summaryrefslogtreecommitdiff
path: root/1370/CH4
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /1370/CH4
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '1370/CH4')
-rwxr-xr-x1370/CH4/EX4.1/Exp4_1.sce12
-rwxr-xr-x1370/CH4/EX4.10/Exp4_10.sce39
-rwxr-xr-x1370/CH4/EX4.11/Exp4_11.sce46
-rwxr-xr-x1370/CH4/EX4.12/Exp4_12.sce36
-rwxr-xr-x1370/CH4/EX4.13/Exp4_13.sce11
-rwxr-xr-x1370/CH4/EX4.14/Exp4_14.sce15
-rwxr-xr-x1370/CH4/EX4.15/Exp4_15.sce21
-rwxr-xr-x1370/CH4/EX4.16/Exp4_16.sce18
-rwxr-xr-x1370/CH4/EX4.17/Exp4_17.sce31
-rwxr-xr-x1370/CH4/EX4.18/Exp4_18.sce36
-rwxr-xr-x1370/CH4/EX4.19/Exp4_19.sce37
-rwxr-xr-x1370/CH4/EX4.2/Exp4_2.sce12
-rwxr-xr-x1370/CH4/EX4.20/Exp4_20.sce25
-rwxr-xr-x1370/CH4/EX4.21/Exp4_21.sce29
-rwxr-xr-x1370/CH4/EX4.3/Exp4_3.sce29
-rwxr-xr-x1370/CH4/EX4.4/Exp4_4.sce27
-rwxr-xr-x1370/CH4/EX4.5/Exp4_5.sce25
-rwxr-xr-x1370/CH4/EX4.6/Exp4_6.sce31
-rwxr-xr-x1370/CH4/EX4.7/Exp4_7.sce41
-rwxr-xr-x1370/CH4/EX4.8/Exp4_8.sce43
-rwxr-xr-x1370/CH4/EX4.9/Exp4_9.sce29
21 files changed, 593 insertions, 0 deletions
diff --git a/1370/CH4/EX4.1/Exp4_1.sce b/1370/CH4/EX4.1/Exp4_1.sce
new file mode 100755
index 000000000..96f3dfd1a
--- /dev/null
+++ b/1370/CH4/EX4.1/Exp4_1.sce
@@ -0,0 +1,12 @@
+//Example 4.1
+clc
+n=120/8
+format(3)
+disp(n,"n = slots/pole =")
+m=15/3
+disp(m,"m = slots/pole/phase = n/3 =")
+beta=180/15
+disp(beta,"beta(in degree) = 180/n =")
+kd=(sind(30)/(5*sind(6)))
+format(6)
+disp(kd,"Therefore, K_d = sin(m*beta/2) / m*sin(beta/2) =")
diff --git a/1370/CH4/EX4.10/Exp4_10.sce b/1370/CH4/EX4.10/Exp4_10.sce
new file mode 100755
index 000000000..f52f6f7df
--- /dev/null
+++ b/1370/CH4/EX4.10/Exp4_10.sce
@@ -0,0 +1,39 @@
+//Exmaple 4.10
+clc
+disp("N_s = 250 r.p.m., f = 50 Hz")
+disp("slots = 288, E_line = 6600 V")
+disp("N_s = 120*f/P")
+p=(120*50)/250
+format(3)
+disp(p,"Therefore, P =")
+n=288/24
+disp(n,"n = slots/pole =")
+m=12/3
+disp(m,"m = n/2 =")
+beta=180/12
+disp(beta,"beta = 180/n =")
+kd=sind(30)/(4*sind(7.5))
+format(7)
+disp(kd,"Therefore, K_d = sin(m*beta/2) / m*sin(beta/2) =")
+disp("Now coil is short pitched by 2 slots")
+al=2*15
+disp(al,"Therefore, alpha = angle of short pitch = 2 * beta =")
+kc=cosd(15)
+disp(kc,"Therefore, K_c = cos(alpha/2) =")
+disp("Each coil consists of 16 turns, i.e. in a slot each coil side consists of 16 conductors as shown in the fig.4.42 and in each slot there are 2 coil sides. So each slot consists of 16 per coil side x 2 i.e. 32 conductors.")
