summaryrefslogtreecommitdiff
path: root/1370
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /1370
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '1370')
-rwxr-xr-x1370/CH1/EX1.1/chapter1_1.sce19
-rwxr-xr-x1370/CH1/EX1.10/chapter1_10.sce6
-rwxr-xr-x1370/CH1/EX1.11/chapter1_11.sce11
-rwxr-xr-x1370/CH1/EX1.12/chapter1_12.sce26
-rwxr-xr-x1370/CH1/EX1.13/chapter1_13.sce20
-rwxr-xr-x1370/CH1/EX1.14/chapter1_14.sce32
-rwxr-xr-x1370/CH1/EX1.15/chapter1_15.sce26
-rwxr-xr-x1370/CH1/EX1.16/chapter1_16.sce38
-rwxr-xr-x1370/CH1/EX1.17/chapter1_17.sce22
-rwxr-xr-x1370/CH1/EX1.18/chapter1_18.sce7
-rwxr-xr-x1370/CH1/EX1.19/chapter1_19.sce20
-rwxr-xr-x1370/CH1/EX1.2/chapter1_2.sce25
-rwxr-xr-x1370/CH1/EX1.20/chapter1_20.sce20
-rwxr-xr-x1370/CH1/EX1.21/chapter1_21.sce27
-rwxr-xr-x1370/CH1/EX1.22/chapter1_22.sce13
-rwxr-xr-x1370/CH1/EX1.23/chapter1_23.sce22
-rwxr-xr-x1370/CH1/EX1.24/chapter1_24.sce16
-rwxr-xr-x1370/CH1/EX1.25/chapter1_25.sce11
-rwxr-xr-x1370/CH1/EX1.26/chapter1_26.sce9
-rwxr-xr-x1370/CH1/EX1.27/chapter1_27.sce17
-rwxr-xr-x1370/CH1/EX1.28/chapter1_28.sce19
-rwxr-xr-x1370/CH1/EX1.29/chapter1_29.sce17
-rwxr-xr-x1370/CH1/EX1.3/chapter1_3.sce12
-rwxr-xr-x1370/CH1/EX1.30/chapter1_30.sce18
-rwxr-xr-x1370/CH1/EX1.31/chapter1_31.sce39
-rwxr-xr-x1370/CH1/EX1.32/chapter1_32.sce20
-rwxr-xr-x1370/CH1/EX1.4/chapter1_4.sce15
-rwxr-xr-x1370/CH1/EX1.5/chapter1_5.sce32
-rwxr-xr-x1370/CH1/EX1.6/chapter1_6.sce14
-rwxr-xr-x1370/CH1/EX1.7/chapter1_7.sce7
-rwxr-xr-x1370/CH1/EX1.8/chapter1_8.sce9
-rwxr-xr-x1370/CH1/EX1.9/chapter1_9.sce10
-rwxr-xr-x1370/CH2/EX2.1/example2_1.sce10
-rwxr-xr-x1370/CH2/EX2.10/example2_10.sce20
-rwxr-xr-x1370/CH2/EX2.11/example2_11.sce12
-rwxr-xr-x1370/CH2/EX2.12/example2_12.sce14
-rwxr-xr-x1370/CH2/EX2.13/example2_13.sce32
-rwxr-xr-x1370/CH2/EX2.14/example2_14.sce20
-rwxr-xr-x1370/CH2/EX2.15/example2_15.sce17
-rwxr-xr-x1370/CH2/EX2.16/example2_16.sce34
-rwxr-xr-x1370/CH2/EX2.17/example2_17.sce25
-rwxr-xr-x1370/CH2/EX2.18/example2_18.sce28
-rwxr-xr-x1370/CH2/EX2.19/example2_19.sce29
-rwxr-xr-x1370/CH2/EX2.2/example2_2.sce17
-rwxr-xr-x1370/CH2/EX2.20/example2_20.sce12
-rwxr-xr-x1370/CH2/EX2.21/example2_21.sce7
-rwxr-xr-x1370/CH2/EX2.22/example2_22.sce7
-rwxr-xr-x1370/CH2/EX2.23/example2_23.sce16
-rwxr-xr-x1370/CH2/EX2.24/example2_24.sce11
-rwxr-xr-x1370/CH2/EX2.25/example2_25.sce8
-rwxr-xr-x1370/CH2/EX2.26/example2_26.sce26
-rwxr-xr-x1370/CH2/EX2.27/example2_27.sce20
-rwxr-xr-x1370/CH2/EX2.28/example2_28.sce11
-rwxr-xr-x1370/CH2/EX2.29/example2_29.sce13
-rwxr-xr-x1370/CH2/EX2.3/example2_3.sce19
-rwxr-xr-x1370/CH2/EX2.30/example2_30.sce12
-rwxr-xr-x1370/CH2/EX2.31/example2_31.sce10
-rwxr-xr-x1370/CH2/EX2.32/example2_32.sce13
-rwxr-xr-x1370/CH2/EX2.33/example2_33.sce34
-rwxr-xr-x1370/CH2/EX2.34/example2_34.sce28
-rwxr-xr-x1370/CH2/EX2.35/example2_35.sce11
-rwxr-xr-x1370/CH2/EX2.36/example2_36.sce22
-rwxr-xr-x1370/CH2/EX2.4/example2_4.sce18
-rwxr-xr-x1370/CH2/EX2.5/example2_5.sce22
-rwxr-xr-x1370/CH2/EX2.6/example2_6.sce21
-rwxr-xr-x1370/CH2/EX2.7/example2_7.sce8
-rwxr-xr-x1370/CH2/EX2.8/example2_8.sce12
-rwxr-xr-x1370/CH2/EX2.9/example2_9.sce7
-rwxr-xr-x1370/CH3/EX3.1/example3_1.sce13
-rwxr-xr-x1370/CH3/EX3.10/example3_10.sce17
-rwxr-xr-x1370/CH3/EX3.11/example3_11.sce46
-rwxr-xr-x1370/CH3/EX3.12/example3_12.sce21
-rwxr-xr-x1370/CH3/EX3.13/example3_13.sce54
-rwxr-xr-x1370/CH3/EX3.14/example3_14.sce16
-rwxr-xr-x1370/CH3/EX3.15/example3_15.sce24
-rwxr-xr-x1370/CH3/EX3.16/example3_16.sce27
-rwxr-xr-x1370/CH3/EX3.17/example3_17.sce13
-rwxr-xr-x1370/CH3/EX3.18/example3_18.sce15
-rwxr-xr-x1370/CH3/EX3.19/example3_19.sce14
-rwxr-xr-x1370/CH3/EX3.2/example3_2.sce10
-rwxr-xr-x1370/CH3/EX3.20/example3_20.sce15
-rwxr-xr-x1370/CH3/EX3.21/example3_21.sce20
-rwxr-xr-x1370/CH3/EX3.22/example3_22.sce23
-rwxr-xr-x1370/CH3/EX3.23/example3_23.sce18
-rwxr-xr-x1370/CH3/EX3.24/example3_24.sce15
-rwxr-xr-x1370/CH3/EX3.25/example3_25.sce19
-rwxr-xr-x1370/CH3/EX3.26/example3_26.sce24
-rwxr-xr-x1370/CH3/EX3.27/example3_27.sce30
-rwxr-xr-x1370/CH3/EX3.3/example3_3.sce19
-rwxr-xr-x1370/CH3/EX3.4/example3_4.sce43
-rwxr-xr-x1370/CH3/EX3.5/example3_5.sce18
-rwxr-xr-x1370/CH3/EX3.6/example3_6.sce19
-rwxr-xr-x1370/CH3/EX3.7/example3_7.sce28
-rwxr-xr-x1370/CH3/EX3.8/example3_8.sce24
-rwxr-xr-x1370/CH3/EX3.9/example3_9.sce11
-rwxr-xr-x1370/CH4/EX4.1/Exp4_1.sce12
-rwxr-xr-x1370/CH4/EX4.10/Exp4_10.sce39
-rwxr-xr-x1370/CH4/EX4.11/Exp4_11.sce46
-rwxr-xr-x1370/CH4/EX4.12/Exp4_12.sce36
-rwxr-xr-x1370/CH4/EX4.13/Exp4_13.sce11
-rwxr-xr-x1370/CH4/EX4.14/Exp4_14.sce15
-rwxr-xr-x1370/CH4/EX4.15/Exp4_15.sce21
-rwxr-xr-x1370/CH4/EX4.16/Exp4_16.sce18
-rwxr-xr-x1370/CH4/EX4.17/Exp4_17.sce31
-rwxr-xr-x1370/CH4/EX4.18/Exp4_18.sce36
-rwxr-xr-x1370/CH4/EX4.19/Exp4_19.sce37
-rwxr-xr-x1370/CH4/EX4.2/Exp4_2.sce12
-rwxr-xr-x1370/CH4/EX4.20/Exp4_20.sce25
-rwxr-xr-x1370/CH4/EX4.21/Exp4_21.sce29
-rwxr-xr-x1370/CH4/EX4.3/Exp4_3.sce29
-rwxr-xr-x1370/CH4/EX4.4/Exp4_4.sce27
-rwxr-xr-x1370/CH4/EX4.5/Exp4_5.sce25
-rwxr-xr-x1370/CH4/EX4.6/Exp4_6.sce31
-rwxr-xr-x1370/CH4/EX4.7/Exp4_7.sce41
-rwxr-xr-x1370/CH4/EX4.8/Exp4_8.sce43
-rwxr-xr-x1370/CH4/EX4.9/Exp4_9.sce29
-rwxr-xr-x1370/CH5/EX5.1/exp5_1.sce12
-rwxr-xr-x1370/CH5/EX5.10/exp5_10.sce49
-rwxr-xr-x1370/CH5/EX5.11/exp5_11.sce49
-rwxr-xr-x1370/CH5/EX5.15/exp5_15.sce30
-rwxr-xr-x1370/CH5/EX5.18/exp5_18.sce13
-rwxr-xr-x1370/CH5/EX5.19/exp5_19.sce22
-rwxr-xr-x1370/CH5/EX5.2/exp5_2.sce12
-rwxr-xr-x1370/CH5/EX5.22/exp5_22.sce15
-rwxr-xr-x1370/CH5/EX5.23/exp5_23.sce22
-rwxr-xr-x1370/CH5/EX5.3/exp5_3.sce11
-rwxr-xr-x1370/CH5/EX5.4/exp5_4.sce16
-rwxr-xr-x1370/CH5/EX5.5/exp5_5.sce28
-rwxr-xr-x1370/CH5/EX5.6/exp5_6.sce28
-rwxr-xr-x1370/CH5/EX5.7/exp5_7.sce24
-rwxr-xr-x1370/CH5/EX5.8/exp5_8.sce40
-rwxr-xr-x1370/CH5/EX5.9/exp5_9.sce19
-rwxr-xr-x1370/CH6/EX6.1/exmaple6_1.sce11
-rwxr-xr-x1370/CH6/EX6.10/exmaple6_10.sce11
-rwxr-xr-x1370/CH6/EX6.11/exmaple6_11.sce36
-rwxr-xr-x1370/CH6/EX6.2/exmaple6_2.sce11
-rwxr-xr-x1370/CH6/EX6.3/exmaple6_3.sce7
-rwxr-xr-x1370/CH6/EX6.4/exmaple6_4.sce18
-rwxr-xr-x1370/CH6/EX6.5/exmaple6_5.sce7
-rwxr-xr-x1370/CH6/EX6.6/exmaple6_6.sce19
-rwxr-xr-x1370/CH6/EX6.7/exmaple6_7.sce17
-rwxr-xr-x1370/CH6/EX6.8/exmaple6_8.sce11
-rwxr-xr-x1370/CH6/EX6.9/exmaple6_9.sce11
-rwxr-xr-x1370/CH7/EX7.1/exp7_1.sce13
-rwxr-xr-x1370/CH7/EX7.10/exp7_10.sce13
-rwxr-xr-x1370/CH7/EX7.11/exp7_11.sce18
-rwxr-xr-x1370/CH7/EX7.12/exp7_12.sce18
-rwxr-xr-x1370/CH7/EX7.14/exp7_14.sce12
-rwxr-xr-x1370/CH7/EX7.15/exp7_15.sce17
-rwxr-xr-x1370/CH7/EX7.17/exp7_17.sce32
-rwxr-xr-x1370/CH7/EX7.2/exp7_2.sce15
-rwxr-xr-x1370/CH7/EX7.20/exp7_20.sce14
-rwxr-xr-x1370/CH7/EX7.21/exp7_21.sce24
-rwxr-xr-x1370/CH7/EX7.22/exp7_22.sce22
-rwxr-xr-x1370/CH7/EX7.23/exp7_23.sce21
-rwxr-xr-x1370/CH7/EX7.25/exp7_25.sce14
-rwxr-xr-x1370/CH7/EX7.29/exp7_29.sce11
-rwxr-xr-x1370/CH7/EX7.3/exp7_3.sce19
-rwxr-xr-x1370/CH7/EX7.30/exp7_30.sce5
-rwxr-xr-x1370/CH7/EX7.31/exp7_31.sce9
-rwxr-xr-x1370/CH7/EX7.4/exp7_4.sce15
-rwxr-xr-x1370/CH7/EX7.7/exp7_7.sce18
-rwxr-xr-x1370/CH7/EX7.9/exp7_9.sce13
-rwxr-xr-x1370/CH8/EX8.1/example8_1.sce10
-rwxr-xr-x1370/CH8/EX8.2/example8_2.sce14
-rwxr-xr-x1370/CH8/EX8.3/example8_3.sce15
-rwxr-xr-x1370/CH8/EX8.4/example8_4.sce10
-rwxr-xr-x1370/CH8/EX8.7/example8_7.sce14
-rwxr-xr-x1370/CH8/EX8.8/example8_8.sce13
-rwxr-xr-x1370/CH8/EX8.9/example8_9.sce22
-rwxr-xr-x1370/CH9/EX9.1/example9_1.sce22
-rwxr-xr-x1370/CH9/EX9.10/example9_10.sce7
-rwxr-xr-x1370/CH9/EX9.11/example9_11.sce11
-rwxr-xr-x1370/CH9/EX9.12/example9_12.sce21
-rwxr-xr-x1370/CH9/EX9.15/example9_15.sce16
-rwxr-xr-x1370/CH9/EX9.16/example9_16.sce13
-rwxr-xr-x1370/CH9/EX9.17/example9_17.sce13
-rwxr-xr-x1370/CH9/EX9.18/example9_18.sce10
-rwxr-xr-x1370/CH9/EX9.19/example9_19.sce9
-rwxr-xr-x1370/CH9/EX9.2/example9_2.sce7
-rwxr-xr-x1370/CH9/EX9.4/example9_4.sce12
-rwxr-xr-x1370/CH9/EX9.7/example9_7.sce15
-rwxr-xr-x1370/CH9/EX9.8/example9_8.sce14
183 files changed, 3554 insertions, 0 deletions
diff --git a/1370/CH1/EX1.1/chapter1_1.sce b/1370/CH1/EX1.1/chapter1_1.sce
new file mode 100755
index 000000000..20f2f5e5d
--- /dev/null
+++ b/1370/CH1/EX1.1/chapter1_1.sce
@@ -0,0 +1,19 @@
+//example1.1
+clc
+disp("From the give waveform,")
+s=100/2
+disp(s,"For 0<t<2, i(t) is a straight line slope=")
+disp("Therefore i(t)=50t and di(t)/dt=50 .. 0<t<2")
+disp("For 2<t<4, i(t)=100 and di(t)/dt=0")
+s=(-100)/2
+disp(s,"For 4<t<6, i(t) is a straight line slope = ")
+disp("Therefore, i(t)= -50t and di(t)/dt= -50 ..4<t<6")
+disp("Now v_l(t)=L*di(t)/dt")
+v=(50)*10^-3
+format(5)
+disp(v,"V_l(t)[in volts from 0<t<2]=")
+v=0*10^-3
+disp(v,"V_l(t)[in volts from 2<t<4]=")
+v=(-50)*10^-3
+disp(v,"V_l(t)[in volts from 4<t<6]=")
+disp("The waveform is shown in the fig. 1.12(a)")
diff --git a/1370/CH1/EX1.10/chapter1_10.sce b/1370/CH1/EX1.10/chapter1_10.sce
new file mode 100755
index 000000000..1bd790bd5
--- /dev/null
+++ b/1370/CH1/EX1.10/chapter1_10.sce
@@ -0,0 +1,6 @@
+//example1.10
+clc
+disp("Redrawing the circuit,")
+r=(21*14)/(21+14)
+format(4)
+disp(r,"R_ab(in ohm)=(21*14)/(21+14)=")
diff --git a/1370/CH1/EX1.11/chapter1_11.sce b/1370/CH1/EX1.11/chapter1_11.sce
new file mode 100755
index 000000000..170284532
--- /dev/null
+++ b/1370/CH1/EX1.11/chapter1_11.sce
@@ -0,0 +1,11 @@
+//example1.11
+clc
+disp("Redrawing the circuit,")
+disp("R1 and R2 are in series from fig. 1.59(b)")
+r=150/25
+disp(r,"R1(in ohm)=(15*10)/(15+10)=")
+r=24/10
+disp(r,"R2(in ohm)=(6*4)/(6+4)=")
+disp("then, R_ab=R1+R2")
+r=6+2.4
+disp(r,"Therefore, R_ab(in ohm)=6+2.4=")
diff --git a/1370/CH1/EX1.12/chapter1_12.sce b/1370/CH1/EX1.12/chapter1_12.sce
new file mode 100755
index 000000000..b2f0ae152
--- /dev/null
+++ b/1370/CH1/EX1.12/chapter1_12.sce
@@ -0,0 +1,26 @@
+//example1.12
+clc
+disp("The various loop are shown in the fig 1.64(a)")
+disp("Apply KVL to the various loops,")
+disp("Loop 1, -15(I_1)-20(I_1)+20(I_2)+100=0")
+disp("Therefore, +35(I_1)-20(I_2)=100 ...(1)")
+disp("Loop 2, -5(I_2)-30(I_2)+30(I_3)-20(I_2)+20(I_1)=0")
+disp("Therefore, 20(I_1)-55(I_2)+30(I_3)=0 ...(2)")
+disp("Loop 3, -5(I_3)-100-30(I_3)+30(I_2)=0")
+disp("Therefore, 30(I_2)-35(I_3)=0 ...(3)")
+d=35*((55*35)-(30*30))+20*(-35*20)
+format(6)
+disp(d,"D1=[35 -20 0;20 -55 30;0 30 -35]=")
+d=35*(-(100*30))-100*(-35*20)
+disp(d,"D2=[35 100 0;20 0 30;0 100 -35]=")
+d=35*(-55*100)-(-20*(20*100))+100*(30*20)
+disp(d,"D3=[35 -20 100;20 -55 0;0 30 100]=")
+i=(-35000)/21875
+format(4)
+disp(i,"I_2(in amp)=D2/D=")
+i=(-92500)/21875
+format(7)
+disp(i,"I_3(in amp)=D3/D=")
+i=(-1.6)+4.2285
+disp(i,"I_30(in amp)=(I_2)-(I_3)=")
+disp("As (I_2-I_3) is positive, current floes in the assumed direction of I_2")
diff --git a/1370/CH1/EX1.13/chapter1_13.sce b/1370/CH1/EX1.13/chapter1_13.sce
new file mode 100755
index 000000000..297aa20f6
--- /dev/null
+++ b/1370/CH1/EX1.13/chapter1_13.sce
@@ -0,0 +1,20 @@
+//example1.13
+clc
+disp("The various loop current are shown in the fig 1.65(a). The problem consists of current sources hence follow supermesh steps.")
+disp("Loops cannot be defined through current sources.So analyse the branches consisting of current sources first")
+disp("From branch A-B we can write,")
+disp("I_3=2A ...(1)")
+disp("From branch DG we can write,")
+disp("I_2-I_1=8A ...(2)")
+disp("Now apply KVL to the loop without current source i.e.")
+disp("loop C-D-E-H-G-F-C,")
+disp("-(I_3)-(I_1)-3(I_3)-3(I_2)-4(I_2)+24=0")
+disp("Therefore, 4(I_3)+7(I_2)+(I_1)=24 ...(3)")
+disp("Using equation (1) and equation (2) in (3) we get,")
+disp("8+7(I_2)+((I_2)-8)=24")
+disp("Therefore 8(I_2)=24")
+i=24/8
+disp(i,"I_2(in amp)=")
+disp("This is current through 4ohm resistor.So power deliverd to the 4ohm resistor is,")
+p=9*4
+disp(p,"P(in W)=((I_2)^2)*4=")
diff --git a/1370/CH1/EX1.14/chapter1_14.sce b/1370/CH1/EX1.14/chapter1_14.sce
new file mode 100755
index 000000000..8701c9e50
--- /dev/null
+++ b/1370/CH1/EX1.14/chapter1_14.sce
@@ -0,0 +1,32 @@
+//example1.14
+clc
+disp("The various node voltages and currents are shown in the fig 1.72(a).")
+disp("At node 1, -(I_1)-(I_2)-(I_3)=0")
+disp("Therefore, -[(V_1-15)/1]-[V_1/1]-[(V_1-V_2)/0.5]=0")
+disp("Therefore, -(V_1)+15-(V_1)-2(V_1)+2(V_2)=0")
+disp("Therefore, 4(V_1)-2(V_2)=15 ..(1)")
+disp("At node 2, (I_3)-(I_4)-(I_5)=0")
+disp("Therefore, [(V_1-V_2)/0.5]-[(V_2)/2]-[((V_2)+20)/1]=0")
+disp("Therefore, 2(V_1)-2(V_2)-0.5(V_2)-(V_2)+20=0")
+disp("Therefore, 2(V_1)-3.5(V_2)= -20 ...(2)")
+disp("Multiplying equation (2) by 2 and subtracting from equation (1) we get,")
+disp("5(V_2)=55")
+v=55/5
+disp(v,"V_2(in V)= ")
+v=(-20+(3.5*11))/2
+format(5)
+disp(v,"and, V_1(in V)= ")
+disp("Hence the various currents are,")
+i=9.25-15
+disp(i,"(I_1)(in A)=[(V_1)-5]/1=")
+disp("i.e I1=5.75A upward")
+i=9.25/1
+disp(i,"(I_2)(in A)=(V_1)/1=")
+i=(9.25-11)/0.5
+disp(i,"(I_3)(in A)=[(V_1)-(V_2)]/0.5=")
+disp("i.e I3=3.5A to left")
+i=11/2
+disp(i,"(I_4)(in A)=(V_2)/2=")
+i=11-20
+disp(i,"(I_5)(in A)=[(V_2)-20]/1=")
+disp("i.e I5=9A upward")
diff --git a/1370/CH1/EX1.15/chapter1_15.sce b/1370/CH1/EX1.15/chapter1_15.sce
new file mode 100755
index 000000000..c383896f9
--- /dev/null
+++ b/1370/CH1/EX1.15/chapter1_15.sce
@@ -0,0 +1,26 @@
+//example1.15
+clc
+disp("The various node voltage are shown in the fig 1.73(a).")
+disp("THe various braanch currents are shown.Applying KCL at various nodes.")
+disp("Node 1: 9-I1-I2-I3=0 ..(1)")
+disp("Node 1: I3-I4+4=0 ..(2)")
+disp("Node 1: I2-4-I5=0 ..(3)")
+disp("Key Point: Nodes V1 and V3 from supernode region and nodes V1 and V2 from super node region.")
+disp("Super node: V1-10=V3 i.e. V1-V3=10 ..(4)")
+disp("Super node: V1+6=V2 i.e. V1-V2=-6 ..(5)")
+disp("From equation (2), I3=I4-4 and from equation (3), I2=I5+4")
+disp("Using in equation (1), 9-I1-I5-4-I4+4=0")
+disp("i.e I1+I4+I5=9 ..(6)")
+disp("I1=V1/4, I4=V2/10, I5=V3/5")
+disp("Therefore (V1/4)+(V2/10)+(V3/5)=9")
+disp("i.e 0.25(V1)+0.1(V2)+0.2(V3)=9 ...(7)")
+disp("Solving equations(4), (5) and (7) simultaneously,we get")
+disp("0.25(V1)+0.1(V1+6)+0.2(V1-10)=9")
+v=10.4/0.55
+format(7)
+disp(v,"Therefore, V1(in V)=")
+disp("putting V1 in eq.(4) and (5), we get ")
+v=18.909+6
+disp(v,"V2(in V)=")
+v=18.909-10
+disp(v,"V3(in V)=")
diff --git a/1370/CH1/EX1.16/chapter1_16.sce b/1370/CH1/EX1.16/chapter1_16.sce
new file mode 100755
index 000000000..acd3004f0
--- /dev/null
+++ b/1370/CH1/EX1.16/chapter1_16.sce
@@ -0,0 +1,38 @@
+//example1.16
+clc
+disp("Case 1: R=10ohm")
+disp("V=(V_m)sin(wt)")
+v=150*sqrt(2)
+format(7)
+disp("(V_m)[in V]=sqrt(2)*V_rms=")
+i=212.13/10
+disp(i,"(I_m)[in A]=(V_m)/R=")
+disp("In pure resistive circuit, currents is in phase with the voltage.")
+disp("Therefore, psi=phase difference= 0 degree")
+disp("Therefore, i=(I_m)sin(wt)=(I_m)sin(2*pi*f*t)")
+disp("Therefore, i(in A) = 21.213sin(100*pi*t)")
+disp("The phasor diagram is shown in the fig. 1.85(a)")
+disp("Case 2: L=0.2 ohm")
+x=2*%pi*50*0.2
+format(6)
+disp(x,"Inductive reactance, (X_L)[in ohm]=wL=(2*pi*f*L)=")
+i=212/13/62.83
+format(5)
+disp("Therefore, (I_m)[in A]=(V_m)/(X_L)=")
+disp("In pure inductive circuit, current lags voltage by 90 degree.")
+disp("Therefore, psi=phase difference = -90 degree =(pi/2)rad")
+disp("Therefore, i=(I_m)sin(wt-psi) i.e. i(in A)=3.37sin((100*pi*t)-(pi/2))")
+disp("The phasor dig in shown in the fig 1.85(b).")
+disp("Case 3: C=50 micro-F")
+c=1/(2*%pi*50*50*10^-6)
+format(6)
+disp(c,"Capacitive reactance, X_c(in ohm)=1/wC=1/(2*pi*f*C)=")
+i=212.13/63.66
+format(5)
+disp(i,"I_m(in A)=(V_m)/(X_c)=")
+disp("In pure capacitive circuit, current leads voltage by 90 degree.")
+disp("Therefore psi=phase difference =90 degree= (pi/2)radian")
+disp("Therefore, i=(I_m)sin(wt+psi)")
+disp("Therefore, i(in A)=3.33sin((100*pi*t)+(pi/2))")
+disp("The phasor dig is as shown in the fig 1.85(c).")
+disp("All the phasor dig represent r.m.s values of voltage and current")
diff --git a/1370/CH1/EX1.17/chapter1_17.sce b/1370/CH1/EX1.17/chapter1_17.sce
new file mode 100755
index 000000000..817f95b1a
--- /dev/null
+++ b/1370/CH1/EX1.17/chapter1_17.sce
@@ -0,0 +1,22 @@
+//example1.17
+clc
+r=10/10
+disp(r,"R1(in ohm)=(2*5)/(2+5+3)=")
+r=6/10
+disp(r,"R2(in ohm)=(3*2)/(2+5+3)=")
+r=15/10
+disp(r,"R3(in ohm)=(5*3)/(2+5+3)=")
+r=50/25
+disp(r,"R1(in ohm)=(10*5)/(10+5+10)=")
+r=100/25
+disp(r,"R2(in ohm)=(10*10)/(10+5+10)=")
+r=50/25
+disp(r,"R3(in ohm)=(5*10)/(10+5+10)=")
+disp("The circuit reduces as shown in the fig 1.86(c)")
+r=0.6+4.2439+2
+format(7)
+disp(r,"R_ab(in ohm)=0.6+4.2439+2=")
+disp("as, I=V/R_ab")
+v=5*6.8439
+format(8)
+disp(v,"Therefore, V(in V)=I*R_ab=")
diff --git a/1370/CH1/EX1.18/chapter1_18.sce b/1370/CH1/EX1.18/chapter1_18.sce
new file mode 100755
index 000000000..34090a018
--- /dev/null
+++ b/1370/CH1/EX1.18/chapter1_18.sce
@@ -0,0 +1,7 @@
+//example1.18
+clc
+disp("Rearrange the circuit as shown below.")
+disp("The 3.333ohm and 3.6ohm resistors are in series in fig 1.87(c).")
+r=3.333+3.6
+format(8)
+disp(r,"Therefore, the equivalent resistance R_yz(in ohm)=")
diff --git a/1370/CH1/EX1.19/chapter1_19.sce b/1370/CH1/EX1.19/chapter1_19.sce
new file mode 100755
index 000000000..f934e2f06
--- /dev/null
+++ b/1370/CH1/EX1.19/chapter1_19.sce
@@ -0,0 +1,20 @@
+//example1.19
+clc
+disp("Using the loop analysis, (fig 1.88(a) see on next page)")
+disp("Applying KVL to the three loops,")
+disp("-(I1)-(I1)-2(I1)+2(I3)+5-2(I1)=0 i.e -6(I1)+2(I3)= -5 ...(1)")
+disp("-2(I3)+2(I1)-2(I3)-5-2(I3)-(I3)+I2=0 i.e 2(I1)+I2-7(I3)=5 ...(2)")
+disp("-2(I2)-(I2)+(I3)-2(I2)+5=0 i.e -5(I2)+I3= -5 ...(3)")
+disp("Solving equation (1),(2)and (3)")
+disp("so, putting equations(1) and (3) in eq (2),we get")
+disp("10(I3)+25+3(I3)+15-105(I3)=75")
+disp("Therefore, -92(I3)=35")
+i=(-35)/92
+format(7)
+disp(i,"Therefore, I3(in A)=")
+disp("Now, putting value of I3 in equations (1) and (2) :")
+i=((-35/46)+5)/6
+disp(i,"Therefore, I1(in A)=")
+i=((-35/92)+5)/5
+disp(i,"and, I2(in A)=")
+disp("These are the currents in all the sources. I3 is negative hence its direction is opposite to that assumed earlier.")
diff --git a/1370/CH1/EX1.2/chapter1_2.sce b/1370/CH1/EX1.2/chapter1_2.sce
new file mode 100755
index 000000000..59a282c1c
--- /dev/null
+++ b/1370/CH1/EX1.2/chapter1_2.sce
@@ -0,0 +1,25 @@
+//example1.2
+clc
+disp("Identify combinations of series and parallel resistances.")
+disp("The resistances 5ohm and 6ohm are in series, as going to carry same current.")
+r=5+6
+disp(r,"So equivalent resistance is(in ohm)=")
+disp("While the resistances 3ohm,4ohm,4ohm are in parallel, as voltage across them same but current divides.")
+r=10/12
+format(4)
+disp(r,"(1/R)=(1/3)+(1/4)+(1/5)=")
+r=12/10
+disp(r,"Therefore, R(in ohm)=")
+disp("Replacing these combinations redraw the fig. as shown in the fig. 1.28(a)")
+disp("Now again 1.2ohm and 2ohm are in series so equivalent resistance is 2+1.2=3.2 ohm while 11ohm and 7ohm are in parallel.")
+disp("Using formula (R1*R2)/(R1+R2)")
+r=77/18
+format(6)
+disp(r,"equivalent resistance3 is (11*7)/(11+7)[in ohm]=")
+disp("Replacing the respective combination redraw the circuit as shown in the fig 1.28(b).")
+disp("Now 3.2 and 4.277 are in parallel")
+r=(3.2*4.277)/(3.2+4.277)
+format(7)
+disp(r,"Therefore , replacing them by (3.2*4.277)/(3.2+4.277)[in ohm]=")
+r=1+1.8304
+disp(r,"R_ab(in ohm)=")
diff --git a/1370/CH1/EX1.20/chapter1_20.sce b/1370/CH1/EX1.20/chapter1_20.sce
new file mode 100755
index 000000000..f9815754a
--- /dev/null
+++ b/1370/CH1/EX1.20/chapter1_20.sce
@@ -0,0 +1,20 @@
+//example1.20
+clc
+disp("The various branch currents are shown in the fig. 1.89. The current through branch OC is zero. Applying KVL to the various loops,")
+disp("-4(i2)-(R*i2)-2(i1)+10=0")
+disp("i.e 2(i1)+4(i2)+(R*i2)=10 ..Loop AOBA")
+disp("-(i1-i2)-1.5(i1-i2)-2(i1)+10=0")
+disp("i.e +4.5(i1)-2.5(i2)=10 ..Loop ACBA")
+disp("-(i1-i2)-1.5(i1-i2)+(R*i2)+4(i2)=0")
+disp("i.e -2.5(i1)+6.5(i2)+(R*i2)=0 ..Loop ACBOA")
+disp("As current through branch OC is zero, points O and C are equipotential. So drop across AO is same as drop across AC.")
