summaryrefslogtreecommitdiff
path: root/1040/CH7
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:27:19 +0530
committerprashantsinalkar2017-10-10 12:27:19 +0530
commit7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch)
treedbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /1040/CH7
parentb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff)
downloadScilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip
initial commit / add all books
Diffstat (limited to '1040/CH7')
-rw-r--r--1040/CH7/EX7.1.a/Chapter7_Ex1_a.sce43
-rw-r--r--1040/CH7/EX7.1.a/Chapter7_Ex1_a_Output.txt4
-rw-r--r--1040/CH7/EX7.1.b/Chapter7_Ex1_b.sce51
-rw-r--r--1040/CH7/EX7.1.b/Chapter7_Ex1_b_Output.txt3
-rw-r--r--1040/CH7/EX7.1/Chapter7_Ex1.sce78
-rw-r--r--1040/CH7/EX7.2/Chapter7_Ex2.sce29
-rw-r--r--1040/CH7/EX7.3/Chapter7_Ex3.sce61
-rw-r--r--1040/CH7/EX7.4/Chapter7_Ex4.sce52
-rw-r--r--1040/CH7/EX7.5.a/Chapter7_Ex5_a.sce57
-rw-r--r--1040/CH7/EX7.5.a/Chapter7_Ex5_a_Output.txt4
-rw-r--r--1040/CH7/EX7.5.b/Chapter7_Ex5_b.sce45
-rw-r--r--1040/CH7/EX7.5.b/Chapter7_Ex5_b_Output.txt5
-rw-r--r--1040/CH7/EX7.5.c/Chapter7_Ex5_c.sce44
-rw-r--r--1040/CH7/EX7.5.c/Chapter7_Ex5_c_Output.txt5
-rw-r--r--1040/CH7/EX7.5/Chapter7_Ex5.sce114
-rw-r--r--1040/CH7/EX7.6.a/Chapter7_Ex6_a.sce44
-rw-r--r--1040/CH7/EX7.6.a/Chapter7_Ex6_a_Output.txt2
-rw-r--r--1040/CH7/EX7.6.b/Chapter7_Ex6_b.sce48
-rw-r--r--1040/CH7/EX7.6.b/Chapter7_Ex6_b_Output.txt3
-rw-r--r--1040/CH7/EX7.6.c/Chapter7_Ex6_c.sce43
-rw-r--r--1040/CH7/EX7.6.c/Chapter7_Ex6_c_Output.txt3
-rw-r--r--1040/CH7/EX7.6.d/Chapter7_Ex6_d.sce46
-rw-r--r--1040/CH7/EX7.6.d/Chapter7_Ex6_d_Output.txt4
-rw-r--r--1040/CH7/EX7.6/Chapter7_Ex6.sce148
-rw-r--r--1040/CH7/EX7.7.a/Chapter7_Ex7_a.sce79
-rw-r--r--1040/CH7/EX7.7.a/Chapter7_Ex7_a_Output.txt6
-rw-r--r--1040/CH7/EX7.7/Chapter7_Ex7.sce109
27 files changed, 1130 insertions, 0 deletions
diff --git a/1040/CH7/EX7.1.a/Chapter7_Ex1_a.sce b/1040/CH7/EX7.1.a/Chapter7_Ex1_a.sce
new file mode 100644
index 000000000..fae0a8e8c
--- /dev/null
+++ b/1040/CH7/EX7.1.a/Chapter7_Ex1_a.sce
@@ -0,0 +1,43 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436.