+disp("Therefore, conductors/slot = 32")
+disp("Therefore, total conductors = slots x conductors/slot")
+z=288*32
+format(5)
+disp(z,"Therefore, Z =")
+zp=9216/3
+disp(zp,"Therefore, Z_ph = conductors/phase =")
+tp=3072/2
+disp(tp,"Therefore, T_ph = Z_ph/2 = ... 2 conductors -> 1 turn")
+ep=6600/sqrt(3)
+format(8)
+disp(ep,"Now E_ph(in V) = E_line / sqrt(3) =")
+disp("E_ph = 4.44*K_c*K_d*phi*f*T_ph")
+phi=(3810.51/(4.44*0.9659*0.9576*50*1536))*10^3
+format(3)
+disp(phi,"Therefore, phi(in mWb) =")
diff --git a/1370/CH4/EX4.11/Exp4_11.sce b/1370/CH4/EX4.11/Exp4_11.sce
new file mode 100755
index 000000000..7397e1df2
--- /dev/null
+++ b/1370/CH4/EX4.11/Exp4_11.sce
@@ -0,0 +1,46 @@
+//Example 4.11
+clc
+disp("P = 12, N_s = 600 r.p.m")
+f=(12*600)/120
+format(3)
+disp(f,"Therefore, f(in Hz) = P*N_s/120 =")
+disp("(i) Average value of e.m.f in a conductor = 2*f*phi")
+rms=1.11*2*60*0.05
+format(5)
+disp(rms,"Therefore, r.m.s value(in V) = 1.11*2*f*phi =")
+disp("(ii) Average value of e.m.f in a turn = 4*f*phi")
+disp("As 2 conductors joined properly form a turn")
+rms=1.11*4*60*0.05
+format(6)
+disp(rms,"Therefore, r.m.s value(in V) = 1.11*4*f*phi =")
+disp("(iii) Now each slot has 10 conductors and 2 coil sides. So,")
+c=10/2
+disp(c,"conductors/coil side = 10/2 =")
+disp("Such coil sides are connected to another coil sides to form a coil. So in a coil there are 5 turns as shown in fig.4.43")
+rmss=13.32*5
+format(5)
+disp(rmss,"Therefore, R.M.S value of e.m.f in a coil(in V) = R.M.S value of e.m.f/turn * Number of turns/coil =")
+disp("(iv) Now total conductors Z = conductors/slots * Number of slots")
+z=10*180
+disp(z,"Therefore, Z =")
+zph=1800/3
+disp(zph,"Therefore, Z_ph = Z/3 =")
+tph=600/2
+disp(tph,"T_ph = Z_ph/2 =")
+n=180/12
+disp(n,"And n = slots/pole =")
+m=15/3
+disp(m,"m = n/3 =")
+beta=180/15
+disp(beta,"beta(in degree) =")
+kd=sind(30)/(5*sind(6))
+format(7)
+disp(kd,"Therefore, K_d = sin(m*beta/2) / m*sin(beta/2) =")
+disp("E_ph = R.M.S value per turn*T_ph*K_d*K_c")
+ep=13.32*300*0.9566*1
+format(8)
+disp(ep,"Therefore, E_ph(in V) =")
+disp("or E_ph = 4.44*K_c*K_d*phi*f*T_ph")
+eph=4.44*0.9566*0.05*60*300
+format(8)
+disp(eph,"Therefore, E_ph(in V) =")
diff --git a/1370/CH4/EX4.12/Exp4_12.sce b/1370/CH4/EX4.12/Exp4_12.sce
new file mode 100755
index 000000000..e0b100f5d
--- /dev/null
+++ b/1370/CH4/EX4.12/Exp4_12.sce
@@ -0,0 +1,36 @@
+//Example 4.12
+clc
+disp("P = 6, f = 50 Hz, n = 12 slots/pole, 4 conductors/slot")
+disp("For full pitch, n = 12 slots/pole")
+ap=60/6
+format(4)
+disp(ap,"Actual pitch of winding(in slots) = 5/6 * n =")
+ws=12-10
+disp(ws,"so winding shorted by(in slots) =")
+disp("Therefore, alpha = short pitch angle = 2 slot angle = 2*beta")
+beta=180/12
+disp(beta,"beta(in degree) =")
+alp=2*15
+disp(alp,"Therefore, alpha(in degree) = 2*beta =")
+kc=cosd(15)
+format(7)
+disp(kc,"Therefore, K_c = cos(alpha/2) =")
+m=12/3
+disp(m,"m(in slots/pole/phase) = n/3 =")
+kd=sind(30)/(4*sind(7.5))
+format(8)
+disp(kd,"Therefore, K_d = sin(m*beta/2) / m*sin(beta/2) =")
+ts=12*6
+disp(ts,"Total slots = n*P =")
+z=72*4
+disp(z,"Therefore, Z = total conductors =")
+zph=288/3
+disp(zph,"Therefore, Z_ph = Z/3 =")
+tph=96/2
+disp(tph,"T_ph = Z_ph/2 =")
+disp("Therefore, E_ph = 4.44*K_c*K_d*phi*f*T_ph")
+eph=(4.44*0.9659*0.95766*1.5*50*48)*10^-3
+format(8)
+disp(eph,"Therefore, E_ph(in kV) =")
+el=sqrt(3)*14.7852
+disp(el,"Therefore, E_line(in kV) = sqrt(3)*E_ph =")
diff --git a/1370/CH4/EX4.13/Exp4_13.sce b/1370/CH4/EX4.13/Exp4_13.sce
new file mode 100755