+disp("Therefore, 4(i2)=(i1-i2) i.e (i1)=5(i2)")
+disp("Using in loop A-C-B-A, 4.5*5*(i2)-2.5(i2)=10")
+i=10/20
+disp(i,"Therefore, i2(in A)=")
+i=5*0.5
+disp(i,"and, i1(in A)=")
+disp("Using in loop A-O-B-A, (2*2.5)+(4*0.5)+0.5(R)=10")
+r=3/0.5
+disp(r,"Therefore, R(in ohm)=")
+disp("And current through R is i2=0.5 A")
diff --git a/1370/CH1/EX1.21/chapter1_21.sce b/1370/CH1/EX1.21/chapter1_21.sce
new file mode 100755
index 000000000..45e6f0c09
--- /dev/null
+++ b/1370/CH1/EX1.21/chapter1_21.sce
@@ -0,0 +1,27 @@
+//example1.21
+clc
+disp("Use nodal analysis,")
+disp("Applying KCL at the two nodes,")
+disp("21-I1-I2=0 (1)")
+disp("I2-I3-I4=0 (2)")
+disp("Analysing various branches,")
+disp("I1=(V1-0)/2, I2=(V1-V2)/3, I3=(V2-0)/3, I4=(V2-0)/6")
+disp("Using in the equations (1) and (2),")
+disp("21-(V1/2)-(V1-V2)/3 = 0")
+disp("i.e 0.8333(V1)-0.333(V2) = 21 ...(3)")
+disp("[(V1-V2)/3]-(V2/3)-(V2/6)=0")
+disp("i.e 0.3333(V1)-0.8333(V2) = 21 ...(4)")
+disp("Solving equations (3) and (4),")
+disp("0.8333(V1)-0.333(0.3333/0.8333)V1=21")
+v=(-21*0.8333)/((0.333*0.3333)-(0.8333)^2)
+format(3)
+disp(v,"V1(in V)=")
+v=(0.3333*30)/0.8333
+disp(v,"V2(in V)=")
+i=-12/6
+disp(i,"Therefore, I(in 6ohm)=I4(in A)=")
+disp("The current flows in downward direction in 6ohm resistor.")
+disp("Voltage across current soource is the voltage across 2ohm resistance, which is node voltage V1=30 V.")
+p=30*21
+format(4)
+disp(p,"Therefore, power supplied by source P(in W)=V1*21=30*21=")
diff --git a/1370/CH1/EX1.22/chapter1_22.sce b/1370/CH1/EX1.22/chapter1_22.sce
new file mode 100755
index 000000000..58271380f
--- /dev/null
+++ b/1370/CH1/EX1.22/chapter1_22.sce
@@ -0,0 +1,13 @@
+//example1.22
+clc
+disp("The arrangment is shown in the fig 1.92")
+disp("P2=(I^2)*R2")
+disp("Therefore, 16= (2^2)*R2")
+r=16/4
+disp(r,"R2(in ohm)=")
+v=4*2
+disp(v,"V2(in ohm)=I*R2=")
+v=2*6
+disp("V3(in V)=I*R3=")
+v=4+8+12
+disp(v,"V(in V)=V1+V2+V3=")
diff --git a/1370/CH1/EX1.23/chapter1_23.sce b/1370/CH1/EX1.23/chapter1_23.sce
new file mode 100755
index 000000000..78d95719d
--- /dev/null
+++ b/1370/CH1/EX1.23/chapter1_23.sce
@@ -0,0 +1,22 @@
+//example1.23
+clc
+disp("The branch currents are shown in the fig 1.93(a)")
+disp("Applying KVL to the two loops,")
+disp("-2(I1)-5(I2)+12=0")
+disp("i.e 2(I1)+5(I2)=12 ..(1)")
+disp("-4(I1-I2)-6(I1-I2)+5(I2)=0")
+disp("i.e -10(I1)+15(I2)=0")
+disp("Solving equation (1) and (2),")
+disp("2(I1)+5(10/15)(I1)=12")
+i=9/4
+format(5)
+disp(i,"I1(in A)=")
+disp("put this value of I1 in eq (2),we get")
+i=(10/15)*2.25
+disp(i,"I2(in A)=(10/15)*2.25=")
+disp(" Branch Current voltage drop")
+disp(" A-B I1=2.25A 2(I1)=4.5V")
+disp(" B-C I1-I2=0.75A 4(I1-I2)=3V")
+disp(" C-D I1-I2=0.75A 6(I1-I2)=4.5V")
+disp(" B-E I2=1.5A 5(I2)=7.5V")
+disp(" F-A I1=2.25A 12V source")
diff --git a/1370/CH1/EX1.24/chapter1_24.sce b/1370/CH1/EX1.24/chapter1_24.sce
new file mode 100755
index 000000000..bf934fc6b
--- /dev/null
+++ b/1370/CH1/EX1.24/chapter1_24.sce
@@ -0,0 +1,16 @@
+//example1.24
+clc
+i=20/(2+1.2727)
+format(7)
+disp(i,"I(in A)=")
+disp("By current division rule,")
+i=(6.1111*2)/5.5
+format(6)
+disp(i,"I1(in A)=9(I*2)/(2+3.5)=")
+v=2.222*1
+disp(v,"V(1 ohm)=I1*1=")
+i=(6.1111*3.5)/5.5
+disp(i,"I2(in A)=(3.5*I)/(2 +3.5)=")
+p=((3.888)^2)*2
+format(7)
+disp(p,"P(2 ohm)[in W]=(I2^2)*2=")
diff --git a/1370/CH1/EX1.25/chapter1_25.sce b/1370/CH1/EX1.25/chapter1_25.sce
new file mode 100755
index 000000000..e2d69bdce
--- /dev/null
+++ b/1370/CH1/EX1.25/chapter1_25.sce
@@ -0,0 +1,11 @@
+//example1.25
+clc
+disp("The arrangement is shown in the fig 1.97.")
+x=110/10
+disp(x,"X_L(in ohm)=V/I=")
+disp("THe inductive reactance is 11 ohm")
+disp("X_L=2*pi*f*L")
+disp("Therefore, 11=2*pi*50*L")
+l=11/(2*%pi*50)
+format(9)
+disp(l,"L(in H)=")
diff --git a/1370/CH1/EX1.26/chapter1_26.sce b/1370/CH1/EX1.26/chapter1_26.sce
new file mode 100755
index 000000000..95c95f8a0
--- /dev/null
+++ b/1370/CH1/EX1.26/chapter1_26.sce
@@ -0,0 +1,9 @@
+//example1.26
+clc
+disp("For d.c. supply frequency is 0 Hz.")
+disp("X_C=1/(2*pi*f*C)=1/0=infinity")
+disp("So capacitor gives infinite reactance in d.c. supply and acts as an open circuits.")
+disp("In an a.c. supply of 100 Hz,")
+x=1/(2*%pi*100*50*10^-6)
+format(9)
+disp(x,"X_C(in ohm)=1/(2*pi*f*C)=")
diff --git a/1370/CH1/EX1.27/chapter1_27.sce b/1370/CH1/EX1.27/chapter1_27.sce
new file mode 100755
index 000000000..1c82a3114
--- /dev/null
+++ b/1370/CH1/EX1.27/chapter1_27.sce
@@ -0,0 +1,17 @@
+//example1.27
+clc
+disp("The circuit can be redrawn as shown in the fig 1.99(a)")
+disp("fig 1.99(a,b) see on next page")
+disp("Therefore, R_eq=[30(10+R)/(30+10+R)]=(300+30R)/(40+R)")
+disp("Therefore, I=V/(R_eq) i.e 6=30/[(300+30R)/(40+R)]")
+disp("6(300+30R)=50(40+R) i.e. 1800+180R=2000+50R")
+r=200/130
+format(7)
+disp(r,"R(in ohm)=")
+disp("By current division rule,")
+i=(6*11.5384)/41.5384
+format(6)
+disp(i,"I1(in A)=[(I_t)*(10+R)/(10+R+30)]=")
+i=(6*30)/41.5384
+disp(i,"I2(in A)=[(I_t)*30/(10+R+30)]=")
+disp("Key point: Cross check I1+I2= 6 A")
diff --git a/1370/CH1/EX1.28/chapter1_28.sce b/1370/CH1/EX1.28/chapter1_28.sce
new file mode 100755
index 000000000..d6b94f56a
--- /dev/null
+++ b/1370/CH1/EX1.28/chapter1_28.sce
@@ -0,0 +1,19 @@
+//example1.28
+clc
+disp("Convert the delta of 2ohm, 3ohm and 5ohm to equivalent star as shown in the fig 1.101(a)")
+r=15/10
+disp(r,"R1(in ohm)=(5*3)/(5+3+2)=")
+r=6/10
+disp(r,"R2(in ohm)=(3*2)/(5+3+2)=")
+r=10/10
+disp(r,"R3(in ohm)=(5*2)/(5+3+2)=")
+disp("Convert the delta of 1ohm, 5.6ohm and 4ohm to equivalent star as shown in the fig 101(c)")
+r=5.6/10.6
+format(7)
+disp(r,"R4(in ohm)=(5.6*1)/(1+5.6+4)=")
+r=(5.6*4)/10.6
+disp(r,"R5(in ohm)=(5.6*4)/(1+5.6+4)=")
+r=4/10.6
+disp(r,"R6(in ohm)=(1*4)/(1+5.6+4)=")
+r=3.4705+0.3773
+disp(r,"Therefore, R_ab(in ohm)=3.4705+0.3773=")
diff --git a/1370/CH1/EX1.29/chapter1_29.sce b/1370/CH1/EX1.29/chapter1_29.sce
new file mode 100755
index 000000000..4c5662042
--- /dev/null
+++ b/1370/CH1/EX1.29/chapter1_29.sce
@@ -0,0 +1,17 @@
+//example1.29
+clc
+disp("Convert the inner delta of 5ohm to equivalent star. As all the resistances of delta are same, all the resistances of equivalent star will be equal of value ")
+r=25/15
+disp(r,"R(in ohm)=(5*5)/(5+5+5)=")
+disp("Convert the delta of 6.667ohm, 5ohm and 11.667ohm")
+r=(6.667*11.667)/(6.667+11.667+5)
+format(7)
+disp(r,"R1(in ohm)=(6.667*11.667)/(6.667+11.667+5)=")
+r=(6.667*5)/(6.667+11.667+5)
+disp(r,"R2(in ohm)=(6.667*5)/(6.667+11.667+5)=")
+r=(5*11.667)/(6.667+11.667+5)
+format(7)
+disp(r,"R3(in ohm)=(5*11.667)/(6.667+11.667+5)=")
+r=5.333+2.612
+format(7)
+disp(r,"Therefore, R_ab(in ohm)=5.333+2.612=")
diff --git a/1370/CH1/EX1.3/chapter1_3.sce b/1370/CH1/EX1.3/chapter1_3.sce
new file mode 100755
index 000000000..c8f8b7095
--- /dev/null
+++ b/1370/CH1/EX1.3/chapter1_3.sce
@@ -0,0 +1,12 @@
+//example1.3
+clc
+disp("I=v/(R1+R2+R3) ..... series circuit")
+i=60/60
+disp(i,"I(in amp)=")
+v=1*10
+disp(v,"Therefore, V_r1(in V)=(I*R1)=(V*R1)/(R1+R2+R3)=")
+v=1*20
+disp(v,"Therefore, V_r2(in V)=(I*R2)=(V*R2)/(R1+R2+R3)=")
+v=1*30
+disp(v,"and, V_r3(in V)=(I*R3)=(V*R3)/(R1+R2+R3)=")
+disp("Key point: It can be seen that voltage across any resistance of series circuit is ratio of that resistance to the total resistance, multiplied by the source voltage.")
diff --git a/1370/CH1/EX1.30/chapter1_30.sce b/1370/CH1/EX1.30/chapter1_30.sce
new file mode 100755
index 000000000..14ef96481
--- /dev/null
+++ b/1370/CH1/EX1.30/chapter1_30.sce
@@ -0,0 +1,18 @@
+//example1.30
+clc
+disp("Let us divide the voltage waveform into two sections.")
+disp("For 0<=t<=2, v(t)=mt where,")
+m=10/2
+disp(m,"m=(10-0)/(2-0)=")
+disp("Therefore, i(t)=v(t)/R=5t/40=0.125t A")
+i=0.125*2
+disp(i,"At t=2, v(t)=10 V, i(t)[in A]=0.125*2=")
+m=(-10)/2
+disp(m,"For 2<=t<=4, v(t)=mt+c where m=(0-10)/(4-2)=")
+disp("Therefore, v(t)= -5t+C")
+c=5*4
+disp(c,"Now at t=4, v(t)=0 i.e. 0= -5*4+C i.e C=")
+disp("Therefore, v(t)= -5t+20")
+disp("Therefore, i(t)=v(t)/R= (-5t+20)/40= -0.125t+0.5")
+disp("At t=4, v(t)= -5*4+20=0 V, i(t)= -0.125*4+0.5= 0 V")
+disp("Hence the waveform of the current passing through the resistance is as shown in the fig 1.105")
diff --git a/1370/CH1/EX1.31/chapter1_31.sce b/1370/CH1/EX1.31/chapter1_31.sce
new file mode 100755
index 000000000..19c964459
--- /dev/null
+++ b/1370/CH1/EX1.31/chapter1_31.sce
@@ -0,0 +1,39 @@
+//example1.31
+clc
+disp("Method 1: Kirchoffs laws")
+disp("Now apply KVL to the two loops without current source as effect of the currents in various branches.")
+disp("-2(I1-2)-I2+6=0 i.e. 2(I1)+I2=10 ..(1)")
+disp("-3(I1-2-I2)-12+I2=0 i.e. -3(I1)+4(I2)=6 ..(2)")
+disp("-3(I1)+4(10-2(I1))=6")
+i=34/11
+format(7)
+disp(i,"Therefore, I1(in A)=")
+i=10-(2*3.0909)
+disp(i,"and, I2(in A)=")
+disp("Currents through various resistances are,")
+i=3.0909-2
+disp(i,"I(2ohm)[in A]=I1-2=")
+disp("I(1ohm)[in A]=I2=3.8181")
+i=3.0909-2-3.8181
+disp(i,"I(3ohm)[in A]=I1-2-I2=")
+disp("Current through 3ohm is negative i.e. it is flowing in opposite direction to that assumed in the circuit.")
+disp("Method II: Loop analysis")
+disp("From the current source branch,")
+disp("I3= 2 A")
+disp("Applying KVL to the other two loopos without current source,")
+disp("-2(I1)+2(I3)-I1+I2+6=0 i.e. -3(I1)+I2= -10 ..(1)")
+disp("-3(I2)+3(I3)-12-I2+I1=0 i.e. I1-4(I2)=6 ..(2)")
+disp("Solving we get,")
+disp("I1-4(-10+3(I1))=6")
+i=34/11
+disp(i,"I1(in A)=")
+i=(3.0909-6)/4
+disp(i,"and, I2(in A)=")
+disp("Currents through various resistances are,")
+i=3.0909-2
+disp(i,"I(2ohm)[in A]=I1-2=")
+i=3.0909+0.7272
+disp(i,"I(1ohm)[in A]=I1-I2=")
+i=-0.7272-2
+disp(i,"I(3ohm)[in A]=I2-2=")
+disp("The currents are same as obtained by the method 1.")
diff --git a/1370/CH1/EX1.32/chapter1_32.sce b/1370/CH1/EX1.32/chapter1_32.sce
new file mode 100755
index 000000000..3318648f6
--- /dev/null
+++ b/1370/CH1/EX1.32/chapter1_32.sce
@@ -0,0 +1,20 @@
+//example1.32
+clc
+disp("Use the loop analysis")
+disp("From the current source branch,")
+disp("I3=1 A")
+disp("Applying KVL to the loops without current source we get,")
+disp("-6(I1)-4-5(I1)+5(I2)=0 i.e. -11(I1)+5(I2)=4 ..(1)")
+disp("-5(I2)+5(I1)-6-4(I2)-4(I3)=0 i.e. 5(I1)-9(I2)=10 (2)")
+disp("Solving, we get:")
+disp("-11(I1)+5((5I1-10)/9)=4")
+disp("Therefore, -99(I1)+25(I1)-50=36")
+i=86/(-74)
+format(7)
+disp(i,"Therefore, I1(in A)=")
+i=((5*(-1.1621))-10)/9
+disp(i,"and, I2(in A)=")
+disp("Current through 5ohm in specified direction is,")
+i=(-1.7567+1.1621)
+disp(i,"I(5ohm)[in A]=I2-I1= -1.7567-(-1.1621)=")
+disp("As negative, current through 5ohm flows in opposite direction to that specified in the circuit.")
diff --git a/1370/CH1/EX1.4/chapter1_4.sce b/1370/CH1/EX1.4/chapter1_4.sce
new file mode 100755
index 000000000..4d82722e8
--- /dev/null
+++ b/1370/CH1/EX1.4/chapter1_4.sce
@@ -0,0 +1,15 @@
+//example1.4
+clc
+disp("The equivalent resistance of two is,")
+r=(10*20)/30
+format(5)
+disp(r,"R_eq(in ohm)=(R1*R2)/(R1+R2)=")
+i=50/6.67
+format(4)
+disp(i,"I_t(in amp)=V/R_eq=")
+disp("As per the current distribution in parallel circuit,")
+i=(7.5*20)/30
+disp("I_1(in amp)=(I_t*R2)/(R1+R2)=")
+i=75/30
+disp(i,"and, I_2(in amp)=(I_t*R1)/(R1+R2)=")
+disp("It can be verified that I_t=(I1)+(I2).")
diff --git a/1370/CH1/EX1.5/chapter1_5.sce b/1370/CH1/EX1.5/chapter1_5.sce
new file mode 100755
index 000000000..1198870e9
--- /dev/null
+++ b/1370/CH1/EX1.5/chapter1_5.sce
@@ -0,0 +1,32 @@
+//example1.5
+clc
+disp("Application of Kirchhoffs law:")
+disp("Step 1 and 2: Draw the circuit with all values which are same as the given network. Mark all the branch starting from +ve of any of the source, say +ve of 50V source.")
+disp("Step 3: Mark all the polarities for different voltages across the resistances. This is combined with step2 shown in the network below in fig 1.41(a).")
+disp("Step 4: Apply KVL to different loops.")
+disp("Loop 1: A-B-E-F-A , -15(I_1)-20(I_2)+50=0")
+disp("Loop 2: B-C-D-E-B , -30((I_1)-(I_2))-100+20(I_2)=0")
+disp("Rewriting all the equations,taking constants in one side.")
+disp("15(I_1)+20(I_2)=50 ..(1)")
+disp("-30(I_1)+50(I_2)=100 ..(2)")
+disp("Apply cramers rule,")
+d=(15*50)-(-30*20)
+format(5)
+disp(d,"D=[15 20;-30 50]=")
+disp("Calculating D_v")
+d=(50*50)-2000
+disp(d,"D1=[50 20;100 50]=")
+i=500/1350
+disp(i,"I_1(in amp)=(D_1)/D=")
+disp("Calculating D2 ,")
+d=1500+(30*50)
+disp(d,"D2=[15 50;-30 100]=")
+i=3000/1350
+disp(i,"I_2(in amp)=D2/D=")
+disp("For I_1 and I_2, as answer is positive, assumed direction is correct")
+disp("Therefore, for I_1 answer is 0.37 amp. For I_2 answer is 2.22amp")
+i=0.37-2.22
+format(5)
+disp(i,"(I_1)-(I_2)[in amp]=")
+disp("Negative sign indicates assumed direction is wrong.")
+disp("i.e (I_1)-(I_2)=1.85A flowing in opposite direction to that of the assumed direction.")
diff --git a/1370/CH1/EX1.6/chapter1_6.sce b/1370/CH1/EX1.6/chapter1_6.sce
new file mode 100755
index 000000000..ed10ae758
--- /dev/null
+++ b/1370/CH1/EX1.6/chapter1_6.sce
@@ -0,0 +1,14 @@
+//example1.6
+clc
+disp("The current distribution using KCL is as shown,")
+disp("Key Point : KVL should not be applied to the loop consisting current source.")
+disp("From branch DE,")
+disp("(i1)=5+3(i2) ...(1)")
+disp("Applying KVL to the loop BCDEFGB without current source,")
+disp("-1*(5+3(i2))+5(i2)=0 ...(2)")
+disp("2(i2)=5")
+i=5/2
+disp(i,"i2(in amp)=")
+disp("from eq.(1)")
+i=5+(3*2.5)
+disp(i,"i1(in amp)=")
diff --git a/1370/CH1/EX1.7/chapter1_7.sce b/1370/CH1/EX1.7/chapter1_7.sce
new file mode 100755
index 000000000..91b67277b
--- /dev/null
+++ b/1370/CH1/EX1.7/chapter1_7.sce
@@ -0,0 +1,7 @@
+//example1.7
+clc
+disp("Refer to the fig 1.45(a).")
+i=20/5
+disp(i,"Then current of current source is, I(in A)=V/R_sc=")
+disp("with internal parallel resistance same as R_sc")
+disp("Therefore , Equivalent current is as shown in the fig. 1.45(b).")
diff --git a/1370/CH1/EX1.8/chapter1_8.sce b/1370/CH1/EX1.8/chapter1_8.sce
new file mode 100755
index 000000000..be6295581
--- /dev/null
+++ b/1370/CH1/EX1.8/chapter1_8.sce
@@ -0,0 +1,9 @@
+//example
+clc
+disp("The given values are, I=50A and R_sh= 10ohm")
+disp("For the equivalent voltage source,")
+v=10*50
+disp(v,"V(in V)=(I*R_sh)=")
+disp("R_se=R_sh=10ohm in series.")
+disp("The equivalent voltage source is shown in the fig 1.46(a)")
+disp("Note the polarities of voltage source, which are such that +ve at top of arrow and -ve at botttom.")
diff --git a/1370/CH1/EX1.9/chapter1_9.sce b/1370/CH1/EX1.9/chapter1_9.sce
new file mode 100755
index 000000000..7eb2c7705
--- /dev/null
+++ b/1370/CH1/EX1.9/chapter1_9.sce
@@ -0,0 +1,10 @@
+//example1.9
+clc
+disp("Its equivalent star is as shown in the fig 1.57. where,")
+r=50/30
+format(5)
+disp(r,"R1(in ohm)=(10*50)/(5+10+15)=")
+r=150/30
+disp(r,"R2(in ohm)=(15*10)/(5+10+15)=")
+r=75/(30)
+disp(r,"R3(in ohm)=(15*5)/(5+10+15)")
diff --git a/1370/CH2/EX2.1/example2_1.sce b/1370/CH2/EX2.1/example2_1.sce
new file mode 100755
index 000000000..886a4d26e
--- /dev/null
+++ b/1370/CH2/EX2.1/example2_1.sce
@@ -0,0 +1,10 @@
+//example2.1
+clc
+disp("P=4 Z=440 psi=0.07 Wb and N=900 r.p.m.")
+disp("E=(psi*P*N*Z)/(6*A)")
+disp("i)For lap wound, A=P=4")
+e=(0.07*900*440)/60
+disp(e,"Therefore, E(in V)=(psi*N*Z)/60=")
+disp("ii)For wave wound, A=2")
+e=(0.07*900*4*440)/120
+disp(e,"Therefore, E(in V)=(psi*P*N*Z)/120=")
diff --git a/1370/CH2/EX2.10/example2_10.sce b/1370/CH2/EX2.10/example2_10.sce
new file mode 100755
index 000000000..5b69c2384
--- /dev/null
+++ b/1370/CH2/EX2.10/example2_10.sce
@@ -0,0 +1,20 @@
+//example2.10
+clc
+disp("P=4, A=P=4")
+disp("Running light it is on no load.")
+disp("Therefore, N_0=1000 rpm Z=540 and psi=25*10^-3 Wb")
+e=(100*540)/240
+disp(e,"Therefore, E_b0(in V)=(psi*P*N*Z)/(60*A)=")
+disp("i)Induced emf, E_b0=225 V")
+disp("ii) From voltage equation, V=(E_b)+[(I_a)*(R_a)]")
+disp("V=(E_b0)+[(I_a0)*(R_a)]")
+disp("230=225+[(I_a0)*0.8]")
+i=5/0.8
+disp(i,"I_a0(in A)=")
+disp("iii) On no load,power developed is fully the power required to overcome stray losses.")
+e=225*6.25
+format(8)
+disp(e,"Stray losses=(E_b0)*(I_a0)=")
+t=(1406.25*60)/(2*%pi*1000)
+format(7)
+disp(t,"T_f(in N-m)=[(E_b0)*(I_a0)]/(w_0)=")
diff --git a/1370/CH2/EX2.11/example2_11.sce b/1370/CH2/EX2.11/example2_11.sce
new file mode 100755
index 000000000..41f31f750
--- /dev/null
+++ b/1370/CH2/EX2.11/example2_11.sce
@@ -0,0 +1,12 @@
+//example2.11
+clc
+disp("P=4, Z=200, A=2, psi=25*10^-3 Wb")
+disp("(I_a)=(I_L)=60 A, R_a=0.15ohm, R_se=0.2 ohm")
+disp("V=(E_b)+(I_a*R_a)+(I_a*R_se)")
+disp("250=E_b+60(0.15+0.2)")
+b=250-(60*(0.15+0.2))
+disp(b,"E_b(in V)=")
+disp("Now, E_b=(psi*P*N*Z)/(60*A)")
+disp("Therefore, 229=(25*(10^-3)*4*N*200)/(60*2)")
+n=(229*60*2)/(800*25*10^-3)
+disp(n,"Therefore, N(in rpm)=")
diff --git a/1370/CH2/EX2.12/example2_12.sce b/1370/CH2/EX2.12/example2_12.sce
new file mode 100755
index 000000000..9468d7e27
--- /dev/null
+++ b/1370/CH2/EX2.12/example2_12.sce
@@ -0,0 +1,14 @@
+//example2.12
+clc
+disp("V=250 V, I_L=20 A, R_s=0.3ohm, R_sh=200 ohm")
+disp("I_L=(I_a)+(I_sh)")
+s=250/200
+disp(s,"(I_sh)[in A]=V/(R_sh)=")
+disp("Therefore, I_a=(I_L)-(I_sh)")
+a=20-1.25
+disp(a,"I_a(in A)=20-1.25=")
+disp("Now, V=(E_b)+(I_a*R_a)")
+disp("Therefore, E_b=V-[(I_a)*(R_a)]")
+b=250-(18.75*0.3)
+format(8)
+disp(b,"E_b(in V)")
diff --git a/1370/CH2/EX2.13/example2_13.sce b/1370/CH2/EX2.13/example2_13.sce
new file mode 100755
index 000000000..863c25666
--- /dev/null
+++ b/1370/CH2/EX2.13/example2_13.sce
@@ -0,0 +1,32 @@
+//example2.13
+clc
+disp("Let no load,speed be N_0=1000 rpm")
+disp("I_L0=Line current on no load=6 A")
+disp("I_L0=(I_a0)+(I_sh)")
+s=220/110
+disp(s,"(I_sh)[in A]=V/(R_sh)=")
+a=6-2
+disp(a,"Therefore, (I_a0)[in A]=(I_L0)-(I_sh)=")
+disp("Therefore, Back emf on no load E_b0 can be determined from the voltage equation.")
