.3f kW/TR \n (c)Bore is %3.5f m \n stroke is %3.4f m \n (d)mass flow rate of refrigerant is %3.1f kg/min \n',cop2,P2,d2,l2,m2)
+
+printf('((iii)SUPERHEATED \n (a)cop is %3.2f \n (b)The power is %3.3f kW/TR \n (c)Bore is %3.5f m \n stroke is %3.4f m \n (d)mass flow rate of refrigerant is %3.1f kg/min \n',cop3,P3,d3,l3,m3)
+
+printf('((iv)DRY COMPRESSION AND SUBCOOLED \n (a)cop is %3.2f \n (b)The power is %3.3f kW/TR \n (c)Bore is %3.5f m \n stroke is %3.4f m \n (d)mass flow rate of refrigerant is %3.1f kg/min \n ',cop4,P4,d4,l4,m4)
diff --git a/1808/CH6/EX6.11/Chapter6_Exampl11.sce b/1808/CH6/EX6.11/Chapter6_Exampl11.sce
new file mode 100644
index 000000000..6ba1e062f
--- /dev/null
+++ b/1808/CH6/EX6.11/Chapter6_Exampl11.sce
@@ -0,0 +1,29 @@
+clc
+clear
+//INPUT DATA
+P=11;//Power used to run the compressor in kW
+h1=188.41;//total heat of gas leaving refrigeration in kJ/kg
+h2=213.53;//total heat of gas leaving compressor in kJ/kg
+h4=77.46;//total heat of liquid before throttling in kJ/kg
+
+//CALCULATIONS
+Re=h1-h4;//refrigeration effect
+wd=h2-h1;//work done
+cop=Re/wd;//COP of refrigerant system
+m=P/wd;//mss of refrigerant
+
+//OUTPUT
+printf('(i)COP is %3.3f \n (ii)mass of refrigerant %3.4f kg/s ',cop,m)
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/1808/CH6/EX6.12/Chapter6_Exampl12.sce b/1808/CH6/EX6.12/Chapter6_Exampl12.sce
new file mode 100644
index 000000000..387b835bf
--- /dev/null
+++ b/1808/CH6/EX6.12/Chapter6_Exampl12.sce
@@ -0,0 +1,46 @@
+clc
+clear
+//INPUT DATA
+cp=0.202;//specific pressure in kcal/kg K
+g=1.18;//constant
+t21=303;//condenser temperature in K
+t1=263;//evaporator temperature in K
+t21=313;//subcooled temperature in K
+p1=3.543;//pressure in Bar
+p2=15.335;//pressure in Bar
+hf1=188.4;//enthalpy in kJ/kg
+hg1=401.6;//enthalpy in kJ/kg
+hf2=249.7;//enthalpy in kJ/kg
+hg2=416.6;//enthalpy in kJ/kg
+sf1=0.9573;//entropy in kJ/kgK
+sf2=1.167;//entropy in kJ/kgK
+sg1=1.767;//entropy in kJ/kgK
+sg2=1.699;//entropy in kJ/kgK
+vg1=0.0653;//entropy in kJ/kgK
+vg2=0.0151;//entropy in kJ/kgK
+v1b=0.772;//entropy in kJ/kgK
+hfg1=213.2;//enthalpy in kJ/kg
+hfg2=166.9;//enthalpy in kJ/kg
+vf1=0.759;//sp.volume
+vf2=0.884;//sp.colume
+t22=432.68;//temperature in K
+
+//CALCULATIONS
+t2=t1*((p2/p1)^((g-1)/g));//temperature in K
+v2=vg2*(t2/t21);//sp.volume in m^3/kg
+wc=(g/(g-1))*p1*10^2*vg1*(((p2/p1)^((g-1)/g))-1);//work done in compressor
+h2=hg1+cp*0.202*(t2-t21);//enthalpy in kJ/kg
+Re=hg1-hf2;//Refrigeration effect
+wc1=h2-hg1;//compressor work in kJ/kg
+cop=Re/wc;//COP of the system
+m=(12*210)/(60*Re);//mass of refrigerant in kg/s
+Pc=m*wc;//compressor power
+Pm=Pc/0.75;//Power of the motor in kW
+
+//OUTPUT