index 000000000..4bf56f345
--- /dev/null
+++ b/1370/CH4/EX4.13/Exp4_13.sce
@@ -0,0 +1,11 @@
+//Example 4.13
+clc
+disp("The coil span of 120 degree is shown in the fig.4.44")
+disp("The angle of shorts pitch is,")
+alp=180-120
+format(3)
+disp(alp,"alpha(in degree) = 180 - coil span =")
+kc=cosd(30)
+format(6)
+disp("The chording factor is,")
+disp(kc,"K_c = cos(alpha/2) =")
diff --git a/1370/CH4/EX4.14/Exp4_14.sce b/1370/CH4/EX4.14/Exp4_14.sce
new file mode 100755
index 000000000..a9e541a07
--- /dev/null
+++ b/1370/CH4/EX4.14/Exp4_14.sce
@@ -0,0 +1,15 @@
+//Example 4.14
+clc
+disp("V_ph = 200 V, 60 kVA, R_a = 0.016 ohm, X_s = 0.07 ohm")
+disp("VA = V_ph*I_ph i.e. 60*10^3 = 200*I_ph ...Single phase")
+disp("Therefore, I_ph = 300 A = I_a ...Full load current")
+disp("(a) cos(phi) = 1, sin(phi) = 0")
+eph=sqrt((((200+((300*0.016)))^2)+((300*0.07)^2)))
+disp("Therefore, E_ph^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (I_a*X_a)^2")
+format(9)
+disp(eph,"E_ph(in V) =")
+disp("(b) cos(phi) = 0.7 lagging, sin(phi) = 0.714")
+ephi=sqrt(((((200*0.7)+(300*0.016))^2)+(((200*0.7141)+(300*0.07))^2)))
+disp("Therefore, E_ph^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*R_a)^2")
+format(9)
+disp(ephi,"E_ph(in V) =")
diff --git a/1370/CH4/EX4.15/Exp4_15.sce b/1370/CH4/EX4.15/Exp4_15.sce
new file mode 100755
index 000000000..b275f92c0
--- /dev/null
+++ b/1370/CH4/EX4.15/Exp4_15.sce
@@ -0,0 +1,21 @@
+//Example 4.15
+clc
+disp("V_ph = 550 V, 55 kVA, R_a = 0.2 ohm")
+disp("I_f = 10 A, I_ssc = 200 A, V_oc = 450 V")
+za=450/200
+format(5)
+disp(za,"Therefore, Z_s(in ohm) = V_oc / I_ssc |same I_f =")
+xs=sqrt((2.25^2)-(0.2^2))
+format(7)
+disp(xs,"(a) X_s(in ohm) = sqrt(Z_a^2 - R_a^2) =")
+iph=(55*10^3)/550
+disp("VA = V_ph*I_ph ...As single phase")
+disp(iph,"Therefore, I_ph(in A) = I_a = ...Full load armature current")
+disp("(b) cos(phi) = 0.8 lagging, sin(phi) = 0.6")
+ephi=sqrt(((((550*0.8)+(100*0.2))^2)+(((550*0.6)+(100*2.2411))^2)))
+disp("Therefore, E_ph^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*R_a)^2")
+format(9)
+disp(ephi,"E_ph(in V) =")
+r=((720.1652-550)/550)*100
+format(6)
+disp(r,"Therefore, %R = (E_ph-V_ph / V_ph)*100 = ")
diff --git a/1370/CH4/EX4.16/Exp4_16.sce b/1370/CH4/EX4.16/Exp4_16.sce
new file mode 100755
index 000000000..c944e60d3
--- /dev/null
+++ b/1370/CH4/EX4.16/Exp4_16.sce
@@ -0,0 +1,18 @@
+//Example 4.16
+clc
+disp("V_ph = 2200 V, f = 50 Hz, 440 kVA, R_a = 0.5 ohm")
+disp("I_aph = 200 A = I_ac, V_oc = 1160 V, I_f = 40 A")
+za=1160/200
+format(4)
+disp(za,"(a) Z_s(in ohm) = V_oc/I_ssc |same I_f =")
+xs=sqrt((5.8^2)-(0.5^2))
+format(7)
+disp(xs,"(b) X_s(in ohm) = sqrt(Z_a^2 - R_a^2) =")
+disp("(c) cos(phi) = 0.707 leading, sin(phi) = 0.707")
+ephi=sqrt(((((2200*0.707)+(200*0.5))^2)+(((2200*0.707)-(200*5.7784))^2)))
+disp("Therefore, E_ph^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)-I_a*R_a)^2")
+format(10)
+disp(ephi,"E_ph(in V) =")
+r=((1702.9754-2200)/2200)*100
+format(7)
+disp(r,"Therefore, %R(in percentage) = (E_ph-V_ph / V_ph)*100 = ")
diff --git a/1370/CH4/EX4.17/Exp4_17.sce b/1370/CH4/EX4.17/Exp4_17.sce
new file mode 100755
index 000000000..56fb7534e
--- /dev/null
+++ b/1370/CH4/EX4.17/Exp4_17.sce
@@ -0,0 +1,31 @@
+//Example 4.17
+clc
+disp("Assume star connected alternator")
+disp("R_a+R_a = V_dc/I_dc")
+disp("2R_a = 6/10")
+ra=0.6/2
+format(4)
+disp(ra,"Therefore, R_a(in ohm/ph) =")
+disp("V_oc(line) = 420, V_L = 1100 V, 100 kVA")
+disp("Therefore, VA = sqrt(3)*V_L*I_L")
+il=(100*10^3)/(sqrt(3)*1100)
+format(8)