+disp("V=(E_b0)+[(I_a0)+(R_a)]")
+disp("Therefore, 220=(E_b0)+(4*0.3)")
+b=220-1.2
+disp(b,"E_b0(in V)=")
+disp("On full load condition,supply voltage is constant and hence,")
+s=220/110
+disp(s,"(I_sh)[in A]=V/(R_sh)=")
+disp("Now,(I_L)=(I_aFL)+(I_sh)")
+disp("Therefore, 50=(I_aFL)+2")
+f=50-2
+disp(f,"Therefore, (I_aFL)[in A]=")
+disp("And, V=(E_bFL)+[(I_aFL)*(R_a)]")
+disp("Therefore, 220=(E_bFL+(48*0.3))")
+b=220-(48*0.3)
+disp(b,"Therefore, (E_bFL)[in V]=")
+disp("From the speed equation,")
+disp("N directly proportional to (E_b)/psi")
+disp("But psi is constant as I_sh is constant for both the load conditions")
+disp("Therefore, (N_0)/(N_FL)=(E_b0)/(E_bFL)")
+n=(1000*205.6)/218.8
+format(7)
+disp(n,"Therefore, (N_FL)[in rpm]=[(N_0)*(E_bFL)]/(E_b0)=")
diff --git a/1370/CH2/EX2.14/example2_14.sce b/1370/CH2/EX2.14/example2_14.sce
new file mode 100755
index 000000000..0e267c95e
--- /dev/null
+++ b/1370/CH2/EX2.14/example2_14.sce
@@ -0,0 +1,20 @@
+//example2.14
+clc
+disp("For load 1, N1=800 rpm, I1=(I_a1)=20A")
+disp("For load 2, I2=(I_a2)=50 A, R_a=0.2 ohm, R_se=0.3 ohm")
+disp("From voltage equation V=(E_b1)+[(I_a1)*(R_a)]+[(I_se1)*(R_se)]")
+disp("but I1=(I_a1)=(I_se1)=20 A")
+disp("Therefore, 250=(E_b1)+20(0.2+0.3)")
+b=250-10
+disp(b,"Therefore, E_b1(in V)=")
+disp("and, V=(E_b2)+[(I_a2)*R_a]+[(I_se2)+(R_se)]")
+disp("Therefore, 250=(E_b2)+50(0.2+0.3)")
+b=250-25
+disp(b,"E_b2(in V)=")
+disp("From the speed equation,")
+disp("N is directly proportional to (E_b)/psi")
+disp("Now, psi proportional to (I_se) and (I_a)")
+disp("Therefore, N1/N2=[(E_b1)*(psi_2)]/[(E_b2)*(psi_1)]")
+disp("Therefore, N1/N2=[(E_b1)*(I_a2]/[(E_b2)*(I_a1)]")
+n=(800*225*20)/(240*50)
+disp(n,"Therefore, N2(in rpm)=[(N1)*(E_b2)*(I_a1)]/[(E_b1)*(I_a2)]=")
diff --git a/1370/CH2/EX2.15/example2_15.sce b/1370/CH2/EX2.15/example2_15.sce
new file mode 100755
index 000000000..a6670bfe6
--- /dev/null
+++ b/1370/CH2/EX2.15/example2_15.sce
@@ -0,0 +1,17 @@
+//example2.15
+clc
+disp("Consider the generator as shown in fig 2.61")
+disp("P=4, A=P=4, N=750 rpm, psi=30 mWb=30*10^-3, Z=720")
+n=(4*750*720*30*10^-3)/(240)
+disp(n,"E(in V)=(psi*P*N*Z)/(60*A)=")
+disp("E=(V_t)+[(I_a)*(R*a)]")
+disp("(V_t)=(I_L)*(R_L) i.e. I_L=(V_t)/(R_L)")
+disp("And, I_sh=(V_t)/(R_sh)")
+disp("I_a=(I_L)+(I_sh)=[(V_t)/(R_L)]+[(V_t)/(R_sh)]")
+disp("Substituting in voltage equation,")
+disp("E=(V_t)+[(V_t)/(R_L)+(V_t)/(R_sh)]*(R_a)")
+disp("Therefore, 270=(V_t)+[(V_t)/(15)+(V_t)/(200)]*(0.4)")
+disp("270=1.0286(V_t)")
+v=270/1.0286
+format(9)
+disp(v,"V_t(in V)=")
diff --git a/1370/CH2/EX2.16/example2_16.sce b/1370/CH2/EX2.16/example2_16.sce
new file mode 100755
index 000000000..269dca24e
--- /dev/null
+++ b/1370/CH2/EX2.16/example2_16.sce
@@ -0,0 +1,34 @@
+//example2.16
+clc
+disp("No load current I=2.5 A,")
+n=440*2.5
+disp(n,"No load input(in W)= (V*I)=")
+s=440/550
+disp(s,"I_sh(in A)=V/R_sh=")
+disp("In dc shunt motor, I=(I_sh)+(I_a)")
+a=2.5-0.8
+disp(a,"I_a(in A)=I-(I_sh)=")
+p=1.2*(1.7)^2
+format(6)
+disp(p,"No load armature copper loss(in watts)= (R_a)*(I_a)^2=")
+disp("Constant losses= No load input- No lpad armature Cu losses")
+c=1100-3.468
+format(9)
+disp(c,"Therefore, Constant losses(in Z)=")
+disp("Now, full load line current i.e I=32 A")
+disp("I=(I_sh)+(I_a)")
+a=32-0.8
+disp(a,"I_a(in A)=I-(I_sh)=")
+p=1.2*(31.2)^2
+disp(p,"Full load armature copper loss=(R_a)*(I_a)^2=")
+disp("Total losses= Full load armature Cu loss + Constant losses")
+l=1168.128+1096.532
+disp(l,"Therefore, Total losses(in W)=")
+v=440*32
+disp(v,"Full load motor input(in W)= V*I =")
+v=14080-2264.66
+disp(v,"Full load motor output(in W)= Input-Losses=")
+d=(1181534)/14080
+format(6)
+disp(d,"% efficiency at full load= [(Full load Output)/(full load input)]*100=")
+disp("Therefore, Efficiency of motor at full load = 83.91%")
diff --git a/1370/CH2/EX2.17/example2_17.sce b/1370/CH2/EX2.17/example2_17.sce
new file mode 100755
index 000000000..ab8cc26d9
--- /dev/null
+++ b/1370/CH2/EX2.17/example2_17.sce
@@ -0,0 +1,25 @@
+//example2.17
+clc
+disp("R_a=0.08 ohm, E_b1=242 V")
+disp("i) V=(E_b1)+[(I_a1)*(R_a)]")
+disp("Therefore, 250=242+[(I_a1)*0.08]")
+a=8/0.08
+disp(a,"I_a1(in A)=")
+disp("ii) At start, N=0 hence E_b=0")
+a=250/0.08
+disp(a,"(I_a(start))[in A]=V/(R_a)=")
+disp("iii) If (I_a2)=120 A then,")
+b=250-(120*0.08)
+disp(b,"E_b2(in V)=V-[(I_a2)*(R_a)]=")
+disp("iv) Machine is running as a generator, shown in the fig 2.62")
+disp("Let induced emf as generator be E_g")
+g=250+(87*0.08)
+format(7)
+disp(g,"E_g(in V)=(V_t)+[(I_a)*(R_a)]=")
+disp("In both cases as a motor or genrator E is directly prportional to (N*psi)")
+disp("As flux is constant, E is directly proportional to N")
+disp("Therefore, (E_b/E_g)=(N_m/N_g)")
+disp("where N_m= Speed as a motor and N_g= Speed as a generator")
+disp("Therefore, (242/256.96)=(1500/N_g)")
+n=(1500*256.96)/242
+disp(n,"N_g(in rpm)=")
diff --git a/1370/CH2/EX2.18/example2_18.sce b/1370/CH2/EX2.18/example2_18.sce
new file mode 100755
index 000000000..b0c063d07
--- /dev/null
+++ b/1370/CH2/EX2.18/example2_18.sce
@@ -0,0 +1,28 @@
+//example2.18
+clc
+disp("V=200 V, I_a1=30 A")
+disp("Resistance across terminals=(R_a)+(R_se)=1.5 ohm")
+b=200-45
+disp(b,"Therefore, E_b1(in V)=V-[(I_a1)*(R_a-R_se)]=")
+disp("N2=0.6(N1)")
+disp("Therefore, (N1/N2)=(1/0.6)")
+disp("Use torque equation,")
+disp("T is directly proportional to (psi*I_a) and (I_a)^2")
+disp("as ... psi is directly proportional to I_a")
+disp("Therefore, (T1/T2)=[(I_a1)/(I_a2)]^2 ..(1)")
+disp("Also T is directly proportional to N^3 given,")
+disp("(T1/T2)=(N1/N2)^3=(1/0.6)^3 ..(2)")
+disp("Equatimg equation (1) and (2), (1/0.6)^3 = (30/I_a2)^2")
+a=sqrt(900*(0.6^3))
+format(8)
+disp(a,"Therefore, I_a2(in A)=")
+disp("E_b2=V-[(I_a2)*(R_a+R_se+R_x)]=200-13.9427(1.5+R_x) ..(3)")
+disp("Use speed equation, N directly proportional to [(E_b)/psi] and [(E_b)/(I_a)] ... psi id directly proportional to I_a")
+disp("Therefore, (N1/N2)=[(E_b1)/(E_b2)]*[(I_a2)/(I_a1)]")
+disp("Therefore, (1/0.6)=(155/E_b2)*(13.9427/30)")
+b=155*0.139427*2
+format(6)
+disp(b,"E_b2(in V)=")
+disp("Equating equations (3) and (4), 43.22=200-13.9427(1.5+R_x)")
+r=[(200-43.22)/13.9427]-1.5
+disp(r,"R_x(in ohm)=")
diff --git a/1370/CH2/EX2.19/example2_19.sce b/1370/CH2/EX2.19/example2_19.sce
new file mode 100755
index 000000000..beeb53ccf
--- /dev/null
+++ b/1370/CH2/EX2.19/example2_19.sce
@@ -0,0 +1,29 @@
+//example2.19
+clc
+disp("No load current = I_L0 = 4 A")
+s=250/250
+disp(s,"I_sh[in A]=V/(R_sh)=")
+a=4-1
+disp(a,"Therefore, I_a0(in A)=(I_L0)-(I_sh)=")
+r=0.3*(3)^2
+disp(r,"Therefore, No. load armature copper loss(in W)=[(I_a0)^2*(R_a)]=")
+o=250*4
+disp(o,"No load input(in W) = V*I_L0 =")
+c=1000-2.7
+disp(c,"Constant losses(in W) = No load input-No load armature copper loss=")
+disp("On full load, I_L=60 A and I_sh=1 A")
+j=60-1
+disp(j,"Therefore, I_a(in A)=(I_L)-(I_sh)=")
+l=0.3*(59)^2
+disp(l,"Full load armature copper loss(in W)= (I_a^2)*R_a=")
+l=997.3+2041.6
+disp(l,"Total loss on full load=constant losses+ [(I_a)^2*(R_a) loss]=")
+disp("Total input on full load = V*(I_L)")
+l=250*60
+disp(l,"Therefore, P_in(in W)=")
+p=15000-2041.6
+format(8)
+disp(p,"(P_out)[in W]=(P_in)-Total loss=")
+n=1295840/15000
+format(7)
+disp(n,"% efficiency(n)=[(P_out)*100]/(P_in)=")
diff --git a/1370/CH2/EX2.2/example2_2.sce b/1370/CH2/EX2.2/example2_2.sce
new file mode 100755
index 000000000..1a3c14151
--- /dev/null
+++ b/1370/CH2/EX2.2/example2_2.sce
@@ -0,0 +1,17 @@
+//example2.2
+clc
+disp("P=4 psi=21 mWb=21*10^-3 Wb, N=1120r.p.m")
+disp("Coils = 42 and turns/coil = 8")
+t=42*8
+disp(t,"Total turns = coil * turns/coil = 42*8 =")
+z=2*336
+disp(z,"Z= 2*total turns = 2*336 =")
+disp("i) for lap wound, A=P")
+e=(21*1120*672*10^-3)/60
+format(8)
+disp(e,"Therefore, E(in V)=(psi*N*Z)/60=")
+disp("ii) For wave wound, A=2")
+disp("and, E=263.424 V")
+disp("Therefore, E=(psi*P*N*Z)/120")
+n=263.424*120/(21*4*672*10^-3)
+disp(n,"N(in rpm)=")
diff --git a/1370/CH2/EX2.20/example2_20.sce b/1370/CH2/EX2.20/example2_20.sce
new file mode 100755
index 000000000..00ff6a979
--- /dev/null
+++ b/1370/CH2/EX2.20/example2_20.sce
@@ -0,0 +1,12 @@
+//exmaple1.20
+clc
+disp("P=6, Z=780, E_g=500V, N=1000 rpm")
+disp("a) Lap wound, A=P=6")
+disp("(E_g)=(psi*P*N*Z)/(60*A) i.e. 500=(psi*6*1000*780)/(60*6)")
+s=(500*60*6)/(6*1000*780)
+format(8)
+disp(s,"Therefore, psi(in Wb)=")
+disp("b) Wave wound, A=2")
+disp("(E_g)=(psi*P*N*Z)/(60*A) i.e. 500=(psi*6*1000*780)/(60*2)")
+s=(500*60*2)/(6*1000*780)
+disp(s,"Therefore, psi(in Wb)=")
diff --git a/1370/CH2/EX2.21/example2_21.sce b/1370/CH2/EX2.21/example2_21.sce
new file mode 100755
index 000000000..91b562192
--- /dev/null
+++ b/1370/CH2/EX2.21/example2_21.sce
@@ -0,0 +1,7 @@
+//example2.21
+clc
+disp("P=6, psi=0.02 Wb, N=1000 rpm, A=P as lap wound")
+z=65*12
+disp(z,"Z=slots*conductors/slot=")
+g=(0.02*6*1000*780)/(60*6)
+disp(g,"E_g(in V)=(psi*P*N*Z)/(60*A)=")
diff --git a/1370/CH2/EX2.22/example2_22.sce b/1370/CH2/EX2.22/example2_22.sce
new file mode 100755
index 000000000..821e9bbde
--- /dev/null
+++ b/1370/CH2/EX2.22/example2_22.sce
@@ -0,0 +1,7 @@
+//example2.22
+clc
+disp("P=4, A=2, psi=0.0121 Wb, Z=792, E_g=240 V")
+disp("(E_g)=(psi*P*N*Z)/(60*A) i.e. 240=(0.0121*4*N*792)/(60*2)")
+n=(480*60)/(792*4*0.0121)
+format(9)
+disp(n,"Therefore, N(in rpm)=")
diff --git a/1370/CH2/EX2.23/example2_23.sce b/1370/CH2/EX2.23/example2_23.sce
new file mode 100755
index 000000000..2b43a632b
--- /dev/null
+++ b/1370/CH2/EX2.23/example2_23.sce
@@ -0,0 +1,16 @@
+//example2.23
+clc
+disp("The generator is shown in the fig 2.64")
+disp("The current through R_se is I_L=80 A as the generator is short shunt.")
+disp("The drop across R_sh is the sum of the drop across R_se and V_t")
+disp("[(I_sh)*(R_sh)]=(V_t)+[(I_L)*(R_se)]")
+disp("i.e 100(I_sh)=250+(80*0.03)")
+p=2.5+(0.8*0.03)
+format(6)
+disp(p,"(I_sh)[in A]=")
+a=80+2.524
+format(7)
+disp(a,"(I_a)[in A]=(I_L)+(I_sh)=")
+g=250+(82.524*0.05)+(80*0.03)+2
+format(9)
+disp(g,"E_g(in V)=(V_t)+[(I_a)*(R_a)]+[(I_L)*(R_se)]+Brush drop")
diff --git a/1370/CH2/EX2.24/example2_24.sce b/1370/CH2/EX2.24/example2_24.sce
new file mode 100755
index 000000000..ae73ab7fe
--- /dev/null
+++ b/1370/CH2/EX2.24/example2_24.sce
@@ -0,0 +1,11 @@
+//example2.24
+clc
+disp("P=4, Lap hence A=P, N=1150 rpm, E_g=265 V")
+n=56*6
+disp(n,"Total turns=No. of coils*turns/coil=")
+z=2*336
+disp(z,"Therefore, Z=2*total turns=")
+disp("E_g=(psi*P*N*Z)/(60*A) i.e 265=(psi*4*1150*672)/(60*A)")
+s=(265*60*4)/(4*1150*672)
+disp(s,"Therefore, psi(in Wb)=")
+disp("Number of commutator bars=Number of coils=56")
diff --git a/1370/CH2/EX2.25/example2_25.sce b/1370/CH2/EX2.25/example2_25.sce
new file mode 100755
index 000000000..3f3733d3d
--- /dev/null
+++ b/1370/CH2/EX2.25/example2_25.sce
@@ -0,0 +1,8 @@
+//example2.26
+clc
+disp("For a d.c. generator,")
+disp("E_g=(psi*N*P*Z)/(60*A) i.e E_g is directly proportional to (psi*N) ... (P*Z)/(60*A) is constant")
+disp("N1=1000 rpm, (psi_1)=0.02 Wb, (E_g1)-200 V, N2=1100 rpm, (psi_2)=0.019 Wb")
+disp("[(E_g1)/(E_g2)]=[(N1*psi_1)/(N2*psi_2)] i.e [(200)/(E_g2)]=[(1000*0.02)/(1100*0.019)]")
+g=(200*1100*0.019)/(1000*0.02)
+disp(g,"Therefore, E_g2(in V)=")
diff --git a/1370/CH2/EX2.26/example2_26.sce b/1370/CH2/EX2.26/example2_26.sce
new file mode 100755
index 000000000..f68b55044
--- /dev/null
+++ b/1370/CH2/EX2.26/example2_26.sce
@@ -0,0 +1,26 @@
+//example2.26
+clc
+disp("P=4, V=240 V, A=2 as wave, N=1000 rpm, P_out=11.19 kW")
+disp("I_a=50 A, I_sh=50 A, R_a=0.1 ohm, Z=540")
+disp("a) E_b=V-[(I_a)(R_a)]-Brush drop")
+b=240-(50*0.1)-2
+disp(b,"E_b(in V)=")
+t=(233*50*60)/(2*%pi*1000)
+format(9)
+disp(t,"Therefore, T(in Nm)=[(E_b)(I_a)]/w=[(E_b)(I_a)]/[(2*pi*N)/60]=")
+t=(11190*60)/(2*%pi*1000)
+disp(t,"b) T_sh(in Nm)=useful torque=(P_out)/w=")
+disp("c) E_b=(psi*P*N*Z)/(60*A) i.e 233=(psi*4*100*540)/(60*2)")
+p=(233*60*2)/(4000*540)
+format(6)
+disp(p,"Therefore, psi(in Wb)=")
+disp("Rotational losses= (T-T_sh)*w= (T-T_sh)*(2*pi*N)/60")
+i=[(111.2493-106.8566)*(2*%pi*1000)]/60
+format(4)
+disp(i,"Therefore, Rotational losses(in W)=")
+p=240*51
+format(7)
+disp(p,"P_in(in W)=V*(I_L)=V*(I_a+I_sh)=")
+n=(11190*100)/12240
+format(6)
+disp(n,"% efficiency =[(P_out)*100]/(P_in)=")
diff --git a/1370/CH2/EX2.27/example2_27.sce b/1370/CH2/EX2.27/example2_27.sce
new file mode 100755
index 000000000..8531963b9
--- /dev/null
+++ b/1370/CH2/EX2.27/example2_27.sce
@@ -0,0 +1,20 @@
+//example2.27
+clc
+disp("V=250 V, N_0=1000 rpm, I_L0=5 A, R_a=0.2 ohm, R_sh=250 ohm")
+i=250/250
+disp(i,"I_sh(in A)=(V/R_sh)=")
+i=5-1
+disp(i,"Therefore, I_a0(in A)=(I_L0)-(I_sh)=")
+e=250-(4*0.2)
+disp(e,"E_b0(in V)=V-[(I_a0)(R_a)]=")
+disp("on load, I_L1=50 A, (psi_1)=(psi_0)-(3% of (psi_0))=0.97(psi_0)")
+disp("I_sh remains constant as long as V and R_sh are constant.")
+i=50-1
+disp(i,"I_a1(in A)=(I_L1)-(I_sh)=")
+e=250-(49*0.2)
+disp(e,"E_b1(in V)=V-[(I_a1)(R_a)]=")
+disp("N is directly proportional to (E_b/psi) ...Speed equation")
+disp("[(N_0)/N1]=[(E_b0)*(psi_1)]/[(E_b1)*(psi_0)] i.e. [(1000)/N1]=[(249.2)*(0.97*psi_0)]/[(240.2)*(psi_0)]")
+n=(1000*240.2)/(249.2*0.97)
+format(9)
+disp(n,"Therefore, N(in rpm)=")
diff --git a/1370/CH2/EX2.28/example2_28.sce b/1370/CH2/EX2.28/example2_28.sce
new file mode 100755
index 000000000..bbcd2cadf
--- /dev/null
+++ b/1370/CH2/EX2.28/example2_28.sce
@@ -0,0 +1,11 @@
+//exmaple2.28
+clc
+disp("P=6, A=2 as wave, Z=492, psi=30 mWb, I_a=40 A")
+disp("T=(psi*P*Z*I_a)/(2*pi*A) Nm")
+t=(40*6*492*30*10^-3)/(2*%pi*2)
+format(9)
+disp(t,"Therefore, T(in Nm)=")
+disp("as 1N=(1/9.81)kg")
+t=281.8952/9.81
+format(8)
+disp(t,"Therefore, T(in kgm)=")
diff --git a/1370/CH2/EX2.29/example2_29.sce b/1370/CH2/EX2.29/example2_29.sce
new file mode 100755
index 000000000..70cf4cbea
--- /dev/null
+++ b/1370/CH2/EX2.29/example2_29.sce
@@ -0,0 +1,13 @@
+//example2.29
+clc
+disp("P=4, N=1000 rpm, 80slots, psi=6*10^-2 Wb, 8 conductors/slot")
+disp("A=P=4 ... Lap connected")
+z=80*8
+disp(z,"Z= Slots*conductors/slot=")
+e=(4*100*640*6*10^-2)/240
+disp(e,"E_g(in V)=(psi*P*N*Z)/(60*A)=")
+disp("As coils are lap connected, parallel paths are 4 and all conductors in each parallel path are in series, carrying a current of 50 A")
+a=4*50
+disp(a,"Therefore, I_a(in A)=A*current per parallel path=4*50=")
+p=640*200
+disp(p,"P(in W)=Electrical power output=[(E_g)*(I_a)]=")
diff --git a/1370/CH2/EX2.3/example2_3.sce b/1370/CH2/EX2.3/example2_3.sce
new file mode 100755
index 000000000..2ab086360
--- /dev/null
+++ b/1370/CH2/EX2.3/example2_3.sce
@@ -0,0 +1,19 @@
+//example2.3
+clc
+disp("Consider shunt generator as shown in the fig 2.29")
+disp("I_a=(I_L)+(I_sh)")
+disp("I_sh=(V_t)/(R_sh)")
+disp("Now, V_t=250 V")
+disp("and, R_sh=100 ohm")
+i=250/100
+disp(i,"Therefore, I_sh(in A)=")
+disp("Load power=5 kW")
+disp("Therefore, P=(V_t)*(I_L)")
+i=(5*10^3)/250
+disp(i,"I_L(in A)=P/(V_t)=")
+i=20+2.5
+disp(i,"(I_a)[in A]=(I_L)+(I_sh)=")
+disp("E=(V_t)+((I_a)*(R_a))[neglect V_brush]")
+E=250+(22.5*0.22)
+disp(E,"Therefore, E(in V)=")
+disp("This is the induced emf to supply the given load.")
diff --git a/1370/CH2/EX2.30/example2_30.sce b/1370/CH2/EX2.30/example2_30.sce
new file mode 100755
index 000000000..65c1de330
--- /dev/null
+++ b/1370/CH2/EX2.30/example2_30.sce
@@ -0,0 +1,12 @@
+//exmaple2.30
+clc
+disp("The generator is shown in the fig. 2.66")
+disp("I_L=50 A, V_L=500 V ...Given")
+i=500/250
+disp(i,"I_sh(in A)=(V_t)/(R_sh)=")
+a=2+50
+disp(a,"Therefore, I_a(in A)=(I_L)+(I_sh)=2+50=")
+disp("This is the armature current")
+e=500+(52*0.05)+(52*0.03)+(2*1)
+disp(e,"Therefore, E_g(in V)=(V_t)+[(I_a)*(R_a)]+[(I_a)*(R_se)]+Brush drop =")
+disp("This is generated voltage.")
diff --git a/1370/CH2/EX2.31/example2_31.sce b/1370/CH2/EX2.31/example2_31.sce
new file mode 100755
index 000000000..44b6f9609
--- /dev/null
+++ b/1370/CH2/EX2.31/example2_31.sce
@@ -0,0 +1,10 @@
+//example2.31
+clc
+disp("P=8, N=400 rpm, psi=40 mWb, Z=960")
+disp("a) Lap wound, A=P=8")
+e=(8*400*960*40*10^-3)/(60*8)
+disp(e,"E_g(in V)=(psi*P*N*Z)/(60*A)=")
+disp("b) Wave connected, A=2, E_g =400 V")
+disp("Therefore, (E_g)=(psi*P*N*Z)/(60*A) i.e. 400=[(40*10^-3)*8*N*960]/(60*2)")
+n=(400*60*2)/(0.04*8*960)
+disp(n,"Therefore, N(in rpm)=")
diff --git a/1370/CH2/EX2.32/example2_32.sce b/1370/CH2/EX2.32/example2_32.sce
new file mode 100755
index 000000000..da7f97cfc
--- /dev/null
+++ b/1370/CH2/EX2.32/example2_32.sce
@@ -0,0 +1,13 @@
+//example2.32
+clc
+disp("V=250 V, (R_a)=0.3 ohm, (I_L)=20 A, (R_sh)=200 ohm")
+s=250/200
+disp(s,"I_sh(in A)=V/(R_sh)=")
+a=20-1.25
+disp(a,"I_a(in A)=(I_L)-(I_sh)=")
+b=250-(18.75*0.3)
+format(8)
+disp(b,"E_b(in V)=V-[(I_a)(R_a)]=")
+m=244.375*18.75
+format(10)
+disp(m,"P_m(in W)=[(E_b)*(I_a)]=")
diff --git a/1370/CH2/EX2.33/example2_33.sce b/1370/CH2/EX2.33/example2_33.sce
new file mode 100755
index 000000000..a613d912f
--- /dev/null
+++ b/1370/CH2/EX2.33/example2_33.sce
@@ -0,0 +1,34 @@
+//example2.33
+clc
+disp("The generator is shown in the fig 2.67")
+s=500/200
+disp("I_sh(in A)=(V_t)/(I_sh)=")
+l=(25*10^3)/500
+disp(l,"I_L(in A)=(P_L)/(V_t)=")
+a=50+2.5
+disp(a,"Therefore, I_a(in A)=(I_L)+(I_sh)=")
+disp("Brush drop is 1V per brush hence total brush drop = 2V")
+e=500+[52.5*(0.03+0.04)]+2
+format(8)
+disp(e,"a) E_g(in V)=(V_t)+[(I_a)*(R_a)]+[(I_a)*(R_se)]+(V_brush)=500+[52.5*(0.03+0.04)]+2=")
+a=0.03*(52.5)^2
+disp(a,"b) Armature copper loss(in W) = [(I_a)^2]*(R_a) =[(52.5)^2]*(0.03) =")
+s=0.04*(52.5)^2
+disp(s,"Series field copper loss(in W) =[(I_a)^2]*(R_se) =[(52.5)^2]*(0.04) =")
+c=200*(2.5)^2
+disp(c,"Shunt field copper loss(in W) =[(I_sh)^2]*(R_sh) =[(2.5)^2]*(200) =")
+p=505.675*52.5
+format(11)
+disp(p,"P_in(in W)= (E_g)*(I_a)=")
+disp("P_out = 25W")
+t=26547.9375-25
+format(10)
+disp(t,"Therefore, Total losses(in W) = (P_in)-(P_out) =")
+disp("Now total losses = Copper losses + Iron losses")
+disp("Therefore, 1547.9375 = 82.6875 + 110.25 + 1250 + Iron losses")
+i=1547.9375-(82.6875+110.25+1250)
+format(4)
+disp(i,"Therefore, Iron losses(in W)=")
+n=(25000*100)/(26547.9375)
+format(8)
+disp(n,"%efficiency(n) =[(P_out)/(P_in)]*100 =")
diff --git a/1370/CH2/EX2.34/example2_34.sce b/1370/CH2/EX2.34/example2_34.sce
new file mode 100755
index 000000000..532083a56
--- /dev/null
+++ b/1370/CH2/EX2.34/example2_34.sce
@@ -0,0 +1,28 @@
+//example2.34
+clc
+disp("i) As a generator")
+disp("(P_out)=20 kW, (V_t)=250 V")
+i=20000/250
+disp(i,"I_L(in A)=(P_out)/(V_t)=")
+s=250/125
+disp(s,"I_sh(in A)=(V_t)/(R_sh)=")
+a=80+2
+disp(a,"Therefore, I_a(in A)=(I_L)+(I_sh)=")
+e=250+(82*0.1)
+disp(e,"E_g(in V)= (V_t)+[(I_a)*(R_a)]=")
+p=258.2*82
+format(7)
+disp(p,"P_g(in W)=(E_g)*(I_a)=")
+disp("ii) As a motor")
+disp("(P_in)=20 kW, V=250 V")
+i=(20000)/250
+disp(i,"Therefore, I_L(in A)=(P_in)/V=")
+s=250/125
+disp(s,"I_sh(in A)=V/(R_sh)=")
+a=80-2
+disp(a,"Therefore, I_a(in A)=(I_L)-(I_sh)=")
+b=250-(78*0.1)
+disp(b,"Therefore, E_b(in V)=V-[(I_a)*(R_a)]=")
+a=242.2*78
+format(8)
+disp(a,"P_a(in W)=[(E_b)*(I_a)]=")
diff --git a/1370/CH2/EX2.35/example2_35.sce b/1370/CH2/EX2.35/example2_35.sce
new file mode 100755
index 000000000..7d01cfb48
--- /dev/null
+++ b/1370/CH2/EX2.35/example2_35.sce
@@ -0,0 +1,11 @@
+//example2.25
+clc
+disp("P=4, N=750 rpm, (E_g)=240 V, A=2 as wave, Z=792")
+disp("(E_g)=(psi*P*N*Z)/(60*A) i.e. 240=(psi*4*750*792)/(60*2)")
+p=(240*60*2)/(4*750*792)
+format(8)
+disp(p,"Therefore, psi(in Wb)=")
+disp("Lamda= Leakage coefficient = (Total flux)/(Useful flux)")
+l=0.0145/0.01212
+format(6)
+disp(l,"Therefore, lamda = 0.0145/0.01212 =")
diff --git a/1370/CH2/EX2.36/example2_36.sce b/1370/CH2/EX2.36/example2_36.sce
new file mode 100755
index 000000000..8d1b7b190
--- /dev/null
+++ b/1370/CH2/EX2.36/example2_36.sce
@@ -0,0 +1,22 @@
+//exmaple2.26
+clc
+disp("(P_out)=1500 kW, (V_t)=550 V, P=10, A=P as lap, N=150 rpm, Z=2500, (P_cu)=25 kW, B=0.9 Wb/m^2")
+i=(1500*1000)/550
+format(10)
+disp(i,"I_L(in A)=(P_out)/(V_t)=")
+disp("As R_sh is not given, neglect I_sh hence (I_a)=2727.2727 A")
+disp("a) P_cu = Armature copper loss = [(I_a)^2]*(R_a)")
+disp("25*10^3 = (2727.2727)^2 * (R_a)")
+a=25000/[(2727.2727)^2]
+format(9)
+disp(a,"Therefore, (R_a)[in ohm]=")
+e=550+(2727.2727*3.3611*0.001)
+disp(e,"Therefore, E_g(in V)=(V_t)+[(I_a)*(R_a)]=")
+disp("This is load terminal voltage.")
+disp("b) (E_g)=(psi*P*N*Z)/(60*A) i.e. 559.1667=(psi*10*150*2500)/(60*10)")
+p=(559.1667*60*10)/(1500*2500)
+format(8)
+disp(p,"Therefore, psi(in Wb)=")
+disp("Now, B=(psi)/A i.e 0.9=(0.08946)/A")
+a=0.08946/0.9
+disp(a,"Therefore, A(in m^2)=")
diff --git a/1370/CH2/EX2.4/example2_4.sce b/1370/CH2/EX2.4/example2_4.sce
new file mode 100755
index 000000000..a0f908d6e
--- /dev/null
+++ b/1370/CH2/EX2.4/example2_4.sce
@@ -0,0 +1,18 @@
+//example2.4
+clc
+disp("Consider separately excited generator as shown in the fig 2.30")
+disp("Note that 250V, 10kW generator means the full load capacity of generator is to supply 10kW load at a terminal voltage V_t=250 V")
+disp("Therefore, V_t=250V and P=10kW")
+disp("and, P=(V_t)*(I_L)")
+i=(10^4)/250
+disp(i,"Therefore, I_L(in A)=")
+disp("Therefore, I_a=I_L= 40 A ...As separately excited")
+disp("Now, E=(V_t)+[(I_a)*(R_a)]+(V_brush)")
+disp("Now there are two brushes and brush drop is 2V/brush")
+v=2*2
+disp(v,"Therefore, V_brush(in V)=")
+disp("Therefore, E=250+40(R_a)+4")
+disp("But, E=255 V on full load")
+disp("255 = 250 + 40(R_a) + 4")
+r=1/40
+disp(r,"Therefore, R_a(in ohm)=")
diff --git a/1370/CH2/EX2.5/example2_5.sce b/1370/CH2/EX2.5/example2_5.sce
new file mode 100755
index 000000000..e2ea390dc
--- /dev/null
+++ b/1370/CH2/EX2.5/example2_5.sce
@@ -0,0 +1,22 @@
+//example2.5
+clc
+disp("Consider the series generator as shown in fig 2.31")
+disp("R_a=0.5 ohm and R_se=0.03 ohm")
+disp("V_brush=2 V")
+disp("N=1500 rpm")
+disp("Total coils are 540 with 6 turns/coil.")
+t=540*6
+disp(t,"Therefore, Total turns =540*6=")
+disp("Total conductors Z= 2* turns")
+z=2*3240
+disp(z,"z=2*3240=")
+disp("Therefore, E=(psi*P*N*Z)/(60*A)")
+disp("For lap type, A=P")
+disp("psi=2 mWb=2*10^-3 Wb")
+e=(1500*6480*2*10^-3)/60
+disp(e,"Therefore, E(in V)=")
+disp("E=(V_t)+(I_a)[(R_a)+(R_sc)]+(V_brush) ..Total V_brush given")
+disp("Where, I_a=I_L=50 A")
+disp("324=(V_t)+50(0.5+0.03)+2")
+v=322-(50*(0.53))
+disp(v,"V_t(in V)=")
diff --git a/1370/CH2/EX2.6/example2_6.sce b/1370/CH2/EX2.6/example2_6.sce
new file mode 100755
index 000000000..76bc848a6
--- /dev/null
+++ b/1370/CH2/EX2.6/example2_6.sce
@@ -0,0 +1,21 @@
+//example2.6
+clc
+disp("Consider a short shunt generator as shown in the fig 2.32")
+disp("R_a=0.04 ohm, R_sh=90 ohm, R_se=0.02 ohm")
+disp("V_t=225 V , I_L=75 A")
+disp("I_a = I_L + I_sh")
+disp("Now, E=(V_t)+[(I_a)*(R_a)]+[(I_L)*(R_se)]")
+disp("and drop across armature terminals is,")
+disp("E-[(I_a)*(R_a)]=(V_t)+[(I_t)*(R_se)]")
+e=225+(75*0.02)
+disp(e,"Therefore, E-[(I_a)*(R_a)]=")
+disp("Therefore, I_sh=[E-(I_a)(R_a)]/(R_sh)=[(V_t)+(I_L)(R_se)]/(R_sh)")
+i=226.5/90
+format(7)
+disp(i,"Therefore, I_sh(in A)=")
+i=75+2.5167
+disp(i,"Therefore, I_a=I_L+I_sh=")
+disp("Therefore, E=V_t+[(I_a)*(I_sh)]+[(I_L)*(R_se)]")
+e=225+(77.5167*0.04)+(75*0.02)
+format(6)
+disp(e,"E(in V)=")
diff --git a/1370/CH2/EX2.7/example2_7.sce b/1370/CH2/EX2.7/example2_7.sce
new file mode 100755
index 000000000..c55a4f68c
--- /dev/null
+++ b/1370/CH2/EX2.7/example2_7.sce
@@ -0,0 +1,8 @@
+//example2.7
+clc
+disp("V=200 V, I_a=30 A, R_a=0.75 ohm are the given values.")