+printf('(a)COP of the system is %3.2f \n (b)Mass flow rate oof refrigerant %3.4f kg/s \n (c)Power of the motor is %3.2f kW',cop,m,Pm)
+
+
+
+
+
diff --git a/1808/CH6/EX6.13/Chapter6_Exampl13.sce b/1808/CH6/EX6.13/Chapter6_Exampl13.sce
new file mode 100644
index 000000000..54bee5b1a
--- /dev/null
+++ b/1808/CH6/EX6.13/Chapter6_Exampl13.sce
@@ -0,0 +1,40 @@
+clc
+clear
+//INPUT DATA
+cpv=2.805;//specific pressure in kJ/kg K
+cp1=4.606;//specific pressure in kJ/kg K
+p1=10.01;//pressure in MPa
+p2=1.2;//pressure in MPa
+hf1=298.9;//enthalpy in kJ/kg
+hf2=44.7;//enthalpy in kJ/kg
+hg1=1466;//enthalpy in kJ/kg
+hg2=1406;//enthalpy in kJ/kg
+sf1=1.124;//entropy in kJ/kgK
+sf2=0.188;//entropy in kJ/kgK
+sg1=5.039;//entropy in kJ/kgK
+sg2=5.785;//entropy in kJ/kgK
+vf1=0.128;//volume in m^3/kg
+vf2=0.963;//volume in m^3/kg
+t1=253;//temperature in K
+t11=243.42;//temperature in K
+t21=298;//temperature in K
+t2=404.78;//temperature in K
+t3=293;//temperature in K
+
+//CALCULATIONS
+s1=sg2+cpv*log(t1/t11);//entropy in kJ/kg K
+h1=hg2+cpv*(t1-t11);//enthalpy in kJ/kg
+h2=hg1+cpv*(t2-t21);//enthalpy in kJ/kg
+h3=hf1+cp1*(t21-t3);//enthalpy in kJ/kg
+cop=((h1-h3)/(h2-h1));//COP of the system
+P=1.5*210/(cop*60);//Power of the motor in kW
+
+//OUTPUT
+printf('(a)COP is %3.2f \n (b)Power of the motor is %3.3f kW',cop,P)
+
+
+
+
+
+
+
diff --git a/1808/CH6/EX6.14/Chapter6_Exampl14.sce b/1808/CH6/EX6.14/Chapter6_Exampl14.sce
new file mode 100644
index 000000000..9635931a7
--- /dev/null
+++ b/1808/CH6/EX6.14/Chapter6_Exampl14.sce
@@ -0,0 +1,38 @@
+clc
+clear
+//INPUT DATA
+hf1=100.4;//enthalpy in kJ/kg
+hf2=-54.56;//enthalpy in kJ/kg
+hg1=1319.22;//enthalpy in kJ/kg
+hg2=1304.99;//enthalpy in kJ/kg
+sf1=0.3473;//entropy in kJ/kgK
+sf2=-0.2134;//entropy in kJ/kgK
+sg1=4.4852;//entropy in kJ/kgK
+sg2=5.0585;//entropy in kJ/kgK
+t1=20;//temperature in Degree C
+t2=-15;//temperature in Degree C
+mi=30;//mass of ice
+hfgi=335;//enthalpy in kJ/kg
+cpw=4.1868;//specific pressure of water in kJ/kg K
+
+//CALCULATIONS
+x1=((sg1-sf2)/(sg2-sf2));//fraction
+h1=hf2+x1*(hg2-hf2);//enthalpy in kJ/kg
+copt=((h1-hf1)/(hg1-h1));//COP of the system
+copa=copt*0.6;//actual cop
+Qa=mi*10^3*(cpw*t1+hfgi)/(24*3600);//heat removed from water in kJ/s
+w=Qa/copa;//Power required to drive compressor in kW
+
+//OUTPUT
+printf('power required to drive the compresor i %3.2f kW',w)
+
+
+
+
+
+
+
+
+
+
+
diff --git a/1808/CH6/EX6.15/Chapter6_Exampl15.sce b/1808/CH6/EX6.15/Chapter6_Exampl15.sce
new file mode 100644
index 000000000..0b802384a
--- /dev/null
+++ b/1808/CH6/EX6.15/Chapter6_Exampl15.sce
@@ -0,0 +1,42 @@
+clc
+clear
+//INPUT DATA
+p1=1;//cold chamber pressure in bar
+p2=6;//compressor pressure in bar
+g=1.4;//constant
+t1=278;//temperature in K