+disp(il,"Therefore, I_L(in A) = I_aph =")
+disp("Therefore, Rated armature current = 52.4864 A = I_ssc")
+zs=(420/sqrt(3))/52.4864
+format(5)
+disp(zs,"Therefore, Z_s(in ohm/ph) = V_oc(ph) / I_ssc(ph) =")
+xs=sqrt((4.62^2)-(0.3^2))
+format(7)
+disp(xs,"Therefore, X_s(in ohm/ph) = sqrt(Z_a^2 - R_a^2) =")
+disp("For cos(phi) = 0.8 lagging, sin(phi) = 0.6")
+disp("E_ph^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*R_a)^2")
+vph=1100/sqrt(3)
+format(8)
+disp(vph,"V_ph(in V) = V_L/sqrt(3) =")
+ephi=sqrt(((((635.085*0.8)+(52.4864*0.3))^2)+(((635.085*0.6)+(52.4864*4.6102))^2)))
+format(9)
+disp(ephi,"Therefore, E_ph(in V) =")
+r=((813.9654-635.085)/635.085)*100
+format(8)
+disp(r,"Therefore, %R(in percentage) = (E_ph-V_ph / V_ph)*100 = ")
diff --git a/1370/CH4/EX4.18/Exp4_18.sce b/1370/CH4/EX4.18/Exp4_18.sce
new file mode 100755
index 000000000..906a8c5af
--- /dev/null
+++ b/1370/CH4/EX4.18/Exp4_18.sce
@@ -0,0 +1,36 @@
+//Example 4.18
+clc
+disp("2R_a = 2 i.e. R_a = 1 ohm/ph")
+disp("V_L = 3.6 kVA, MVA = 1")
+disp("Therefore, VA = sqrt(3)*V_L*I_L")
+il=(1*10^6)/(sqrt(3)*3.6*10^3)
+format(8)
+disp(il,"Therefore, I_L(in A) = I_aph = ...Star")
+disp("From the test results, obtain the open circuit and short circuit characteristics and obtain V_oc for full load I_sc of 160.373 A")
+disp("From the graph, for full load short circuit current of 160.37 A, I_f = 53 A and corresponding V_oc(line) = 2250 V")
+zs=(2250/sqrt(3))/160.37
+format(4)
+disp(zs,"Therefore, Z_s(in ohm/ph) = V_ocph/I_scph |same I_f =")
+xs=sqrt((8.1^2)-(1^2))
+format(6)
+disp(xs,"Therefore, X_s(in ohm/ph) = sqrt(Z_a^2 - R_a^2) =")
+vph=(3.6*10^3)/sqrt(3)
+format(8)
+disp(vph,"V_ph(in V) = V_L/sqrt(3) =")
+disp("I_aph = 160.37 A")
+disp("(i) cos(phi) = 0.707 lagging, sin(phi) = 0.707")
+disp("Therefore, E_ph^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*R_a)^2")
+ephi=sqrt(((((2078.46*0.707)+(160.37*1))^2)+(((2078.46*0.707)+(160.37*8.038))^2)))
+format(10)
+disp(ephi,"Therefore, E_ph(in V) =")
+r=((3204.0356-2078.46)/2078.46)*100
+format(6)
+disp(r,"Therefore, %R(in percentage) = (E_ph-V_ph / V_ph)*100 = ")
+disp("(ii) cos(phi) = 0.8 leading, sin(phi) = 0.6")
+disp("Therefore, E_ph^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)-I_a*R_a)^2")
+ephi=sqrt(((((2078.46*0.8)+(160.37*1))^2)+(((2078.46*0.6)-(160.37*8.038))^2)))
+format(10)
+disp(ephi,"Substituting the values, E_ph(in V) =")
+r=((1823.6271-2078.46)/2078.46)*100
+format(6)
+disp(r,"Therefore, %R(in percentage) = (E_ph-V_ph / V_ph)*100 = ")
diff --git a/1370/CH4/EX4.19/Exp4_19.sce b/1370/CH4/EX4.19/Exp4_19.sce
new file mode 100755
index 000000000..8550f3227
--- /dev/null
+++ b/1370/CH4/EX4.19/Exp4_19.sce
@@ -0,0 +1,37 @@
+//Example 4.19
+clc
+disp("1 MVA, V_L = 11 kV, R_a = 0.6 ohm")
+disp("VA = sqrt(3)*V_L*I_L")
+il=(10^6)/(sqrt(3)*11*10^3)
+format(7)
+disp(il,"Therefore, I_L(in A) = I_aph(full load) =")
+disp("Now I_f = 40 A for I_ssc = 52.486 A. To find Z_s, plot the O.C.C and obtain V_oc for I_f = 40 A")
+disp("From the graph, V_oc(line) = 6600 V for I_f = 40 A")
+zs=(6000/sqrt(3))/52.486
+format(3)
+disp(zs,"Therefore, Z_s(in ohm) = V_ocph/I_ascph |same I_f =")
+xs=sqrt((66^2)-(0.6^2))
+format(7)
+disp(xs,"Therefore, X_s(in ohm) = sqrt(Z_s^2 - R_a^2) =")
+disp("(a) cos(phi) = 0.8 lagging, sin(phi) = 0.6, half load")
+ip=0.5*52.486
+format(7)
+disp(ip,"At half load, I_aph(in A) = 1/2 * I_aph(FL) =")
+vp=(11*10^3)/sqrt(3)
+format(9)
+disp(vp,"V_ph(in V) = V_L/sqrt(3) =")
+disp("E_ph^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*R_a)^2")