+disp("For a motor, V=(E_b)+[(I_a)*(R_a)]")
+disp("Therefore, 220=(E_b)+(30*0.75)")
+e=220-(30*0.75)
+disp(e,"E_b(in V)=")
+disp("This is the induced emf called back emf in a motor")
diff --git a/1370/CH2/EX2.8/example2_8.sce b/1370/CH2/EX2.8/example2_8.sce
new file mode 100755
index 000000000..20fd6f64c
--- /dev/null
+++ b/1370/CH2/EX2.8/example2_8.sce
@@ -0,0 +1,12 @@
+//example2.8
+clc
+disp("P=4, A=P=4 as lap, V=230 V, Z=250")
+disp("psi=30mWb=30*10^-3 Wb, I_a=40 A")
+disp("From voltage equation, V=E_b+[(I_a)*(R_a)]")
+disp("230=E_b+(40*0.6)")
+e=230-(40*0.6)
+disp(e,"Therefore, E_b(in V)=")
+disp("E_b=(psi*P*N*Z)/(60*A)")
+disp("Therefore, 206=(4*N*250*30*10^-3)/(60*4)")
+n=(206*240)/(250*4*30*10^-3)
+disp(n,"N(in rpm)=")
diff --git a/1370/CH2/EX2.9/example2_9.sce b/1370/CH2/EX2.9/example2_9.sce
new file mode 100755
index 000000000..bbcde8ef4
--- /dev/null
+++ b/1370/CH2/EX2.9/example2_9.sce
@@ -0,0 +1,7 @@
+//example2.9
+clc
+disp("P=4, A=P=4, Z=480")
+disp("psi=20mWb=20*10^-3 Wb, I_a=50 A")
+t=(0.159*0.02*50*4*480)/4
+format(7)
+disp(t,"Now, T_a(in N-m)=0.159*(psi)*(I_a)*(P*Z)/A=")
diff --git a/1370/CH3/EX3.1/example3_1.sce b/1370/CH3/EX3.1/example3_1.sce
new file mode 100755
index 000000000..019ca8763
--- /dev/null
+++ b/1370/CH3/EX3.1/example3_1.sce
@@ -0,0 +1,13 @@
+//example3.1
+clc
+disp("(B_m)=1 Wb/m^2, E1=240 V, E/turn=8 V, f=50 Hz")
+disp("E1=E/turn * N1 i.e. 240=8*N1")
+disp("Therefore, N1=30")
+disp("Therefore, N1/N2=E1/E2 i.e 30/N2=240/2400")
+disp("N2=300")
+disp("E1=4.44*(psi_m)*f*N1 i.e. 240=4.44*(psi_m)*50*30")
+p=240/(4.44*50*30)
+format(8)
+disp(p,"Therefore, (psi_m)[in Wb]=")
+a=0.03636/1
+disp(a,"(B_m)=(psi_m)/a i.e. a(in m^2)=(psi_m)/(B_m)=")
diff --git a/1370/CH3/EX3.10/example3_10.sce b/1370/CH3/EX3.10/example3_10.sce
new file mode 100755
index 000000000..0041e1685
--- /dev/null
+++ b/1370/CH3/EX3.10/example3_10.sce
@@ -0,0 +1,17 @@
+//example3.10
+clc
+disp("20 kVA, N_max=0.98 at 15 kVA and cos(psi)=1, (P_i)=350 W")
+disp("Load at n_max=kVA*sqrt(P_i/P_cu)")
+disp("Therefore, 15=20*sqrt(350/P_cu) i.e. ")
+p=350/((15/20)^2)
+format(8)
+disp(p,"P_cu(FL)[in W]=")
+disp("i) %n at cos(psi)=0.8 lag, full load")
+disp("%n(FL)= [VA cos(psi) *100]/[(VA cos(psi))+(P_cu(FL))+(P_i)]=[20*10^3*(0.8) *100]/[(20*10^3*(0.8))+(622.222)+(350)]")
+n=[20000*(0.8)*100]/[(20000*(0.8))+(622.222)+(350)]
+format(7)
+disp(n,"= ")
+disp("ii) %n at cos(psi)=1 , full load")
+n=(20000*100)/(20000+622.222+350)
+format(8)
+disp(n,"%n(FL)=(20*10^3*1*100)/((20*10^3*1)+622.222+350)=")
diff --git a/1370/CH3/EX3.11/example3_11.sce b/1370/CH3/EX3.11/example3_11.sce
new file mode 100755
index 000000000..34ba9d42c
--- /dev/null
+++ b/1370/CH3/EX3.11/example3_11.sce
@@ -0,0 +1,46 @@
+//Example 3.11
+clc
+disp("From O.C. test we can write,")
+disp(" Wo = P1 = 50 W = Iron loss")
+disp("From S.C. test we can find the parameters of eqivalent circuit. Now S.C. test is conducted on H.V. side i.e. meters are on H.V. side which is tranformer secondary. Hence parameters from S.C. test results will be refered to secondary.")
+disp("V_sc = 15 V, I_sc = 30 A, W_sc = 100 W")
+r2e=10/(30^2)
+format(6)
+disp(r2e,"Therefore, R_2e (in ohm)= W_sc / (I_sc)^2 =")
+z1e=15/30
+format(4)
+disp(z1e," Z_1e(in ohm) = V_sc / I_sc =")
+x2e=sqrt((0.5^2)-(0.111^2))
+format(7)
+disp(x2e,"Therefore, X_2e(in ohm) = sqrt(Z_2e^2 - R_2e^2) =")
+disp("(i) Copper loss on full load")
+i2=(10^4)/250
+format(3)
+disp(i2,"(I2)F.L (in A)= VA rating / V2 =")
+disp("In short circuit test, I_sc = 30 A and not equal to full load value 40 A")
+disp("Hence W_sc does not give copper loss on full load.")
+disp("Therefore, W_sc = P_cu at 30 A = 100 W")
+disp("Now P_cu directly proprotional to I^2")
+disp("Therefore, P_cu at 30 A / P_cu at 40 A = (30/40)^2")
+disp("Therefore, 100 / P_cu at 40 A = 900/1600")
+pcu=(1600*100)/900
+format(7)
+disp(pcu,"Therefore, P_cu at 40 A (in W)= ")
+disp("Therefore, (P_cu)F.L = 177.78 W")
+disp("(ii) Full load eta, cos(phi2) = 0.8")
+disp("%eta on full load = V2(I2)F.L.*cos(phi2)*100 / V2(I2)F.L.*cos(phi2)+Pi+(P_cu)F.L")
+n=(250*40*0.8*100)/((250*40*0.8)+50+177.78)
+format(6)
+disp(n,"= (250*40*0.8*100)/((250*40*0.8)+50+177.78) = ")
+disp("iii) Half load eta, cos(phi_2)=0.8")
+disp("n=0.5 as half load, (I2)[H.L.]=40/2 =20 A")
+disp("Therefore, %eta on full load = V2(I2)H.L.*cos(phi2)*100 / V2(I2)H.L.*cos(phi2)+Pi+(n^2)(P_cu)F.L")
+disp("= n*(VA rating)*cos(phi2)*100 / n*(VA rating)*cos(phi2)+Pi+(P_cu)F.L")
+disp("= 0.5*10*10^3*0.8*100/(0.5*10*10^3*0.8)+50+(0.5^2)*177.78")
+n=(0.5*10*1000*0.8*100)/((0.5*0.8*10^4)+50+(100.78*(0.5^2)))
+disp(n," = ")
+disp("iv) Regulation at full load, cos(phi)=0.9 leading")
+disp("%R = (I2)F.L.*(R_2e)*cos(phi)-(I2)F.L.*(X_2e)*sin(phi)*100/V2")
+r=(((40*0.111*0.9)-(40*0.4875*0.4358))*100)/250
+format(7)
+disp(r," = (40*0.111*0.9)-(40*0.4875*0.4358)*100/250 =")
diff --git a/1370/CH3/EX3.12/example3_12.sce b/1370/CH3/EX3.12/example3_12.sce
new file mode 100755
index 000000000..c49cf410d
--- /dev/null
+++ b/1370/CH3/EX3.12/example3_12.sce
@@ -0,0 +1,21 @@
+//example3.12
+clc
+disp("R1=0.9 ohm, R2=0.03 ohm, X1=5 ohm, X2=0.13 ohm")
+disp("K=N2/N1=1/6 as N1:N2 is 6:1")
+r=0.03+(0.9*(1/6)^2)
+format(6)
+disp(r,"Therefore, (R_2e)[in ohm]=R2+R1''=R2+(K^2)*R1=0.03+(1/6)^2*0.9=")
+x=0.13+(5*(1/6)^2)
+format(8)
+disp(x,"(X_2e)[in ohm]=X2+X1''=X2+(K^2)*X1=0.13+(5*(1/6)^2)=")
+disp("I_sc = 200 A")
+disp("(Z_2e)=(V_sc)/(I_sc) i.e. sqrt((R_2e^2)+(X_2e^2))=(V_sc)/200")
+v=200*0.27444
+disp(v,"V_sc(in V)=200*0.27444=")
+v=54.8895*6
+disp(v,"i) V1(in V)=(V_sc)/K=54.8895/(1/6)=")
+disp("(W_sc)=(V_sc)*(I_sc)*cos(phi_sc) and (W_sc)=(I_sc^2)*(R_2e)")
+disp("Therefore, (200^2)*0.055 = 54.8895*200*cos(phi_sc)")
+s=((0.055*200)/(54.8895))
+format(4)
+disp(s,"Therefore, cos(phi_sc)[lagging]=")
diff --git a/1370/CH3/EX3.13/example3_13.sce b/1370/CH3/EX3.13/example3_13.sce
new file mode 100755
index 000000000..efdf0ac12
--- /dev/null
+++ b/1370/CH3/EX3.13/example3_13.sce
@@ -0,0 +1,54 @@
+//exmaple3.13
+clc
+disp("Given values are, P_i=2.5 kW, (P_cu)F.L. = 3.5kW, 400 kVA")
+disp("Iron losses are constant for 24 hours. So energy spent due to iron lossses for 24 hours is,")
+p=2.5*24
+disp(p,"P_i(in kWh)=2.5*24 hours=")
+disp("Total energy output in a day from given load cycle is,")
+e=(300*6)+(200*10)+(100*4)
+disp(e,"Energy output (in kWh)= (300*6 hours)+(200*10 hours)+(100*4 hours)=")
+disp("To calculate energy spent due to copper loass,")
+disp("i)Load 1 of 300 kW at cos(phi)=0.8")
+k=300/0.8
+disp(k,"Therefore, kVA supplied = kW/cos(phi) =300/0.8=")
+n=375/400
+format(7)
+disp(n,"Therefore, n=(load kVA)/(kVA rating)=375/400=")
+disp("Copper losses are proportional to square of kVA ratio i.e. n^2")
+l=3.5*(0.9375)^2
+format(6)
+disp(l,"Therefore, Load 1 P_cu = n^2*(P_cu)F.L. =(0.9375)^2*3.5=")
+e=3.076*6
+format(7)
+disp(e,"Energy spent(in kWh)=3.076*6 hours=")
+disp("ii) Load 2 of 200 kW at cos(phi)=0.7")
+k=200/0.7
+format(9)
+disp(k,"Therefore, kVA supplied=(kW)/cos(phi)=200/0.7=")
+n=285.7142/400
+format(7)
+disp(n,"n=(Load kVA)/(kVA rating)=")
+p=3.5*(0.7142^2)
+disp(p,"Therefore, Load 2 P_cu(in kW)= n^2*(P_cu)F.L.= (0.7142^2)*3.5=")
+p=1.7857*10
+disp(p,"Therefore, Energy spent(in kWh)= 1.7857*10 = ")
+disp("iii) Load 3 of 100 kW at cos(phi)=0.9")
+k=100/0.9
+format(8)
+disp(k,"Therefore, kVA supplied=kW/cos(phi)=100/0.9=")
+n=111.111/400
+format(7)
+disp(n,"Therefore, n=111.111/400=")
+p=3.5*(0.2778^2)
+disp(p,"Therefore, Load 3 P_cu(in kW)= n^2*(P_cu)F.L.=(0.2778^2)*3.5= ")
+e=0.2701*4
+disp(e,"Therefore, Energy spent(in kWh)=0.2701*4=")
+disp("iv) No load hence negligible copper losses.")
+t=60+18.457+17.857+1.0804
+format(8)
+disp(t,"Therefore, Total energy spent = Energy spent due to [Iron losses + Total copper loss]= 60+18.457+17.857+1.0804 = ")
+disp("and Total output = 4200 kWh")
+disp("Therefore, All day eta= (Total output for 24 hours)/(Total output for 24 hours+Total energy spent for 24 hours)")
+n=420000/(4200+97.3944)
+format(6)
+disp(n,"= 4200*100/(4200+97.3944) = ")
diff --git a/1370/CH3/EX3.14/example3_14.sce b/1370/CH3/EX3.14/example3_14.sce
new file mode 100755
index 000000000..8c66ed899
--- /dev/null
+++ b/1370/CH3/EX3.14/example3_14.sce
@@ -0,0 +1,16 @@
+//example3.14
+clc
+disp("eta % =98% ,S= 200 kVA, cos(phi)=0.8, Iron loss=200 W")
+disp("Therefore, eta % = (200*10^3 *0.8*100)/(200*10^3 *0.8+2000+copper loss)")
+disp("0.98[200*10^3 *0.8+2000+copper loss]=200*10^3 *0.8")
+c=((200*800)/0.98)-((200*800)-2000)
+format(9)
+disp(c,"i)Copper loss at full load(in watt)=")
+disp("ii)Half load copper loss(in watt) = (n^2)*(W_cu)full load where n=0.5 as half load")
+x=(0.5^2)*1265.306
+format(8)
+disp(x,"=(0.5^2)*1265.306 =")
+disp("Efficiency at half load = (100*10^3 *0.8*100)/(100*10^-3 *0.8+2000+316.326)")
+n=(100*800*100)/((0.8*100000)+2000+316.326)
+format(7)
+disp(n,"eta % = ")
diff --git a/1370/CH3/EX3.15/example3_15.sce b/1370/CH3/EX3.15/example3_15.sce
new file mode 100755
index 000000000..1c36d599d
--- /dev/null
+++ b/1370/CH3/EX3.15/example3_15.sce
@@ -0,0 +1,24 @@
+//example3.15
+clc
+x=250*800
+disp(x,"a)The output power at full load(in watt)=")
+disp("THe input power at full load =(200*10^3)/0.98135")
+disp("The total loss = Input-Output")
+t=((200*10^3)/0.98135)-200000
+format(8)
+disp(t,"= ")
+disp("Therefore, P_i + P_c = 3800.88 (i)")
+disp("where P_i= Iron loss ,P_c = Full load copper loss")
+p=125*800
+disp(p,"The power output at half load=125*10^3 *0.8=")
+disp("The power input at half load = (100*10^3)/0.97751")
+x=((100*10^3)/0.9775)
+disp(x,"Total loss = (100*10^3)/0.9775 - 100*10^3 =")
+disp("(P_i)+ (0.5^2)*(P_c) = 2300.74")
+disp("(P_i)+ (0.25)*(P_c) = 2300.74 (ii)")
+disp("From equations (i) and (ii),")
+disp("0.75*(P_i)=3800.88-2300.74")
+p=(3800.88-2300.74)/0.75
+disp(p,"Therefore, P_i(in watt)=")
+z=3800.88-2000.18
+disp(z,"P_c(in watt)=")
diff --git a/1370/CH3/EX3.16/example3_16.sce b/1370/CH3/EX3.16/example3_16.sce
new file mode 100755
index 000000000..6ed6d50e5
--- /dev/null
+++ b/1370/CH3/EX3.16/example3_16.sce
@@ -0,0 +1,27 @@
+//example3.16
+clc
+disp("100 kVA, 1000 V/ 10000 V, P_i=1200 W, cos(phi)=0.8, P_cu on I2 = 6A is 500W, X_2e=10 ohm")
+disp("For eta_max, P_cu=(P_i)=1200 W")
+i=(100*10^3)/10000
+disp(i,"(I_2)F.L.[in A] = VA rating/V2 = (100*10^3)/10000 = ")
+disp("Therefore, P_cu on any load/(P_cu)F.L. = [I2 load/I2 F.L]^2 ...As (P_cu) directly proportional I^2")
+disp("Therefore, 500/(P_cu)F.L. = (6/10)^2")
+p=500*(10/6)^2
+format(8)
+disp(p,"Therefore, (P_cu)F.L.[in W] = ")
+k=100*sqrt(1200/1388.88)
+disp(k,"kVA at eta_max = (kVA rating)*sqrt(P_i/(P_cu)F.L) = 100*sqrt(1200/1388.88) =")
+disp("Therefore, % eta_max = (kVA for n_max cos(phi)*100)/(kVA for n_max cos(phi)+2P_i)")
+n=(92951.8*0.8*100)/((92951.8*0.8)+(2*1200))
+disp(n,"= (92951.8*0.8*100)/((92951.8*0.8)+(2*1200)) = ")
+i=10*sqrt(1200/1388.88)
+format(7)
+disp(i,"(I_2m) at eta_max [in A]= (I_2)F.L. * sqrt(P_i/(P_cu)F.L.) = ")
+disp("Therefore, (P_cu) at eta_max = P_i = (I_2m)^2 * R_2e")
+disp("Therefore, 1200 = (9.2951^2)*R_2e")
+r=1200/(9.2951^2)
+disp(r,"Therefore, R_2e[in ohm] = ")
+disp("% R = (I_2m)[R_2e cos(phi)+(X_2e)sin(phi) *100]/V2")
+po=(9.2951*((13.889*0.8)+(10*10*0.6)))/100
+format(5)
+disp(po,"= (9.2951*((13.889*0.8)+(10*10*0.6))*100)/10000 = ") //answer in text book is wrong
diff --git a/1370/CH3/EX3.17/example3_17.sce b/1370/CH3/EX3.17/example3_17.sce
new file mode 100755
index 000000000..1677d34a9
--- /dev/null
+++ b/1370/CH3/EX3.17/example3_17.sce
@@ -0,0 +1,13 @@
+//exmaple3.17
+clc
+disp("5 kVA, 2300/230 V, P_i=40 W, (P_cu)F.L. =112 W, cos(phi)=0.8")
+disp("Sr. kVA n=Fraction of full load New P_cu= %eta=n[Total VA]cos(phi)/n[Total VA]cos(phi)+P_i+New P_cu *100")
+disp("No. output =Actual kVA/total kVA n^2 P_cu(F.L.) ")
+disp("1 1.25 0.25 7 95.51%")
+disp("2 2.5 0.5 28 96.711%")
+disp("3 3.75 0.75 63 96.668%")
+disp("4 5 1 112 96.339%")
+disp("5 6.25 1.25 175 95.877%")
+disp("6 7.5 1.5 252 95.359%")
+disp("")
+disp("The efficiency against kVA output curve is shown in the fig. 3.28")
diff --git a/1370/CH3/EX3.18/example3_18.sce b/1370/CH3/EX3.18/example3_18.sce
new file mode 100755
index 000000000..71acb5ec2
--- /dev/null
+++ b/1370/CH3/EX3.18/example3_18.sce
@@ -0,0 +1,15 @@
+//example3.18
+clc
+disp("50 kVA, V1=2400 V, V2=240 V, N2=23")
+k=1/10
+disp("K=N2/N1=1/10=")
+i=(50*10^3)/240
+format(8)
+disp(i,"(I_2)F.L. = VA/V2 = (50*10^3)/240 =")
+r=240/208.333
+disp(r,"R_L (in ohm)=V2/(I_2)F.L. = 240/208.333= ")
+disp("From the e.m.f equation,")
+disp("240 = 4.44*50*phi*23")
+p=240/(4.44*50*23)
+format(6)
+disp(p,"Therefore, phi_m(in Wb)=")
diff --git a/1370/CH3/EX3.19/example3_19.sce b/1370/CH3/EX3.19/example3_19.sce
new file mode 100755
index 000000000..baa0e09db
--- /dev/null
+++ b/1370/CH3/EX3.19/example3_19.sce
@@ -0,0 +1,14 @@
+//example3.19
+clc
+disp("E1=2300 V, E2=230 V, f=50 Hz, B_m=1.1 Wb/m^2 , A=0.05 m^2")
+disp("B_m=(phi_m)/A i.e 1.1=(phi_m)/0.05")
+p=1.1*0.05
+format(6)
+disp(p,"Therefore, (phi_m)[in Wb]=")
+disp("E1=4.44(phi_m)*f*N1 i.e. 2300=4.44*0.055*50*N1")
+n=2300/(4.44*0.055*50)
+format(7)
+disp(n,"Therefore,N1 = ")
+disp("E2=4.44(phi_m)*f*N2 i.e. 230=4.44*0.055*50*N2")
+n=230/(4.44*0.055*50)
+disp(n,"Therefore, N2 = ")
diff --git a/1370/CH3/EX3.2/example3_2.sce b/1370/CH3/EX3.2/example3_2.sce
new file mode 100755
index 000000000..63f789c2d
--- /dev/null
+++ b/1370/CH3/EX3.2/example3_2.sce
@@ -0,0 +1,10 @@
+//example3.2
+clc
+disp("f=50 Hz, N1=480, N2=20, E1=5400 V")
+disp("E1=4.44*f*(psi_m)*N1 i.e. 5400=4.44*50*(psi_m)*480")
+p=5400/(4.44*50*480)
+format(7)
+disp(p,"Therefore, (psi_m)[in Wb]=")
+disp("E1/E2=N1/N2 i.e. E2=(N2*E1)/N1=(20*5400)/480")
+e=(20*5400)/480
+disp(e,"Therefore, E2(in V)=")
diff --git a/1370/CH3/EX3.20/example3_20.sce b/1370/CH3/EX3.20/example3_20.sce
new file mode 100755
index 000000000..f8659085d
--- /dev/null
+++ b/1370/CH3/EX3.20/example3_20.sce
@@ -0,0 +1,15 @@
+//example3.20
+clc
+disp("150 kVA, P_i=1.4 kW, P_cu(FL)=1.6 kW")
+k=150*sqrt(1.4/1.6)
+format(9)
+disp(k,"a) kVA for eta_max = kVA*sqrt(P_i/P_cu(FL))= ")
+disp("For maximum efficieny, P_cu=P_i=1.4kW and cos(phi)=1")
+disp("Therefore, %eta_max=(VA for eta_max *cos(phi))/(VA for eta_max*cos(phi)+2P_i *100")
+n=(140.3121*1000*100)/(140312.1+(2*1.4*1000))
+format(7)
+disp(n,"= (140.3121*1000*100)/(140312.1+(2*1.4*1000)) = ")
+disp("b) At half load, n=0.5, cos(phi)=0.8")
+disp("Therefore, %eta_HL = (n*VA*cos(phi)*100)/(n*VA*cos(phi)+P_i+[n^2 *P_cu(FL)])")
+n=(0.5*150*1000*0.8*100)/((0.5*150*1000*0.8)+(1.4*10^3)+(1.6*1000*0.5^2))
+disp(n,"= (0.5*150*1000*0.8*100)/((0.5*150*1000*0.8)+(1.4*10^3)+(1.6*1000*0.5^2))) = ")
diff --git a/1370/CH3/EX3.21/example3_21.sce b/1370/CH3/EX3.21/example3_21.sce
new file mode 100755
index 000000000..8b1a77df8
--- /dev/null
+++ b/1370/CH3/EX3.21/example3_21.sce
@@ -0,0 +1,20 @@
+//exmaple3.21
+clc
+disp("E1=1900 V, E2=240 V, f=50Hz, B_m=1.5 Wb/m^2, emf/turn = E1/N1 = E2/N2")
+disp("Therefore, 1.5=1900/N1=240/N2")
+n=1900/1.5
+format(8)
+disp(n,"Therefore, N1=")
+n=240/1.5
+disp(n,"and, N2=")
+disp("E1=4.44*(phi_m)*f*N1 i.e. 1900=4.44(phi_m)*50*1267")
+p=1900/(4.44*50*1267)
+format(9)
+disp(p,"Therefore, (phi_m)[in Wb]=")
+disp("(B_m)=(phi_m)/A i.e. 1.5=(6.7567*10^-3)/A")
+a=(6.7567*10^-3)/1.5
+format(10)
+disp(a,"Therefore, A(in m^2)=")
+i=10000/240
+format(7)
+disp(i,"I2(in A)=Output VA/E2 = (10*10^3)/240 = ")
diff --git a/1370/CH3/EX3.22/example3_22.sce b/1370/CH3/EX3.22/example3_22.sce
new file mode 100755
index 000000000..e361cb3ca
--- /dev/null
+++ b/1370/CH3/EX3.22/example3_22.sce
@@ -0,0 +1,23 @@
+//example3.22
+clc
+disp("%eta_FL = 96%, cos(phi)=0.8, %eta_HL =97.2%, cos(phi)=1")
+disp("%eta_FL=(VA *cos(phi))/(VA *cos(phi)+P_i+P_cu(FL))*100 i.e. 0.96=((259*10^3)*0.8)/((250*10^3)*0.8+P_i+P_cu(FL))")
+disp("Therefore, P_i+P_cu(FL)=8333.333 ...(1)")
+disp("%eta_HL=(n*VA*cos(phi))/(n*VA*cos(phi)+P_i+(n^2)*P_cu(FL)) *100 ...n=0.5 for half load")
+disp("Therefore, 97.2=(0.5*250*(10^3)*1)/(0.5*250*(10^3)*1+P_i+(0.5^2)*P_cu(FL)) *100")
+disp("Therefore, P_i+(0.5^2)*P_cu(FL)=3600.823 ..(2)")
+disp("Solving equations (1) and (2),")
+disp("3600.823-(0.5^2)*P_cu(FL)+P_cu(FL)=8333.333")
+disp("0.75*(P_cu)FL=8333.333-3600.823")
+p=(8333.333-3600.823)/0.75
+format(9)
+disp(p,"P_cu(FL)[in W]=")
+p=8333.333-6310.013
+format(9)
+disp(p,"P_i(in W)=")
+disp("At 75% of full load, n=0.75 and cos(phi)=0.8")
+disp("Therefore, %eta=(n*VA*cos(phi))/(n*VA*cos(phi)+P_i+(n^2)*P_cu(FL)) *100")
+disp("=(0.75*2508(10^3)*0.8)/(0.75*250*(10^3)*0.8+2023.319+(0.75^2)*6310.013)) *100")
+n=(0.75*250*(10^3)*0.8*100)/((0.75*250*(10^3)*0.8)+2023.319+((0.75^2)*6310.013))
+format(8)
+disp(n,"= ")
diff --git a/1370/CH3/EX3.23/example3_23.sce b/1370/CH3/EX3.23/example3_23.sce
new file mode 100755
index 000000000..4600aa3f2
--- /dev/null
+++ b/1370/CH3/EX3.23/example3_23.sce
@@ -0,0 +1,18 @@
+//example3.23
+clc
+disp("V_0=220 V, I_0=0.5 A, W_0=30 W, R1=0.6ohm")
+disp("W_0=(V_0)*(I_0)*cos(phi_0) i.e. cos(phi_0)=30/(220*0.5)")
+c=30/(220*0.5)
+format(8)
+disp(c,"Therefore, cos(phi_0)=")
+p=acosh(0.27272)
+disp(p,"i.e. (phi_0)[in degree]=")
+k=110/220
+disp(k,"a) K=Turns ratio=Secondary voltage/Primary voltage=110/220=")
+i=0.5*0.27272
+disp(i,"b) I_m(in A)=(I_0)*cos(phi_0)=0.5*0.27272=")
+i=0.5*sind(74.1733)
+format(6)
+disp(i,"I_c(in A)=(I_0)*sin(phi_0)=0.5*sin(74.1733)=")
+p=30-((0.5^2)*0.6)
+disp(p,"P_i(in W)=Iron loss=(W_0)-No load copper loss=(W_0)-(I_0^2)*R1=")
diff --git a/1370/CH3/EX3.24/example3_24.sce b/1370/CH3/EX3.24/example3_24.sce
new file mode 100755
index 000000000..798180afb
--- /dev/null
+++ b/1370/CH3/EX3.24/example3_24.sce
@@ -0,0 +1,15 @@
+//example3.24
+clc
+disp("50 kVA, P_i=500 W, P_cu(FL)=600 W")
+disp("a) cos(phi)=1, Full load")
+n=(50*(10^3)*1*100)/((50*10^3)+500+600)
+format(7)
+disp("Therefore, %eta=(VA*cos(phi))/(VA*cos(phi)+P_i+P_cu(FL)) *100=(50*(10^3)*1*100)/((50*10^3)*1+500+600)= ")
+k=50*sqrt(500/600)
+format(8)
+disp(k,"b) kVA at eta_max= kVA*sqrt(P_i/P_cu(FL))=50*sqrt(500/600)= ")
+i=(50*10^3)/400
+disp(i,"I_2(FL)[in A]=VA/V2=(50*10^3)/400=")
+i=125*sqrt(500/600)
+format(9)
+disp(i,"I_2m(in A)=I_2(FL)*sqrt(P_i/P_cu(FL))=")
diff --git a/1370/CH3/EX3.25/example3_25.sce b/1370/CH3/EX3.25/example3_25.sce
new file mode 100755
index 000000000..4a4ae0625
--- /dev/null
+++ b/1370/CH3/EX3.25/example3_25.sce
@@ -0,0 +1,19 @@
+//example3.25
+clc
+disp("N1=400, N2=1000, A=60 cm^2, f=50 Hz, E1=520 V")
+disp("a) E1=4.44*(phi_m)*f*N1 i.e. 520=4.44*(phi_m)*50*400")
+p=520/(4.44*50*400)
+format(9)
+disp(p,"Therefore, (phi_m)[in Wb]= ")
+b=(5.8558*10^-3)/(60*10^-4)
+format(7)
+disp(b,"Therefore, (B_m)[in Wb/m^2]=(phi_m)/A= ")
+k=1000/400
+disp(k,"b) K=N2/N1=1000/400= ")
+disp("c) N2/N1=E2/E1 i.e. 1000/400=E2/520")
+e=(1000*520)/400
+disp(e,"Therefore, E2(in V)=")
+e=520/400
+disp(e,"d) E1/turns=E1/N1=520/400=")
+e=1300/1000
+disp(e,"E2/turns=E2/N2=1300/1000=")
diff --git a/1370/CH3/EX3.26/example3_26.sce b/1370/CH3/EX3.26/example3_26.sce
new file mode 100755
index 000000000..c56eb5ad9
--- /dev/null
+++ b/1370/CH3/EX3.26/example3_26.sce
@@ -0,0 +1,24 @@
+//example3.26
+clc
+disp("From O.C. test, P_i=Iron losses=75 W")
+disp("From S.C. test, V_sc=9.5 V, I_sc=20A, W_sc=110 W")
+disp("The meters are on H.V. side i.e. primary hence,")
+z=9.5/20
+format(6)
+disp(z,"Z_1e(in ohm)=(V_sc)/(I_sc)=")
+r=110/(20^2)
+disp(r,"R_1e(in ohm)=(W_sc)/(I_sc)^2=")
+x=sqrt((0.475^2)-(0.275^2))
+format(7)
+disp(x,"Therefore, (X_1e)[in ohm]=sqrt((Z_1e^2)-(R_1e^2))=")
+i=(8*10^3)/400
+disp(i,"I1(FL)[in A]=I_sc=VA/V1=(8*10^3)/400=")
+disp("Therefore, (W_sc)[in W]=(P_cu)(FL)=110 W ...Copper losses on full load")
+disp("For cos(phi)=0.8, sin(phi)=0.6")
+disp("Therefore, %R = I1(FL)*100*[R_1e*cos(phi)+X_1e*sin(phi)]")
+r=(20*100*((0.275*0.8)+(0.3873*0.6)))/400
+disp(r," = 20*100*[0.275*0.8+0.3873*0.6]/400= ")
+disp("%eta_FL= VA*cos(phi)/(VA*cos(phi)+P_i+P_cu(FL))*100")
+n=((8*10^3)*0.8*100)/((8*0.8*10^3)+75+110)
+format(6)
+disp(n,"= ((8*10^3)*0.8*100)/((8*0.8*10^3)+75+110)= ")
diff --git a/1370/CH3/EX3.27/example3_27.sce b/1370/CH3/EX3.27/example3_27.sce
new file mode 100755
index 000000000..d8330ab82
--- /dev/null
+++ b/1370/CH3/EX3.27/example3_27.sce
@@ -0,0 +1,30 @@
+//example3.27
+clc
+disp("Load distribution in hours is as give in the table.")
+disp("P_i=Iron loss=1.6 kW, P_cu(FL)=3.02 kW")
+disp("As iron losses are constant for 24 hours, energy spent due to iron losses,")
+p=1.6*24
+disp(p,"P_i(in kWh)=1.6*24= ")
+e=(6*160)+(4*80)+(1*0)
+disp(e,"Energy Output(in kWh)= (6*160)+(4*80)+(1*0) = ")
+disp("To calulate energy spent due to copper loss:")
+disp("Load 1: 160 kW, cos(phi)=0.8")
+k=160/0.8
+disp(k,"Therefore, kVA=kW/cos(phi)=160/0.8=")
+e=3.02*6
+disp(e,"Therefore, E1(in kWh)=P_cu(FL)*hours=3.02*6= ")
+disp("Load 2: 80kW, cos(phi)=1")
+k=80/1
+disp(k,"Therefore, kVA=kW/cos(phi)=80/1=")
+n=80/200
+disp(n,"Therefore, n=Fraction of load=(load kVA)/(kVA rating)=80/200=")
+p=(0.4^2)*3.02
+format(7)
+disp(p,"Therefore, P_cu(in kW)=(n^2)*P_cu(FL)=(0.4^2)*3.02=")
+e=0.4832*4
+disp(e,"Therefore, E2(in kWh)=P_cu*hours=0.4832*4=")
+t=38.4+18.12+1.9328
+format(8)
+disp(t,"Total energy spent(in kWh)=P_i+E1+E2=38.4+18.12+1.9328= ")
+n=(1280*100)/(1280+58.4528)
+disp(n,"Therefore, All day eta=(total energy output in 24 hours*100)/(total energy output for 24 hours+total energy spent)=(1280*100)/(1280+58.4528)=")
diff --git a/1370/CH3/EX3.3/example3_3.sce b/1370/CH3/EX3.3/example3_3.sce
new file mode 100755
index 000000000..8eabe03b9
--- /dev/null
+++ b/1370/CH3/EX3.3/example3_3.sce
@@ -0,0 +1,19 @@
+//example3.3
+clc
+disp("The given values are, (I_0)=10 A, cos(psi_0)=0.25, V1=400 V and f=50Hz")
+disp("a) (I_m)=(I_0)*sin(psi_0)=Magnetising component")
+p=acosd(0.25)
+format(7)
+disp(p,"(psi_0)[in degree]=")
+i=10*sind(75.522)
+disp(i,"I_m(in A)=,x")
+disp("(P_i)=Iron loss = Power input on no load")
+disp("= (W_0)= [(V1)*(I_0)*cos(psi_0)]= 400*10*0.25")
+w=4000*0.25
+disp(w,"P_i(in W)=")
+disp("c) On no load, E1=V1=400 V and N1=500")
+disp("E1=4.44*f*(psi_ m)*N1")
+disp("Therefore, 400=4.44*50*(psi_m)*500")
+i=400/(4.44*50*500)
+format(9)
+disp(i,"Therefore, (psi_m)[in Wb]=")
diff --git a/1370/CH3/EX3.4/example3_4.sce b/1370/CH3/EX3.4/example3_4.sce
new file mode 100755
index 000000000..08b6ea65c
--- /dev/null
+++ b/1370/CH3/EX3.4/example3_4.sce
@@ -0,0 +1,43 @@
+//example3.4
+clc
+disp("The given values are,")
+disp("(I_0)=1 A, cos(psi_0)=0.4, I2=50 A, and cos(psi_2)=0.8")
+k=200/400
+disp(k,"K=E2/E1=")
+k=0.5*50
+disp(k,"Therefore, I2''(in A)=K*I2=")
+disp("The angle of (I2'') is to be decided from cos(psi_2)=0.8")
+disp("Now, cos(psi_2)=0.8")
+p=acosd(0.8)
+format(6)
+disp(p,"Therefore, (psi_2)[in degree]=")
+disp("I2'' is in antiphase with I2 which lags E2 by 36.86 degree")
+disp("Consider the phasor diagram shown in the fig 3.18. The fluz (psi) is the reference")
+disp("Now cos(psi_0)=0.4")
+c=acosd(0.4)
+disp(c,"Therefore, psi_0(in degree)")
+disp("vector(I1)=vector(I2'')+vector(I_0)")
+disp("Resolve (I_0) and (I2'') into two components, along reference (psi) and in quadrature with (psi) in phase with V1.")