+t3=298;//temperature in K
+cp=1.005;//specific pressure
+n1=1.3;//index of compression
+n2=1.35;//index of compresion
+R=0.287;//gas constant
+
+//CALCULATIONS
+t2=t1*((p2/p1)^((g-1)/g));//temperature in K
+t4=t3/((p2/p1)^((g-1)/g));//temperature in K
+Qa=cp*(t1-t4);//Refrigeration effect
+Qr=cp*(t2-t3);//heat rejected to the cooling medium in kJ/kg
+wn=Qr-Qa;//net work done in kJ/kg
+copa=Qa/wn;// actual COP
+t21=t1*((p2/p1)^((n1-1)/n1));//temperature in K
+t41=t3/((p2/p1)^((n2-1)/n2));//temperature in K
+Qa1=cp*(t1-t41);//Refrigeration effect
+wn1=(n1/(n1-1))*R*(t21-t1)-(n2/(n2-1))*R*(t3-t41);//net work done in kJ/kg
+copb=Qa1/wn1;// actual COP
+P1=210/(60*copa);//Power per ton of refrigeration in kW/TR
+m1=210*3600/(60*Qa);//air flow rate in kg/hr
+P2=210/(60*copb);//Power per ton of refrigeration in kW/TR
+m2=210*60/(Qa1);//air flow rate in kg/hr
+
+//OUTPUT
+printf('(a) \n (i)Refrigeration effect is %3.2f kJ/kg \n (ii)heat rejected to the cooling medium is %3.2f kJ/kg \n (iii)COPa %3.3f \n (b) \n (I)Refrigeration effect is %3.2f kJ/kg \n CASE A \n (1)Power per ton of refrigeration is %3.3f kW/TR \n (2)air flow rate is %3.2f kg/hr \n CASE B \n (1)Power per ton of refrigeration is %3.3f kW/TR \n (2)air flow rate is %3.2f kg/hr',Qa,Qr,copa,Qa1,P1,m1,P2,m2)
+
+
+
+
+
+
+
+
+
+
diff --git a/1808/CH6/EX6.16/Chapter6_Exampl16.sce b/1808/CH6/EX6.16/Chapter6_Exampl16.sce
new file mode 100644
index 000000000..2602e7f4b
--- /dev/null
+++ b/1808/CH6/EX6.16/Chapter6_Exampl16.sce
@@ -0,0 +1,45 @@
+clc
+clear
+//INPUT DATA
+t1=293;//temperature in K
+t21=363;//temperature in K
+t3=308;//temperature in K
+t41=273;//temperature in K
+p1=1;//compressor pressure in bar
+p2=2;//turbine pressure in bar
+g=1.4;//constant
+cp=1.005;//specific pressure
+m=1;//mass of air
+N=350;//speed in rpm
+R=0.287;//gas constant
+nv=0.9;//volumetric efficiency in percentage
+
+
+//CALCULATIONS
+t2=t1*((p2/p1)^((g-1)/g));//temperature in K
+nc=(((t2-t1)/(t21-t1)))*100;//compressor efficiency in percentage
+t4=t3*((p1/p2)^((g-1)/g));//temperature in K
+nt=(((t3-t41)/(t3-t4)))*100;//turbine efficiency in percentage
+Qa=cp*(t1-t41);//Refrigeration effect
+m1=30*210/Qa;//mass flow rate of air in kg/min
+wn=cp*(m1/60)*((t21-t1)-(t3-t41));//power input in kW
+cop=Qa*m1/(wn*60);//COP
+v1=m*R*t1/(p1*10^2);//volume in m^3/kg
+vs=v1/nv;//swept volume in m^3/kg
+d=(4*vs/(3.14*1.5*N))^(1/3);//diameter of compressor in m
+l=1.5*d;//compressor length in m
+
+//OUTPUT
+printf('(i)The compressor efficiency is %3.2f percentage \n (ii)Turbine efficiency is %3.2f percentage \n (iii)Refrigeration effect %3.2f kJ/kg \n (iv)power input is %3.2f kW \n (v)COP is %3.3f \n (vi)compressor diameter is %3.4f m \n length %3.3f m',nc,nt,Qa,wn,cop,d,l)