+ephi=sqrt(((((6350.853*0.8)+(26.243*0.6))^2)+(((6350.853*0.6)+(26.243*65.99))^2)))
+format(10)
+disp(ephi,"Therefore, E_ph(in V) =")
+r=((7529.3113-6350.853)/6350.853)*100
+format(6)
+disp(r,"Therefore, %R(in percentage) = (E_ph-V_ph / V_ph)*100 = ")
+disp("(b) cos(phi) = 0.9 leading, sin(phi) = 0.4358, full load so I_aph = 52.486 A")
+disp("E_ph^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)-I_a*R_a)^2")
+ephi=sqrt(((((6350.853*0.9)+(52.486*0.6))^2)+(((6350.853*0.4358)-(52.486*65.99))^2)))
+format(9)
+disp(ephi,"Therefore, E_ph(in V) =")
+r=((5789.231-6350.853)/6350.853)*100
+format(6)
+disp(r,"Therefore, %R(in percentage) = (E_ph-V_ph / V_ph)*100 = ")
diff --git a/1370/CH4/EX4.2/Exp4_2.sce b/1370/CH4/EX4.2/Exp4_2.sce
new file mode 100755
index 000000000..8061b4013
--- /dev/null
+++ b/1370/CH4/EX4.2/Exp4_2.sce
@@ -0,0 +1,12 @@
+//Example 4.2
+clc
+n=36/4
+format(3)
+disp(n,"n = slots/pole =")
+beta=180/9
+disp(beta,"beta(in degree) = 180/n =")
+disp("Now coil is shorted by 1 slot i.e. by 20 to full pitch distance.")
+disp("Therefore, alpha = Angle of short pitch = 20")
+kc=cosd(10)
+format(7)
+disp(kc,"Therefore, K_c = cos(alpha/2) =")
diff --git a/1370/CH4/EX4.20/Exp4_20.sce b/1370/CH4/EX4.20/Exp4_20.sce
new file mode 100755
index 000000000..8ce134acb
--- /dev/null
+++ b/1370/CH4/EX4.20/Exp4_20.sce
@@ -0,0 +1,25 @@
+//Example 4.20
+clc
+disp("R_s = 0.6 ohm, X_s = 6 ohm, I_aph = 180 A")
+eph=6599/sqrt(3)
+format(10)
+disp(eph,"E_ph(in V) = E_line/sqrt(3) =")
+disp("(a) cos(phi) = 0.9 lagging, sin(phi) = 0.4358")
+disp("Therefore, E_ph^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*R_a)^2")
+disp("Therefore, (3809.9344)^2 = [V_ph*0.9 + 180*0.6]^2 + [V_ph*0.4358 + 180*6]^2")
+disp("Therefore, 14.5156*10^6 = 0.81*V_ph^2 + 194.4*V_ph + 11664 + 0.1899*V_ph^2 + 941.328*V_ph + 1166400")
+disp("Therefore, V_ph^2 + 1135.728*V_ph - 13337536 = 0")
+disp("Therefore, V_ph = 3128.08, -4263.808 ...Neglect negative value")
+disp("Therefore, V_ph = 3128.08 V ...Terminal voltage")
+r=((3809.9344-3128.08)/3128.08)*100
+format(8)
+disp(r,"Therefore, %R(in percentage) = (E_ph-V_ph / V_ph)*100 = ")
+disp("(b) cos(phi) = 0.8 leading, sin(phi) = 0.6")
+disp("Therefore, E_ph^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*R_a)^2")
+disp("Therefore, (3809.9344)^2 = [V_ph*0.8 + 180*0.6]^2 + [V_ph*0.6 + 180*6]^2")
+disp("Therefore, 14.5156*10^6 = 0.64*V_ph^2 + 172.8*V_ph + 11664 + 0.36*V_ph^2 - 1296*V_ph + 1166400")
+disp("Therefore, V_ph^2 - 1123.2*V_ph - 13337536 = 0")
+disp("Therefore, V_ph = 4256.5872 V ...Neglect negative value")
+r=((3809.9344-4256.5872)/4256.5872)*100
+format(7)
+disp(r,"Therefore, %R(in percentage) = (E_ph-V_ph / V_ph)*100 = ")
diff --git a/1370/CH4/EX4.21/Exp4_21.sce b/1370/CH4/EX4.21/Exp4_21.sce
new file mode 100755
index 000000000..f83622276
--- /dev/null
+++ b/1370/CH4/EX4.21/Exp4_21.sce
@@ -0,0 +1,29 @@
+//Example 4.21
+clc
+disp("1500 kVA, V_L = 12 kV, R_a = 2 ohm, X_s = 10 ohm")
+vp=(12*10^3)/sqrt(3)
+format(10)
+disp(vp," V_ph(in V) = ...Star")
+disp("P_L = sqrt(3)*V_L*I_L*cos(phi)")
+disp("(a) cos(phi) = 0.8 lagging, sin(phi) = 0.6")
+il=(1200*10^3)/(sqrt(3)*0.8*12*10^3)
+format(7)
+disp(il,"Therefore, I_L(in A) = I_aph = ...Star")
+disp(" E_ph^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*R_a)^2")
+ephi=sqrt(((((6928.2032*0.8)+(72.168*2))^2)+(((6928.2032*0.6)+(72.168*10))^2)))
+format(9)
+disp(ephi,"Therefore, E_ph(in V) =")
+r=((7492.768-6928.2032)/6928.2032)*100
+format(6)
+disp(r,"Therefore, %R(in percentage) = (E_ph-V_ph / V_ph)*100 = ")
