From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 1370/CH4/EX4.1/Exp4_1.sce | 12 ++++++++++++ 1370/CH4/EX4.10/Exp4_10.sce | 39 ++++++++++++++++++++++++++++++++++++++ 1370/CH4/EX4.11/Exp4_11.sce | 46 +++++++++++++++++++++++++++++++++++++++++++++ 1370/CH4/EX4.12/Exp4_12.sce | 36 +++++++++++++++++++++++++++++++++++ 1370/CH4/EX4.13/Exp4_13.sce | 11 +++++++++++ 1370/CH4/EX4.14/Exp4_14.sce | 15 +++++++++++++++ 1370/CH4/EX4.15/Exp4_15.sce | 21 +++++++++++++++++++++ 1370/CH4/EX4.16/Exp4_16.sce | 18 ++++++++++++++++++ 1370/CH4/EX4.17/Exp4_17.sce | 31 ++++++++++++++++++++++++++++++ 1370/CH4/EX4.18/Exp4_18.sce | 36 +++++++++++++++++++++++++++++++++++ 1370/CH4/EX4.19/Exp4_19.sce | 37 ++++++++++++++++++++++++++++++++++++ 1370/CH4/EX4.2/Exp4_2.sce | 12 ++++++++++++ 1370/CH4/EX4.20/Exp4_20.sce | 25 ++++++++++++++++++++++++ 1370/CH4/EX4.21/Exp4_21.sce | 29 ++++++++++++++++++++++++++++ 1370/CH4/EX4.3/Exp4_3.sce | 29 ++++++++++++++++++++++++++++ 1370/CH4/EX4.4/Exp4_4.sce | 27 ++++++++++++++++++++++++++ 1370/CH4/EX4.5/Exp4_5.sce | 25 ++++++++++++++++++++++++ 1370/CH4/EX4.6/Exp4_6.sce | 31 ++++++++++++++++++++++++++++++ 1370/CH4/EX4.7/Exp4_7.sce | 41 ++++++++++++++++++++++++++++++++++++++++ 1370/CH4/EX4.8/Exp4_8.sce | 43 ++++++++++++++++++++++++++++++++++++++++++ 1370/CH4/EX4.9/Exp4_9.sce | 29 ++++++++++++++++++++++++++++ 21 files changed, 593 insertions(+) create mode 100755 1370/CH4/EX4.1/Exp4_1.sce create mode 100755 1370/CH4/EX4.10/Exp4_10.sce create mode 100755 1370/CH4/EX4.11/Exp4_11.sce create mode 100755 1370/CH4/EX4.12/Exp4_12.sce create mode 100755 1370/CH4/EX4.13/Exp4_13.sce create mode 100755 1370/CH4/EX4.14/Exp4_14.sce create mode 100755 1370/CH4/EX4.15/Exp4_15.sce create mode 100755 1370/CH4/EX4.16/Exp4_16.sce create mode 100755 1370/CH4/EX4.17/Exp4_17.sce create mode 100755 1370/CH4/EX4.18/Exp4_18.sce create mode 100755 1370/CH4/EX4.19/Exp4_19.sce create mode 100755 1370/CH4/EX4.2/Exp4_2.sce create mode 100755 1370/CH4/EX4.20/Exp4_20.sce create mode 100755 1370/CH4/EX4.21/Exp4_21.sce create mode 100755 1370/CH4/EX4.3/Exp4_3.sce create mode 100755 1370/CH4/EX4.4/Exp4_4.sce create mode 100755 1370/CH4/EX4.5/Exp4_5.sce create mode 100755 1370/CH4/EX4.6/Exp4_6.sce create mode 100755 1370/CH4/EX4.7/Exp4_7.sce create mode 100755 1370/CH4/EX4.8/Exp4_8.sce create mode 100755 1370/CH4/EX4.9/Exp4_9.sce (limited to '1370/CH4') diff --git a/1370/CH4/EX4.1/Exp4_1.sce b/1370/CH4/EX4.1/Exp4_1.sce new file mode 100755 index 000000000..96f3dfd1a --- /dev/null +++ b/1370/CH4/EX4.1/Exp4_1.sce @@ -0,0 +1,12 @@ +//Example 4.1 +clc +n=120/8 +format(3) +disp(n,"n = slots/pole =") +m=15/3 +disp(m,"m = slots/pole/phase = n/3 =") +beta=180/15 +disp(beta,"beta(in degree) = 180/n =") +kd=(sind(30)/(5*sind(6))) +format(6) +disp(kd,"Therefore, K_d = sin(m*beta/2) / m*sin(beta/2) =") diff --git a/1370/CH4/EX4.10/Exp4_10.sce b/1370/CH4/EX4.10/Exp4_10.sce new file mode 100755 index 000000000..f52f6f7df --- /dev/null +++ b/1370/CH4/EX4.10/Exp4_10.sce @@ -0,0 +1,39 @@ +//Exmaple 4.10 +clc +disp("N_s = 250 r.p.m., f = 50 Hz") +disp("slots = 288, E_line = 6600 V") +disp("N_s = 120*f/P") +p=(120*50)/250 +format(3) +disp(p,"Therefore, P =") +n=288/24 +disp(n,"n = slots/pole =") +m=12/3 +disp(m,"m = n/2 =") +beta=180/12 +disp(beta,"beta = 180/n =") +kd=sind(30)/(4*sind(7.5)) +format(7) +disp(kd,"Therefore, K_d = sin(m*beta/2) / m*sin(beta/2) =") +disp("Now coil is short pitched by 2 slots") +al=2*15 +disp(al,"Therefore, alpha = angle of short pitch = 2 * beta =") +kc=cosd(15) +disp(kc,"Therefore, K_c = cos(alpha/2) =") +disp("Each coil consists of 16 turns, i.e. in a slot each coil side consists of 16 conductors as shown in the fig.4.42 and in each slot there are 2 coil sides. So each slot consists of 16 per coil side x 2 i.e. 32 conductors.") +disp("Therefore, conductors/slot = 32") +disp("Therefore, total conductors = slots x conductors/slot") +z=288*32 +format(5) +disp(z,"Therefore, Z =") +zp=9216/3 +disp(zp,"Therefore, Z_ph = conductors/phase =") +tp=3072/2 +disp(tp,"Therefore, T_ph = Z_ph/2 = ... 