+x=1*sind(66.42)
+format(7)
+disp(x,"x component of (I_0)=(I_0)*sin(psi_0)=")
+x=1*cosd(66.42)
+format(4)
+disp(x,"y component of (I_0)=(I_0)*(psi_0)=")
+disp("Therefore, vector(I_0)=0.9165+j(0.4) A")
+i=25*sind(36.86)
+format(7)
+disp(i,"x component of I2''(in A)=I2''*sin(psi_2)=")
+i=25*0.8
+disp(i,"y component of I2''(in A)=I2''*cos(psi_2)=")
+disp("Thus the two component of I1 are as shown in the fig 3.18(c)")
+io=sqrt((15.9165^2)+(20.4^2))
+disp(io,"I1(in A)=sqrt[((15.9165)^2)+(20.4)^2]=")
+disp("This is the primary current magnitude.")
+disp("while tan(phi_1)=15.9165/20.4")
+t=atand(15.9165/20.4)
+disp(t,"Therefore, (psi_1)[in degree]=")
+disp("Hence the primary power factor is,")
+i=cosd(37.96)
+disp(i,"cos(psi_1)[lagging]=cos(37.96)=")
+disp("Key point: Remember that (psi_1) is angle between V1 and I1 and as V1 is vertical, (psi_1) is measured with respect V1. So do not convert rectangular to polar as it goes angle with respect to x-axis and we want it with respect to y-axis.")
diff --git a/1370/CH3/EX3.5/example3_5.sce b/1370/CH3/EX3.5/example3_5.sce
new file mode 100755
index 000000000..4793a9525
--- /dev/null
+++ b/1370/CH3/EX3.5/example3_5.sce
@@ -0,0 +1,18 @@
+//example3.5
+clc
+disp("The given values are, R1=2.5 ohm, R2=0.01 ohm")
+k=400/6600
+disp(k,"K=400/6600=")
+disp("While finding eqivalent resistance referred to primary, transfer R2 to primary as R2'',")
+r=0.01/((0.0606)^2)
+disp(r,"R2''(in ohm)=R2/K^2=")
+r=2.5+2.7225
+format(7)
+disp(r,"Therefore, (R_1e)[in ohm]=R1+R2''=")
+disp("It can be observed that primary is high voltage hence high resistance side hence while transferring R2 from low voltage to R2'' on high voltage, its value increses.")
+disp("To find total equivalent resistance referred to secondary, first calculate R1'',")
+r=2.5*(0.0606)^2
+format(8)
+disp(r,"R1''(in ohm)=(K^2)*R1=(0.0606^2)*2.5=")
+r=0.01+0.00918
+disp(r,"(R_2e)(in ohm)=R2*R1''=0.01*0.00918=")
diff --git a/1370/CH3/EX3.6/example3_6.sce b/1370/CH3/EX3.6/example3_6.sce
new file mode 100755
index 000000000..b6895f705
--- /dev/null
+++ b/1370/CH3/EX3.6/example3_6.sce
@@ -0,0 +1,19 @@
+//example3.6
+clc
+disp("R1=1 ohm, R2=2 ohm, X1=3 ohm, X2=5 ohm")
+k=110/220
+disp(k,"K=V2/V1=")
+r=1+(2/((0.5)^2))
+disp(r,"Therefore, (R_1e)[in ohm]=R1+R2''=R1+(R2/K^2)=")
+x=3+(5/((0.5)^2))
+disp(x,"Therefore, (X_1e)[in ohm]=X1+X2=X1+(X2/K^2)=")
+z=sqrt((9^2)+(23^2))
+format(8)
+disp(z,"Therefore, (Z_1e)[in ohm]=sqrt((R_1e^2)+(X_1e^2))=")
+r=9*(0.5^2)
+disp(r,"Therefore, (R_2e)[in ohm]=(K^2)*(R_1e)=")
+x=(0.5^2)*23
+disp(x,"and, (X_2e)[in ohm]=(K^2)*(X_1e)=")
+z=(0.5^2)*24.6981
+format(7)
+disp(z,"Therefore, (Z_2e)[in ohm]=sqrt((R_2e^2)+(X_2e^2))=(K^2)*(Z_1e)=")
diff --git a/1370/CH3/EX3.7/example3_7.sce b/1370/CH3/EX3.7/example3_7.sce
new file mode 100755
index 000000000..7bd31f3dc
--- /dev/null
+++ b/1370/CH3/EX3.7/example3_7.sce
@@ -0,0 +1,28 @@
+//example3.7
+clc
+disp("The given values are, R1=0.2 ohm, R2=0.05 ohm, X1=0.75 ohm, X2=0.2 ohm, cos(psi)=0.8 leading")
+k=125/250
+disp(k,"E2/E1=")
+i=(5*10^3)/125
+disp(i,"(I2)(F.L)[in A]=(kVA)/V2=")
+r=0.05+((0.5^2)*0.2)
+disp(r,"R_2e(in ohm)=R2+(K^2)*R1=")
+x=0.2+((0.5^2)*0.75)
+format(7)
+disp(x,"X_2e(in ohm)=X2+(K^2)*X1=")
+disp("i) Regulation on full load, cos(psi)=0.8 leading")
+disp("sin(psi)=0.6")
+disp("Therefore, %R=[(I2)*(R_2e)*cos(psi)-(I2)*(X_2e)*sin(psi)]/E2 * 100, ..I2=I2(FL)=40 A")
+disp(" = (40*0.1*0.8-40*0.3875*0.6)/125 * 100")
+r=((40*0.1*0.8)-(40*0.3875*0.6))/1.25
+format(5)
+disp(r," = ")
+disp("ii) On full load, 0.8 p.f. leading the total voltage drop is,")
+disp("Voltage drop(in V) = I2(FL)[(R_2e)cos(psi)-(X_2e)sin(psi)]")
+v=40*((0.1*0.8)-(0.3875*0.6))
+format(4)
+disp(v," = ")
+disp("Therefore, E2-V2= -6.1 i.e. 125-V2= -6.1")
+v=125+6.1
+format(6)
+disp(v,"Therefore, V2(in V)= Secondary terminal voltage = 125+ 6.1 =")
diff --git a/1370/CH3/EX3.8/example3_8.sce b/1370/CH3/EX3.8/example3_8.sce
new file mode 100755
index 000000000..4e5762880
--- /dev/null
+++ b/1370/CH3/EX3.8/example3_8.sce
@@ -0,0 +1,24 @@
+//example3.8
+clc
+disp("The given values are, V1=200 V, V2=400 V, S=4 kVA, (R_1e)=0.15 ohm, P1= 60 W")
+k=4/2
+disp(k,"K=400/200=")
+r=(2^2)*0.15
+disp(r,"Therefore, (R_2e)[in ohm]=(K^2)(R_1e)=")
+i=4000/400
+disp(i,"I2(FL)[in A]=(kVA)/V2=")
+disp("i) Total copper losses on full load,")
+p=(10^2)*0.6
+disp(p,"(P_cu)(FL)[in W]=[I2(FL)]^2 * (R_2e) =(10^2)*0.6 =")
+disp("ii) cos(psi)=0.9 lagging and full load")
+disp("Therefore, %n = [(VA rating cos(psi))/(VA rating cos(psi)+(P_i)+(P_cu)FL)]*100")
+n=(4*0.9*10^5)/((4*0.9*10^3)+60+60)
+format(6)
+disp(n,"Therefore, n(% efficiency)=(4*0.9*10^3)/((4*0.9*10^3)+60+60) * 100 =")
+disp("iii) cos(psi)=0.8 leading, half load")
+disp("As half load, n=0.5")
+p=(0.5^2)*60
+disp(p,"(P_cu)(HL)[in W]=(n^2)*[(P_cu)(FL)]=(10.5^2)*60 =")
+disp("Therefore, %n = [n*(VA rating cos(psi))/(n*VA rating cos(psi)+(P_i)+(P_cu)FL)]*100")
+n=(4*0.5*0.8*10^5)/((4*0.8*0.5*10^3)+60+15)
+disp(n," = ")
diff --git a/1370/CH3/EX3.9/example3_9.sce b/1370/CH3/EX3.9/example3_9.sce
new file mode 100755
index 000000000..21ebf768d
--- /dev/null
+++ b/1370/CH3/EX3.9/example3_9.sce
@@ -0,0 +1,11 @@
+//exmaple3.9
+clc
+disp("(P_i)=1.2 kW, (P_cu)(FL)=1.5 kW, kVA=100")
+n=100*sqrt(1.2/1.5)
+format(8)
+disp(n,"i) kVA for (n_max)=kVA*sqrt((P_i)/(P_cu))=")
+disp("ii) For n_max, (P_cu)=(P_i)=-1.2 kW")
+disp("Therefore, %(n_max)=[(kVA for n_max)*cos(psi)]/[(kVA for n_max)*cos(psi)+2(P_i)]*100 ..cos(psi)=1")
+n=(89.4427*10^5)/((89.4427*10^3)+(2*1.2*10^3))
+format(7)
+disp(n,"%eta_max(in percentage) = ")
diff --git a/1370/CH4/EX4.1/Exp4_1.sce b/1370/CH4/EX4.1/Exp4_1.sce
new file mode 100755
index 000000000..96f3dfd1a
--- /dev/null
+++ b/1370/CH4/EX4.1/Exp4_1.sce
@@ -0,0 +1,12 @@
+//Example 4.1
+clc
+n=120/8
+format(3)
+disp(n,"n = slots/pole =")
+m=15/3
+disp(m,"m = slots/pole/phase = n/3 =")
+beta=180/15
+disp(beta,"beta(in degree) = 180/n =")
+kd=(sind(30)/(5*sind(6)))
+format(6)
+disp(kd,"Therefore, K_d = sin(m*beta/2) / m*sin(beta/2) =")
diff --git a/1370/CH4/EX4.10/Exp4_10.sce b/1370/CH4/EX4.10/Exp4_10.sce
new file mode 100755
index 000000000..f52f6f7df
--- /dev/null
+++ b/1370/CH4/EX4.10/Exp4_10.sce
@@ -0,0 +1,39 @@
+//Exmaple 4.10
+clc
+disp("N_s = 250 r.p.m., f = 50 Hz")
+disp("slots = 288, E_line = 6600 V")
+disp("N_s = 120*f/P")
+p=(120*50)/250
+format(3)
+disp(p,"Therefore, P =")
+n=288/24
+disp(n,"n = slots/pole =")
+m=12/3
+disp(m,"m = n/2 =")
+beta=180/12
+disp(beta,"beta = 180/n =")
+kd=sind(30)/(4*sind(7.5))
+format(7)
+disp(kd,"Therefore, K_d = sin(m*beta/2) / m*sin(beta/2) =")
+disp("Now coil is short pitched by 2 slots")
+al=2*15
+disp(al,"Therefore, alpha = angle of short pitch = 2 * beta =")
+kc=cosd(15)
+disp(kc,"Therefore, K_c = cos(alpha/2) =")
+disp("Each coil consists of 16 turns, i.e. in a slot each coil side consists of 16 conductors as shown in the fig.4.42 and in each slot there are 2 coil sides. So each slot consists of 16 per coil side x 2 i.e. 32 conductors.")
+disp("Therefore, conductors/slot = 32")
+disp("Therefore, total conductors = slots x conductors/slot")
+z=288*32
+format(5)
+disp(z,"Therefore, Z =")
+zp=9216/3
+disp(zp,"Therefore, Z_ph = conductors/phase =")
+tp=3072/2
+disp(tp,"Therefore, T_ph = Z_ph/2 = ... 2 conductors -> 1 turn")
+ep=6600/sqrt(3)
+format(8)
+disp(ep,"Now E_ph(in V) = E_line / sqrt(3) =")
+disp("E_ph = 4.44*K_c*K_d*phi*f*T_ph")
+phi=(3810.51/(4.44*0.9659*0.9576*50*1536))*10^3
+format(3)
+disp(phi,"Therefore, phi(in mWb) =")
diff --git a/1370/CH4/EX4.11/Exp4_11.sce b/1370/CH4/EX4.11/Exp4_11.sce
new file mode 100755
index 000000000..7397e1df2
--- /dev/null
+++ b/1370/CH4/EX4.11/Exp4_11.sce
@@ -0,0 +1,46 @@
+//Example 4.11
+clc
+disp("P = 12, N_s = 600 r.p.m")
+f=(12*600)/120
+format(3)
+disp(f,"Therefore, f(in Hz) = P*N_s/120 =")
+disp("(i) Average value of e.m.f in a conductor = 2*f*phi")
+rms=1.11*2*60*0.05
+format(5)
+disp(rms,"Therefore, r.m.s value(in V) = 1.11*2*f*phi =")
+disp("(ii) Average value of e.m.f in a turn = 4*f*phi")
+disp("As 2 conductors joined properly form a turn")
+rms=1.11*4*60*0.05
+format(6)
+disp(rms,"Therefore, r.m.s value(in V) = 1.11*4*f*phi =")
+disp("(iii) Now each slot has 10 conductors and 2 coil sides. So,")
+c=10/2
+disp(c,"conductors/coil side = 10/2 =")
+disp("Such coil sides are connected to another coil sides to form a coil. So in a coil there are 5 turns as shown in fig.4.43")
+rmss=13.32*5
+format(5)
+disp(rmss,"Therefore, R.M.S value of e.m.f in a coil(in V) = R.M.S value of e.m.f/turn * Number of turns/coil =")
+disp("(iv) Now total conductors Z = conductors/slots * Number of slots")
+z=10*180
+disp(z,"Therefore, Z =")
+zph=1800/3
+disp(zph,"Therefore, Z_ph = Z/3 =")
+tph=600/2
+disp(tph,"T_ph = Z_ph/2 =")
+n=180/12
+disp(n,"And n = slots/pole =")
+m=15/3
+disp(m,"m = n/3 =")
+beta=180/15
+disp(beta,"beta(in degree) =")
+kd=sind(30)/(5*sind(6))
+format(7)
+disp(kd,"Therefore, K_d = sin(m*beta/2) / m*sin(beta/2) =")
+disp("E_ph = R.M.S value per turn*T_ph*K_d*K_c")
+ep=13.32*300*0.9566*1
+format(8)
+disp(ep,"Therefore, E_ph(in V) =")
+disp("or E_ph = 4.44*K_c*K_d*phi*f*T_ph")
+eph=4.44*0.9566*0.05*60*300
+format(8)
+disp(eph,"Therefore, E_ph(in V) =")
diff --git a/1370/CH4/EX4.12/Exp4_12.sce b/1370/CH4/EX4.12/Exp4_12.sce
new file mode 100755
index 000000000..e0b100f5d
--- /dev/null
+++ b/1370/CH4/EX4.12/Exp4_12.sce
@@ -0,0 +1,36 @@
+//Example 4.12
+clc
+disp("P = 6, f = 50 Hz, n = 12 slots/pole, 4 conductors/slot")
+disp("For full pitch, n = 12 slots/pole")
+ap=60/6
+format(4)
+disp(ap,"Actual pitch of winding(in slots) = 5/6 * n =")
+ws=12-10
+disp(ws,"so winding shorted by(in slots) =")
+disp("Therefore, alpha = short pitch angle = 2 slot angle = 2*beta")
+beta=180/12
+disp(beta,"beta(in degree) =")
+alp=2*15
+disp(alp,"Therefore, alpha(in degree) = 2*beta =")
+kc=cosd(15)
+format(7)
+disp(kc,"Therefore, K_c = cos(alpha/2) =")
+m=12/3
+disp(m,"m(in slots/pole/phase) = n/3 =")
+kd=sind(30)/(4*sind(7.5))
+format(8)
+disp(kd,"Therefore, K_d = sin(m*beta/2) / m*sin(beta/2) =")
+ts=12*6
+disp(ts,"Total slots = n*P =")
+z=72*4
+disp(z,"Therefore, Z = total conductors =")
+zph=288/3
+disp(zph,"Therefore, Z_ph = Z/3 =")
+tph=96/2
+disp(tph,"T_ph = Z_ph/2 =")
+disp("Therefore, E_ph = 4.44*K_c*K_d*phi*f*T_ph")
+eph=(4.44*0.9659*0.95766*1.5*50*48)*10^-3
+format(8)
+disp(eph,"Therefore, E_ph(in kV) =")
+el=sqrt(3)*14.7852
+disp(el,"Therefore, E_line(in kV) = sqrt(3)*E_ph =")
diff --git a/1370/CH4/EX4.13/Exp4_13.sce b/1370/CH4/EX4.13/Exp4_13.sce
new file mode 100755
index 000000000..4bf56f345
--- /dev/null
+++ b/1370/CH4/EX4.13/Exp4_13.sce
@@ -0,0 +1,11 @@
+//Example 4.13
+clc
+disp("The coil span of 120 degree is shown in the fig.4.44")
+disp("The angle of shorts pitch is,")
+alp=180-120
+format(3)
+disp(alp,"alpha(in degree) = 180 - coil span =")
+kc=cosd(30)
+format(6)
+disp("The chording factor is,")
+disp(kc,"K_c = cos(alpha/2) =")
diff --git a/1370/CH4/EX4.14/Exp4_14.sce b/1370/CH4/EX4.14/Exp4_14.sce
new file mode 100755
index 000000000..a9e541a07
--- /dev/null
+++ b/1370/CH4/EX4.14/Exp4_14.sce
@@ -0,0 +1,15 @@
+//Example 4.14
+clc
+disp("V_ph = 200 V, 60 kVA, R_a = 0.016 ohm, X_s = 0.07 ohm")
+disp("VA = V_ph*I_ph i.e. 60*10^3 = 200*I_ph ...Single phase")
+disp("Therefore, I_ph = 300 A = I_a ...Full load current")
+disp("(a) cos(phi) = 1, sin(phi) = 0")
+eph=sqrt((((200+((300*0.016)))^2)+((300*0.07)^2)))
+disp("Therefore, E_ph^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (I_a*X_a)^2")
+format(9)
+disp(eph,"E_ph(in V) =")
+disp("(b) cos(phi) = 0.7 lagging, sin(phi) = 0.714")
+ephi=sqrt(((((200*0.7)+(300*0.016))^2)+(((200*0.7141)+(300*0.07))^2)))
+disp("Therefore, E_ph^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*R_a)^2")
+format(9)
+disp(ephi,"E_ph(in V) =")
diff --git a/1370/CH4/EX4.15/Exp4_15.sce b/1370/CH4/EX4.15/Exp4_15.sce
new file mode 100755
index 000000000..b275f92c0
--- /dev/null
+++ b/1370/CH4/EX4.15/Exp4_15.sce
@@ -0,0 +1,21 @@
+//Example 4.15
+clc
+disp("V_ph = 550 V, 55 kVA, R_a = 0.2 ohm")
+disp("I_f = 10 A, I_ssc = 200 A, V_oc = 450 V")
+za=450/200
+format(5)
+disp(za,"Therefore, Z_s(in ohm) = V_oc / I_ssc |same I_f =")
+xs=sqrt((2.25^2)-(0.2^2))
+format(7)
+disp(xs,"(a) X_s(in ohm) = sqrt(Z_a^2 - R_a^2) =")
+iph=(55*10^3)/550
+disp("VA = V_ph*I_ph ...As single phase")
+disp(iph,"Therefore, I_ph(in A) = I_a = ...Full load armature current")
+disp("(b) cos(phi) = 0.8 lagging, sin(phi) = 0.6")
+ephi=sqrt(((((550*0.8)+(100*0.2))^2)+(((550*0.6)+(100*2.2411))^2)))
+disp("Therefore, E_ph^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*R_a)^2")
+format(9)
+disp(ephi,"E_ph(in V) =")
+r=((720.1652-550)/550)*100
+format(6)
+disp(r,"Therefore, %R = (E_ph-V_ph / V_ph)*100 = ")
diff --git a/1370/CH4/EX4.16/Exp4_16.sce b/1370/CH4/EX4.16/Exp4_16.sce
new file mode 100755
index 000000000..c944e60d3
--- /dev/null
+++ b/1370/CH4/EX4.16/Exp4_16.sce
@@ -0,0 +1,18 @@
+//Example 4.16
+clc
+disp("V_ph = 2200 V, f = 50 Hz, 440 kVA, R_a = 0.5 ohm")
+disp("I_aph = 200 A = I_ac, V_oc = 1160 V, I_f = 40 A")
+za=1160/200
+format(4)
+disp(za,"(a) Z_s(in ohm) = V_oc/I_ssc |same I_f =")
+xs=sqrt((5.8^2)-(0.5^2))
+format(7)
+disp(xs,"(b) X_s(in ohm) = sqrt(Z_a^2 - R_a^2) =")
+disp("(c) cos(phi) = 0.707 leading, sin(phi) = 0.707")
+ephi=sqrt(((((2200*0.707)+(200*0.5))^2)+(((2200*0.707)-(200*5.7784))^2)))
+disp("Therefore, E_ph^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)-I_a*R_a)^2")
+format(10)
+disp(ephi,"E_ph(in V) =")
+r=((1702.9754-2200)/2200)*100
+format(7)
+disp(r,"Therefore, %R(in percentage) = (E_ph-V_ph / V_ph)*100 = ")
diff --git a/1370/CH4/EX4.17/Exp4_17.sce b/1370/CH4/EX4.17/Exp4_17.sce
new file mode 100755
index 000000000..56fb7534e
--- /dev/null
+++ b/1370/CH4/EX4.17/Exp4_17.sce
@@ -0,0 +1,31 @@
+//Example 4.17
+clc
+disp("Assume star connected alternator")
+disp("R_a+R_a = V_dc/I_dc")
+disp("2R_a = 6/10")
+ra=0.6/2
+format(4)
+disp(ra,"Therefore, R_a(in ohm/ph) =")
+disp("V_oc(line) = 420, V_L = 1100 V, 100 kVA")
+disp("Therefore, VA = sqrt(3)*V_L*I_L")
+il=(100*10^3)/(sqrt(3)*1100)
+format(8)
+disp(il,"Therefore, I_L(in A) = I_aph =")
+disp("Therefore, Rated armature current = 52.4864 A = I_ssc")
+zs=(420/sqrt(3))/52.4864
+format(5)
+disp(zs,"Therefore, Z_s(in ohm/ph) = V_oc(ph) / I_ssc(ph) =")
+xs=sqrt((4.62^2)-(0.3^2))
+format(7)
+disp(xs,"Therefore, X_s(in ohm/ph) = sqrt(Z_a^2 - R_a^2) =")
+disp("For cos(phi) = 0.8 lagging, sin(phi) = 0.6")
+disp("E_ph^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*R_a)^2")
+vph=1100/sqrt(3)
+format(8)
+disp(vph,"V_ph(in V) = V_L/sqrt(3) =")
+ephi=sqrt(((((635.085*0.8)+(52.4864*0.3))^2)+(((635.085*0.6)+(52.4864*4.6102))^2)))
+format(9)
+disp(ephi,"Therefore, E_ph(in V) =")
+r=((813.9654-635.085)/635.085)*100
+format(8)
+disp(r,"Therefore, %R(in percentage) = (E_ph-V_ph / V_ph)*100 = ")
diff --git a/1370/CH4/EX4.18/Exp4_18.sce b/1370/CH4/EX4.18/Exp4_18.sce
new file mode 100755
index 000000000..906a8c5af
--- /dev/null
+++ b/1370/CH4/EX4.18/Exp4_18.sce
@@ -0,0 +1,36 @@
+//Example 4.18
+clc
+disp("2R_a = 2 i.e. R_a = 1 ohm/ph")
+disp("V_L = 3.6 kVA, MVA = 1")
+disp("Therefore, VA = sqrt(3)*V_L*I_L")
+il=(1*10^6)/(sqrt(3)*3.6*10^3)
+format(8)
+disp(il,"Therefore, I_L(in A) = I_aph = ...Star")
+disp("From the test results, obtain the open circuit and short circuit characteristics and obtain V_oc for full load I_sc of 160.373 A")
+disp("From the graph, for full load short circuit current of 160.37 A, I_f = 53 A and corresponding V_oc(line) = 2250 V")
+zs=(2250/sqrt(3))/160.37
+format(4)
+disp(zs,"Therefore, Z_s(in ohm/ph) = V_ocph/I_scph |same I_f =")
+xs=sqrt((8.1^2)-(1^2))
+format(6)
+disp(xs,"Therefore, X_s(in ohm/ph) = sqrt(Z_a^2 - R_a^2) =")
+vph=(3.6*10^3)/sqrt(3)
+format(8)
+disp(vph,"V_ph(in V) = V_L/sqrt(3) =")
+disp("I_aph = 160.37 A")
+disp("(i) cos(phi) = 0.707 lagging, sin(phi) = 0.707")
+disp("Therefore, E_ph^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*R_a)^2")
+ephi=sqrt(((((2078.46*0.707)+(160.37*1))^2)+(((2078.46*0.707)+(160.37*8.038))^2)))
+format(10)
+disp(ephi,"Therefore, E_ph(in V) =")
+r=((3204.0356-2078.46)/2078.46)*100
+format(6)
+disp(r,"Therefore, %R(in percentage) = (E_ph-V_ph / V_ph)*100 = ")
+disp("(ii) cos(phi) = 0.8 leading, sin(phi) = 0.6")
+disp("Therefore, E_ph^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)-I_a*R_a)^2")
+ephi=sqrt(((((2078.46*0.8)+(160.37*1))^2)+(((2078.46*0.6)-(160.37*8.038))^2)))
+format(10)
+disp(ephi,"Substituting the values, E_ph(in V) =")
+r=((1823.6271-2078.46)/2078.46)*100
+format(6)
+disp(r,"Therefore, %R(in percentage) = (E_ph-V_ph / V_ph)*100 = ")
diff --git a/1370/CH4/EX4.19/Exp4_19.sce b/1370/CH4/EX4.19/Exp4_19.sce
new file mode 100755
index 000000000..8550f3227
--- /dev/null
+++ b/1370/CH4/EX4.19/Exp4_19.sce
@@ -0,0 +1,37 @@
+//Example 4.19
+clc
+disp("1 MVA, V_L = 11 kV, R_a = 0.6 ohm")
+disp("VA = sqrt(3)*V_L*I_L")
+il=(10^6)/(sqrt(3)*11*10^3)
+format(7)
+disp(il,"Therefore, I_L(in A) = I_aph(full load) =")
+disp("Now I_f = 40 A for I_ssc = 52.486 A. To find Z_s, plot the O.C.C and obtain V_oc for I_f = 40 A")
+disp("From the graph, V_oc(line) = 6600 V for I_f = 40 A")
+zs=(6000/sqrt(3))/52.486
+format(3)
+disp(zs,"Therefore, Z_s(in ohm) = V_ocph/I_ascph |same I_f =")
+xs=sqrt((66^2)-(0.6^2))
+format(7)
+disp(xs,"Therefore, X_s(in ohm) = sqrt(Z_s^2 - R_a^2) =")
+disp("(a) cos(phi) = 0.8 lagging, sin(phi) = 0.6, half load")
+ip=0.5*52.486
+format(7)
+disp(ip,"At half load, I_aph(in A) = 1/2 * I_aph(FL) =")
+vp=(11*10^3)/sqrt(3)
+format(9)
+disp(vp,"V_ph(in V) = V_L/sqrt(3) =")
+disp("E_ph^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*R_a)^2")
+ephi=sqrt(((((6350.853*0.8)+(26.243*0.6))^2)+(((6350.853*0.6)+(26.243*65.99))^2)))
+format(10)
+disp(ephi,"Therefore, E_ph(in V) =")
+r=((7529.3113-6350.853)/6350.853)*100
+format(6)
+disp(r,"Therefore, %R(in percentage) = (E_ph-V_ph / V_ph)*100 = ")
+disp("(b) cos(phi) = 0.9 leading, sin(phi) = 0.4358, full load so I_aph = 52.486 A")
+disp("E_ph^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)-I_a*R_a)^2")
+ephi=sqrt(((((6350.853*0.9)+(52.486*0.6))^2)+(((6350.853*0.4358)-(52.486*65.99))^2)))
+format(9)
+disp(ephi,"Therefore, E_ph(in V) =")
+r=((5789.231-6350.853)/6350.853)*100
+format(6)
+disp(r,"Therefore, %R(in percentage) = (E_ph-V_ph / V_ph)*100 = ")
diff --git a/1370/CH4/EX4.2/Exp4_2.sce b/1370/CH4/EX4.2/Exp4_2.sce
new file mode 100755
index 000000000..8061b4013
--- /dev/null
+++ b/1370/CH4/EX4.2/Exp4_2.sce
@@ -0,0 +1,12 @@
+//Example 4.2
+clc
+n=36/4
+format(3)
+disp(n,"n = slots/pole =")
+beta=180/9
+disp(beta,"beta(in degree) = 180/n =")
+disp("Now coil is shorted by 1 slot i.e. by 20 to full pitch distance.")