+disp("(b) cos(phi) = 0.707 leading, sin(phi) = 0.707")
+il=(1200*10^3)/(sqrt(3)*0.707*12*10^3)
+format(6)
+disp(il,"Therefore, I_L(in A) = I_a = ...Star")
+disp(" E_ph^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*R_a)^2")
+ephi=sqrt(((((6928.2032*0.707)+(81.66*2))^2)+(((6928.2032*0.707)-(81.66*10))^2)))
+format(10)
+disp(ephi,"Therefore, E_ph(in V) =")
+r=((6502.2433-6928.2032)/6928.2032)*100
+format(6)
+disp(r,"Therefore, %R(in percentage) = (E_ph-V_ph / V_ph)*100 = ")
diff --git a/1370/CH4/EX4.3/Exp4_3.sce b/1370/CH4/EX4.3/Exp4_3.sce
new file mode 100755
index 000000000..55b5e024b
--- /dev/null
+++ b/1370/CH4/EX4.3/Exp4_3.sce
@@ -0,0 +1,29 @@
+//Example 4.3
+clc
+disp("Ns = 250 r.p.m, f = 50 Hz")
+disp("Ns = 120f / P")
+p=(120*50)/250
+disp(p,"Therefore, P = ")
+n=216/24
+format(3)
+disp(n,"n = slots/pole =")
+m=9/3
+disp(m,"m = n/3 =")
+beta=180/9
+disp(beta,"beta(in degree) = 180/n =")
+kd=(sind(30)/(3*sind(10)))
+format(6)
+disp(kd,"Therefore, K_d = sin(m*beta/2) / m*sin(beta/2) =")
+disp("K_c = 1 as full pitch coils.")
+z=216*5
+format(8)
+disp(z,"Total number of conductors Z = ")
+zph=1080/3
+disp(zph,"Therefore, Z_ph = Z/3 =")
+tph=360/2
+disp(tph,"Therefore, T_ph = Z_ph/2 = ... 2 conductors constitute 1 turn")
+eph=4.44*0.9597*30*50*180*10^-3
+format(8)
+disp(eph,"E_ph(in V) = 4.44*Kc*Kd*f*phi*T_ph =")
+el=sqrt(3)*1150.48
+disp(el,"E_line(in V) = sqrt(3)*E_ph = ...star connection")
diff --git a/1370/CH4/EX4.4/Exp4_4.sce b/1370/CH4/EX4.4/Exp4_4.sce
new file mode 100755
index 000000000..3ff1d775e
--- /dev/null
+++ b/1370/CH4/EX4.4/Exp4_4.sce
@@ -0,0 +1,27 @@
+//Example 4.4
+clc
+disp("E_line = 4000 V, f = 50 Hz, N_s = 750 r.p.m, m = 3, K_c = 1")
+eph=4000/sqrt(3)
+format(9)
+disp(eph,"E_ph(in V) = E_line/sqrt(3) =")
+p=(120*50)/750
+disp("(i) N_s = 120f / P")
+disp(p,"Therefore, P =")
+disp("(ii) n = slots/pole = m*3 = 9")
+b=180/9
+disp(b,"beta = 180/n =")
+kd=sind(30)/(3*sind(10))
+format(7)
+disp(kd,"Therefore, K_d = sin(m*beta/2) / m*sin(beta/2) =")
+ns=9*8
+disp(ns,"Number of slots = n * P =")
+z=72*12
+disp(z,"Z = Slots * counductors/slots =")
+zp=864/3
+disp(zp,"Therefore, Z_ph = Z/3 =")
+tp=288/2
+disp(tp,"Therefore, T_ph = Z_ph/2 =")
+phi=2309.401/(4.44*0.9598*50*144)
+format(8)
+disp("Therefore, E_ph = 4.44*K_c*K_d*phi*f*T_ph")
+disp(phi,"Therefore, phi(in Wb) = ... flux per pole")
diff --git a/1370/CH4/EX4.5/Exp4_5.sce b/1370/CH4/EX4.5/Exp4_5.sce
new file mode 100755
index 000000000..13abcfb02
--- /dev/null
+++ b/1370/CH4/EX4.5/Exp4_5.sce
@@ -0,0 +1,25 @@
+//Example 4.5
+clc
+disp("P = 100 kW, cos(phi) = 0.8 lagging")
+disp("V_L = 11 kV, R_a = 0.4 ohm, X_s = 3 ohm")
+disp("For three phase load, P = sqrt(3)*V_L*I_L*cos(phi)")
+il=(1000*10^3)/(sqrt(3)*11*0.8*10^3)
+format(5)
+disp(il,"Therefore, I_L(in A) =")
+disp("Now I_L = I_a as for star connected alternator I_L = I_ph")
+disp("Therefore, I_aph = 65.6 A ... full load per phase armature current")
+disp("For lagging p.f. loads,")
+disp("(E_ph)^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*X_s)^2")
+vp=(11*10^3)/sqrt(3)
+format(9)
+disp(vp,"Now V_ph = V_L / sqrt(3) = ... as star connected")
+eph=(((6350.853*0.8)+(65.6*0.4))^2)+(((6350.853*0.6)+(65.6*3))^2)
+p=sqrt(eph)
+format(8)
+disp(p,"Therefore, E_ph(in V) = ")
+el=(sqrt(3)*6491.47)*10^-3
+format(6)
+disp(el,"Therefore, E_line(in kV) =")
+regu=((6491.47-6350.853)/6350.853)*100
+disp(regu,"and %Regulation(in percentage) = (E_ph-V_ph / V_ph)*100 =")
+disp("For lagging p.f. loads, regulation is always positive.")