2 conductors -> 1 turn") +ep=6600/sqrt(3) +format(8) +disp(ep,"Now E_ph(in V) = E_line / sqrt(3) =") +disp("E_ph = 4.44*K_c*K_d*phi*f*T_ph") +phi=(3810.51/(4.44*0.9659*0.9576*50*1536))*10^3 +format(3) +disp(phi,"Therefore, phi(in mWb) =") diff --git a/1370/CH4/EX4.11/Exp4_11.sce b/1370/CH4/EX4.11/Exp4_11.sce new file mode 100755 index 000000000..7397e1df2 --- /dev/null +++ b/1370/CH4/EX4.11/Exp4_11.sce @@ -0,0 +1,46 @@ +//Example 4.11 +clc +disp("P = 12, N_s = 600 r.p.m") +f=(12*600)/120 +format(3) +disp(f,"Therefore, f(in Hz) = P*N_s/120 =") +disp("(i) Average value of e.m.f in a conductor = 2*f*phi") +rms=1.11*2*60*0.05 +format(5) +disp(rms,"Therefore, r.m.s value(in V) = 1.11*2*f*phi =") +disp("(ii) Average value of e.m.f in a turn = 4*f*phi") +disp("As 2 conductors joined properly form a turn") +rms=1.11*4*60*0.05 +format(6) +disp(rms,"Therefore, r.m.s value(in V) = 1.11*4*f*phi =") +disp("(iii) Now each slot has 10 conductors and 2 coil sides. So,") +c=10/2 +disp(c,"conductors/coil side = 10/2 =") +disp("Such coil sides are connected to another coil sides to form a coil. So in a coil there are 5 turns as shown in fig.4.43") +rmss=13.32*5 +format(5) +disp(rmss,"Therefore, R.M.S value of e.m.f in a coil(in V) = R.M.S value of e.m.f/turn * Number of turns/coil =") +disp("(iv) Now total conductors Z = conductors/slots * Number of slots") +z=10*180 +disp(z,"Therefore, Z =") +zph=1800/3 +disp(zph,"Therefore, Z_ph = Z/3 =") +tph=600/2 +disp(tph,"T_ph = Z_ph/2 =") +n=180/12 +disp(n,"And n = slots/pole =") +m=15/3 +disp(m,"m = n/3 =") +beta=180/15 +disp(beta,"beta(in degree) =") +kd=sind(30)/(5*sind(6)) +format(7) +disp(kd,"Therefore, K_d = sin(m*beta/2) / m*sin(beta/2) =") +disp("E_ph = R.M.S value per turn*T_ph*K_d*K_c") +ep=13.32*300*0.9566*1 +format(8) +disp(ep,"Therefore, E_ph(in V) =") +disp("or E_ph = 4.44*K_c*K_d*phi*f*T_ph") +eph=4.44*0.9566*0.05*60*300 +format(8) +disp(eph,"Therefore, E_ph(in V) =") diff --git a/1370/CH4/EX4.12/Exp4_12.sce b/1370/CH4/EX4.12/Exp4_12.sce new file mode 100755 index 000000000..e0b100f5d --- /dev/null +++ b/1370/CH4/EX4.12/Exp4_12.sce @@ -0,0 +1,36 @@ +//Example 4.12 +clc +disp("P = 6, f = 50 Hz, n = 12 slots/pole, 4 conductors/slot") +disp("For full pitch, n = 12 slots/pole") +ap=60/6 +format(4) +disp(ap,"Actual pitch of winding(in slots) = 5/6 * n =") +ws=12-10 +disp(ws,"so winding shorted by(in slots) =") +disp("Therefore, alpha = short pitch angle = 2 slot angle = 2*beta") +beta=180/12 +disp(beta,"beta(in degree) =") +alp=2*15 +disp(alp,"Therefore, alpha(in degree) = 2*beta =") +kc=cosd(15) +format(7) +disp(kc,"Therefore, K_c = cos(alpha/2) =") +m=12/3 +disp(m,"m(in slots/pole/phase) = n/3 =") +kd=sind(30)/(4*sind(7.5)) +format(8) +disp(kd,"Therefore, K_d = sin(m*beta/2) / m*sin(beta/2) =") +ts=12*6 +disp(ts,"Total slots = n*P =") +z=72*4 +disp(z,"Therefore, Z = total conductors =") +zph=288/3 +disp(zph,"Therefore, Z_ph = Z/3 =") +tph=96/2 +disp(tph,"T_ph = Z_ph/2 =") +disp("Therefore, E_ph = 