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/1808/CH6/EX6.2/Chapter6_Exampl2.sce b/1808/CH6/EX6.2/Chapter6_Exampl2.sce
new file mode 100644
index 000000000..c128bd3f3
--- /dev/null
+++ b/1808/CH6/EX6.2/Chapter6_Exampl2.sce
@@ -0,0 +1,16 @@
+clc
+clear
+//INPUT DATA
+COP=4;//COP
+WD=20;//workdone of cycle in kW
+
+//CALCULATIONS
+x=1+(1/COP);//Ratio of temperatures
+Re=COP*WD;//Refrigeration effect in kW
+Re1=Re*60;//Refrigeration effect in kJ/min
+Re2=Re1/210;//Refrigeration effect in TR
+Hd=Re+WD;//Heat delivered in kW
+COP1=Hd/WD;//COP of heat pump
+
+//OUTPUT
+printf('(i)Temperature ratio is %3.2f \n (ii)maximum refrigeration effect is %3.2f TR \n (iii)COP of heat pump is %3.2f',x,Re2,COP1)
diff --git a/1808/CH6/EX6.3/Chapter6_Exampl3.sce b/1808/CH6/EX6.3/Chapter6_Exampl3.sce
new file mode 100644
index 000000000..086969a03
--- /dev/null
+++ b/1808/CH6/EX6.3/Chapter6_Exampl3.sce
@@ -0,0 +1,17 @@
+clc
+clear
+//INPUT DATA
+Re=1;//Heat absorbed in Tonns
+WD=1.25*60;//work done in kJ/min
+Tmin=-40;//low tamperature in Degree C
+Ha=210;//heat absorbed in kJ/min
+
+//CALCULATIONS
+COP=(Re*210)/WD;//COP
+Tmax=((273+Tmin)/COP)+Tmin;//High temperature of the cycle
+Hd=Ha+WD;//Heat rejected in kJ/min
+COPh=Hd/WD;COP;// heat pump
+
+
+//OUTPUT
+printf('(i)COP is %3.2f \n (ii)Tmax is %3.2f Degree C \n (iii)Heat rejected is %3.i kJ/min \n (iv)COP of heat pump is %3.1f ',COP,Tmax,Hd,COPh)
diff --git a/1808/CH6/EX6.4/Chapter6_Exampl4.sce b/1808/CH6/EX6.4/Chapter6_Exampl4.sce
new file mode 100644
index 000000000..a71027cd2
--- /dev/null
+++ b/1808/CH6/EX6.4/Chapter6_Exampl4.sce
@@ -0,0 +1,36 @@
+clc
+clear
+//INPUT DATA
+Tmin=-30;//minimuum temperature in Degree C
+Tmax=35;//maximum temperature in Degree C
+S1=0.6839;//entropy in kJ/kgK from properties of R12 TABLES
+S2=0.6893;//entropy in kJ/kgK from properties of R12 TABLES
+S3=0.2559;//entropy in kJ/kgK from properties of R12 TABLES
+S4=0.2559;//entropy in kJ/kgK from properties of R12 TABLES
+S5=0.0371;//entropy in kJ/kgK from properties of R12 TABLES
+S6=0.7171;//entropy in kJ/kgK from properties of R12 TABLES
+h2=201.5;//enthalpy in kJ/kg from properties of R12 TABLES
+h3=69.5;//enthalpy in kJ/kg from properties of R12 TABLES
+h5=8.9;//enthalpy in kJ/kg from properties of R12 TABLES
+h6=174.2;//enthalpy in kJ/kg from properties of R12 TABLES
+Re=1*210;//Ref.capacity
+
+
+//CALCULATIONS
+x1=(S1-S5)/(S6-S5);//ratio fo entropies
+x2=(S4-S5)/(S6-S5);//ratio fo entropies
+h1=h5+x1*(h6-h5);//enthalpy at point 1
+h4=h5+x2*(h6-h5);//enthalpy at point 4
+Wc=h2-h1;//work of compression
+We=h3-h4;//work of expansion
+Qa=h1-h4;//Heat absorbed in kJ/kg
+Qr=h2-h3;//Heat rejected in kJ/kg
+Wn=Wc-We;//net workdone in kJ/kg