+disp("Therefore, alpha = Angle of short pitch = 20")
+kc=cosd(10)
+format(7)
+disp(kc,"Therefore, K_c = cos(alpha/2) =")
diff --git a/1370/CH4/EX4.20/Exp4_20.sce b/1370/CH4/EX4.20/Exp4_20.sce
new file mode 100755
index 000000000..8ce134acb
--- /dev/null
+++ b/1370/CH4/EX4.20/Exp4_20.sce
@@ -0,0 +1,25 @@
+//Example 4.20
+clc
+disp("R_s = 0.6 ohm, X_s = 6 ohm, I_aph = 180 A")
+eph=6599/sqrt(3)
+format(10)
+disp(eph,"E_ph(in V) = E_line/sqrt(3) =")
+disp("(a) cos(phi) = 0.9 lagging, sin(phi) = 0.4358")
+disp("Therefore, E_ph^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*R_a)^2")
+disp("Therefore, (3809.9344)^2 = [V_ph*0.9 + 180*0.6]^2 + [V_ph*0.4358 + 180*6]^2")
+disp("Therefore, 14.5156*10^6 = 0.81*V_ph^2 + 194.4*V_ph + 11664 + 0.1899*V_ph^2 + 941.328*V_ph + 1166400")
+disp("Therefore, V_ph^2 + 1135.728*V_ph - 13337536 = 0")
+disp("Therefore, V_ph = 3128.08, -4263.808 ...Neglect negative value")
+disp("Therefore, V_ph = 3128.08 V ...Terminal voltage")
+r=((3809.9344-3128.08)/3128.08)*100
+format(8)
+disp(r,"Therefore, %R(in percentage) = (E_ph-V_ph / V_ph)*100 = ")
+disp("(b) cos(phi) = 0.8 leading, sin(phi) = 0.6")
+disp("Therefore, E_ph^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*R_a)^2")
+disp("Therefore, (3809.9344)^2 = [V_ph*0.8 + 180*0.6]^2 + [V_ph*0.6 + 180*6]^2")
+disp("Therefore, 14.5156*10^6 = 0.64*V_ph^2 + 172.8*V_ph + 11664 + 0.36*V_ph^2 - 1296*V_ph + 1166400")
+disp("Therefore, V_ph^2 - 1123.2*V_ph - 13337536 = 0")
+disp("Therefore, V_ph = 4256.5872 V ...Neglect negative value")
+r=((3809.9344-4256.5872)/4256.5872)*100
+format(7)
+disp(r,"Therefore, %R(in percentage) = (E_ph-V_ph / V_ph)*100 = ")
diff --git a/1370/CH4/EX4.21/Exp4_21.sce b/1370/CH4/EX4.21/Exp4_21.sce
new file mode 100755
index 000000000..f83622276
--- /dev/null
+++ b/1370/CH4/EX4.21/Exp4_21.sce
@@ -0,0 +1,29 @@
+//Example 4.21
+clc
+disp("1500 kVA, V_L = 12 kV, R_a = 2 ohm, X_s = 10 ohm")
+vp=(12*10^3)/sqrt(3)
+format(10)
+disp(vp," V_ph(in V) = ...Star")
+disp("P_L = sqrt(3)*V_L*I_L*cos(phi)")
+disp("(a) cos(phi) = 0.8 lagging, sin(phi) = 0.6")
+il=(1200*10^3)/(sqrt(3)*0.8*12*10^3)
+format(7)
+disp(il,"Therefore, I_L(in A) = I_aph = ...Star")
+disp(" E_ph^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*R_a)^2")
+ephi=sqrt(((((6928.2032*0.8)+(72.168*2))^2)+(((6928.2032*0.6)+(72.168*10))^2)))
+format(9)
+disp(ephi,"Therefore, E_ph(in V) =")
+r=((7492.768-6928.2032)/6928.2032)*100
+format(6)
+disp(r,"Therefore, %R(in percentage) = (E_ph-V_ph / V_ph)*100 = ")
+disp("(b) cos(phi) = 0.707 leading, sin(phi) = 0.707")
+il=(1200*10^3)/(sqrt(3)*0.707*12*10^3)
+format(6)
+disp(il,"Therefore, I_L(in A) = I_a = ...Star")
+disp(" E_ph^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*R_a)^2")
+ephi=sqrt(((((6928.2032*0.707)+(81.66*2))^2)+(((6928.2032*0.707)-(81.66*10))^2)))
+format(10)
+disp(ephi,"Therefore, E_ph(in V) =")
+r=((6502.2433-6928.2032)/6928.2032)*100
+format(6)
+disp(r,"Therefore, %R(in percentage) = (E_ph-V_ph / V_ph)*100 = ")
diff --git a/1370/CH4/EX4.3/Exp4_3.sce b/1370/CH4/EX4.3/Exp4_3.sce
new file mode 100755
index 000000000..55b5e024b
--- /dev/null
+++ b/1370/CH4/EX4.3/Exp4_3.sce
@@ -0,0 +1,29 @@
+//Example 4.3
+clc
+disp("Ns = 250 r.p.m, f = 50 Hz")
+disp("Ns = 120f / P")
+p=(120*50)/250
+disp(p,"Therefore, P = ")
+n=216/24
+format(3)
+disp(n,"n = slots/pole =")
+m=9/3
+disp(m,"m = n/3 =")
+beta=180/9
+disp(beta,"beta(in degree) = 180/n =")
+kd=(sind(30)/(3*sind(10)))
+format(6)
+disp(kd,"Therefore, K_d = sin(m*beta/2) / m*sin(beta/2) =")
+disp("K_c = 1 as full pitch coils.")
+z=216*5
+format(8)
+disp(z,"Total number of conductors Z = ")
+zph=1080/3
+disp(zph,"Therefore, Z_ph = Z/3 =")
+tph=360/2
+disp(tph,"Therefore, T_ph = Z_ph/2 = ... 2 conductors constitute 1 turn")
+eph=4.44*0.9597*30*50*180*10^-3
+format(8)
+disp(eph,"E_ph(in V) = 4.44*Kc*Kd*f*phi*T_ph =")
+el=sqrt(3)*1150.48
+disp(el,"E_line(in V) = sqrt(3)*E_ph = ...star connection")
diff --git a/1370/CH4/EX4.4/Exp4_4.sce b/1370/CH4/EX4.4/Exp4_4.sce
new file mode 100755
index 000000000..3ff1d775e
--- /dev/null
+++ b/1370/CH4/EX4.4/Exp4_4.sce
@@ -0,0 +1,27 @@
+//Example 4.4
+clc
+disp("E_line = 4000 V, f = 50 Hz, N_s = 750 r.p.m, m = 3, K_c = 1")
+eph=4000/sqrt(3)
+format(9)
+disp(eph,"E_ph(in V) = E_line/sqrt(3) =")
+p=(120*50)/750
+disp("(i) N_s = 120f / P")
+disp(p,"Therefore, P =")
+disp("(ii) n = slots/pole = m*3 = 9")
+b=180/9
+disp(b,"beta = 180/n =")
+kd=sind(30)/(3*sind(10))
+format(7)
+disp(kd,"Therefore, K_d = sin(m*beta/2) / m*sin(beta/2) =")
+ns=9*8
+disp(ns,"Number of slots = n * P =")
+z=72*12
+disp(z,"Z = Slots * counductors/slots =")
+zp=864/3
+disp(zp,"Therefore, Z_ph = Z/3 =")
+tp=288/2
+disp(tp,"Therefore, T_ph = Z_ph/2 =")
+phi=2309.401/(4.44*0.9598*50*144)
+format(8)
+disp("Therefore, E_ph = 4.44*K_c*K_d*phi*f*T_ph")
+disp(phi,"Therefore, phi(in Wb) = ... flux per pole")
diff --git a/1370/CH4/EX4.5/Exp4_5.sce b/1370/CH4/EX4.5/Exp4_5.sce
new file mode 100755
index 000000000..13abcfb02
--- /dev/null
+++ b/1370/CH4/EX4.5/Exp4_5.sce
@@ -0,0 +1,25 @@
+//Example 4.5
+clc
+disp("P = 100 kW, cos(phi) = 0.8 lagging")
+disp("V_L = 11 kV, R_a = 0.4 ohm, X_s = 3 ohm")
+disp("For three phase load, P = sqrt(3)*V_L*I_L*cos(phi)")
+il=(1000*10^3)/(sqrt(3)*11*0.8*10^3)
+format(5)
+disp(il,"Therefore, I_L(in A) =")
+disp("Now I_L = I_a as for star connected alternator I_L = I_ph")
+disp("Therefore, I_aph = 65.6 A ... full load per phase armature current")
+disp("For lagging p.f. loads,")
+disp("(E_ph)^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*X_s)^2")
+vp=(11*10^3)/sqrt(3)
+format(9)
+disp(vp,"Now V_ph = V_L / sqrt(3) = ... as star connected")
+eph=(((6350.853*0.8)+(65.6*0.4))^2)+(((6350.853*0.6)+(65.6*3))^2)
+p=sqrt(eph)
+format(8)
+disp(p,"Therefore, E_ph(in V) = ")
+el=(sqrt(3)*6491.47)*10^-3
+format(6)
+disp(el,"Therefore, E_line(in kV) =")
+regu=((6491.47-6350.853)/6350.853)*100
+disp(regu,"and %Regulation(in percentage) = (E_ph-V_ph / V_ph)*100 =")
+disp("For lagging p.f. loads, regulation is always positive.")
diff --git a/1370/CH4/EX4.6/Exp4_6.sce b/1370/CH4/EX4.6/Exp4_6.sce
new file mode 100755
index 000000000..2ebc158f5
--- /dev/null
+++ b/1370/CH4/EX4.6/Exp4_6.sce
@@ -0,0 +1,31 @@
+//Example 4.6
+clc
+disp("kVA = 1200, V_L = 6600 V, R_a = 0.25 ohm, X_s = 5 ohm")
+disp("Now kVA = sqrt(3)*V_L*I_L*10^-3")
+il=1200/(sqrt(3)*6600*10^-3)
+format(7)
+disp(il,"Therefore, I_L(in A) =")
+disp("Therefore, I_aph = 104.97 A ... as star connected.")
+disp("This is its full load current")
+vph=6600/sqrt(3)
+format(9)
+disp(vph," V_ph(in V) = V_L/3 =")
+disp("(i) For 0.8 lagging p.f. load")
+disp("(E_ph)^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*X_s)^2")
+eph=(((3810.512*0.8)+(104.97*0.25))^2)+(((3810.512*0.6)+(104.97*5))^2)
+p=sqrt(eph)
+format(8)
+disp(p,"Therefore, E_ph(in V) = ")
+regu=((4166.06-3810.512)/3810.512)*100
+format(5)
+disp(regu,"Therefore, %Regulation(in percentage) = (E_ph-V_ph / V_ph)*100 =")
+disp("(ii) For 0.8 leading p.f. load")
+disp("(E_ph)^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*X_s)^2")
+eph=(((3810.512*0.8)+(104.97*0.25))^2)+(((3810.512*0.6)-(104.97*5))^2)
+p=sqrt(eph)
+format(8)
+disp(p,"Therefore, E_ph(in V) = ")
+regu=((3543.47-3810.512)/3810.512)*100
+format(5)
+disp(regu,"Therefore, %Regulation(in percentage) = (E_ph-V_ph / V_ph)*100 =")
+disp("The regulation is negative for leading p.f. loads")
diff --git a/1370/CH4/EX4.7/Exp4_7.sce b/1370/CH4/EX4.7/Exp4_7.sce
new file mode 100755
index 000000000..6f736cac8
--- /dev/null
+++ b/1370/CH4/EX4.7/Exp4_7.sce
@@ -0,0 +1,41 @@
+//Example 4.7
+clc
+disp("V_L = 866 V, kVA = 100")
+disp("Therefore, kVA = sqrt(3)*V_L*I_L*10^-3")
+il=100/(sqrt(3)*866*10^-3)
+format(6)
+disp(il,"Therefore, I_L(in A) =")
+disp("Therefore, I_aph F.L. = I_L = 66.67 A ... as star connected alternator")
+disp("V_ph = Rated terminal voltage per phase = V_L/3")
+vp=866/sqrt(3)
+disp(vp,"Therefore, V_ph(in V) =")
+disp("For calculation of Z_s on full load, it is necessary to plot O.C.C. and S.C.C. to the scale")
+disp("Note : If for same value of I_f, both I_ssc and V_oc can be obtained from the table itself, graph need not be plotted. In some problems, the values of V_oc and I_ssc for same I_f are directly given, in that case too, the graph need not be plotted.")
+disp("In this problem, I_ssc = 25 A for I_f = 1 A")
+disp("But we want to calculate Z_s for I_ssc = its full load value which is 66.67 A. So graph is required to be plotted.")
+disp("For plotting O.C.C. the lines values of open circuit voltage are converted to phase by dividing each value by sqrt(3)")
+disp("From S.C.C.")
+disp("For I_scc = 66.67 A, I_f = 2.4 A")
+disp("From O.C.C.")
+disp("For I_f = 2.4 A, (V_oc)_ph = 240 V")
+disp("From the graph, Z_s for full load is,")
+disp("Z_s = (V_oc)_ph / (I_scc)_ph |for same excitation")
+zs=240/66.67
+format(4)
+disp(zs,"Therefore, Z_s(in ohm/phase) =")
+disp("R_a = 0.15 ohm/phase")
+xs=sqrt((3.6^2)-(0.15^2))
+format(6)
+disp(xs,"Therefore, X_s(in ohm/phase) = sqrt(Z_s^2 - R_a^2) =")
+disp("V_ph F.L = 500 V")
+disp("cos(phi) = 0.8")
+disp("Therefore, sin(phi) = 0.6 lagging p.f.")
+disp("So E_ph for full load, 0.8 lagging p.f. condition can be calculated as,")
+disp("(E_ph)^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*X_s)^2")
+eph=(((500*0.8)+(66.67*0.15))^2)+(((500*0.6)+(66.67*3.597))^2)
+p=sqrt(eph)
+format(7)
+disp(p,"Therefore, E_ph(in V) = ")
+regu=((677.86-500)/500)*100
+format(6)
+disp(regu,"Therefore, %Regulation(in percentage) = (E_ph-V_ph / V_ph)*100 =")
diff --git a/1370/CH4/EX4.8/Exp4_8.sce b/1370/CH4/EX4.8/Exp4_8.sce
new file mode 100755
index 000000000..fe30895fc
--- /dev/null
+++ b/1370/CH4/EX4.8/Exp4_8.sce
@@ -0,0 +1,43 @@
+//Example 4.8
+clc
+disp("V_L = 230 V, R_a between lines = 1.8 ohm")
+disp("(V_oc)_line = 230 V, I_scc = 12.5 A for same I_f = 0.38 A")
+disp("The value of open circuit e.m.f is always line value unless and until specifically mentioned to be a phase value")
+disp("Therefore, Z_s = (V_oc)_ph / (I_scc)_ph |for same I_f")
+voc=230/sqrt(3)
+format(7)
+disp(voc," (V_oc)_ph(in V) =")
+zs=132.79/12.5
+disp(zs,"Therefore, Z_s(in ohm/phase) =")
+disp("R_a between lines = 1.8 ohm")
+disp("For star connection, R_a between the terminals is 2 R_a per ph")
+disp("Therefore, 2R_a per ph = 1.8")
+disp("Therefore, R_a per ph = 0.9 ohm")
+xs=sqrt((10.623^2)-(0.9^2))
+format(7)
+disp(xs,"Therefore, X_s(in ohm/phase) = sqrt(Z_s^2 - R_a^2) =")
+disp("Now regulated is asked for I_a = 10 A")
+disp("Now : The value of Z_s is calculated for I_s = 12.5 A and not at I_s = 10 A. It will be different for I_s = 10 A. But in this problem the test results are not given hence it is not possible to sketch the graphs to detemine Z_s at I_a = 10 A. So value of Z_s calculated is assumed to be same as I_a = 10 A")
+disp("(i) For 0.8 lagging p.f.")
+vph=230/sqrt(3)
+format(7)
+disp(vph,"V_ph(in V) = V_L/sqrt(3) =")
+disp("I_a = 10 A")
+disp("cos(phi) = 0.8 so sin(phi) = 0.6")
+disp("(E_ph)^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*X_s)^2")
+eph=(((132.79*0.8)+(10*0.9))^2)+(((132.79*0.6)+(10*10.585))^2)
+p=sqrt(eph)
+format(8)
+disp(p,"Therefore, E_ph(in V) = ")
+regu=((218.39-132.79)/132.79)*100
+format(6)
+disp(regu,"Therefore, %Regulation(in percentage) = (E_ph-V_ph / V_ph)*100 =")
+disp("(ii) For 0.8 leading p.f.")
+disp("(E_ph)^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*X_s)^2")
+eph=(((132.79*0.8)+(10*0.9))^2)+(((132.79*0.6)-(10*10.585))^2)
+p=sqrt(eph)
+format(8)
+disp(p,"Therefore, E_ph(in V) = ")
+regu=((118.168-132.79)/132.79)*100
+format(6)
+disp(regu,"Therefore, %Regulation(in percentage) = (E_ph-V_ph / V_ph)*100 =")
diff --git a/1370/CH4/EX4.9/Exp4_9.sce b/1370/CH4/EX4.9/Exp4_9.sce
new file mode 100755
index 000000000..f44cedef7
--- /dev/null
+++ b/1370/CH4/EX4.9/Exp4_9.sce
@@ -0,0 +1,29 @@
+//Example 4.9
+clc
+disp("P = 10, N_a = 600 r.p.m, slots = 90")
+disp("phi = 16 mWb, E_line = 11 kW")
+f=6000/120
+format(3)
+disp("N_s = 120f / P")
+disp(f,"Therefore, f(in Hz) =")
+eph=(11*10^3)/sqrt(3)
+format(9)
+disp(eph,"For star connection, E_ph(in V) = E_line/sqrt(3) =")
+disp("Now E_ph = 4.44*K_c*K_d*phi*f*T_ph")
+disp("K_c = 1 as no information about short pitching is given")
+n=90/10
+disp(n,"n = slots/pole =")
+m=9/3
+disp(m,"m = slots/pole/phase = n/3 =")
+beta=180/9
+disp(beta,"beta = slot angle = 180/n =")
+kd=sind(30)/(3*sind(10))
+format(7)
+disp(kd,"Therefore, K_d = sin(m*beta/2) / m*sin(beta/2) =")
+disp("Therefore, 6350.853 = 4.44*1*0.9598*16*10^-3*50*T_ph")
+tph=6350.853/(4.44*1*0.9598*16*50*10^-3)
+format(5)
+disp(tph,"Therefore, T_ph =")
+zph=2*1862
+disp(zph,"Therefore, Z_ph = 2*T_ph =")
+disp("These are armature conductors per phase required to be connected in series.")
diff --git a/1370/CH5/EX5.1/exp5_1.sce b/1370/CH5/EX5.1/exp5_1.sce
new file mode 100755
index 000000000..8a279f63b
--- /dev/null
+++ b/1370/CH5/EX5.1/exp5_1.sce
@@ -0,0 +1,12 @@
+//Example 5.1
+clc
+disp("Given values are,")
+disp("P = 4, f = 50 Hz, N = 1410 r.p.m")
+ns=(120*50)/4
+disp(ns,"N_s(in r.p.m) = 120*f / P =")
+disp("Full load absolute slip is given by,")
+s=((1500-1410)/1500)
+format(5)
+disp(s,"s = N_s-N / N_s =")
+s=0.06*100
+disp(s,"Therefore, %s =")
diff --git a/1370/CH5/EX5.10/exp5_10.sce b/1370/CH5/EX5.10/exp5_10.sce
new file mode 100755
index 000000000..b39ab80ce
--- /dev/null
+++ b/1370/CH5/EX5.10/exp5_10.sce
@@ -0,0 +1,49 @@
+//Example 5.10 slip, net o/p power, rotor copper loss/phase, efficiency and resistance
+clc
+disp("The given values are,")
+disp("P = 4, f = 50 Hz, T_sh = 300 N-m, T_lost = 50 N-m")
+disp("Rotor frequency = 120 cycles/min = 120/60 cycles/sec i.e. Hz")
+disp("i.e. f_r = 2 Hz")
+disp("(i) f_r = s*f")
+s=2/50
+format(5)
+disp(s,"Therefore, s = f_r/f =")
+disp("(ii) P_out = T_sh * omega = T_sh * 2*pi*N/60")
+disp("Now N = N_s(1-s) at slip s = 0.04")
+ns=(120*50)/4
+format(5)
+disp(ns,"N_s(in r.p.m) = 120f/P =")
+n=1500*(1-0.04)
+disp(n,"Therefore, N(in r.p.m) = N_s(1-s) =")
+po=(300*((2*%pi*1440)/60))*10^-3
+format(8)
+disp(po,"Therefore, P_out(in kW) =")
+disp("Remember that T_sh is not output torque available to load at shaft")
+disp("(iii) T_lost = 50 Nm in fiction")
+f=50*((2*%pi*1440)/60)
+format(9)
+disp(f,"Therefore, Frictional loss(in W) = T_lost * omega = T_lost * 2*pi*N/60 =")
+disp("Now P_out = P_in - frictional loss")
+pin=45.2389+7.539822
+disp(pin,"Therefore, P_in(in kW) = P_out + frictional loss =")
+disp(" We know, P_2:P_c:P_m is 1:s:1-s")
+disp("Therefore, P_c/P_m = s/1-s")
+pc=(52.77872*10^3)*(0.04/(1-0.04))
+format(10)
+disp(pc,"Therefore, P_c(in W) = P_m * (s/1-s) =")
+disp("These are total rotor copper losses")
+rc=2199.1134/3
+format(9)
+disp(rc,"Therefore, Rotor copper loss per phase(in W) = P_c/3 =")
+disp("(iv) Rotor efficiency = (Rotor output P_in / Rotor input P2)*100")
+p2=2199.1134/0.04
+format(12)
+disp(p2,"Now P2(in W) = P_c/s =")
+re=52778.72*100/54977.83
+format(3)
+disp(re,"Therefore, % Rotor eta(in percentage) =")
+disp("(v) I_2r = 60 A given per phase")
+disp("now Rotor copper loss/ph = I_2r^2 * R2")
+r2=733.0378/60^2
+format(7)
+disp(r2,"Therefore, R2(in ohm/ph) =")
diff --git a/1370/CH5/EX5.11/exp5_11.sce b/1370/CH5/EX5.11/exp5_11.sce
new file mode 100755
index 000000000..543866d46
--- /dev/null
+++ b/1370/CH5/EX5.11/exp5_11.sce
@@ -0,0 +1,49 @@
+//Example 5.11
+clc
+disp("P_out = 24 kW, I_L = 57 A")
+disp("P = 8, N = 720 r.p.m, f = 50 Hz")
+disp("I_L = 415 V, cos(phi) = 0.707")
+ns=(120*50)/8
+format(4)
+disp(ns,"N_s(in r.p.m) = 120f/P =")
+s=(750-720)/750
+format(5)
+disp(s,"Therefore, s = N_s-N / N_s =")
+disp("P_m - mechanical loss = P_out")
+pin=24000+1000
+format(6)
+disp(pin,"Therefore, P_in(in W) = P_out + mechanical loss = 24*10^3 + 1000 =")
+disp("For rotor P2:P_c:P_m is 1:s:1-s")
+disp("Therefore, P_c/P_m = s/1-s")
+pc=(25000)*(0.04/(1-0.04))
+format(8)
+disp(pc,"Therefore, P_c(in W) = P_m * (s/1-s) =")
+po=((24*10^3)/((2*%pi*720)/60))
+format(8)
+disp(po,"(i) Shaft torque T_sh(in Nm) = P_out/omega = P_out / (2*pi*N/60) =")
+t=((25*10^3)/((2*%pi*720)/60))
+disp(t,"(ii) Gross torque T(in Nm) = P_out/omega = P_out / (2*pi*N/60) =")
+disp("(iii) Rotor copper losses = 1041.66 W")
+disp("Now P2/P_c = 1/s")
+p2=1041.66/0.04
+disp(p2,"Therefore, P2(in W) = P_c/s =")
+pin=sqrt(3)*415*57*0.707
+format(9)
+disp(pin,"And net input P_in(in W) = sqrt(3)*V_L*I_L*cos(phi) =")
+disp("Stator current per phase = I_L = 57 A (as star connected)")
+disp("R_s = Stator resistance per phase = 0.1 ohm")
+st=3*(57^2)*0.1
+format(6)
+disp(st,"Therefore, Stator copper losses(in W) = 3*I_s^2*R_s")
+disp("Now P_in - Stator losses = P_2")
+sl=28966.96-26041.5
+format(8)
+disp(sl,"Therefore, Stator losses(in W) =")
+disp("But Stator losses = Stator iron loss + Stator copper loss")
+stp=2925.46-974.7
+disp(stp,"Therefore, Stator iron losses(in W) =")
+disp("(iv) Stator copper losses = 974.7 W")
+disp("(v) Stator iron losses = 1950.76 W")
+eta=(100*24*10^3)/28966.96
+format(6)
+disp(eta,"(iv) % eta(in percentage) = P_out/P_in * 100 =")
diff --git a/1370/CH5/EX5.15/exp5_15.sce b/1370/CH5/EX5.15/exp5_15.sce
new file mode 100755
index 000000000..12dc0d69e
--- /dev/null
+++ b/1370/CH5/EX5.15/exp5_15.sce
@@ -0,0 +1,30 @@
+//Example 5.15
+clc
+disp("P = 12, f = 50 Hz, R2 = 0.15 ohm, X2 = 0.25 ohm, E2 = 32 V per phase given")
+disp("Now T = (k*s*E2^2*R2 / R2^2+s*X2^2) where k = 3 / 2*pi*ns")
+ns=(120*50)/12
+format(4)
+disp(ns,"N_s(in r.p.m) = 120f/P =")
+ns=500/60
+format(5)
+disp(ns,"n_s(in r.p.s) = N_s/60 =")
+tf=(3/(2*%pi*8.33))*((0.15*32^2)/((0.15^2)+(0.25^2)))
+format(7)
+disp(tf,"(i) T_st = (k*E2^2*R2 / R2^2+X2^2) = (3/2*pi*ns)*(k*E2^2*R2 / R2^2+X2^2) =")
+disp("(ii) At N = 480 r.p.m")
+s=(500-480)/500
+format(5)
+disp(s,"s = N_s-N / N_s =")
+tfi=(3/(2*%pi*8.33))*((0.04*0.15*32^2)/((0.15^2)+((0.04*0.25)^2)))
+format(7)
+disp(tfi,"Therefore, T_F.L(in Nm) = (3/2*pi*ns)*(s*E2^2*R2 / R2^2+s*X2^2) =")
+disp("(iii) T_m = (3/2*pi*ns)*(E2^2 / 2*X2) substituting s_m = R2/X2")
+tm=(3/(2*%pi*8.33))*((32^2)/(2*0.25))
+format(8)
+disp(tm,"Therefore, T_m(in Nm) =")
+sm=0.15/0.25
+format(4)
+disp(sm,"(iv) Slip at T_m is, s_m = R2/X2 =")
+n=500*(1-0.6)
+format(4)
+disp(n,"Therefore, N(in r.p.m) = N_s*(1-s_m) =")
diff --git a/1370/CH5/EX5.18/exp5_18.sce b/1370/CH5/EX5.18/exp5_18.sce
new file mode 100755
index 000000000..da8a66862
--- /dev/null
+++ b/1370/CH5/EX5.18/exp5_18.sce
@@ -0,0 +1,13 @@
+//Example 5.18
+clc
+disp("P = 8, f = 50 Hz, f_s = 1.5 Hz")
+disp("f_s = s*f")
+s=1.5/50
+format(5)
+disp(s,"Therefore, s = ...Slip")
+ns=(120*50)/8
+format(4)
+disp(ns,"N_s(in r.p.m) = 120f/P =")
+n=750*(1-0.03)
+format(6)
+disp(n,"N(in r.p.m) = N_s*(1-s_m) = ...Speed of the motor")
diff --git a/1370/CH5/EX5.19/exp5_19.sce b/1370/CH5/EX5.19/exp5_19.sce
new file mode 100755
index 000000000..b785aeb40
--- /dev/null
+++ b/1370/CH5/EX5.19/exp5_19.sce
@@ -0,0 +1,22 @@
+//Example 5.19
+clc
+disp("P = 4, f = 50 Hz, T_sh = 159 Nm, s = 5% = 0.05")
+ns=(120*50)/4
+format(5)
+disp(ns,"N_s(in r.p.m) = 120f/P =")
+n=1500*(1-0.05)
+disp(n,"Therefore, N(in r.p.m) = N_s*(1-s_m) =")
+po=159*((2*%pi*1425)/60)
+format(11)
+disp(po,"Therefore, P_out(in W) = T_sh * omega =")
+pm=23726.8785+500
+disp(pm,"Therefore, P_m(in W) = P_out + Friction and windage loss =")
+disp("(a) P_2:P_c:P_m is 1:s:1-s")
+p2=24226.8785/(1-0.05)
+disp("Therefore, P_2/P_m = 1/1-s")
+disp(p2,"Therefore, P_2(in W) = ...Rotor input")
+pi=25501.9774+1000
+disp(pi,"(b) P_in(in W) = P_2 + Stator losses = ...Motor input")
+eta=(23726.8785/26501.9774)*100
+format(7)
+disp(eta,"(e) %eta(in percentage) = P_out/P_in * 100 =")
diff --git a/1370/CH5/EX5.2/exp5_2.sce b/1370/CH5/EX5.2/exp5_2.sce
new file mode 100755
index 000000000..ab8f6ed2c
--- /dev/null
+++ b/1370/CH5/EX5.2/exp5_2.sce
@@ -0,0 +1,12 @@
+//Example 5.2
+clc
+disp("Given values are,")
+disp("P = 4, f = 50 Hz, %s = 4%")
+disp("s = Full load absolute slip = 0.04")
+ns=(120*50)/4
+disp(ns,"N_s(in r.p.m) = 120*f / P =")
+disp("s = N_s-N / N_s where N_s = full load speed of motor")
+disp("0.04 = 1500-N_s / 1500")
+ns=1500-(1500*0.04)
+disp(ns,"Therefore, N_s(in r.p.m) =")
+disp("This is the full load speed of the motor")
diff --git a/1370/CH5/EX5.22/exp5_22.sce b/1370/CH5/EX5.22/exp5_22.sce
new file mode 100755
index 000000000..0df629af4
--- /dev/null
+++ b/1370/CH5/EX5.22/exp5_22.sce
@@ -0,0 +1,15 @@
+//Example 5.22
+clc
+disp("P = 6, f = 50 Hz, s_0 = 1%, s_a = 3%")
+ns=(120*50)/6
+format(5)
+disp(ns,"(a) N_s(in r.p.m) = 120f/P = ...Synchronous speed")
+n=1000*(1-0.01)
+format(4)
+disp(n,"(b) N_0(in r.p.m) = N_s*(1-s_0) = ...No load speed")
+n=1000*(1-0.03)
+format(6)
+disp(n,"(c) N_ft(in r.p.m) = N_s*(1-s_a) = ...Full load speed")
+disp("(d) Frequency of rotor current at standstill = f = 50 Hz")
+sa=0.03*50
+disp(sa,"(e) Frequency of rotor current at full load(in Hz) = s_a*f =")
diff --git a/1370/CH5/EX5.23/exp5_23.sce b/1370/CH5/EX5.23/exp5_23.sce
new file mode 100755
index 000000000..9ded84982
--- /dev/null
+++ b/1370/CH5/EX5.23/exp5_23.sce
@@ -0,0 +1,22 @@
+//Example 5.23
+clc
+disp("P = 6, f = 50 Hz, I_2r = 40 A, N = 960 r.p.m")
+ns=(120*50)/6
+format(5)
+disp(ns,"Therefore, N_s(in r.p.m) = 120f/P =")
+s=40/1000
+disp(s,"Therefore, s = N_s-N / N_s =")
+po=50*735.5
+format(6)
+disp(po,"P_out(in W) = 50*H.P = ...1 H.P = 735.5 W")
+pin=36775+1200+300
+disp(pin,"P_in(in W) = P_out + Mechanical losses + Gear loss =")
+disp("Now P_2:P_c:P_m is 1:s:1-s")
+disp("Therefore, P_c/P_m = s/1-s")
+pc=(38275*0.04)/(1-0.04)
+format(10)
+disp(pc,"Therefore, P_c(in W) = ...Total rotor copper loss")
+r2=1594.7916/(3*40^2)
+format(7)
+disp("Now P_c = 3 * I_2r^2 * R2")
+disp(r2,"Therefore, R2(in ohm/ph) =")
diff --git a/1370/CH5/EX5.3/exp5_3.sce b/1370/CH5/EX5.3/exp5_3.sce
new file mode 100755
index 000000000..cbffc5d93
--- /dev/null
+++ b/1370/CH5/EX5.3/exp5_3.sce
@@ -0,0 +1,11 @@
+//Example 5.3. frequency of induced emf in the rotor
+clc
+disp("The given values are,")
+disp("P = 4, f = 50 Hz, N = 1470 r.p.m")
+ns=(120*50)/4
+format(5)
+disp(ns,"N_s(in r.p.m) = 120f/P =")
+s=(1500-1470)/1500
+disp(s,"s = N_s-N / N_s =")
+f=0.02*50
+disp(f,"Therefore, f_r(in Hz) = s*f =")
diff --git a/1370/CH5/EX5.4/exp5_4.sce b/1370/CH5/EX5.4/exp5_4.sce
new file mode 100755
index 000000000..5432da360
--- /dev/null
+++ b/1370/CH5/EX5.4/exp5_4.sce
@@ -0,0 +1,16 @@
+//Example 5.4
+clc
+disp("The given values are,")
+disp("P = 8, f = 50 Hz, f_r = 2 Hz")
+disp("Now f_r = s*f")
+s=2/50
+format(5)
+disp(s,"Therefore, s =")
+sp=0.04*100
+disp(sp,"Therefore, %s = ...Full load slip")
+disp("The corresponding speed is given by,")
+disp("N = N_s*(1-s) ...From s = N_s-N / N_s")
+ns=(120*50)/8
+disp(ns,"where N_s(in r.p.m) = 120f/P =")
+n=750*(1-0.04)
+disp(n,"Therefore, N(in r.p.m) = ...Full load speed")
diff --git a/1370/CH5/EX5.5/exp5_5.sce b/1370/CH5/EX5.5/exp5_5.sce
new file mode 100755
index 000000000..c0bc6ccec
--- /dev/null
+++ b/1370/CH5/EX5.5/exp5_5.sce
@@ -0,0 +1,28 @@
+//Example 5.6
+clc
+disp("The given values are, K = Rotor turns/Stator turns = 1/2 = 0.5 and")
+disp("P = 4, f = 50 Hz, N = 1455 r.p.m, E_line = 415 V")
+ns=(120*50)/4
+format(5)
+disp(ns,"N_s(in r.p.m) = 120f/P =")
+disp("For a given load, N = 1455 r.p.m")
+s=(1500-1455)/1500
+disp(s,"Therefore, s = N_s-N / N_s =")
+f=0.03*50
+disp(f,"(i) f_r(in Hz) = s*f =")
+disp("(ii) At standstill, induction motor acts as a transformer so,")
+disp("E_2ph/E_1ph = rotor turns/stator turns = K")
+disp("But ratio of stator to rotor turns is given as 2, i.e.")