4.44*K_c*K_d*phi*f*T_ph") +eph=(4.44*0.9659*0.95766*1.5*50*48)*10^-3 +format(8) +disp(eph,"Therefore, E_ph(in kV) =") +el=sqrt(3)*14.7852 +disp(el,"Therefore, E_line(in kV) = sqrt(3)*E_ph =") diff --git a/1370/CH4/EX4.13/Exp4_13.sce b/1370/CH4/EX4.13/Exp4_13.sce new file mode 100755 index 000000000..4bf56f345 --- /dev/null +++ b/1370/CH4/EX4.13/Exp4_13.sce @@ -0,0 +1,11 @@ +//Example 4.13 +clc +disp("The coil span of 120 degree is shown in the fig.4.44") +disp("The angle of shorts pitch is,") +alp=180-120 +format(3) +disp(alp,"alpha(in degree) = 180 - coil span =") +kc=cosd(30) +format(6) +disp("The chording factor is,") +disp(kc,"K_c = cos(alpha/2) =") diff --git a/1370/CH4/EX4.14/Exp4_14.sce b/1370/CH4/EX4.14/Exp4_14.sce new file mode 100755 index 000000000..a9e541a07 --- /dev/null +++ b/1370/CH4/EX4.14/Exp4_14.sce @@ -0,0 +1,15 @@ +//Example 4.14 +clc +disp("V_ph = 200 V, 60 kVA, R_a = 0.016 ohm, X_s = 0.07 ohm") +disp("VA = V_ph*I_ph i.e. 60*10^3 = 200*I_ph ...Single phase") +disp("Therefore, I_ph = 300 A = I_a ...Full load current") +disp("(a) cos(phi) = 1, sin(phi) = 0") +eph=sqrt((((200+((300*0.016)))^2)+((300*0.07)^2))) +disp("Therefore, E_ph^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (I_a*X_a)^2") +format(9) +disp(eph,"E_ph(in V) =") +disp("(b) cos(phi) = 0.7 lagging, sin(phi) = 0.714") +ephi=sqrt(((((200*0.7)+(300*0.016))^2)+(((200*0.7141)+(300*0.07))^2))) +disp("Therefore, E_ph^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*R_a)^2") +format(9) +disp(ephi,"E_ph(in V) =") diff --git a/1370/CH4/EX4.15/Exp4_15.sce b/1370/CH4/EX4.15/Exp4_15.sce new file mode 100755 index 000000000..b275f92c0 --- /dev/null +++ b/1370/CH4/EX4.15/Exp4_15.sce @@ -0,0 +1,21 @@ +//Example 4.15 +clc +disp("V_ph = 550 V, 55 kVA, R_a = 0.2 ohm") +disp("I_f = 10 A, I_ssc = 200 A, V_oc = 450 V") +za=450/200 +format(5) +disp(za,"Therefore, Z_s(in ohm) = V_oc / I_ssc |same I_f =") +xs=sqrt((2.25^2)-(0.2^2)) +format(7) +disp(xs,"(a) X_s(in ohm) = sqrt(Z_a^2 - R_a^2) =") +iph=(55*10^3)/550 +disp("VA = V_ph*I_ph ...As single phase") +disp(iph,"Therefore, I_ph(in A) = I_a = ...Full load armature current") +disp("(b) cos(phi) = 0.8 lagging, sin(phi) = 0.6") +ephi=sqrt(((((550*0.8)+(100*0.2))^2)+(((550*0.6)+(100*2.2411))^2))) +disp("Therefore, E_ph^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*R_a)^2") +format(9) +disp(ephi,"E_ph(in V) =") +r=((720.1652-550)/550)*100 +format(6) +disp(r,"Therefore, %R = (E_ph-V_ph / V_ph)*100 = ") diff --git a/1370/CH4/EX4.16/Exp4_16.sce b/1370/CH4/EX4.16/Exp4_16.sce new file mode 100755 index 000000000..c944e60d3 --- /dev/null +++ b/1370/CH4/EX4.16/Exp4_16.sce @@ -0,0 +1,18 @@ +//Example 4.16 +clc +disp("V_ph = 2200 V, f = 50 Hz, 440 kVA, R_a = 0.5 ohm") +disp("I_aph = 200 A = I_ac, V_oc = 1160 V, I_f = 40 A") +za=1160/200 +format(4) +disp(za,"(a) Z_s(in ohm) = V_oc/I_ssc |same I_f =") +xs=sqrt((5.8^2)-(0.5^2)) +format(7) +disp(xs,"(b) X_s(in ohm) = sqrt(Z_a^2 - R_a^2) =") +disp("(c) cos(phi) = 0.707 leading, sin(phi) = 0.707") +ephi=sqrt(((((2200*0.707)+(200*0.5))^2)+(((2200*0.707)-(200*5.7784))^2))) +disp("Therefore, E_ph^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)-I_a*R_a)^2") +format(10) +disp(ephi,"E_ph(in V) =") +r=((1702.9754-2200)/2200)*100 +format(7) +disp(r,"Therefore, %R(in percentage) = (E_ph-V_ph / V_ph)*100 = ") diff --git a/1370/CH4/EX4.17/Exp4_17.sce b/1370/CH4/EX4.17/Exp4_17.sce new file mode 100755 index 000000000..56fb7534e --- /dev/null +++ b/1370/CH4/EX4.17/Exp4_17.sce @@ -0,0 +1,31 @@ +//Example 4.17 +clc +disp("Assume star connected alternator") +disp("R_a+R_a = V_dc/I_dc") +disp("2R_a = 6/10") +ra=0.6/2 +format(4) +disp(ra,"Therefore, R_a(in ohm/ph) =") +disp("V_oc(line) = 420, V_L = 1100 V, 100 kVA") +disp("Therefore, VA = sqrt(3)*V_L*I_L") +il=(100*10^3)/(sqrt(3)*1100) +format(8) +disp(il,"Therefore, I_L(in A) = I_aph =") +disp("Therefore, Rated armature current = 52.4864 A = I_ssc") +zs=(420/sqrt(3))/52.4864 +format(5) +disp(zs,"Therefore, Z_s(in ohm/ph) = V_oc(ph) / I_ssc(ph) =") +xs=sqrt((4.62^2)-(0.3^2)) +format(7) +disp(xs,"Therefore, X_s(in ohm/ph) = sqrt(Z_a^2 - R_a^2) =") +disp("For cos(phi) = 0.8 lagging, sin(phi) = 0.6") +disp("E_ph^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*R_a)^2") +vph=1100/sqrt(3) +format(8) +disp(vph,"V_ph(in V) = V_L/sqrt(3) =") +ephi=sqrt(((((635.085*0.8)+(52.4864*0.3))^2)+(((635.085*0.6)+(52.4864*4.6102))^2))) +format(9) +disp(ephi,"Therefore, E_ph(in V) =") +r=((813.9654-635.085)/635.085)*100 +format(8) +disp(r,"Therefore, %R(in percentage) = (E_ph-V_ph / V_ph)*100 = ") diff --git a/1370/CH4/EX4.18/Exp4_18.sce b/1370/CH4/EX4.18/Exp4_18.sce new file mode 100755 index 000000000..906a8c5af --- /dev/null +++ b/1370/CH4/EX4.18/Exp4_18.sce @@ -0,0 +1,36 @@ +//Example 4.18 +clc +disp("2R_a = 2 i.e. R_a = 1 ohm/ph") +disp("V_L = 3.6 kVA, MVA = 1") +disp("Therefore, VA = sqrt(3)*V_L*I_L") +il=(1*10^6)/(sqrt(3)*3.6*10^3) +format(8) +disp(il,"Therefore, I_L(in A) = I_aph = ...Star") +disp("From the test results, obtain the open circuit and short circuit characteristics and obtain V_oc for full load I_sc of 160.373 A") +disp("From the graph, for full load short circuit current of 160.37 A, I_f = 53 A and corresponding V_oc(line) = 2250 V") +zs=(2250/sqrt(3))/160.37 +format(4) +disp(zs,"Therefore, Z_s(in ohm/ph) = V_ocph/I_scph |same I_f =") +xs=sqrt((8.1^2)-(1^2)) +format(6) +disp(xs,"Therefore, X_s(in ohm/ph) = sqrt(Z_a^2 - R_a^2) =") +vph=(3.6*10^3)/sqrt(3) +format(8) +disp(vph,"V_ph(in V) = V_L/sqrt(3) =") +disp("I_aph = 160.37 A") +disp("(i) cos(phi) = 0.707 lagging, sin(phi) = 0.707") +disp("Therefore, E_ph^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*R_a)^2") +ephi=sqrt(((((2078.46*0.707)+(160.37*1))^2)+(((2078.46*0.707)+(160.37*8.038))^2))) +format(10) +disp(ephi,"Therefore, E_ph(in V) =") +r=((3204.0356-2078.46)/2078.46)*100 +format(6) +disp(r,"Therefore, %R(in percentage) = (E_ph-V_ph / V_ph)*100 = ") +disp("(ii) cos(phi) = 0.8 leading, sin(phi) = 0.6") +disp("Therefore, E_ph^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)-I_a*R_a)^2") +ephi=sqrt(((((2078.46*0.8)+(160.37*1))^2)+(((2078.46*0.6)-(160.37*8.038))^2))) +format(10) +disp(ephi,"Substituting the values, E_ph(in V) =") +r=((1823.6271-2078.46)/2078.46)*100 +format(6) +disp(r,"Therefore, %R(in percentage) = (E_ph-V_ph / V_ph)*100 = ") diff --git a/1370/CH4/EX4.19/Exp4_19.sce b/1370/CH4/EX4.19/Exp4_19.sce new file mode 100755 index 000000000..8550f3227 --- /dev/null +++ b/1370/CH4/EX4.19/Exp4_19.sce @@ -0,0 +1,37 @@ +//Example 4.19 +clc +disp("1 MVA, V_L = 11 kV, R_a = 0.6 ohm") +disp("VA = sqrt(3)*V_L*I_L") +il=(10^6)/(sqrt(3)*11*10^3) +format(7) +disp(il,"Therefore, I_L(in A) = I_aph(full load) =") +disp("Now I_f = 40 A for I_ssc = 52.486 A. To find Z_s, plot the O.C.C and obtain V_oc for I_f = 40 A") +disp("From the graph, V_oc(line) = 6600 V for I_f = 40 A") +zs=(6000/sqrt(3))/52.486 +format(3) +disp(zs,"Therefore, Z_s(in ohm) = V_ocph/I_ascph |same I_f =") +xs=sqrt((66^2)-(0.6^2)) +format(7) +disp(xs,"Therefore, X_s(in ohm) = sqrt(Z_s^2 - R_a^2) =") +disp("(a) cos(phi) = 0.8 lagging, sin(phi) = 0.6, half load") +ip=0.5*52.486 +format(7) +disp(ip,"At half load, I_aph(in A) = 1/2 * I_aph(FL) =") +vp=(11*10^3)/sqrt(3) +format(9) +disp(vp,"V_ph(in V) = V_L/sqrt(3) =") +disp("E_ph^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*R_a)^2") +ephi=sqrt(((((6350.853*0.8)+(26.243*0.6))^2)+(((6350.853*0.6)+(26.243*65.99))^2))) +format(10) +disp(ephi,"Therefore, E_ph(in V) =") +r=((7529.3113-6350.853)/6350.853)*100 +format(6) +disp(r,"Therefore, %R(in percentage) = (E_ph-V_ph / V_ph)*100 = ") +disp("(b) cos(phi) = 0.9 leading, sin(phi) = 0.4358, full load so I_aph = 52.486 A") +disp("E_ph^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)-I_a*R_a)^2") +ephi=sqrt(((((6350.853*0.9)+(52.486*0.6))^2)+(((6350.853*0.4358)-(52.486*65.99))^2))) +format(9) +disp(ephi,"Therefore, E_ph(in V) =") +r=((5789.231-6350.853)/6350.853)*100 +format(6) +disp(r,"Therefore, %R(in percentage) = (E_ph-V_ph / V_ph)*100 = ") diff --git a/1370/CH4/EX4.2/Exp4_2.sce b/1370/CH4/EX4.2/Exp4_2.sce new file mode 100755 index 000000000..8061b4013 --- /dev/null +++ b/1370/CH4/EX4.2/Exp4_2.sce @@ -0,0 +1,12 @@ +//Example 4.2 +clc +n=36/4 +format(3) +disp(n,"n = slots/pole =") +beta=180/9 +disp(beta,"beta(in degree) = 180/n =") +disp("Now coil is shorted by 1 slot i.e. by 20 to full pitch distance.") +disp("Therefore, alpha = Angle of short pitch = 20") +kc=cosd(10) +format(7) +disp(kc,"Therefore, K_c = cos(alpha/2) =") diff --git a/1370/CH4/EX4.20/Exp4_20.sce b/1370/CH4/EX4.20/Exp4_20.sce new file mode 100755 index 000000000..8ce134acb --- /dev/null +++ b/1370/CH4/EX4.20/Exp4_20.sce @@ -0,0 +1,25 @@ +//Example 4.20 +clc +disp("R_s = 0.6 ohm, X_s = 6 ohm, I_aph = 180 A") +eph=6599/sqrt(3) +format(10) +disp(eph,"E_ph(in V) = E_line/sqrt(3) =") +disp("(a) cos(phi) = 0.9 lagging, sin(phi) = 0.4358") +disp("Therefore, E_ph^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*R_a)^2") +disp("Therefore, (3809.9344)^2 = [V_ph*0.9 + 180*0.6]^2 + [V_ph*0.4358 + 180*6]^2") +disp("Therefore, 14.5156*10^6 = 0.81*V_ph^2 + 194.4*V_ph + 11664 + 0.1899*V_ph^2 + 941.328*V_ph + 1166400") +disp("Therefore, V_ph^2 + 1135.728*V_ph - 13337536 = 0") +disp("Therefore, V_ph = 3128.08, -4263.808 ...Neglect negative value") +disp("Therefore, V_ph = 3128.08 V ...Terminal voltage") +r=((3809.9344-3128.08)/3128.08)*100 +format(8) +disp(r,"Therefore, %R(in percentage) = (E_ph-V_ph / V_ph)*100 = ") +disp("(b) cos(phi) = 0.8 leading, sin(phi) = 0.6") +disp("Therefore, E_ph^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*R_a)^2") +disp("Therefore, (3809.9344)^2 = [V_ph*0.8 + 180*0.6]^2 + [V_ph*0.6 + 180*6]^2") +disp("Therefore, 14.5156*10^6 = 0.64*V_ph^2 + 172.8*V_ph + 11664 + 0.36*V_ph^2 - 1296*V_ph + 1166400") +disp("Therefore, V_ph^2 - 1123.2*V_ph - 13337536 = 0") +disp("Therefore, V_ph = 4256.5872 V ...Neglect negative value") +r=((3809.9344-4256.5872)/4256.5872)*100 +format(7) +disp(r,"Therefore, %R(in percentage) = (E_ph-V_ph / V_ph)*100 = ") diff --git a/1370/CH4/EX4.21/Exp4_21.sce b/1370/CH4/EX4.21/Exp4_21.sce new file mode 100755 index 000000000..f83622276 --- /dev/null +++ b/1370/CH4/EX4.21/Exp4_21.sce @@ -0,0 +1,29 @@ +//Example 4.21 +clc +disp("1500 kVA, V_L = 12 kV, R_a = 2 ohm, X_s = 10 ohm") +vp=(12*10^3)/sqrt(3) +format(10) +disp(vp," V_ph(in V) = ...Star") +disp("P_L = sqrt(3)*V_L*I_L*cos(phi)") +disp("(a) cos(phi) = 0.8 lagging, sin(phi) = 0.6") +il=(1200*10^3)/(sqrt(3)*0.8*12*10^3) +format(7) +disp(il,"Therefore, I_L(in A) = I_aph = ...Star") +disp(" E_ph^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*R_a)^2") +ephi=sqrt(((((6928.2032*0.8)+(72.168*2))^2)+(((6928.2032*0.6)+(72.168*10))^2))) +format(9) +disp(ephi,"Therefore, E_ph(in V) =") +r=((7492.768-6928.2032)/6928.2032)*100 +format(6) +disp(r,"Therefore, %R(in percentage) = (E_ph-V_ph / V_ph)*100 = ") +disp("(b) cos(phi) = 0.707 leading, sin(phi) = 0.707") +il=(1200*10^3)/(sqrt(3)*0.707*12*10^3) +format(6) +disp(il,"Therefore, I_L(in A) = I_a = ...Star") +disp(" E_ph^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*R_a)^2") +ephi=sqrt(((((6928.2032*0.707)+(81.66*2))^2)+(((6928.2032*0.707)-(81.66*10))^2))) +format(10) +disp(ephi,"Therefore, E_ph(in V) =") +r=((6502.2433-6928.2032)/6928.2032)*100 +format(6) +disp(r,"Therefore, %R(in percentage) = (E_ph-V_ph / V_ph)*100 = ") diff --git a/1370/CH4/EX4.3/Exp4_3.sce b/1370/CH4/EX4.3/Exp4_3.sce new file mode 100755 index 000000000..55b5e024b --- /dev/null +++ b/1370/CH4/EX4.3/Exp4_3.sce @@ -0,0 +1,29 @@ +//Example 4.3 +clc +disp("Ns = 250 r.p.m, f = 50 Hz") +disp("Ns = 120f / P") +p=(120*50)/250 +disp(p,"Therefore, P = ") +n=216/24 +format(3) +disp(n,"n = slots/pole =") +m=9/3 +disp(m,"m = n/3 =") +beta=180/9 +disp(beta,"beta(in degree) = 180/n =") +kd=(sind(30)/(3*sind(10))) +format(6) +disp(kd,"Therefore, K_d = sin(m*beta/2) / m*sin(beta/2) =") +disp("K_c = 1 as full pitch coils.") +z=216*5 +format(8) +disp(z,"Total number of conductors Z = ") +zph=1080/3 +disp(zph,"Therefore, Z_ph = Z/3 =") +tph=360/2 +disp(tph,"Therefore, T_ph = Z_ph/2 = ... 2 conductors constitute 1 turn") +eph=4.44*0.9597*30*50*180*10^-3 +format(8) +disp(eph,"E_ph(in V) = 4.44*Kc*Kd*f*phi*T_ph =") +el=sqrt(3)*1150.48 +disp(el,"E_line(in V) = sqrt(3)*E_ph = ...star connection") diff --git a/1370/CH4/EX4.4/Exp4_4.sce b/1370/CH4/EX4.4/Exp4_4.sce new file mode 100755 index 000000000..3ff1d775e --- /dev/null +++ b/1370/CH4/EX4.4/Exp4_4.sce @@ -0,0 +1,27 @@ +//Example 4.4 +clc +disp("E_line = 4000 V, f = 50 Hz, N_s = 750 r.p.m, m = 3, K_c = 1") +eph=4000/sqrt(3) +format(9) +disp(eph,"E_ph(in V) = E_line/sqrt(3) =") +p=(120*50)/750 +disp("(i) N_s = 120f / P") +disp(p,"Therefore, P =") +disp("(ii) n = slots/pole = m*3 = 9") +b=180/9 +disp(b,"beta = 180/n =") +kd=sind(30)/(3*sind(10)) +format(7) +disp(kd,"Therefore, K_d = sin(m*beta/2) / m*sin(beta/2) =") +ns=9*8 +disp(ns,"Number of slots = n * P =") +z=72*12 +disp(z,"Z = Slots * counductors/slots =") +zp=864/3 +disp(zp,"Therefore, Z_ph = Z/3 =") +tp=288/2 +disp(tp,"Therefore, T_ph = Z_ph/2 =") +phi=2309.401/(4.44*0.9598*50*144) +format(8) +disp("Therefore, E_ph = 4.44*K_c*K_d*phi*f*T_ph") +disp(phi,"Therefore, phi(in Wb) = ... flux per pole") diff --git a/1370/CH4/EX4.5/Exp4_5.sce b/1370/CH4/EX4.5/Exp4_5.sce new file mode 100755 index 000000000..13abcfb02 --- /dev/null +++ b/1370/CH4/EX4.5/Exp4_5.sce @@ -0,0 +1,25 @@ +//Example 4.5 +clc +disp("P = 100 kW, cos(phi) = 0.8 lagging") +disp("V_L = 11 kV, R_a = 0.4 ohm, X_s = 3 ohm") +disp("For three phase load, P = sqrt(3)*V_L*I_L*cos(phi)") +il=(1000*10^3)/(sqrt(3)*11*0.8*10^3) +format(5) +disp(il,"Therefore, I_L(in A) =") +disp("Now I_L = I_a as for star connected alternator I_L = I_ph") +disp("Therefore, I_aph = 65.6 A ... full load per phase armature current") +disp("For lagging p.f. loads,") +disp("(E_ph)^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*X_s)^2") +vp=(11*10^3)/sqrt(3) +format(9) +disp(vp,"Now V_ph = V_L / sqrt(3) = ... as star