+COP=(Qa/Wn);//COP
+COPc=(Tmin+273)/(Tmax-Tmin);//COP Carnot
+COPa=0.75*COPc;//Actual COP
+P=Re/(COPa*60);//Power consumption per ton
+Hr=(210/60)+P;//Heat rejected per ton
+
+//OUTPUT
+printf('(a)work of compression is %3.2f kJ/kg \n work of expansion %3.1f kJ/kg \n Heat rejected is %3.i kJ/kg \n COP is %3.2f \n (b)Power consumption per ton is %3.2f kW \n heat rejected per ton is %3.2f kW',Wc,We,Qr,COP,P,Hr)
diff --git a/1808/CH6/EX6.5/Chapter6_Exampl5.sce b/1808/CH6/EX6.5/Chapter6_Exampl5.sce
new file mode 100644
index 000000000..9013936e3
--- /dev/null
+++ b/1808/CH6/EX6.5/Chapter6_Exampl5.sce
@@ -0,0 +1,31 @@
+clc
+clear
+//INPUT DATA
+tmin=293;//minimum temperature in K
+t3=317;//temperature in K
+m=0.008;//mass flow rate in kg/s
+hf1=54.81;//enthalpy in kJ/kg
+hfg1=140.91;//enthalpy in kJ/kg
+hg1=195.78;//enthalpy in kJ/kg
+hf2=78.68;//enthalpy in kJ/kg
+hfg2=125.87;//enthalpy in kJ/kg
+hg2=204.54;//enthalpy in kJ/kg
+vf1=0.2078;//entropy in kJ/kgK
+vf2=0.2845;//entropy in kJ/kgK
+vg1=0.6884;//entropy in kJ/kgK
+vg2=0.6814;//entropy in kJ/kgK
+t2=320.49;//from t-s diagram temperature in K
+cp=0.64;//specific pressure
+
+//CALCULATIONS
+h2=hg2+cp*(t2-t3);//enthalpy in kJ/kg
+wc=m*(h2-hg1);//compressor work in kJ/s
+Rc=m*(hg1-hf2);//Refrigiration capacity in kW
+Rc1=Rc*60/210;//Refrigiration capacity in TR
+copv=Rc/wc;//COP of VCR system
+copc=(tmin/(t3-tmin));//COP of carnot refrigeration cycle in percentage
+
+//OUTPUT
+printf('(a)The compressive work input is %3.5f kJ/s \n (b)Refrigiration capacity is %3.4f TR \n (c)COPvcr is %3.3f \n (d)COPc is %3.3f',wc,Rc,copv,copc)
+
+
diff --git a/1808/CH6/EX6.6/Chapter6_Exampl6.sce b/1808/CH6/EX6.6/Chapter6_Exampl6.sce
new file mode 100644
index 000000000..1752e8c6b
--- /dev/null
+++ b/1808/CH6/EX6.6/Chapter6_Exampl6.sce
@@ -0,0 +1,37 @@
+clc
+clear
+//INPUT DATA
+t21=335.19;//temperature in K
+t3=343.19;//temperature in K
+cp=0.64;//Specific pressure
+m=0.008;//mass flow rate in kg/s
+p1=4.4962;//pressure in MPa
+p2=1.6;//pressure in MPa
+hf1=47.26;//enthalpy in kJ/kg
+hfg1=145.30;//enthalpy in kJ/kg
+hg1=192.56;//enthalpy in kJ/kg
+hf2=98.19;//enthalpy in kJ/kg
+hfg2=111.62;//enthalpy in kJ/kg
+hg2=209.81;//enthalpy in kJ/kg
+sf1=0.1817;//entropy in kJ/kgK
+sf2=0.6913;//entropy in kJ/kgK
+sg1=0.3329;//entropy in kJ/kgK
+sg2=0.6758;//entropy in kJ/kgK
+t2=343;//from t-s diagram temperature in K
+
+//CALCULATIONS
+h2=hg2+cp*(t2-t3);//enthalpy in kJ/kg
+wc=m*(h2-hg1);//compressor work in kJ/s
+Rc=m*(hg1-hf2);//Refrigiration capacity in kW
+Rc1=Rc*60/210;//Refrigiration capacity in TR
+copv=Rc/wc;//COP of VCR system
+
+//OUTPUT
+printf('(a)The compressive work input is %3.2f kJ/s \n (b)Refrigiration capacity is %3.4f TR \n (c)COPvcr is %3.3f \n',wc,Rc1,copv)
