diff options
Diffstat (limited to '1808/CH6/EX6.10/Chapter6_Exampl10.sce')
-rw-r--r-- | 1808/CH6/EX6.10/Chapter6_Exampl10.sce | 75 |
1 files changed, 75 insertions, 0 deletions
diff --git a/1808/CH6/EX6.10/Chapter6_Exampl10.sce b/1808/CH6/EX6.10/Chapter6_Exampl10.sce new file mode 100644 index 000000000..feba4ba78 --- /dev/null +++ b/1808/CH6/EX6.10/Chapter6_Exampl10.sce @@ -0,0 +1,75 @@ +clc
+clear
+//INPUT DATA
+cp1=1.00;//specific entropy in kJ/kgK
+cpv=0.733;//specific entropy in kJ/kgK
+t21=303;//condenser temperature in K
+t1=265;//evaporator temperature in K
+t31=293;//subcooled temperature in K
+p1=2.354;//pressure in Bar
+p2=7.451;//pressure in Bar
+hf1=28.72;//enthalpy in kJ/kg
+hg1=184.07;//enthalpy in kJ/kg
+hf2=64.59;//enthalpy in kJ/kg
+hg2=199.62;//enthalpy in kJ/kg
+sf1=0.1149;//entropy in kJ/kgK
+sf2=0.24;//entropy in kJ/kgK
+sg1=0.7007;//entropy in kJ/kgK
+sg2=0.6853;//entropy in kJ/kgK
+vg1=0.079;//entropy in kJ/kgK
+vg2=0.0235;//entropy in kJ/kgK
+v1b=0.772;//entropy in kJ/kgK
+t2=309.43;//temperature in K
+
+//CALCULATIONS
+//(i)WET COMPRESSION
+x=((sg2-sf1)/(sg1-sf1));//fraction
+h1b=hf1+x*(hg1-hf1);//enthalpy in kJ/kg
+h2=hg2+cpv*(t2-t21);//enthalpy in kJ/kg
+s1a=sg1+cpv*log(271/t1);//entropy in kJ/kgK
+t2a=(s1a-sg1)/(cpv*t21);//temperature in K
+h2a=hg2+cpv*(t2a-t21);//enthalpy in kJ/kg
+h1a=hg1+cpv*(271-t1);//enthalpy in kJ/kg
+h31=hf2-cpv*(t21-298);//enthalpy in kJ/kg
+Re1=h1b-hf2;//Refrigeration effect in wet condition
+Re2=hg1-hf2;//Refrigeration effect in wet condition
+Re3=h1b-hf2;//Refrigeration effect in wet condition
+Re4=hg1-hf2;//Refrigeration effect in wet condition
+wn1=hg2-h1b;//net workdone in kJ/kg
+wn2=h2-hg1;//net workdone in kJ/kg
+wn3=h2a-hg1;//net workdone in kJ/kg
+wn4=h2-hg1;//net workdone in kJ/kg
+cop1=Re1/wn1;//COP
+cop2=Re2/wn2;//COP
+cop3=Re3/wn3;//COP
+cop4=Re4/wn4;//COP
+m1=2100/Re1;//mass flow rate
+m2=2100/Re2;//mass flow rate
+m3=2100/Re3;//mass flow rate
+m4=2100/Re4;//mass flow rate
+P1=m1*wn1/60;//Power in kW
+P2=m2*wn2/60;//Power in kW
+P3=m3*wn3/60;//Power in kW
+P4=m4*wn4/60;//Power in kW
+Pt1=P1/10;//Power per TR
+Pt2=P2/10;//Power per TR
+Pt3=P3/10;//Power per TR
+Pt4=P4/10;//Power per TR
+d1=((m1*v1b/0.00084883)^(1/3))/100;//displacement in m
+d2=((m2*vg1/0.00084883)^(1/3))/100;//displacement in m
+d3=((m3*vg1/0.00084883)^(1/3))/100;//displacement in m
+d4=((m4*vg1/0.00084883)^(1/3))/100;//displacement in m
+l1=1.5*d1;//stroke in m
+l2=1.5*d2;//stroke in m
+l3=1.5*d3;//stroke in m
+l4=1.5*d4;//stroke in m
+
+
+//OUTPUT
+printf('((i)WET COMPRESSION \n (a)cop is %3.2f \n (b)The power is %3.3f kW/TR \n (c)Bore is %3.5f m \n stroke is %3.4f m \n (d)mass flow rate of refrigerant is %3.1f kg/min \n',cop1,P1,d1,l1,m1)
+
+printf('((ii)DRY COMPRESSION \n (a)cop is %3.2f \n (b)The power is %3.3f kW/TR \n (c)Bore is %3.5f m \n stroke is %3.4f m \n (d)mass flow rate of refrigerant is %3.1f kg/min \n',cop2,P2,d2,l2,m2)
+
+printf('((iii)SUPERHEATED \n (a)cop is %3.2f \n (b)The power is %3.3f kW/TR \n (c)Bore is %3.5f m \n stroke is %3.4f m \n (d)mass flow rate of refrigerant is %3.1f kg/min \n',cop3,P3,d3,l3,m3)
+
+printf('((iv)DRY COMPRESSION AND SUBCOOLED \n (a)cop is %3.2f \n (b)The power is %3.3f kW/TR \n (c)Bore is %3.5f m \n stroke is %3.4f m \n (d)mass flow rate of refrigerant is %3.1f kg/min \n ',cop4,P4,d4,l4,m4)
|