diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /1040/CH8/EX8.2/Chapter8_Ex2.sce | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '1040/CH8/EX8.2/Chapter8_Ex2.sce')
-rw-r--r-- | 1040/CH8/EX8.2/Chapter8_Ex2.sce | 62 |
1 files changed, 62 insertions, 0 deletions
diff --git a/1040/CH8/EX8.2/Chapter8_Ex2.sce b/1040/CH8/EX8.2/Chapter8_Ex2.sce new file mode 100644 index 000000000..37b9fc4ae --- /dev/null +++ b/1040/CH8/EX8.2/Chapter8_Ex2.sce @@ -0,0 +1,62 @@ +//Harriot P., 2003, Chemical Reactor Design (I-Edition), Marcel Dekker, Inc., USA, pp 436.
+//Chapter-8 Ex8.2 Pg No. 329
+//Title:External Mass Transfer resistance
+//===========================================================================================================
+
+clear
+clc
+//INPUT
+Chi=1.9;
+M_A=2;//Molecular weight of Hydrogen
+M_B=32;//Molecular weight of methanol
+rho=0.79;//Density of methanol
+myu=0.52;//Viscosity of methanol (cP)
+V_A=14.3//Molar volume H2
+T_C=30;//Operating Temperature(°C)
+T_K=273+T_C//Temperature (K)
+Epsilon=0.4;//Porosity
+rho_cat_dry=1.2;//Density of dry catalyst (g/cm3)
+rho_s=2;//Solid density
+g=9.8// Acceleration due to gravity(m/s2)
+d_p=10^(-3);//Size of catalyst (cm)
+lambda=1.3;//From equation 8.4 Pg. No. 317
+r_vol=2.4;//Measured rate (L/min)
+V_mol=22.4;//(L/mol) assuming ideal gas
+C_H2=4.1*10^(-3);//From Figure 8.3 (mol/L) Pg. No. 321
+
+
+//CALCULATION
+//Assume D_H2 is three times the value given by the Wilke–Chang Equation
+D_H2=3*(7.4*(10^(-8))*(Chi*M_B)^(0.5)*T_K)/(myu*(V_A)^0.6)
+Sc=myu*10^-2/(rho*D_H2);
+rho_cat_methanol=(1-Epsilon)*rho_s+Epsilon*rho;
+delta_rho=rho_cat_methanol-rho;
+v_t=(g*10*(d_p)^2*delta_rho)/(18*myu*10^-2);// From Stoke's Law
+Re=rho*v_t*d_p/(myu*10^-2);
+Sh_star=2+0.6*(Re)^(0.5)*(Sc^(1/3));//Refer equation 8.9 Pg.No.325
+kc_star=Sh_star*D_H2/d_p;
+kc=2*kc_star;//With vigorous agitation
+a_c=6*lambda/(d_p*rho_cat_dry);//From Equation 8.4 Pg. No. 317
+r_mol=r_vol/(22.4*60);//
+delta_C_ext=r_mol*10^3/(kc*a_c);
+percent_ext_resistance=(delta_C_ext/C_H2)*100;
+
+//OUTPUT
+mprintf('\nThe external mass transfer resistance is about %0.0f%% of overall resistance',percent_ext_resistance);
+mprintf('\n The external mass transfer resistance is barely significant');
+
+//FILE OUTPUT
+fid= mopen('.\Chapter8-Ex2-Output.txt','w');
+mfprintf(fid,'\nThe external mass transfer resistance is about %0.0f%% of overall resistance',percent_ext_resistance);
+mfprintf(fid,'\n The external mass transfer resistance is barely significant');
+mclose(fid);
+//=====================================================END OF PROGRAM=========================================
+
+
+
+
+
+
+
+
+
|