+
+
+
+
+
+
+
diff --git a/1808/CH6/EX6.7/Chapter6_Exampl7.sce b/1808/CH6/EX6.7/Chapter6_Exampl7.sce
new file mode 100644
index 000000000..6fbce78a3
--- /dev/null
+++ b/1808/CH6/EX6.7/Chapter6_Exampl7.sce
@@ -0,0 +1,40 @@
+clc
+clear
+//INPUT DATA
+h2=215;//enthalpy in kJ/kg
+cp1=1.05;//Specific pressure
+nc=0.8;//carnot efficiency in percentage
+h1=192.56;//enthalpy in kJ/kg
+h31=98.19;//enthalpy in kJ/kg
+t3=48;//Temperature in K
+t31=62.19;//Temperature in K
+m=0.008;//mass of air in kg
+h5=47.26;//enthalpy in kJ/kg
+t0=317;//temperature in K
+s3=0.2973;//at superheated table entropy in kJ/kgK
+ha1=209.81;//at superheated table enthalpy in kJ/kg
+sa1=0.6758;//at superheated table enthalpy in kJ/kgK
+ha2=225.34;//at superheated table enthalpy in kJ/kg
+sa2=0.7209;//at superheated table entropy in kJ/kgK
+s2a=0.6984;//at superheated table entropy in kJ/kgK
+s5=0.1857;//at superheated table entropy in kJ/kgK
+
+
+//CALCULATIONS
+h2a=((h2-h1)/nc)+h1;//enthalpy in kJ/kg
+h3=h31-cp1*(t31-t3);//enthalpy in kJ/kg
+wc=m*(h2a-h1);//compressor work in kJ/s
+Rc=m*(h1-h3);//Refrigiration capacity in kW
+Rc1=Rc*60/210;//Refrigiration capacity in TR
+copv=Rc/wc;//COP of VCR system
+x4=((h3-h5)/(h1-h5));//fraction
+s4=s5++x4*(s2a-s5);//at superheated table entropy in kJ/kgK
+ic=m*t0*(s4-s3);//Ireeversibility rate in valve in kW
+
+//OUTPUT
+printf('(a)The compressive work input is %3.5f kJ/s \n (b)Refrigiration capacity is %3.2f TR \n (c)COPvcr is %3.3f \n (d)Ireeversibility rate in valve is %3.4f kW',wc,Rc1,copv,ic)
+
+
+11
+
+
diff --git a/1808/CH6/EX6.8/Chapter6_Exampl8.sce b/1808/CH6/EX6.8/Chapter6_Exampl8.sce
new file mode 100644
index 000000000..548b1e66b
--- /dev/null
+++ b/1808/CH6/EX6.8/Chapter6_Exampl8.sce
@@ -0,0 +1,46 @@
+clc
+clear
+//INPUT DATA
+cpv2=2.805;//specific pressure kJ/kgk
+cpv3=4.606;//specific pressure kJ/kgK
+t21=303;//condenser temperature in K
+t1=258;//evaporator temperature in K
+t31=283;//subcooled temperature in K
+nv=0.8;//volumetric efficiency in percentage
+p1=2.36;//pressure in MPa
+p2=11.67;//pressure in MPa
+hf1=112.3;//enthalpy in kJ/kg
+hfg1=1313.7;//enthalpy in kJ/kg
+hg1=1426;//enthalpy in kJ/kg
+hf2=323.1;//enthalpy in kJ/kg
+hfg2=1145.9;//enthalpy in kJ/kg
+hg2=1469;//enthalpy in kJ/kg
+sf1=0.457;//entropy in kJ/kgK
+sf2=1.204;//entropy in kJ/kgK
+sg1=5.549;//entropy in kJ/kgK
+sg2=4.984;//entropy in kJ/kgK
+v1=0.509;//volume in m^3/kg
+t2=369.69;//from t-s diagram temperature in K
+
+
+//CALCULATIONS
+h2=hg2+cpv2*(t2-t21);//enthalpy in kJ/kg
+h31=hf2-cpv3*(t21-t31);//enthalpy in kJ/kg
+Re1=hg1-hf2;//refrigeration effect in kJ/kg
+Re2=hg1-h31;//refrigeration effect in kJ/kg
+mt1=210/Re1;//mass flow rate per ton in kg/min