connected") +eph=(((6350.853*0.8)+(65.6*0.4))^2)+(((6350.853*0.6)+(65.6*3))^2) +p=sqrt(eph) +format(8) +disp(p,"Therefore, E_ph(in V) = ") +el=(sqrt(3)*6491.47)*10^-3 +format(6) +disp(el,"Therefore, E_line(in kV) =") +regu=((6491.47-6350.853)/6350.853)*100 +disp(regu,"and %Regulation(in percentage) = (E_ph-V_ph / V_ph)*100 =") +disp("For lagging p.f. loads, regulation is always positive.") diff --git a/1370/CH4/EX4.6/Exp4_6.sce b/1370/CH4/EX4.6/Exp4_6.sce new file mode 100755 index 000000000..2ebc158f5 --- /dev/null +++ b/1370/CH4/EX4.6/Exp4_6.sce @@ -0,0 +1,31 @@ +//Example 4.6 +clc +disp("kVA = 1200, V_L = 6600 V, R_a = 0.25 ohm, X_s = 5 ohm") +disp("Now kVA = sqrt(3)*V_L*I_L*10^-3") +il=1200/(sqrt(3)*6600*10^-3) +format(7) +disp(il,"Therefore, I_L(in A) =") +disp("Therefore, I_aph = 104.97 A ... as star connected.") +disp("This is its full load current") +vph=6600/sqrt(3) +format(9) +disp(vph," V_ph(in V) = V_L/3 =") +disp("(i) For 0.8 lagging p.f. load") +disp("(E_ph)^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*X_s)^2") +eph=(((3810.512*0.8)+(104.97*0.25))^2)+(((3810.512*0.6)+(104.97*5))^2) +p=sqrt(eph) +format(8) +disp(p,"Therefore, E_ph(in V) = ") +regu=((4166.06-3810.512)/3810.512)*100 +format(5) +disp(regu,"Therefore, %Regulation(in percentage) = (E_ph-V_ph / V_ph)*100 =") +disp("(ii) For 0.8 leading p.f. load") +disp("(E_ph)^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*X_s)^2") +eph=(((3810.512*0.8)+(104.97*0.25))^2)+(((3810.512*0.6)-(104.97*5))^2) +p=sqrt(eph) +format(8) +disp(p,"Therefore, E_ph(in V) = ") +regu=((3543.47-3810.512)/3810.512)*100 +format(5) +disp(regu,"Therefore, %Regulation(in percentage) = (E_ph-V_ph / V_ph)*100 =") +disp("The regulation is negative for leading p.f. loads") diff --git a/1370/CH4/EX4.7/Exp4_7.sce b/1370/CH4/EX4.7/Exp4_7.sce new file mode 100755 index 000000000..6f736cac8 --- /dev/null +++ b/1370/CH4/EX4.7/Exp4_7.sce @@ -0,0 +1,41 @@ +//Example 4.7 +clc +disp("V_L = 866 V, kVA = 100") +disp("Therefore, kVA = sqrt(3)*V_L*I_L*10^-3") +il=100/(sqrt(3)*866*10^-3) +format(6) +disp(il,"Therefore, I_L(in A) =") +disp("Therefore, I_aph F.L. = I_L = 66.67 A ... as star connected alternator") +disp("V_ph = Rated terminal voltage per phase = V_L/3") +vp=866/sqrt(3) +disp(vp,"Therefore, V_ph(in V) =") +disp("For calculation of Z_s on full load, it is necessary to plot O.C.C. and S.C.C. to the scale") +disp("Note : If for same value of I_f, both I_ssc and V_oc can be obtained from the table itself, graph need not be plotted. In some problems, the values of V_oc and I_ssc for same I_f are directly given, in that case too, the graph need not be plotted.") +disp("In this problem, I_ssc = 25 A for I_f = 1 A") +disp("But we want to calculate Z_s for I_ssc = its full load value which is 66.67 A. So graph is required to be plotted.") +disp("For plotting O.C.C. the lines values of open circuit voltage are converted to phase by dividing each value by sqrt(3)") +disp("From S.C.C.") +disp("For I_scc = 66.67 A, I_f = 2.4 A") +disp("From O.C.C.") +disp("For I_f = 2.4 A, (V_oc)_ph = 240 V") +disp("From the graph, Z_s for full load is,") +disp("Z_s = (V_oc)_ph / (I_scc)_ph |for same excitation") +zs=240/66.67 +format(4) +disp(zs,"Therefore, Z_s(in ohm/phase) =") +disp("R_a = 0.15 ohm/phase") +xs=sqrt((3.6^2)-(0.15^2)) +format(6) +disp(xs,"Therefore, X_s(in ohm/phase) = sqrt(Z_s^2 - R_a^2) =") +disp("V_ph F.L = 500 V") +disp("cos(phi) = 0.8") +disp("Therefore, sin(phi) = 0.6 lagging p.f.") +disp("So E_ph for full load, 0.8 lagging p.f. condition can be calculated