diff --git a/1370/CH4/EX4.6/Exp4_6.sce b/1370/CH4/EX4.6/Exp4_6.sce
new file mode 100755
index 000000000..2ebc158f5
--- /dev/null
+++ b/1370/CH4/EX4.6/Exp4_6.sce
@@ -0,0 +1,31 @@
+//Example 4.6
+clc
+disp("kVA = 1200, V_L = 6600 V, R_a = 0.25 ohm, X_s = 5 ohm")
+disp("Now kVA = sqrt(3)*V_L*I_L*10^-3")
+il=1200/(sqrt(3)*6600*10^-3)
+format(7)
+disp(il,"Therefore, I_L(in A) =")
+disp("Therefore, I_aph = 104.97 A ... as star connected.")
+disp("This is its full load current")
+vph=6600/sqrt(3)
+format(9)
+disp(vph," V_ph(in V) = V_L/3 =")
+disp("(i) For 0.8 lagging p.f. load")
+disp("(E_ph)^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*X_s)^2")
+eph=(((3810.512*0.8)+(104.97*0.25))^2)+(((3810.512*0.6)+(104.97*5))^2)
+p=sqrt(eph)
+format(8)
+disp(p,"Therefore, E_ph(in V) = ")
+regu=((4166.06-3810.512)/3810.512)*100
+format(5)
+disp(regu,"Therefore, %Regulation(in percentage) = (E_ph-V_ph / V_ph)*100 =")
+disp("(ii) For 0.8 leading p.f. load")
+disp("(E_ph)^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*X_s)^2")
+eph=(((3810.512*0.8)+(104.97*0.25))^2)+(((3810.512*0.6)-(104.97*5))^2)
+p=sqrt(eph)
+format(8)
+disp(p,"Therefore, E_ph(in V) = ")
+regu=((3543.47-3810.512)/3810.512)*100
+format(5)
+disp(regu,"Therefore, %Regulation(in percentage) = (E_ph-V_ph / V_ph)*100 =")
+disp("The regulation is negative for leading p.f. loads")
diff --git a/1370/CH4/EX4.7/Exp4_7.sce b/1370/CH4/EX4.7/Exp4_7.sce
new file mode 100755
index 000000000..6f736cac8
--- /dev/null
+++ b/1370/CH4/EX4.7/Exp4_7.sce
@@ -0,0 +1,41 @@
+//Example 4.7
+clc
+disp("V_L = 866 V, kVA = 100")
+disp("Therefore, kVA = sqrt(3)*V_L*I_L*10^-3")
+il=100/(sqrt(3)*866*10^-3)
+format(6)
+disp(il,"Therefore, I_L(in A) =")
+disp("Therefore, I_aph F.L. = I_L = 66.67 A ... as star connected alternator")
+disp("V_ph = Rated terminal voltage per phase = V_L/3")
+vp=866/sqrt(3)
+disp(vp,"Therefore, V_ph(in V) =")
+disp("For calculation of Z_s on full load, it is necessary to plot O.C.C. and S.C.C. to the scale")
+disp("Note : If for same value of I_f, both I_ssc and V_oc can be obtained from the table itself, graph need not be plotted. In some problems, the values of V_oc and I_ssc for same I_f are directly given, in that case too, the graph need not be plotted.")
+disp("In this problem, I_ssc = 25 A for I_f = 1 A")
+disp("But we want to calculate Z_s for I_ssc = its full load value which is 66.67 A. So graph is required to be plotted.")
+disp("For plotting O.C.C. the lines values of open circuit voltage are converted to phase by dividing each value by sqrt(3)")
+disp("From S.C.C.")
+disp("For I_scc = 66.67 A, I_f = 2.4 A")
+disp("From O.C.C.")
+disp("For I_f = 2.4 A, (V_oc)_ph = 240 V")
+disp("From the graph, Z_s for full load is,")
+disp("Z_s = (V_oc)_ph / (I_scc)_ph |for same excitation")
+zs=240/66.67
+format(4)
+disp(zs,"Therefore, Z_s(in ohm/phase) =")
+disp("R_a = 0.15 ohm/phase")
+xs=sqrt((3.6^2)-(0.15^2))
+format(6)
+disp(xs,"Therefore, X_s(in ohm/phase) = sqrt(Z_s^2 - R_a^2) =")
+disp("V_ph F.L = 500 V")
+disp("cos(phi) = 0.8")
+disp("Therefore, sin(phi) = 0.6 lagging p.f.")