+//Chapter-7 Ex7.1.a Pg No.260
+//Title:Overall Reaction Rate Coefficient and Percent Resistance
+//===========================================================================================================
+clear
+clc
+//INPUT
+k2=8.5;//Reaction rate constant (L/mol-sec)
+T=50;//Reaction condition temperature(°C)
+P=2;//Reaction Pressure (atm)
+H_O2=8*10^4;// Solubility (atm/mol fraction)
+F=17000//Feed rate (L/hr)
+C_B_feed=1.6;//Feed concentration(M)
+C_B_product=0.8;//Product concentration(M)
+k_L_a=900;//Liquid film mass transfer coefficient(hr-1)
+k_g_a=80;//Gas film mass transfer coefficient(mol/hr L atm)
+Epsilon=0.1;//Porosity
+
+
+//CALCULATION
+H_O2_conv=H_O2*18/1000;// Convert (atm L/mole O2)
+k_L_a_by_H=k_L_a/H_O2_conv;
+reaction_resistance=H_O2_conv/(k2*C_B_product*(1-Epsilon)*3600);
+Kg_a=1/((1/k_g_a)+(1/k_L_a_by_H)+(reaction_resistance));//Refer equation7.10
+gasfilm_resistance_per=((1/k_g_a)/(1/Kg_a))*100;
+liq_film_resistance_per=((1/k_L_a_by_H)/(1/Kg_a))*100;
+reaction_resistance_per=((reaction_resistance)/(1/Kg_a))*100;
+
+//OUTPUT
+// Console Output
+mprintf('\nThe percentage gas-film resistance : %0.1f%%',gasfilm_resistance_per);
+mprintf('\nThe percentage liquid-film resistance: %0.1f%%',liq_film_resistance_per);
+mprintf('\nThe percentage chemical reaction resistance: %0.1f%%',reaction_resistance_per);
+
+// File Output
+fid= mopen('.\Chapter7-Ex1-a-Output.txt','w');
+mfprintf(fid,'\nThe percentage gas-film resistance: %0.1f%%',gasfilm_resistance_per);
+mfprintf(fid,'\nThe percentage liquid-film resistance: %0.1f%%',liq_film_resistance_per);
+mfprintf(fid,'\nThe percentage chemical reaction resistance: %0.1f%%',reaction_resistance_per);
+mclose(fid);
+//===================================================END OF PROGRAM======================================================
+
+
diff --git a/1040/CH7/EX7.1.a/Chapter7_Ex1_a_Output.txt b/1040/CH7/EX7.1.a/Chapter7_Ex1_a_Output.txt
new file mode 100644
index 000000000..d58fc7cea
--- /dev/null
+++ b/1040/CH7/EX7.1.a/Chapter7_Ex1_a_Output.txt
@@ -0,0 +1,4 @@
+
+The percentage gas-film resistance: 0.7%
+The percentage liquid-film resistance: 95.4%
+The percentage chemical reaction resistance: 3.9% \ No newline at end of file
diff --git a/1040/CH7/EX7.1.b/Chapter7_Ex1_b.sce b/1040/CH7/EX7.1.b/Chapter7_Ex1_b.sce
new file mode 100644
index 000000000..882f08df8
--- /dev/null
+++ b/1040/CH7/EX7.1.b/Chapter7_Ex1_b.sce
@@ -0,0 +1,51 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436.
+//Chapter-7 Ex7.1.b Pg No.260
+//Title:Reaction Volume and Reactor Size
+//===========================================================================================================
+clear
+clc
+//INPUT
+k2=8.5;//Reaction rate constant (L/mol-sec)
+T=50;//Reaction condition temperature(°C)
+P=2;//Reaction Pressure (atm)
+H_O2=8*10^4;// Solubility (atm/mol fraction)
+F=17000//Feed rate (L/hr)
+C_B_feed=1.6;//Feed concentration(M)
+C_B_product=0.8;//Product concentration(M)
+k_L_a=900;//Liquid film mass transfer coefficient(hr-1)
+k_g_a=80;//Gas film mass transfer coefficient(mol/hr L atm)
+Epsilon=0.1;//Porosity
+Kg_a=0.596;//Refer the overall reaction rate calculated in Ex7.1.a
+percent_inc=0.2;//Percentage excess required for reactor volume
+
+//CALCULATION
+delta_C_B=C_B_feed-C_B_product;
+mol_O2_needed=F*delta_C_B/4;
+N_air=100;//Assuming 100 mole of feed air
+f_O2=0.209;//Fraction of O2
+f_N2=1-f_O2;//Fraction of N2
+N_O2_in=N_air*f_O2;
+N_N2_in=N_air*f_N2;
+N_O2_out=N_O2_in/2;//Half of O2 fed
+N_N2_out=N_N2_in;
+N_air_out=N_N2_out+N_O2_out;
+P_O2_out=P*(N_O2_out/N_air_out);
+P_O2_in=P*(N_O2_in/N_air);
+P_O2_bar=(P_O2_in-P_O2_out)/(log(P_O2_in/P_O2_out));//Log mean Pressure
+volume=mol_O2_needed/(Kg_a*P_O2_bar);
+reactor_vol=volume+volume*percent_inc;
+volume_gal=volume*0.264;
+reactor_vol_gal=reactor_vol*0.264;
+
+//OUTPUT
+//Console Output
+mprintf('\n Reaction volume calculated : %0.0f L ',volume );
+mprintf('\n Reactor size to be chosen : %0.0f L',reactor_vol);
+//File Output
+fid= mopen('.\Chapter7_Ex1_b_Output.txt','w');
+mfprintf(fid,'\n Reaction volume calculated : %0.0f L ',volume );
+mfprintf(fid,'\n Reactor size to be chosen : %0.0f L',reactor_vol);
+mclose(fid);
+//=============================================END OF PROGRAM============================================================
+// Disclaimer : The numerically calculated value of reaction volume is 18008 L not 18000 L as mentioned in the textbook
+
diff --git a/1040/CH7/EX7.1.b/Chapter7_Ex1_b_Output.txt b/1040/CH7/EX7.1.b/Chapter7_Ex1_b_Output.txt
new file mode 100644
index 000000000..1274ce70d
--- /dev/null
+++ b/1040/CH7/EX7.1.b/Chapter7_Ex1_b_Output.txt
@@ -0,0 +1,3 @@
+
+ Reaction volume calculated : 18008 L
+ Reactor size to be chosen : 21610 L \ No newline at end of file
diff --git a/1040/CH7/EX7.1/Chapter7_Ex1.sce b/1040/CH7/EX7.1/Chapter7_Ex1.sce
new file mode 100644
index 000000000..d3f4bfd49
--- /dev/null
+++ b/1040/CH7/EX7.1/Chapter7_Ex1.sce
@@ -0,0 +1,78 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436.