+disp(" N1/N2 = 2 Therefore, N2/N1 = 1/2 = K")
+disp("and E_1line = 415 V")
+disp("The given values are always line values unless and until specifically stated as per phase.")
+e1=415/sqrt(3)
+format(6)
+disp(e1,"Therefore, E_1ph(in V) = E_1/sqrt(3) = ...As star connection E_line = sqrt(3)*E_ph")
+disp("Therefore, E_2ph/E_1ph = 1/2")
+e2=239.6/2
+disp(e2,"Therefore, E_2ph(in V) = ...Rotor induced e.m.f on standstill")
+disp("(iii) In running condition,")
+er=0.03*119.8
+disp(er,"E_2r(in V) = s*E_2 =")
+disp("The value of rotor induced e.m.f in the running condition is also very very small")
diff --git a/1370/CH5/EX5.6/exp5_6.sce b/1370/CH5/EX5.6/exp5_6.sce
new file mode 100755
index 000000000..f3766385d
--- /dev/null
+++ b/1370/CH5/EX5.6/exp5_6.sce
@@ -0,0 +1,28 @@
+//Example 5.6
+clc
+disp("The given values are,")
+disp("P = 4, f = 50 Hz, R2 = 0.2 ohm, X2 = 1 ohm")
+disp("Now open circuit e.m.f between slip rings means rotor induced e.m.f on standstill. As long as rotor is open, there cannot be rotor current rotation of rotor. And between the slip rings means its a line value of E2, for a star connected rotor. The open circuit e.m.f is shown in fig.5.15")
+disp("Therefore, E_2line = 120 V, for star E_2line = sqrt(3)*E_2ph")
+e2=120/sqrt(3)
+format(6)
+disp(e2,"Therefore, E_2ph(in V) = E_2/sqrt(3) =")
+ns=(120*50)/4
+format(5)
+disp(ns,"N_s(in r.p.m) = 120f/P =")
+disp("(i) At start,")
+cp=0.2/(sqrt((0.2^2)+1))
+format(6)
+disp(cp,"cos(phi) = R2/Z2 = R2 / sqrt(R2^2+X2^2) =")
+i2=69.28/(sqrt((0.2^2)+1))
+disp(i2,"I2(in A/phase) = E2/Z2 = E2 / sqrt(R2^2+X2^2) =")
+disp("(ii) On full load, N = 1440 r.p.m")
+s=(1500-1440)/1500
+format(5)
+disp(s,"Therefore, s = N_s-N / N_s =")
+cpr=0.2/(sqrt((0.2^2)+(0.04^2)))
+format(7)
+disp(cpr,"Therefore, cos(phi)_2r = R2/Z_2r = R2 / sqrt(R2^2+(s*X2)^2) =")
+i2r=(0.04*69.28)/(sqrt((0.2^2)+(0.04^2)))
+disp(i2r,"Therefore, I_2r(in A) = E_2r/Z_2r = s*E2 / sqrt(R2^2+(s*X2)^2) =")
+disp("It can be observed that current is drastically reduced from its value at start. In the running condition, slip controls and limits the magnitude of the motor current")
diff --git a/1370/CH5/EX5.7/exp5_7.sce b/1370/CH5/EX5.7/exp5_7.sce
new file mode 100755
index 000000000..0a4094664
--- /dev/null
+++ b/1370/CH5/EX5.7/exp5_7.sce
@@ -0,0 +1,24 @@
+//Example 5.7 calculate torque developed on full load by the motor.
+clc
+disp("P = 4, f = 50 Hz, R2 = 0.1 ohm, X2 = 1 ohm, N = 1440 r.p.m")
+disp("Stator turns/Rotor turns = 2/1")
+disp("Therefore, K = E2/E1 = Rotor turns/Stator turns = 1/2 = 0.5")
+ns=(120*50)/4
+format(5)
+disp(ns,"N_s(in r.p.m) = 120f/P =")
+disp("E_1line = 400 V ...Stator line voltage given")
+e1=400/sqrt(3)
+format(7)
+disp(e1,"Therefore, E_1ph(in V) = E_1line/sqrt(3) =")
+disp("But E_2ph/E_1ph = 0.5 = K")
+e2=230.94/2
+disp(e2,"Therefore, E_2ph(in V) =")
+s=(1500-1440)/1500
+format(5)
+disp(s,"Full load slip, s = N_s-N / N_s =")
+ns=1500/60
+disp("n_s(in r.p.s) = Synchoronous speed in r.p.s")
+disp(ns," = N_s/60 =")
+t=(3/(2*%pi*25))*((0.04*0.1*115.47^2)/((0.1^2)+(0.04^2)))
+format(6)
+disp(t,"T(in N-m) = (3 / 2*pi*ns) * (s*E2^2*R2 / R2^2+(s*X2)^2) =")
diff --git a/1370/CH5/EX5.8/exp5_8.sce b/1370/CH5/EX5.8/exp5_8.sce
new file mode 100755
index 000000000..132efcb62
--- /dev/null
+++ b/1370/CH5/EX5.8/exp5_8.sce
@@ -0,0 +1,40 @@
+//Example 5.8
+clc
+disp("P = 4, f = 50 Hz, Stator turns/Rotor turns = 4, R2 = 0.01 ohm, X2 = 0.1 ohm")
+disp("E_1line = stator line voltage = 400 V")
+e1=400/sqrt(3)
+format(7)
+disp(e1,"E_1ph(in V) = E_1line/sqrt(3) = ...star connection")
+disp("K = E_2ph/E_1ph = Rotor turns/stator turns = 1/4")
+e2=230.94/4
+disp(e2,"Therefore, E_2(in V) = 1/4 * E_1ph =")
+ns=(120*50)/4
+format(5)
+disp(ns,"N_s(in r.p.m) = 120f/P =")
+disp("(i) At start, s = 1")
+disp("Therefore, T_st = (k*E2^2*R2 / R2^2+X2^2) where k = 3 / 2*pi*ns")
+ns=1500/60
+disp(ns,"n_s(in r.p.s) = N_s/60 =")
+k=3/(2*%pi*25)
+format(8)
+disp(k,"Therefore, k = 3 / 2*pi*25 =")
+t=((0.01909*0.01*57.735^2)/((0.01^2)+(0.1^2)))
+format(7)
+disp(t,"Therefore, T_st(in N-m) =")
+disp("(ii) Slip at which maximum torque occurs is,")
+sm=0.01/0.1
+disp(sm,"s_m = R2/X2 =")
+psm=0.1*100
+disp(psm,"%s_m =")
+disp("(iii) Speed at which maximum torque occurs is speed corresponding to s_m,")
+n=1500*(1-0.1)
+format(5)
+disp(n,"N(in r.p.m) = N_s*(1-s_m) =")
+disp("(iv) The maximum torque is,")
+tm=(0.01909*57.735^2)/(2*0.1)
+format(7)
+disp(tm,"T_m(in N-m) = k*E2^2 / 2*X2 =")
+disp("(v) Full load slip, s_f = 0.04 as %s_f = 4%")
+t=((0.01909*0.04*0.01*57.735^2)/((0.01^2)+(0.004^2)))
+format(7)
+disp(t,"T_f.l(in N-m) =(k*s*E2^2*R2 / R2^2+(s_f*X2)^2) =")
diff --git a/1370/CH5/EX5.9/exp5_9.sce b/1370/CH5/EX5.9/exp5_9.sce
new file mode 100755
index 000000000..385db0e12
--- /dev/null
+++ b/1370/CH5/EX5.9/exp5_9.sce
@@ -0,0 +1,19 @@
+//Exmaple 5.9
+clc
+disp("Given values are,")
+disp("P = 24, f = 50 Hz, R2 = 0.016 ohm, X2 = 0.265 ohm, N = 247 r.p.m")
+ns=(120*50)/24
+format(5)
+disp(ns,"N_s(in r.p.m) = 120f/P =")
+s=(250-247)/250
+format(6)
+disp(s,"s_f = Full load slip = N_s-N / N_s =")
+sm=0.016/0.265
+format(8)
+disp(sm,"s_m = R2/X2 =")
+tf=(2*0.06037*0.012)/((0.06037^2)+(0.012^2))
+format(7)
+disp(tf,"(i) T_F.L/T_m = 2*s_m*s_f / s_m^2+s_f^2 =")
+ts=(2*0.06037)/((0.06037^2)+(1^2))
+format(7)
+disp(ts,"(ii) T_st/T_m = 2*s_m / 1+s_m^2 =")
diff --git a/1370/CH6/EX6.1/exmaple6_1.sce b/1370/CH6/EX6.1/exmaple6_1.sce
new file mode 100755
index 000000000..c3e35e7ef
--- /dev/null
+++ b/1370/CH6/EX6.1/exmaple6_1.sce
@@ -0,0 +1,11 @@
+//exmaple6.1
+clc
+disp("The deflecting torque is given by,")
+disp("(T_d)=NBAI=100*15*A*5*10^-3 Nm")
+disp("Now A= Area = 10*8 =80 mm^2= 80*10^-6 m^2")
+t=100*0.15*80*5*10^-9
+disp(t,"Therefore, (T_d)[in Nm]=100*0.15*80*(10^-6)*5*(10^-3)=")
+disp("Now, T_d=T_c=K*(theta)")
+disp("Therefore, 6*10^-6 = 0.2*10^-6 *(theta)")
+t=(6*10^-6)/(0.2*10^-6)
+disp(t,"Therefore, theta(in degree)=(6*10^-6)/(0.2*10^-6)= ")
diff --git a/1370/CH6/EX6.10/exmaple6_10.sce b/1370/CH6/EX6.10/exmaple6_10.sce
new file mode 100755
index 000000000..1dacc4e8b
--- /dev/null
+++ b/1370/CH6/EX6.10/exmaple6_10.sce
@@ -0,0 +1,11 @@
+//example6.10
+clc
+disp("R_m=2000 ohm, V_m=100 V, N=10000")
+i=100/2000
+disp(i,"Therefore, I_m(in A)=(V_m)/(R_m)=100/2000=")
+i=0.05*10000
+disp(i,"Therefore, AT for full scale deflection = (I_m)*N=0.05*10000")
+disp("For I=20 A, AT=I*N''")
+disp("Therefore, 500=20*N''")
+n=500/20
+disp(n,"Therefore, N''=")
diff --git a/1370/CH6/EX6.11/exmaple6_11.sce b/1370/CH6/EX6.11/exmaple6_11.sce
new file mode 100755
index 000000000..5b8cccc01
--- /dev/null
+++ b/1370/CH6/EX6.11/exmaple6_11.sce
@@ -0,0 +1,36 @@
+//example6.11
+clc
+disp("I_m=15 mA, R_m=1.5 ohm at 15 degree celcius, R=3.5 ohm")
+r=1.5+3.5
+disp(r,"Therefore, R_mT(in ohm)= Total meter resistance = 1.5+3.5 = ")
+disp("i) I=20A")
+r=(15*5*10^-3)/(20-(15*10^-3))
+format(10)
+disp(r,"Therefore, R_sh(in ohm)=[(I_m)*(R_mT)]/[I-(I_m)]=")
+disp("ii) V=250 V")
+r=(100/(15*10^-3))-5
+disp(r,"R_s(in ohm)=V/I_m - R_mT =")
+disp("Now at 25 degree celcius, (R_m)'' is the new meter resistance.")
+disp("R_m'' = R_m[1+(alpha_1)*(t2-t1)] where t1=15 degree celcius, t2=25 degree celcius")
+a=(1/234.5)/(1+(15/234.5))
+format(6)
+disp(a,"(alpha_1)[in per degree celcius]=(alpha_0)/(1+[(alpha_0)*t1])=(1/234.5)/(1+(15/234.5))=")
+r=1.5*(1+(0.004*(25-15)))
+format(8)
+disp(r,"Therefore, R_m''(in ohm)=1.5*(1+(0.004*(25-15)))= ")
+r=1.56012+3.5
+format(8)
+disp(r,"Therefore, R_mT''(in ohm)=1.56012+3.5=")
+disp("Error in part(i) : The Fig. 6.19 shows two cases.")
+disp("Therefore, I_m1 at 15 degree celcius = (I*R_sh)/[(R_sh+(R_mT))]=7.4999*10^-4 I")
+disp("Therefore, I_m2 at 25 degree celcius = (I*R_sh)/[(R_sh+(R_mT''))]=7.41092*10^-4 I")
+i=((7.41092*10^-2)-(7.4999*10^-2))/(7.4999*10^-4)
+format(7)
+disp(i,"% error = [(I_m2)-(I_m1)*100]/(I_m1)= ")
+disp("Negative sign indicates that the reading is less than the actual reading.")
+disp("Error in part(ii) : The Fig. 6.19 shows two cases.")
+disp("Therefore, V_m1 = (V*R_mT)/(R_mT+R_s)=(5*V)/(5+16661.67)=2.9999*10^-4 V")
+disp("Therefore, V_m2 = (V*R_mT'')/(R_mT''+R_s)=(5.06012*V)/(5.06012+16661.67)=3.03606*10^-4 V")
+v=((3.03606*10^-2)-(2.9999*10^-2))/(2.9999*10^-4)
+format(7)
+disp(v,"% error = [(V_m2)-(V_m1)*100]/(V_m1)= ")
diff --git a/1370/CH6/EX6.2/exmaple6_2.sce b/1370/CH6/EX6.2/exmaple6_2.sce
new file mode 100755
index 000000000..251eba405
--- /dev/null
+++ b/1370/CH6/EX6.2/exmaple6_2.sce
@@ -0,0 +1,11 @@
+//example6.2
+clc
+disp("The rate of change of inductance with deflection is,")
+disp("dL/d(theta)=d(12+6(theta)-(theta^2))/d(theta)=6-2(theta) uH/radian= 6-2(theta)*10^-6 H/radians")
+disp("From the torque equation,")
+disp("theta=(I^2)dL/(2*K*d(theta))")
+disp("therefore, theta=(8^2)*[6-2(theta)]*10^-6 /(2*12*10^-6)")
+disp("Therefore, 0.375(theta)=6-2(theta)")
+t=6/2.375
+format(6)
+disp(t,"Therefore, theta[in radians]= ")
diff --git a/1370/CH6/EX6.3/exmaple6_3.sce b/1370/CH6/EX6.3/exmaple6_3.sce
new file mode 100755
index 000000000..25acb832e
--- /dev/null
+++ b/1370/CH6/EX6.3/exmaple6_3.sce
@@ -0,0 +1,7 @@
+//example6.3
+clc
+disp("Given values are, (R_m)=100 ohm, (I_m)=2 mA, I=150 mA")
+disp("(R_sh)=[(I_m)*(R_m)]/[I-(I_m)]")
+r=(2*100*10^-3)/((150*10^-3)-(2*10^-3))
+format(6)
+disp(r,"Therefore, (R_sh)[in ohm]=(2*100*10^-3)/((150*10^-3)-(2*10^3))=")
diff --git a/1370/CH6/EX6.4/exmaple6_4.sce b/1370/CH6/EX6.4/exmaple6_4.sce
new file mode 100755
index 000000000..419748ffc
--- /dev/null
+++ b/1370/CH6/EX6.4/exmaple6_4.sce
@@ -0,0 +1,18 @@
+//example6.4
+clc
+disp("a) The drop across the shunt is same as drop across the coil.")
+disp("Therefore, [(I_sh)*(R_sh)]=400 mV")
+i=(400*10^-3)/0.01
+disp(i,"Therefore, I_sh(in A)=(400*10^-3)/0.01= ")
+disp("b) The voltage across shunt for shunted current of 50 A is,")
+v=50*0.01
+disp(v,"V_sh(in V)=[(I_sh)*(R_sh)]=50*0.01=")
+disp("For this voltage the meter should give full scale deflection. In first case, the current through meter for full deflection was,")
+i=(400*10^-3)/750
+disp(i,"I_m(in A)=(400mV)/(R_m)=(400*10^-3)/750=")
+disp("The same I_m must flow for new voltage across the meter of 0.5 V")
+disp("Therefore, [(I_m)*(R_m)'']=0.5")
+disp("Therefore, [(5.33*10^-4)*(R_m)'']=0.5")
+r=0.5/(5.33*10^-4)
+disp(r,"Therefore, (R_m'')[in ohm]=")
+disp("This is the resistance of the meter required for 50 A shunted current to give full scale defection.")
diff --git a/1370/CH6/EX6.5/exmaple6_5.sce b/1370/CH6/EX6.5/exmaple6_5.sce
new file mode 100755
index 000000000..bcacbabfe
--- /dev/null
+++ b/1370/CH6/EX6.5/exmaple6_5.sce
@@ -0,0 +1,7 @@
+//example6.5
+clc
+disp("Given values are, R_m=500 ohm, I_m=40 uA and V=10 V")
+r=(10/(40*10^-6))-500
+format(8)
+disp(r,"Now, (R_s)[in ohm]=V/(I_m) - R_m =")
+disp("This is the required multiplier resistance")
diff --git a/1370/CH6/EX6.6/exmaple6_6.sce b/1370/CH6/EX6.6/exmaple6_6.sce
new file mode 100755
index 000000000..88d56307a
--- /dev/null
+++ b/1370/CH6/EX6.6/exmaple6_6.sce
@@ -0,0 +1,19 @@
+//example6.6
+clc
+disp("The meter current (I_m)=20 mA")
+disp("Drop across meter, (V_m)=200 mV")
+disp("Now, (V_m)=[(I_m)*(R_m)]")
+disp("Therefore, 200 mV = (20 mA)(R_m)")
+r=200/20
+disp(r,"Therefore, (R_m)[in ohm]=")
+disp("i) For using it as an ammeter, I=200 A")
+r=(200*10^-3)/(200-(20*20^-3))
+format(6)
+disp(r,"R_sh(in ohm)=[(I_m)*(R_m)]/[I-(I_m)]=")
+disp("This is the required shunt.")
+disp("ii) For using it as a voltmeter, V=500 V")
+disp("Therefore, (R_s)=V/(I_m) - (R_m)")
+r=(500/(20*10^-3))-10
+format(8)
+disp(r,"= (500/(20*10^-3))-10 = ")
+disp("This is the required multiplier.")
diff --git a/1370/CH6/EX6.7/exmaple6_7.sce b/1370/CH6/EX6.7/exmaple6_7.sce
new file mode 100755
index 000000000..5fc069ddf
--- /dev/null
+++ b/1370/CH6/EX6.7/exmaple6_7.sce
@@ -0,0 +1,17 @@
+//example6.7
+clc
+disp("The arrangement is shown in the Fig 6.18(a)")
+disp("The voltmeter range = 50 V")
+r=100*50
+disp(r,"Therefore, (R_m)[in ohm] = Voltmeter resistance = 100 ohm/V * 50 =")
+disp("This appears in parallel with 55 ohm resistor as shown in the Fig.6.18(b)")
+r=(55*5000)/(55+5000)
+format(9)
+disp(r,"Therefore, R'' (in ohm)= 55||5000 = (55*5000)/(55+5000)= ")
+i=80/(105+54.40158)
+format(8)
+disp(i,"Therefore, I(in A)=80/(105+R'')=")
+v=0.501877*54.40158
+disp(v,"Therefore, Voltage across R''(in V)=[I*R'']=0.501877*54.40158=")
+disp("The voltmeter will sense this voltage.")
+disp("Therefore, Voltage indicated = 27.3029 V")
diff --git a/1370/CH6/EX6.8/exmaple6_8.sce b/1370/CH6/EX6.8/exmaple6_8.sce
new file mode 100755
index 000000000..93c64bec0
--- /dev/null
+++ b/1370/CH6/EX6.8/exmaple6_8.sce
@@ -0,0 +1,11 @@
+//example6.8
+clc
+disp("I_m=15 mA, R_m=5 ohm")
+disp("i) I=2A")
+r=(15*5*10^-3)/(2-(15*10^-3))
+format(8)
+disp(r,"R_sh(in ohm)=[(I_m)*(R_m)]/[I-(I_m)]=")
+disp("ii) V=100 V")
+r=(100/(15*10^-3))-5
+format(10)
+disp(r,"R_s(in ohm)=V/I_m - R_m =")
diff --git a/1370/CH6/EX6.9/exmaple6_9.sce b/1370/CH6/EX6.9/exmaple6_9.sce
new file mode 100755
index 000000000..71d1b6bac
--- /dev/null
+++ b/1370/CH6/EX6.9/exmaple6_9.sce
@@ -0,0 +1,11 @@
+//example6.9
+clc
+disp("R_m=5 ohm, I_m=15 mA")
+disp("i) I=15A")
+r=(15*5*10^-3)/(15-(15*10^-3))
+format(9)
+disp(r,"R_sh(in ohm)=[(I_m)*(R_m)]/[I-(I_m)]=")
+disp("ii) V=15 V")
+r=(15/(15*10^-3))-5
+format(4)
+disp(r,"R_s(in ohm)=V/I_m - R_m =")
diff --git a/1370/CH7/EX7.1/exp7_1.sce b/1370/CH7/EX7.1/exp7_1.sce
new file mode 100755
index 000000000..d11c0f13c
--- /dev/null
+++ b/1370/CH7/EX7.1/exp7_1.sce
@@ -0,0 +1,13 @@
+//Example 7.1
+clc
+disp("Forbidden gap for silicon is given by,")
+disp("E_C = 1.21 - 3.6*10^-4 * T")
+disp("Now T = 35+273 = 308 K")
+ec=1.21-(308*3.6*10^-4)
+format(6)
+disp(ec,"Therefore, E_C(in eV) =")
+disp("While forbidden gap for germanium is given by,")
+disp("E_C = 0.785 - 2.23*10^-4 * T")
+ec=0.785-(308*2.23*10^-4)
+format(7)
+disp(ec,"Therefore, E_C(in eV) =")
diff --git a/1370/CH7/EX7.10/exp7_10.sce b/1370/CH7/EX7.10/exp7_10.sce
new file mode 100755
index 000000000..2993c0543
--- /dev/null
+++ b/1370/CH7/EX7.10/exp7_10.sce
@@ -0,0 +1,13 @@
+//Example 7.10
+clc
+disp("the given values are I_0 = 3 uA, T = 27 C = 27+273 = 300 K, eta =1")
+disp("Now I_rated = 1 A for diode")
+disp("and I = 1% of I_rated at 27 C")
+disp("Therefore, I = 0.01 A")
+vt=300*8.62*10^-5
+format(6)
+disp(vt,"V_T(in V) = k*T =")
+disp("According to diode equation, I = I_0 * (e^(V/eta*VT) - 1)")
+v=8.112*0.026
+format(7)
+disp(v,"Therefore, V(in V) =")
diff --git a/1370/CH7/EX7.11/exp7_11.sce b/1370/CH7/EX7.11/exp7_11.sce
new file mode 100755
index 000000000..f94517faa
--- /dev/null
+++ b/1370/CH7/EX7.11/exp7_11.sce
@@ -0,0 +1,18 @@
+//Example 7.11
+clc
+disp("At V1 = 0.4 V, I1 = 10 mA and at V2 = 0.42 V, I2 = 2*I1 = 20 mA")
+disp("Now I = I_0 * (e^(V/eta*VT) - 1)")
+disp("Therefore, (10*10^-3) = I_0 * (e^(0.4/(eta*26*10^3)) - 1) ...(1)")
+disp("and (20*10^-3) = I_0 * (e^(0.42/(eta*26*10^3)) - 1) ...(2)")
+disp("In forward bias condition 1 << e^(VT/eta*VT), Therefore, Neglecting 1")
+disp("(10*10^-3) = (I_0)*e^(15.384/eta) ..(3)")
+disp("and, (20*10^-3) = (I_0)*e^(16.153/eta)")
+disp("Dividing the two equations (3) and (4),")
+disp("(1/2) = (e^(15.384/eta))/(e^(16.153/eta))")
+disp("Therefore, (e^(16.153/eta)) = 2*(e^(15.384/eta))")
+disp("Taking natural logarithm of both sides,")
+disp("Therefore, 16.153/eta = ln2 + 15.384/eta")
+disp("Therefore, (1/eta)*(16.153-15.384) = 0.6931")
+e=(16.153-15.384)/0.6931
+disp(e,"Therefore, eta=")
+disp("Hence (I_0)=9.45 nA")
diff --git a/1370/CH7/EX7.12/exp7_12.sce b/1370/CH7/EX7.12/exp7_12.sce
new file mode 100755
index 000000000..7f78425c6
--- /dev/null
+++ b/1370/CH7/EX7.12/exp7_12.sce
@@ -0,0 +1,18 @@
+//Example 7.12
+clc
+disp("I_01 = 3 nA at T1 = 27 C, T2 = 82 C")
+dt=82-27
+format(3)
+disp(dt,"(i) deltaT(in degree C) = T2 - T1 =")
+dt1=(2^(55/10))*3
+format(8)
+disp(dt1,"Therefore, I_02(in nA) = 2^(deltaT/10) * I_01 =")
+disp("(ii) V = 0.25 V, I_02 = 135.764 nA at 82 C")
+disp("Thereforem I_f = I_0 * (e^(V/eta*VT) - 1)")
+vt=(82+273)/11600
+format(7)
+disp(vt,"V_T(in V) = T/11600 =")
+disp("eta = 2 for Si")
+i0=((135.764*10^-9)*((%e^(0.25/(2*0.0306)))-1))*10^6
+format(6)
+disp(i0,"Therefore, I_f(in uA) =")
diff --git a/1370/CH7/EX7.14/exp7_14.sce b/1370/CH7/EX7.14/exp7_14.sce
new file mode 100755
index 000000000..1ec132d52
--- /dev/null
+++ b/1370/CH7/EX7.14/exp7_14.sce
@@ -0,0 +1,12 @@
+//Example 7.14
+clc
+disp("In the circuit of the fig.7.47(a), the diode will be forward biased during negative half cycle of a.c. input voltage, and d.c output voltage will be negative w.r.t common ground terminal, as shown.")
+disp("(a) For an ideal diode, cut-in voltage V_T = 0, R_T = 0")
+dc=-(15/%pi)
+format(5)
+disp(dc,"D.C. output voltage(in V) = -Maximum value of a.c. input voltage / pi =")
+disp("Negative sign indicates that voltage is negative w.r.t ground.")