as,") +disp("(E_ph)^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*X_s)^2") +eph=(((500*0.8)+(66.67*0.15))^2)+(((500*0.6)+(66.67*3.597))^2) +p=sqrt(eph) +format(7) +disp(p,"Therefore, E_ph(in V) = ") +regu=((677.86-500)/500)*100 +format(6) +disp(regu,"Therefore, %Regulation(in percentage) = (E_ph-V_ph / V_ph)*100 =") diff --git a/1370/CH4/EX4.8/Exp4_8.sce b/1370/CH4/EX4.8/Exp4_8.sce new file mode 100755 index 000000000..fe30895fc --- /dev/null +++ b/1370/CH4/EX4.8/Exp4_8.sce @@ -0,0 +1,43 @@ +//Example 4.8 +clc +disp("V_L = 230 V, R_a between lines = 1.8 ohm") +disp("(V_oc)_line = 230 V, I_scc = 12.5 A for same I_f = 0.38 A") +disp("The value of open circuit e.m.f is always line value unless and until specifically mentioned to be a phase value") +disp("Therefore, Z_s = (V_oc)_ph / (I_scc)_ph |for same I_f") +voc=230/sqrt(3) +format(7) +disp(voc," (V_oc)_ph(in V) =") +zs=132.79/12.5 +disp(zs,"Therefore, Z_s(in ohm/phase) =") +disp("R_a between lines = 1.8 ohm") +disp("For star connection, R_a between the terminals is 2 R_a per ph") +disp("Therefore, 2R_a per ph = 1.8") +disp("Therefore, R_a per ph = 0.9 ohm") +xs=sqrt((10.623^2)-(0.9^2)) +format(7) +disp(xs,"Therefore, X_s(in ohm/phase) = sqrt(Z_s^2 - R_a^2) =") +disp("Now regulated is asked for I_a = 10 A") +disp("Now : The value of Z_s is calculated for I_s = 12.5 A and not at I_s = 10 A. It will be different for I_s = 10 A. But in this problem the test results are not given hence it is not possible to sketch the graphs to detemine Z_s at I_a = 10 A. So value of Z_s calculated is assumed to be same as I_a = 10 A") +disp("(i) For 0.8 lagging p.f.") +vph=230/sqrt(3) +format(7) +disp(vph,"V_ph(in V) = V_L/sqrt(3) =") +disp("I_a = 10 A") +disp("cos(phi) = 0.8 so sin(phi) = 0.6") +disp("(E_ph)^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*X_s)^2") +eph=(((132.79*0.8)+(10*0.9))^2)+(((132.79*0.6)+(10*10.585))^2) +p=sqrt(eph) +format(8) +disp(p,"Therefore, E_ph(in V) = ") +regu=((218.39-132.79)/132.79)*100 +format(6) +disp(regu,"Therefore, %Regulation(in percentage) = (E_ph-V_ph / V_ph)*100 =") +disp("(ii) For 0.8 leading p.f.") +disp("(E_ph)^2 = (V_ph*cos(phi)+I_a*R_a)^2 + (V_ph*sin(phi)+I_a*X_s)^2") +eph=(((132.79*0.8)+(10*0.9))^2)+(((132.79*0.6)-(10*10.585))^2) +p=sqrt(eph) +format(8) +disp(p,"Therefore, E_ph(in V) = ") +regu=((118.168-132.79)/132.79)*100 +format(6) +disp(regu,"Therefore, %Regulation(in percentage) = (E_ph-V_ph / V_ph)*100 =") diff --git a/1370/CH4/EX4.9/Exp4_9.sce b/1370/CH4/EX4.9/Exp4_9.sce new file mode 100755 index 000000000..f44cedef7 --- /dev/null +++ b/1370/CH4/EX4.9/Exp4_9.sce @@ -0,0 +1,29 @@ +//Example 4.9 +clc +disp("P = 10, N_a = 600 r.p.m, slots = 90") +disp("phi = 16 mWb, E_line = 11 kW") +f=6000/120 +format(3) +disp("N_s = 120f / P") +disp(f,"Therefore, f(in Hz) =") +eph=(11*10^3)/sqrt(3) +format(9) +disp(eph,"For star connection, E_ph(in V) = E_line/sqrt(3) =") +disp("Now E_ph = 4.44*K_c*K_d*phi*f*T_ph") +disp("K_c = 1 as no information about short pitching is given") +n=90/10 +disp(n,"n = slots/pole =") +m=9/3 +disp(m,"m = slots/pole/phase = n/3 =") +beta=180/9 +disp(beta,"beta = slot angle = 180/n =") +kd=sind(30)/(3*sind(10)) +format(7) +disp(kd,"Therefore, K_d = sin(m*beta/2) / m*sin(beta/2) =") +disp("Therefore, 6350.853 = 4.44*1*0.9598*16*10^-3*50*T_ph") +tph=6350.853/(4.44*1*0.9598*16*50*10^-3) +format(5) +disp(tph,"Therefore, T_ph =") +zph=2*1862 +disp(zph,"Therefore, Z_ph = 2*T_ph =") +disp("These are armature conductors per phase required to be connected in series.") -- cgit