From 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Tue, 10 Oct 2017 12:27:19 +0530 Subject: initial commit / add all books --- 1040/CH8/EX8.2/Chapter8_Ex2.sce | 62 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 62 insertions(+) create mode 100644 1040/CH8/EX8.2/Chapter8_Ex2.sce (limited to '1040/CH8/EX8.2/Chapter8_Ex2.sce') diff --git a/1040/CH8/EX8.2/Chapter8_Ex2.sce b/1040/CH8/EX8.2/Chapter8_Ex2.sce new file mode 100644 index 000000000..37b9fc4ae --- /dev/null +++ b/1040/CH8/EX8.2/Chapter8_Ex2.sce @@ -0,0 +1,62 @@ +//Harriot P., 2003, Chemical Reactor Design (I-Edition), Marcel Dekker, Inc., USA, pp 436. +//Chapter-8 Ex8.2 Pg No. 329 +//Title:External Mass Transfer resistance +//=========================================================================================================== + +clear +clc +//INPUT +Chi=1.9; +M_A=2;//Molecular weight of Hydrogen +M_B=32;//Molecular weight of methanol +rho=0.79;//Density of methanol +myu=0.52;//Viscosity of methanol (cP) +V_A=14.3//Molar volume H2 +T_C=30;//Operating Temperature(°C) +T_K=273+T_C//Temperature (K) +Epsilon=0.4;//Porosity +rho_cat_dry=1.2;//Density of dry catalyst (g/cm3) +rho_s=2;//Solid density +g=9.8// Acceleration due to gravity(m/s2) +d_p=10^(-3);//Size of catalyst (cm) +lambda=1.3;//From equation 8.4 Pg. No. 317 +r_vol=2.4;//Measured rate (L/min) +V_mol=22.4;//(L/mol) assuming ideal gas +C_H2=4.1*10^(-3);//From Figure 8.3 (mol/L) Pg. No. 321 + + +//CALCULATION +//Assume D_H2 is three times the value given by the Wilke–Chang Equation +D_H2=3*(7.4*(10^(-8))*(Chi*M_B)^(0.5)*T_K)/(myu*(V_A)^0.6) +Sc=myu*10^-2/(rho*D_H2); +rho_cat_methanol=(1-Epsilon)*rho_s+Epsilon*rho; +delta_rho=rho_cat_methanol-rho; +v_t=(g*10*(d_p)^2*delta_rho)/(18*myu*10^-2);// From Stoke's Law +Re=rho*v_t*d_p/(myu*10^-2); +Sh_star=2+0.6*(Re)^(0.5)*(Sc^(1/3));//Refer equation 8.9 Pg.No.325 +kc_star=Sh_star*D_H2/d_p; +kc=2*kc_star;//With vigorous agitation +a_c=6*lambda/(d_p*rho_cat_dry);//From Equation 8.4 Pg. No. 317 +r_mol=r_vol/(22.4*60);// +delta_C_ext=r_mol*10^3/(kc*a_c); +percent_ext_resistance=(delta_C_ext/C_H2)*100; + +//OUTPUT +mprintf('\nThe external mass transfer resistance is about %0.0f%% of overall resistance',percent_ext_resistance); +mprintf('\n The external mass transfer resistance is barely significant'); + +//FILE OUTPUT +fid= mopen('.\Chapter8-Ex2-Output.txt','w'); +mfprintf(fid,'\nThe external mass transfer resistance is about %0.0f%% of overall resistance',percent_ext_resistance); +mfprintf(fid,'\n The external mass transfer resistance is barely significant'); +mclose(fid); +//=====================================================END OF PROGRAM========================================= + + + + + + + + + -- cgit