+disp("(b) For a silicon diode, V_T = 0.7 V, R_f is assumed to be zero")
+dc1=-((15-0.7)/%pi)
+format(5)
+disp(dc1,"D.C. output voltage(in V) = -[Maximum value of a.c. voltage-V_T] / pi =")
diff --git a/1370/CH7/EX7.15/exp7_15.sce b/1370/CH7/EX7.15/exp7_15.sce
new file mode 100755
index 000000000..cb5a4eaa2
--- /dev/null
+++ b/1370/CH7/EX7.15/exp7_15.sce
@@ -0,0 +1,17 @@
+//Example 7.15
+clc
+disp("Given values are R_L = 1 k-ohm, V_m = 10 V peak")
+disp("case(i) Ideal diode")
+disp("Cut-in voltage V_T = 0 V, R_f = 0 ohm")
+edc=10/%pi
+format(5)
+disp(edc,"Therefore, E_DC(in V) = V_m/pi =")
+idc=3.18
+disp(idc,"Therefore, I_DC(in mA) = E_DC/R_L =")
+disp("case(ii) Silicon diode")
+disp("Cut-in voltage V_T = 0.7 V")
+edc=9.3/%pi
+format(5)
+disp(edc,"Therefore, E_DC(in V) = V_m-V_T / pi =")
+idc=2.96
+disp(idc,"Therefore, I_DC(in mA) = E_DC/R_L =")
diff --git a/1370/CH7/EX7.17/exp7_17.sce b/1370/CH7/EX7.17/exp7_17.sce
new file mode 100755
index 000000000..35a0fa0c2
--- /dev/null
+++ b/1370/CH7/EX7.17/exp7_17.sce
@@ -0,0 +1,32 @@
+//example7.17
+clc
+disp("Given: E_s=30 V, R_f=2 ohm, R_s=8 ohm, R_L=1 k-ohm")
+disp("E_s=E_RMS=30 V")
+e=30*sqrt(2)
+disp(7)
+disp(e,"E_sm(in V)=(E_s)*sqrt(2)=")
+i=(30*sqrt(2))/(2+1000+8)
+format(6)
+disp(i,"I_m(in A)=(E_sm)/(R_f+R_L+R_s)=")
+i=(2*42)/(%pi)
+format(6)
+disp(i,"I_DC(in mA)=(2*I_m)/pi=")
+p=1000*(26.74*10^-3)^2
+disp(p,"a) Power delivered to the load = (I_DC^2)*(R_L) = ")
+v=(2*30*sqrt(2))/(%pi)
+format(3)
+disp(v,"V_DC, no load = (2*E_sm)/pi = ")
+v=26.74*1000*10^-3
+format(6)
+disp(v,"V_DC, full load (in V) = (I_DC)*R_L = ")
+r=((27-26.74))/26.74
+format(5)
+disp(r,"% Regulation = ((V_NL-V_FL)*100)/(V_FL)= ")
+e=(8/(%pi)^2)*(1/(1+(10/1000)))
+format(6)
+disp(e,"c) Efficiency of rectification = dc output/ac output =")
+t=(30*42*10^-3)/sqrt(2)
+format(5)
+disp(t,"d) Transformer secondary rating(in W) = (E_RMS)*(I_RMS) = ")
+u=0.715/0.89
+disp(u,"TUF = DC power output/AC rating = ")
diff --git a/1370/CH7/EX7.2/exp7_2.sce b/1370/CH7/EX7.2/exp7_2.sce
new file mode 100755
index 000000000..ed9f02355
--- /dev/null
+++ b/1370/CH7/EX7.2/exp7_2.sce
@@ -0,0 +1,15 @@
+//Example 7.2
+clc
+disp("The given values are, n_i = 1.5*10^10 / cm^3")
+disp("Therefore, n_i = 1.5*10^10/10^-6 /m^3")
+disp(" = 1.5*10^16 /m^3")
+disp("And u_n = 1300*10^-4 m^2/V-sec")
+disp(" u_p = 500*10^-4 m^2/V-sec")
+disp("Now sigma_i = n_i*(u_n + u_p)*e ...conductivity")
+sig=(1.5*10^16)*(1300+500)*(1.6*10^-23)
+format(9)
+disp(sig,"Therefore sigma_i(in per ohm-m) =")
+rho=1/0.000432
+format(10)
+disp(rho,"Therefore, rho(in ohm-m) = 1/sigma_i =")
+disp("This is the required resistivity")
diff --git a/1370/CH7/EX7.20/exp7_20.sce b/1370/CH7/EX7.20/exp7_20.sce
new file mode 100755
index 000000000..fe4b6d542
--- /dev/null
+++ b/1370/CH7/EX7.20/exp7_20.sce
@@ -0,0 +1,14 @@
+//example7.20
+clc
+disp("P_DC=500 W, Half wave rectifier")
+disp("For half wave rectifier, %eta=40.6% ...(Assuming maximum)")
+disp("Therefore, 40.6=(P_DC*100)/(P_AC)")
+disp("Therefore, 40.6=(500*100)/(P_AC)")
+p=(500*100)/(40.6)
+format(9)
+disp(p,"Therefore, P_AC(in W)=")
+disp("For the same load, with full wave rectifier the maximum rectifier efficiency is 81.2%")
+disp("Therefore, 81.2=(500*100)/(P_AC)")
+p=(500*100)/81.2
+format(10)
+disp(p,"Therefore, P_AC(in W)=")
diff --git a/1370/CH7/EX7.21/exp7_21.sce b/1370/CH7/EX7.21/exp7_21.sce
new file mode 100755
index 000000000..be4e46859
--- /dev/null
+++ b/1370/CH7/EX7.21/exp7_21.sce
@@ -0,0 +1,24 @@
+//example7.21
+clc
+disp("The given values are,")
+disp("R_f=0.1 ohm, I_DC=10 A, R_s= 0 ohm, E_s(RMS)=30 V")
+e=30*sqrt(2)
+format(8)
+disp(e,"Now, (E_sm)=E_sm(RMS)*sqrt(2) =")
+disp("(I_DC)=(2*I_m)/pi")
+i=(%pi*10)/2
+disp(i,"I_m(in A)=(pi*I_DC)/2=")
+disp("Now, (I_m)=(E_m)/(2*R_f+R_s+R_L)")
+disp("Therefore, 15.7079 = 42.4264/(2*0.1+R_L)")
+disp("Therefore, R_L+0.2=2.7")
+r=2.7-0.2
+disp(r,"Therefore, R_L(in ohm)=")
+p=(10^2)*2.5
+disp(p,"P_DC(in W)=(I_DC^2)*R_L=")
+disp("P_AC = (I_RMS^2)*(2*R_f+R_s+R_L)")
+i=15.7079/sqrt(2)
+disp(i,"and, (I_RMS)[in A]=(I_m)/sqrt(2)=")
+p=(11.1071^2)*(0.2+2.5)
+disp(p,"Therefore, (P_AC)[in W]=")
+e=(250*100)/333.092
+disp(e,"% eta=(P_DC*100)/(P_AC)=")
diff --git a/1370/CH7/EX7.22/exp7_22.sce b/1370/CH7/EX7.22/exp7_22.sce
new file mode 100755
index 000000000..ad5e48d6c
--- /dev/null
+++ b/1370/CH7/EX7.22/exp7_22.sce
@@ -0,0 +1,22 @@
+//example7.22
+clc
+disp("R_L =5 k-ohm=5*10^3 ohm, N1:N2 is 2:1")
+disp("E_p = 460V RMS value")
+disp("Therefore, (E_s)/(E_p)=N2/N1=1/2")
+disp("Therefore, E_s = (E_p)/2 = 230 V")
+e=230*sqrt(2)
+format(8)
+disp(e,"Therefore, E_sm(in V)=")
+disp("Now, (I_DC)=(2*I_m)/pi where (I_m)=(E_sm)/(R_L) neglecting R_f")
+i=(2*325.269)/(%pi*5*10^3)
+format(8)
+disp(i,"Therefore, (I_DC)[in A]=(2*E_sm)/(pi*R_L)=")
+d=41.41*5
+format(8)
+disp(d,"DC load voltage E_DC(in V) = (I_DC)*(R_L) = ")
+disp("Ripple voltage = ripple factor*(V_DC)")
+disp("Ripple factor of bridge rectifier is 0.482")
+r=0.482*207.072
+format(5)
+disp(r,"Therefore, Ripple factor = ")
+disp("PIV rating of each diode = (E_sm) for bridge rectifier = 325.27 V")
diff --git a/1370/CH7/EX7.23/exp7_23.sce b/1370/CH7/EX7.23/exp7_23.sce
new file mode 100755
index 000000000..6e05b0a24
--- /dev/null
+++ b/1370/CH7/EX7.23/exp7_23.sce
@@ -0,0 +1,21 @@
+//exmaple7.23
+clc
+disp("E_p(rms) = 230V, N2/N1 = 1/15, R_L=50 ohm")
+disp("R_f = R_s = 0 ohm as ideal")
+disp("Now, E_p(rms)/E_s(rms) = N1/N2")
+e=230/15
+format(7)
+disp(e,"Therefore, E_s(rms)[in V] = N2*E_p(rms)/N1 = 230/15 = ")
+e=15.333*sqrt(2)
+disp(e,"Therefore, E_sm(in V) = ")
+i=21.684/50
+disp(i,"Therefore, (I_m) = (E_sm)/(R_s+2*R_f+R_L)= ")
+i=(2*0.4336)/(%pi)
+disp(i,"I_DC(in A)=(2*I_m)/pi=")
+e=0.276*50
+disp(e,"Therefore, E_DC(in V)=Load voltage=(I_DC)*(R_L)=")
+disp("Ripple factor = 0.482 ..For full wave rectifier")
+disp("Ripple factor = (ac rms output)/(dc output)=(ripple voltage)/E_DC")
+disp("Therefore, 0.482=ripple factor")
+r=13.8*0.482
+disp(r,"Therefore, Ripple voltage = 13.8*0.482 = ")
diff --git a/1370/CH7/EX7.25/exp7_25.sce b/1370/CH7/EX7.25/exp7_25.sce
new file mode 100755
index 000000000..7bfc28573
--- /dev/null
+++ b/1370/CH7/EX7.25/exp7_25.sce
@@ -0,0 +1,14 @@
+//example7.25
+clc
+disp("For a half wave rectifier,")
+disp("(I_m) = (E_sm)/(R_f+R_L)")
+disp("and, (I_DC) = (I_m)/pi = (E_sm)/pi*(R_f+R_L)")
+disp("and, (V_DC) = (I_DC)*(R_L)")
+disp("Therefore, (P_DC) = (V_DC)*(I_DC) = (I_DC^2)*(R_L) = ((E_sm^2)*(R_L))/((pi^2)*(R_f+R_L)^2)")
+disp("For this power to be maximum,")
+disp("(dP_DC)/(dR_L) = 0")
+disp("(d/dR_L)*((E_sm^2)*(R_L))/((pi^2)*(R_f+R_L)^2) = ((E_sm^2)/(pi^2))*((R_f+R_L)^2 - R_L*2(R_f+R_L))/(R_f+R_L)^4")
+disp("Therefore, (R_f+R_L)^2 - 2*R_L*(R_f+R_L) = 0")
+disp("Therefore, (R_f^2)-(R_L^2) = 0")
+disp("Therefore, (R_L)^2 = (R_f)^2 i.e. R_L = R_f")
+disp("Thus the power output is maximum if R_L = R_f")
diff --git a/1370/CH7/EX7.29/exp7_29.sce b/1370/CH7/EX7.29/exp7_29.sce
new file mode 100755
index 000000000..f74708197
--- /dev/null
+++ b/1370/CH7/EX7.29/exp7_29.sce
@@ -0,0 +1,11 @@
+//example7.29
+clc
+disp("For silicon diode, eta=2, (I_0)=10 uA, (V_T)=26 mV")
+disp("I = (I_0)*[e^(V/(eta*V_T))-1]")
+i=(10*10^-6)*(%e^(0.1/(2*26*10^-3))-1)
+format(13)
+disp(i,"i) I(in A)=(10*10^-6)*(e^(0.1/(2*26*10^-3))-1)=")
+i=(10*10^-6)*(%e^(0.2/(2*26*10^-3))-1)
+disp(i,"ii) I(in A)=(10*10^-6)*(e^(0.1/(2*26*10^-3))-1)=")
+i=(10*10^-6)*(%e^(0.3/(2*26*10^-3))-1)
+disp(i,"iii) I(in A)=(10*10^-6)*(e^(0.1/(2*26*10^-3))-1)=")
diff --git a/1370/CH7/EX7.3/exp7_3.sce b/1370/CH7/EX7.3/exp7_3.sce
new file mode 100755
index 000000000..fd93ad2ec
--- /dev/null
+++ b/1370/CH7/EX7.3/exp7_3.sce
@@ -0,0 +1,19 @@
+//Example 7.3
+clc
+disp("Electron density = n_i = carrier intrinsic concentration")
+disp("Therefore, n_i = 1.5*10^16 /m^3")
+disp("For intrinsic semiconductor,")
+disp(" sigma_i = n_i*(u_n + u_p)*e")
+disp("where e = charge on one electron = 1.6*10^-19 C")
+sig=(1.5*10^16)*(0.14+0.05)*(1.6*10^-19)
+format(9)
+disp(sig,"Therefore sigma_i(in per ohm-m) = Conductivity =")
+rho=1/0.000456
+format(9)
+disp(rho,"Therefore, rho(in ohm-m) = Resistivity = 1/sigma_i =")
+disp(" Now R = roh*l/A")
+disp("Therefore, V/A = roh*l/A")
+l=((9*2.5*10^-4)/(2192.982*1.2*10^-3))*10^3
+format(6)
+disp(l,"Therefore, l(in mm) =")
+disp("This is the length of the bar")
diff --git a/1370/CH7/EX7.30/exp7_30.sce b/1370/CH7/EX7.30/exp7_30.sce
new file mode 100755
index 000000000..4b0dd348d
--- /dev/null
+++ b/1370/CH7/EX7.30/exp7_30.sce
@@ -0,0 +1,5 @@
+//example7.30
+clc
+disp("(I_01)=0.1 uA, (T_1)=20 degree celcius, (T_2)=40 degree celcius")
+i=(0.1)*(2^(20/10))
+disp(i,"Therefore, (I_02)[in uA]=(I_01)*(2^(delta(T))/10)")
diff --git a/1370/CH7/EX7.31/exp7_31.sce b/1370/CH7/EX7.31/exp7_31.sce
new file mode 100755
index 000000000..4f8534956
--- /dev/null
+++ b/1370/CH7/EX7.31/exp7_31.sce
@@ -0,0 +1,9 @@
+//example7.31
+clc
+disp("As the impurity is accepter, it forms a p-type material.")
+disp("Therefore, N_A = 10^22 /m^3 = p_p")
+disp("Now, (p_p)*(n_p)=(n_i)^2 i.e. (10^22)*(n_p)=(1.4*10^16)^2")
+n=((1.4*10^16)^2)/(10^22)
+disp(n,"Therefore, n(in /m^3)= ")
+r=((1.96*0.145*10^10)+(0.05*10^22))*(1.6*10^-19)
+disp(r,"rho(in (ohm-m)^-1) = ((n_p*u_n)+(p_p*u_p))*e = ")
diff --git a/1370/CH7/EX7.4/exp7_4.sce b/1370/CH7/EX7.4/exp7_4.sce
new file mode 100755
index 000000000..eaae48a34
--- /dev/null
+++ b/1370/CH7/EX7.4/exp7_4.sce
@@ -0,0 +1,15 @@
+//Example 7.4
+clc
+disp("Given values are")
+disp(" n_i = 2.5*10^13 /cm^3")
+disp("Therefore, n_i = 2.5*10^13/10^-6 /m^3")
+disp(" = 2.5*10^19 /m^3")
+disp("And u_n = 3800*10^-4 m^2/V-sec")
+disp(" u_p = 1800*10^-4 m^2/V-sec")
+disp(" sigma_i = n_i*(u_n + u_p)*e")
+sig=(2.5*10^19)*(3800+1800)*(1.6*10^-23)
+format(5)
+disp(sig,"Therefore sigma_i(in per ohm-m) =")
+rho=1/2.24
+format(7)
+disp(rho,"Therefore, rho_i(in ohm-cm) = 1/sigma_i =")
diff --git a/1370/CH7/EX7.7/exp7_7.sce b/1370/CH7/EX7.7/exp7_7.sce
new file mode 100755
index 000000000..a5497dc34
--- /dev/null
+++ b/1370/CH7/EX7.7/exp7_7.sce
@@ -0,0 +1,18 @@
+//Example 7.7
+clc
+disp("Referring to the table 7.2 of properties of germanium has 4.4*10^22 atoms/cm^3")
+disp("For 10^8 germanium atom there is 1 atom impurity added, as given.")
+disp("Thus, for 4.4*10^22 germanium atoms, we have,")
+disp(" = 4.4*10^22 / 10^8 = 4.4*10^14 atoms of impurity/cm^3")
+disp("This is nothing but concentration of donor atoms i.e. N_D")
+disp("Therefore, N_D = 4.4*10^14 per cm^3 = 4.4*10^14/10^-6 = 4.4*10^20 per m^3")
+disp("Now as donor impurity is added, n-type material will form,")
+disp("Therefore, sigma_n = n_n*u_n*q = N_D*u_n*q")
+disp("where n_n ~ N_D and u_n = 3800 cm^2/V-sec = 3800*10^-4 m^2/V-sec")
+sigm=4.4*3800*1.6*10^-3
+format(7)
+disp(sigm,"Therefore, sigma_n(in per ohm-m) =")
+rho=(1/26.752)*10^2
+format(5)
+disp(rho,"Therefore, rho_n(in ohm-cm) = Resistivity = 1/sigma_i =")
+disp("Comparing this with resistivity of intrinsic germanium it can be observed that resistivity reduces considerably due to addition of impurity. Hence conductivity of n-type material is much higher and hence it can carry more current as compared to the intrinsic semiconductors. By controlling amount of doping we can control the conductivity.")
diff --git a/1370/CH7/EX7.9/exp7_9.sce b/1370/CH7/EX7.9/exp7_9.sce
new file mode 100755
index 000000000..6d4b3c596
--- /dev/null
+++ b/1370/CH7/EX7.9/exp7_9.sce
@@ -0,0 +1,13 @@
+//Example 7.9
+clc
+disp("The current equation of a diode is")
+disp("I = I_0 * (e^(V/eta*VT) - 1)")
+disp("At 300 K, VT = 26 mV = 26*10^-3 V")
+disp(" V = 0.71 V for I = 2.5 mA and eta = 2 for silicon")
+i0=(2.5*10^-3)/((%e^(0.71/(2*26*10^-3)))-1)
+format(9)
+disp(i0,"Therefore, I_0(in A) =")
+disp("Now V = 0.8 V")
+i=((2.93*10^-9)*((%e^(0.8/(2*26*10^-3)))-1))*10^3
+format(6)
+disp(i,"Therefore, I(in mA) =")
diff --git a/1370/CH8/EX8.1/example8_1.sce b/1370/CH8/EX8.1/example8_1.sce
new file mode 100755
index 000000000..a9aa19aa3
--- /dev/null
+++ b/1370/CH8/EX8.1/example8_1.sce
@@ -0,0 +1,10 @@
+//exmaple8.1
+clc
+disp("Given : I_E=12 mA, I_E= 1.02(I_c)")
+disp("Therefore, 1.02(I_c)=12*10^-3")
+i=(12*10^-3)/1.02
+format(9)
+disp(i,"I_c(in A)=")
+disp("I_E = I_B + I_c")
+b=12-11.765
+disp(b,"Therefore, I_B(in mA) = I_E - I_c = (12-11.765)mA = ")
diff --git a/1370/CH8/EX8.2/example8_2.sce b/1370/CH8/EX8.2/example8_2.sce
new file mode 100755
index 000000000..25be60088
--- /dev/null
+++ b/1370/CH8/EX8.2/example8_2.sce
@@ -0,0 +1,14 @@
+//example8.2
+clc
+disp("a) (alpha_dc)=(beta_dc)/(1+(beta_dc))")
+b=50/51
+format(7)
+disp(b,"For, (beta_dc)=50, (alpha_dc)=50/(1+50)=")
+b=190/191
+disp(b,"For, (beta_dc)=190, (alpha_dc)=190/(1+190)=")
+disp("b) (beta_dc)=(alpha_dc)/(1-(alpha_dc))")
+a=0.995/(1-0.995)
+disp(a,"For, (alpha_dc)=0.995, (beta_dc)=0.995/(1-0.995)=")
+a=0.9765/(1-0.9765)
+format(6)
+disp(a,"For, (alpha_dc)=0.9765, (beta_dc)=0.9765/(1-0.9765)=")
diff --git a/1370/CH8/EX8.3/example8_3.sce b/1370/CH8/EX8.3/example8_3.sce
new file mode 100755
index 000000000..37436a5f2
--- /dev/null
+++ b/1370/CH8/EX8.3/example8_3.sce
@@ -0,0 +1,15 @@
+//example8.3
+clc
+disp("Given : I_B=20 uA, I_E=6.4 mA")
+disp("I_E=I_B+I_C=I_B+[(I_B)*(beta_dc)]=(I_B)*(1+(beta_dc))")
+b=(6.4*10^-3)/(20*20^-6)
+disp(b,"(beta_dc)+1=(I_E)/(I_B)=")
+b=320-1
+disp(b,"Therefore, (beta_dc)=")
+a=319/320
+format(7)
+disp(a,"(alpha_dc)=(beta_dc)/(1+(beta_dc))=319/(1+319)=")
+i=319*20
+disp(i,"I_C(in uA)=[(beta_dc)*(I_B)]=")
+c=0.9968*6.4
+disp(c,"Also, (I_C)[in mA]=[(alpha_dc)*(I_E)]=")
diff --git a/1370/CH8/EX8.4/example8_4.sce b/1370/CH8/EX8.4/example8_4.sce
new file mode 100755
index 000000000..0277494c9
--- /dev/null
+++ b/1370/CH8/EX8.4/example8_4.sce
@@ -0,0 +1,10 @@
+//example8.4
+clc
+disp("Given: I_CO=1.1 uA, I_E=21 uA")
+disp("I_CEO=(1+(beta_dc))*(I_CO)")
+disp("1+(beta_dc)=(I_CEO).(I_CO)=(21 uA)/(1.1 uA)=19")
+b=19-1
+disp(b,"Therefore, (beta_dc)=")
+a=18/19
+format(6)
+disp(a,"(alpha_dc)=(beta_dc)/(1+(beta_dc))=18/(1+18)=")
diff --git a/1370/CH8/EX8.7/example8_7.sce b/1370/CH8/EX8.7/example8_7.sce
new file mode 100755
index 000000000..1b538631f
--- /dev/null
+++ b/1370/CH8/EX8.7/example8_7.sce
@@ -0,0 +1,14 @@
+//example8.7
+clc
+disp("V_m= Peak value of input =200 V")
+disp("V_BO=100 V with I_G=2 mA and R_L=100 ohm")
+a=asind(1/2)
+disp(a,"i) Firing angle alpha(in degree)=sinh((V_BO)/(V_m))=sinh(100/200)=")
+a=180-30
+disp(a,"ii) Conduction angle beta = 180-(alpha) =")
+v=(200*(1+cosd(30)))/(2*%pi)
+format(7)
+disp(v,"iii) Average output voltage (V_dc)=(V_m*(1+cos30))/(2*pi)=")
+p=(59.39^2)/100
+format(8)
+disp(p,"(P_dc(av))[in W]=(V_dc^2)/R_L=")
diff --git a/1370/CH8/EX8.8/example8_8.sce b/1370/CH8/EX8.8/example8_8.sce
new file mode 100755
index 000000000..d910688d7
--- /dev/null
+++ b/1370/CH8/EX8.8/example8_8.sce
@@ -0,0 +1,13 @@
+//example8.8
+clc
+disp("(V_dc(av))=80 V, (V_rms)=230 V")
+disp("Note that given ac mains voltage is rms unless and otherwise specified to be peak")
+v=230*sqrt(2)
+format(8)
+disp(v,"Therefore, V_m(in V)=sqrt(2)*(V_rms)=")
+disp("Now , (V_dc(av))=(V_m*(1+cos(alpha)))/(2*pi)")
+disp("Therefore, 80=(325.269*(1+cos(alpha)))/(2*pi)")
+disp("Therefore, cos(alpha)=0.5453")
+c=acosd(0.5453)
+format(6)
+disp(c,"Therefore, alpha(in degree)=")
diff --git a/1370/CH8/EX8.9/example8_9.sce b/1370/CH8/EX8.9/example8_9.sce
new file mode 100755
index 000000000..cc82355ef
--- /dev/null
+++ b/1370/CH8/EX8.9/example8_9.sce
@@ -0,0 +1,22 @@
+//example8.9
+clc
+disp("For half wave rectifier, the SCR operates as shown in the Fig. 8.63.")
+disp("V_in = 325*sin(wt)=V_m*sin(wt)")
+disp("Therefore, V_m = 325 V")
+disp("w=100*pi rad/sec")
+disp("V_BO=125 V")
+a=sinh(125/325)
+format(6)
+disp(a,"Therefore, alpha=sinh(V_BO/V_m)=")
+d=(22.619*%pi)/180
+format(7)
+disp(d,"Therefore, alpha=(22.619*pi)/180 radian=")
+t=0.3947/(100*%pi)
+format(8)
+disp(t,"Therefore, Time of alpha(in sec)=alpha/w=0.3947/(100*pi)=")
+disp("For this period SCR remains OFF in positive half cycle.")
+disp("While for entire negative half cycle i.e. for pi radians (180 degree) it remains OFF. Thus corresponding time is (angle/w)")
+a=1/100
+disp(a,"i.e. pi/(100*pi)[in sec]= ")
+t=10+1.25
+disp(t,"Total time for which SCR is OFF(in msec) = 10+1.25= ")
diff --git a/1370/CH9/EX9.1/example9_1.sce b/1370/CH9/EX9.1/example9_1.sce
new file mode 100755
index 000000000..5d57da163
--- /dev/null
+++ b/1370/CH9/EX9.1/example9_1.sce
@@ -0,0 +1,22 @@
+//example9.1
+clc
+disp("The arrangement is shown in the Fig. 9.2")
+disp("Let x=0 at negative plate and x=2*10^-2 m at positive plate.")
+disp("The E is constant and its magnitude is given by,")
+e=10/(2*10^-2)
+disp(e,"E(in V/m)=V/d=")
+disp("The electron will move with constant acceleration as field is uniform,")
+a=(1.6*500*10^-19)/(9.107*10^-13)
+disp(a,"a_x(in m/sec^2)=(q*E)/m=")
+disp("The velocity v_x is given by,")
+disp("(v_x)=(a_x)*t+(V_ox) .. v_ox =0 as electron is at rest")
+disp("and x=(1/2 *a_x *t^2)+(V_ox *t)+(x_o)....(v_ox)=(x_o)=0")
+x=(1/2)*8.7844*(10^13)*((1*10^-9)^2)
+disp(x,"Therefore, x(in m)=(1/2)*8.7844*(10^13)*((1*10^-9)^2)=")
+disp("ii) When electron reaches to second plate, x=2*10^-2 m")
+disp("Therefore, x=(1/2)*(a_x)*t^2")
+disp("Therefore, 2*10^-2 = (1/2)*(8.7844*10^13)*t^2")
+disp("Therefore, t^2 = 4.5535*10^-16")
+t=sqrt(4.5535*10^-16)
+format(15)
+disp(t,"Therefore, t(in sec)=")
diff --git a/1370/CH9/EX9.10/example9_10.sce b/1370/CH9/EX9.10/example9_10.sce
new file mode 100755
index 000000000..cde91f121
--- /dev/null
+++ b/1370/CH9/EX9.10/example9_10.sce
@@ -0,0 +1,7 @@
+//example9.10
+clc
+disp("It can be observed from the Lissajous figures that,")
+disp("(y_1)=8 units and, (y_2)=10 units")
+s=asind(8/10)
+format(6)
+disp(s,"Therefore, phi (in degree)= asind((y_1)/(y_2))=asind(8/10)=")
diff --git a/1370/CH9/EX9.11/example9_11.sce b/1370/CH9/EX9.11/example9_11.sce
new file mode 100755
index 000000000..3b551674f
--- /dev/null
+++ b/1370/CH9/EX9.11/example9_11.sce
@@ -0,0 +1,11 @@
+//example9.11
+clc
+disp("It can be observed that,")
+disp("Number of vertical tangencies = 2")
+disp("Number of horizontal tangencies = 5")
+disp("Now, (f_v/f_H) = 5/2")
+disp("Therefore, f_v = 5/2")
+disp("f_H = 5/2 * 1 kHz")
+f=5/2
+disp(f,"Therefore, f_v(in kHz)=")
+disp("This is the unknown frequency.")
diff --git a/1370/CH9/EX9.12/example9_12.sce b/1370/CH9/EX9.12/example9_12.sce
new file mode 100755
index 000000000..90af82bb8
--- /dev/null
+++ b/1370/CH9/EX9.12/example9_12.sce
@@ -0,0 +1,21 @@
+//example9.12
+clc
+disp("d=0.5 cm, L=20 cm, l=2 cm, (V_a)=1000 V, (V_d)=25 V")
+d=((2*10^-2)*(20*10^-2)*25)/(2*0.5*1000*10^-2)
+disp(d,"i) D(in m)=(l*L*(V_d))/(2*d*V_a)=")
+s=0.01/25
+disp(s,"Therefore, S(in m/V)=D/(V_d)=")
+disp("ii) tan(theta)=(l*a_y)/(v_ox^2)")
+a=((1.6*10^-19)*25)/((0.5*10^-2)*(9.107*10^-31))
+format(9)
+disp(a,"where, a_y(in m/s^2)=(q*v_d)/(d*m)= ")
+v=sqrt((2*1.6*1000*10^-19)/(9.107*10^-31))
+disp(v,"v_ox(in m/s)=sqrt((2*q*V_a)/m)=")
+t=((2*10^-2)*(8.7844*10^14))/((18.745*10^6)^2)
+format(5)
+disp(t,"Therefore, tan(theta)=t=((2*10^-2)*(8.7844*10^14))/((18.745*10^6)^2)= ")
+a=atand(0.05)
+format(6)
+disp(a,"Therefore, theta(in degree)= ")
+format(9)
+disp(v,"iii) (v_ox)= Velocity of electrons - Velocity of beam =")
diff --git a/1370/CH9/EX9.15/example9_15.sce b/1370/CH9/EX9.15/example9_15.sce
new file mode 100755
index 000000000..76499a641
--- /dev/null
+++ b/1370/CH9/EX9.15/example9_15.sce
@@ -0,0 +1,16 @@
+//example9.15
+clc
+disp("The arrangement is shown in the fig. 9.19")
+disp("Negative plate is at x=0")
+disp("Therefore, Positive plate is at x=1*10^-2 m")
+disp("E=V/d=1000/(1*10^-2) ...d= 1*10^-2 m")
+e=1000/(10^-2)
+disp(e,"Therefore, E(in V/m)=")
+disp("As field is uniform, the electron will move with constant acceleration.")
+disp("Therefore, x = (1/2)*(a_x)*(t^2)")
+a=((1.6*10^-19)*(1*10^5))/(9.107*10^-31)
+disp(a,"where, a_x(in m/s^2)=(q*E)/m=")
+disp("So time for electron to reach positve plate is,")
+disp("(t^2)=(2*x)/(a_x)=(2*1*10^-2)/(1.7568*10^16)")
+t=sqrt((2*1*10^-2)/(1.7568*10^16))
+disp(t,"Therefore, t(in s)=")
diff --git a/1370/CH9/EX9.16/example9_16.sce b/1370/CH9/EX9.16/example9_16.sce
new file mode 100755
index 000000000..dde1c15a3
--- /dev/null
+++ b/1370/CH9/EX9.16/example9_16.sce
@@ -0,0 +1,13 @@
+//example9.16
+clc
+disp("l=2 cm, d=4 mm, L=25 cm")
+disp("S=D/(V_d)=(l*L)/(2*d*V_a) m/V ...Defection sensitivity")
+disp("i) V_a=1000 V")
+s=((2*10^-2)*(25*10^-2))/(2*4*1000*10^-3)
+disp(s,"Therefore, S(in m/V)=((2*10^-2)*(25*10^-2))/(2*4*1000*10^-3)= ")
+disp("ii) V_a=2000 V")
+s=((2*10^-2)*(25*10^-2))/(2*4*2000*10^-3)
+disp(s,"Therefore, S(in m/V)=((2*10^-2)*(25*10^-2))/(2*4*2000*10^-3)= ")
+disp("iii) V_a=3500 V")
+s=((2*10^-2)*(25*10^-2))/(2*4*3500*10^-3)
+disp(s,"Therefore, S(in m/V)=((2*10^-2)*(25*10^-2))/(2*4*13500*10^-3)= ")
diff --git a/1370/CH9/EX9.17/example9_17.sce b/1370/CH9/EX9.17/example9_17.sce
new file mode 100755
index 000000000..c057c2c03
--- /dev/null
+++ b/1370/CH9/EX9.17/example9_17.sce
@@ -0,0 +1,13 @@
+//example9.17
+clc
+disp("D=5 mm, V=250V, v_ox=1*10^6 m/s")
+e=250/(5*10^-3)
+disp(e,"E(in V/m)=V/d=")//answer in text book is wrong
+a=((1.6*10^-19)*(50*10^3))/(9.107*10^-31)
+disp(a,"a_x(in m/s^2)=(q*E)/m= ")
+disp("Now, x= (1/2)*(a_x)*(t^2)+(V_ox)*t+(x_o) but (x_o)=0 initially")
+disp("Therefore, x= (1/2)*(a_x)*(t^2)+(V_ox)*t")
+disp("When electron reaches to anode, x=5 mm.")
+disp("Therefore, (5*10^-3)=(1/2)*(8.7844*10^15)*(t^2)+(1*10^6)*t")
+disp("Therefore, t(in sec)=9.5916D-10 ...neglecting negative value")
+disp("Thus time taken by electron to reach anode from cathode is 0.95916 ns.")
diff --git a/1370/CH9/EX9.18/example9_18.sce b/1370/CH9/EX9.18/example9_18.sce
new file mode 100755
index 000000000..2fe6206c1
--- /dev/null
+++ b/1370/CH9/EX9.18/example9_18.sce
@@ -0,0 +1,10 @@
+//example9.18
+clc
+disp("l=2 cm, d=5 mm, L=30 cm, V_a=2000 V, D=3 cm")
+disp("D=(l*L*V_d)/(2*d*V_a)")
+disp("i.e. (3*10^-2)=((2*10^-2)*(30*10^-2)*(V_d))/((2*5*10^-3)*2000)")
+v=((3*10^-2)*(2*5*10^-3)*2000)/((2*10^-2)*(30*10^-2))
+disp(v,"Therefore, V_d(in V)=")
+disp("But it is applied through amplifier of gain 100")
+g=100/100
+disp(g,"Therefore, Input voltage required = (V_d)/gain = 100/100 =")
diff --git a/1370/CH9/EX9.19/example9_19.sce b/1370/CH9/EX9.19/example9_19.sce
new file mode 100755
index 000000000..b1fe016e1
--- /dev/null
+++ b/1370/CH9/EX9.19/example9_19.sce
@@ -0,0 +1,9 @@
+//example9.19
+clc
+disp("l=1.5 cm, d=5 mm, L=50 cm, V_a=2000 V")
+v=sqrt((2*2000*1.6*10^-19)/(9.107*10^-31))
+disp(v,"1. v_ox(in m/s)=Beam velocity=sqrt((2*q*V_a)/m)=")
+s=((1.5*10^-2)*(50*10^-2))/((2*5*10^-3)*2000)
+disp(s,"S(in m/V)=D/(V_d)=(l*L)/(2*d*V_a)=")
+g=1/(3.75*10^-4)
+disp(g,"G(in V/m)=1/S=")
diff --git a/1370/CH9/EX9.2/example9_2.sce b/1370/CH9/EX9.2/example9_2.sce
new file mode 100755
index 000000000..23e157cc5
--- /dev/null
+++ b/1370/CH9/EX9.2/example9_2.sce
@@ -0,0 +1,7 @@
+//example9.2
+clc
+disp("Initially electron is at rest and V=200 V")
+disp("Therefore, v(in m/sec)=sqrt(2*q*V/m)=(5.94*10^5)*sqrt(V)")
+v=(5.94*10^5)*sqrt(200)
+format(8)
+disp(v,"= (5.94*10^5)*sqrt(200) = ")
diff --git a/1370/CH9/EX9.4/example9_4.sce b/1370/CH9/EX9.4/example9_4.sce
new file mode 100755
index 000000000..afcc68b24
--- /dev/null
+++ b/1370/CH9/EX9.4/example9_4.sce
@@ -0,0 +1,12 @@
+//example9.4
+clc
+disp("d=1 cm, L=33 cm, l=4.5 cm, (V_a)=300 V, (V_d)=50 V")
+v=sqrt((2*1.6*300*10^-19)/(9.107*10^-31))
+format(9)
+disp(v,"i) (v_ox[in m/s])=sqrt(2*q*(V_a)/m)=sqrt((2*1.6*300*10^-19)/(9.107*10^-13))=")
+d=((4.5*10^-2)*(33*10^-2)*50)/(2*300*10^-2)
+format(7)
+disp(d,"ii) D(in m)=(l*L*(V_d))/(2*d*V_a)= ")
+s=0.1237/50
+format(9)
+disp(s,"iii) S(in m/V)=D/(V_d)= ")
diff --git a/1370/CH9/EX9.7/example9_7.sce b/1370/CH9/EX9.7/example9_7.sce
new file mode 100755
index 000000000..efb63febe
--- /dev/null
+++ b/1370/CH9/EX9.7/example9_7.sce
@@ -0,0 +1,15 @@
+//exmaple9.7
+clc
+disp("phi=8 degree, l=3 cm, B=0.6 mT=0.6*10^-3 Wb/m^2")
+disp("a) phi=(l*q*B)/(m*v) where v= velocity of electrons")
+disp("But phi must be in radians")
+p=(8*%pi)/180
+format(7)
+disp(p,"Therefore, phi=8 degree=(8*pi)/180 radians= ")
+disp("Therefore, 0.1396 = ((3*10^-2)*(1.6*10^-19)*(0.6*10^-3))/(9.107*10^-31 *v)")
+v=((3*10^-2)*(1.6*10^-19)*(0.6*10^-3))/(0.1396*9.107*10^-31)
+format(9)
+disp(v,"Therefore, v(in m/s)=")
+disp("b) f_m(in N) = (B*q*v) = force on each electron")
+f=(0.6*10^-3)*(1.6*10^-19)*(22.65*10^6)
+disp(f,"= (0.6*10^-3)*(1.6*10^-19)*(22.65*10^6) = ")
diff --git a/1370/CH9/EX9.8/example9_8.sce b/1370/CH9/EX9.8/example9_8.sce
new file mode 100755
index 000000000..24bfe2500
--- /dev/null
+++ b/1370/CH9/EX9.8/example9_8.sce
@@ -0,0 +1,14 @@
+//example9.8
+clc
+disp("It can be observed that the screen is divided such that one part is subdivided into 5 units.")
+disp("Therefore, 1 subdivision = 1/5 = 0.2 units")
+disp("It can be observed that positive peak of signal corresponds to two full divisions and three subdivisions. Hence positive peak is 2+3*0.2=2.6 units while the negative peak also corresponds to 2.6 units.")
+v=2.6+2.6
+disp(v,"Therefore, (V_pp)[in divisions]=Peak to peak=2.6+2.6=")
+v=5.2*2*10^-3
+disp(v,"Therefore, (V_pp)[in V]=Number of divisions*volts/divisions= ")
+a=10.4/2
+disp(a,"Therefore, (V_m)[in mV]=Amplitude=(V_pp)/2=")
+v=5.2/(sqrt(2))
+format(8)
+disp(v,"and, (V_RMS)[in mV]= (V_m)/sqrt(2)= ")