+disp("So E_ph for full load, 0.8 lagging p.f. condition can be calculated as,")
+disp("(E_ph)^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*X_s)^2")
+eph=(((500*0.8)+(66.67*0.15))^2)+(((500*0.6)+(66.67*3.597))^2)
+p=sqrt(eph)
+format(7)
+disp(p,"Therefore, E_ph(in V) = ")
+regu=((677.86-500)/500)*100
+format(6)
+disp(regu,"Therefore, %Regulation(in percentage) = (E_ph-V_ph / V_ph)*100 =")
diff --git a/1370/CH4/EX4.8/Exp4_8.sce b/1370/CH4/EX4.8/Exp4_8.sce
new file mode 100755
index 000000000..fe30895fc
--- /dev/null
+++ b/1370/CH4/EX4.8/Exp4_8.sce
@@ -0,0 +1,43 @@
+//Example 4.8
+clc
+disp("V_L = 230 V, R_a between lines = 1.8 ohm")
+disp("(V_oc)_line = 230 V, I_scc = 12.5 A for same I_f = 0.38 A")
+disp("The value of open circuit e.m.f is always line value unless and until specifically mentioned to be a phase value")
+disp("Therefore, Z_s = (V_oc)_ph / (I_scc)_ph |for same I_f")
+voc=230/sqrt(3)
+format(7)
+disp(voc," (V_oc)_ph(in V) =")
+zs=132.79/12.5
+disp(zs,"Therefore, Z_s(in ohm/phase) =")
+disp("R_a between lines = 1.8 ohm")
+disp("For star connection, R_a between the terminals is 2 R_a per ph")
+disp("Therefore, 2R_a per ph = 1.8")
+disp("Therefore, R_a per ph = 0.9 ohm")
+xs=sqrt((10.623^2)-(0.9^2))
+format(7)
+disp(xs,"Therefore, X_s(in ohm/phase) = sqrt(Z_s^2 - R_a^2) =")
+disp("Now regulated is asked for I_a = 10 A")
+disp("Now : The value of Z_s is calculated for I_s = 12.5 A and not at I_s = 10 A. It will be different for I_s = 10 A. But in this problem the test results are not given hence it is not possible to sketch the graphs to detemine Z_s at I_a = 10 A. So value of Z_s calculated is assumed to be same as I_a = 10 A")
+disp("(i) For 0.8 lagging p.f.")
+vph=230/sqrt(3)
+format(7)
+disp(vph,"V_ph(in V) = V_L/sqrt(3) =")
+disp("I_a = 10 A")
+disp("cos(phi) = 0.8 so sin(phi) = 0.6")
+disp("(E_ph)^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*X_s)^2")
+eph=(((132.79*0.8)+(10*0.9))^2)+(((132.79*0.6)+(10*10.585))^2)
+p=sqrt(eph)
+format(8)
+disp(p,"Therefore, E_ph(in V) = ")
+regu=((218.39-132.79)/132.79)*100
+format(6)
+disp(regu,"Therefore, %Regulation(in percentage) = (E_ph-V_ph / V_ph)*100 =")
+disp("(ii) For 0.8 leading p.f.")
+disp("(E_ph)^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*X_s)^2")
+eph=(((132.79*0.8)+(10*0.9))^2)+(((132.79*0.6)-(10*10.585))^2)
+p=sqrt(eph)
+format(8)
+disp(p,"Therefore, E_ph(in V) = ")
+regu=((118.168-132.79)/132.79)*100
+format(6)
+disp(regu,"Therefore, %Regulation(in percentage) = (E_ph-V_ph / V_ph)*100 =")
diff --git a/1370/CH4/EX4.9/Exp4_9.sce b/1370/CH4/EX4.9/Exp4_9.sce
new file mode 100755
index 000000000..f44cedef7
--- /dev/null
+++ b/1370/CH4/EX4.9/Exp4_9.sce
@@ -0,0 +1,29 @@
+//Example 4.9
+clc
+disp("P = 10, N_a = 600 r.p.m, slots = 90")
+disp("phi = 16 mWb, E_line = 11 kW")
+f=6000/120
+format(3)
+disp("N_s = 120f / P")
+disp(f,"Therefore, f(in Hz) =")
+eph=(11*10^3)/sqrt(3)
+format(9)
+disp(eph,"For star connection, E_ph(in V) = E_line/sqrt(3) =")
+disp("Now E_ph = 4.44*K_c*K_d*phi*f*T_ph")
+disp("K_c = 1 as no information about short pitching is given")
+n=90/10
+disp(n,"n = slots/pole =")
+m=9/3
+disp(m,"m = slots/pole/phase = n/3 =")
+beta=180/9
+disp(beta,"beta = slot angle = 180/n =")
+kd=sind(30)/(3*sind(10))
+format(7)
+disp(kd,"Therefore, K_d = sin(m*beta/2) / m*sin(beta/2) =")
+disp("Therefore, 6350.853 = 4.44*1*0.9598*16*10^-3*50*T_ph")
+tph=6350.853/(4.44*1*0.9598*16*50*10^-3)
+format(5)
+disp(tph,"Therefore, T_ph =")
+zph=2*1862
+disp(zph,"Therefore, Z_ph = 2*T_ph =")
+disp("These are armature conductors per phase required to be connected in series.")