+mt2=210/Re2;//mass flow rate per ton in kg/min
+vsa1=(mt1*v1)/nv;//compressor volume capacity
+vsa2=(mt2*v1)/nv;//compressor volume capacity
+wn=h2-hg1;//net work done
+cop1=Re1/wn;//COP
+cop2=Re2/wn;//COP
+pcop=((cop1-cop2)/cop2)*100;//Percentage COP of dry and subcooled
+pt1=wn*mt1/60;//Power per ton in kW/TR
+pt2=wn*mt2/60;//Power per ton in kW/TR
+
+//OUTPUT
+printf('DRY COMPRESSION \n(a)Refrigeration effect is %3.1f kJ/kg \n (b)The flow rate of refrigerant per ton is %3.4f kg/min \n (c)The compressor volume capacity %3.2f \n (d)COP is %3.2f \n (e)The power per TR is %3.2f kW/TR \n',Re1,mt1,vsa1,cop1,pt1)
+
+printf('DRY AND SUBCOOLED \n(a)Refrigeration effect is %3.1f kJ/kg \n (b)The flow rate of refrigerant per ton is %3.4f kg/min \n (c)The compressor volume capacity %3.2f \n (d)COP is %3.2f \n (e)The power per TR is %3.2f kW/TR',Re2,mt2,vsa2,cop2,pt2)
+
diff --git a/1808/CH6/EX6.9/Chapter6_Exampl9.sce b/1808/CH6/EX6.9/Chapter6_Exampl9.sce
new file mode 100644
index 000000000..e84995749
--- /dev/null
+++ b/1808/CH6/EX6.9/Chapter6_Exampl9.sce
@@ -0,0 +1,52 @@
+clc
+clear
+//INPUT DATA
+cpic=1.94;//specific pressure inkJ/kgK
+cpv2=2.805;//specific pressure in kJ/kgK
+t21=303;//condenser temperature in K
+t1=258;//evaporator temperature in K
+t31=293;//subcooled temperature in K
+p1=2.36;//pressure in MPa
+p2=11.67;//pressure in MPa
+hf1=112.3;//enthalpy in kJ/kg
+hfg1=1313.7;//enthalpy in kJ/kg
+hg1=1426;//enthalpy in kJ/kg
+hf2=323.1;//enthalpy in kJ/kg
+hfg2=1145.9;//enthalpy in kJ/kg
+hg2=1469;//enthalpy in kJ/kg
+sf1=0.457;//entropy in kJ/kgK
+sf2=1.204;//entropy in kJ/kgK
+sg1=5.549;//entropy in kJ/kgK
+sg2=4.984;//entropy in kJ/kgK
+t2=369.7;//from t-s diagram temperature in K
+nac=0.8;//adiabatic efficiency in percentage
+vsa=2.96;//volume in kg/min
+N=1200;//speed in rpm
+
+//CALCULATIONS
+h2=hg2+cpv2*(t2-t21);//enthalpy in kJ/kg
+Rc=10*1000*(4.1868*30+335+1.94*5)/(24*60);//Refrigeration capacity in kJ/min
+Re=hg1-hf2;//Refrigeration effect in kJ/kg
+m=Rc/Re;//mass flow rate of refrigerant in kg/min
+h2a=((h2-hg1)/nac)+hg1;//enthalpy in kJ/kg
+t2a=((t2-t1)/nac)+t1;//Temperature in k
+d=(vsa*0.509*4/(3.14*1.2*N))^(1/3);//piston displacement of compressor in m
+l=1.2*d;//length of piston displacement in m
+w=(h2a-hg1)/0.95;//workdone in kJ/kg
+wac=m*w/60;//Power of the compressor motor in kW
+copa=(Re/wac)*(m/60);//COP of air
+
+//OUTPUT
+printf('(a)Refrigeration capacity is %3.1f kJ/min \n (b)Mass flow rate of refrigerant is %3.2f kg/min \n (c)The discharge temperature is %3.2f K \n (d)Piston displacement of the compressor is d %3.4f m \n l is %3.4f m \n(e)Power of the compressor motor is %3.2f kW \n (f)COPa is %3.3f',Rc,m,t2a,d,l,wac,copa)
+
+
+
+
+
+
+
+
+
+
+
+