+//Chapter-7 Ex7.1 Pg No.260
+//Title:Overall Reaction Rate Coefficient, Percent Resistance, Reaction Volume and Reactor Size
+//===========================================================================================================
+clear
+clc
+// COMMON INPUT
+k2=8.5;//Reaction rate constant (L/mol-sec)
+T=50;//Reaction condition temperature(°C)
+P=2;//Reaction Pressure (atm)
+H_O2=8*10^4;// Solubility (atm/mol fraction)
+F=17000//Feed rate (L/hr)
+C_B_feed=1.6;//Feed concentration(M)
+C_B_product=0.8;//Product concentration(M)
+k_L_a=900;//Liquid film mass transfer coefficient(hr-1)
+k_g_a=80;//Gas film mass transfer coefficient(mol/hr L atm)
+Epsilon=0.1;//Porosity
+percent_inc=0.2;//Percentage excess required for reactor volume
+
+
+//CALCULATION (Ex7.1.a)
+H_O2_conv=H_O2*18/1000;// Convert (atm L/mole O2)
+k_L_a_by_H=k_L_a/H_O2_conv;
+reaction_resistance=H_O2_conv/(k2*C_B_product*(1-Epsilon)*3600);
+Kg_a=1/((1/k_g_a)+(1/k_L_a_by_H)+(reaction_resistance));//Refer equation7.10
+gasfilm_resistance_per=((1/k_g_a)/(1/Kg_a))*100;
+liq_film_resistance_per=((1/k_L_a_by_H)/(1/Kg_a))*100;
+reaction_resistance_per=((reaction_resistance)/(1/Kg_a))*100;
+
+//CALCULATION (Ex7.1.b)
+delta_C_B=C_B_feed-C_B_product;
+mol_O2_needed=F*delta_C_B/4;
+N_air=100;//Assuming 100 mole of feed air
+f_O2=0.209;//Fraction of O2
+f_N2=1-f_O2;//Fraction of N2
+N_O2_in=N_air*f_O2;
+N_N2_in=N_air*f_N2;
+N_O2_out=N_O2_in/2;//Half of O2 fed
+N_N2_out=N_N2_in;
+N_air_out=N_N2_out+N_O2_out;
+P_O2_out=P*(N_O2_out/N_air_out);
+P_O2_in=P*(N_O2_in/N_air);
+P_O2_bar=(P_O2_in-P_O2_out)/(log(P_O2_in/P_O2_out));//Log mean Pressure
+volume=mol_O2_needed/(Kg_a*P_O2_bar);
+reactor_vol=volume+volume*percent_inc;
+volume_gal=volume*0.264;
+reactor_vol_gal=reactor_vol*0.264;
+
+
+//OUTPUT (Ex7.1.a)
+mprintf('\n OUTPUT Ex7.1.a');
+mprintf('\n==========================================================');
+mprintf('\nThe percentage gas-film resistance : %0.1f%%',gasfilm_resistance_per);
+mprintf('\nThe percentage liquid-film resistance: %0.1f%%',liq_film_resistance_per);
+mprintf('\nThe percentage chemical reaction resistance: %0.1f%%',reaction_resistance_per);
+
+//OUTPUT (Ex7.1.b)
+mprintf('\n\n\n OUTPUT Ex7.1.b');
+mprintf('\n==========================================================');
+mprintf('\n Reaction volume calculated : %0.0f L ',volume );
+mprintf('\n Reactor size to be chosen : %0.0f L',reactor_vol);
+
+
+// FILE OUTPUT
+fid= mopen('.\Chapter7-Ex1-Output.txt','w');
+mfprintf(fid,'\n OUTPUT Ex7.1.a');
+mfprintf(fid,'\n==========================================================');
+mfprintf(fid,'\nThe percentage gas-film resistance : %0.1f%%',gasfilm_resistance_per);
+mfprintf(fid,'\nThe percentage liquid-film resistance: %0.1f%%',liq_film_resistance_per);
+mfprintf(fid,'\nThe percentage chemical reaction resistance: %0.1f%%',reaction_resistance_per);
+mfprintf(fid,'\n\n\n OUTPUT Ex7.1.b');
+mfprintf(fid,'\n==========================================================');
+mfprintf(fid,'\n Reaction volume calculated : %0.0f L ',volume );
+mfprintf(fid,'\n Reactor size to be chosen : %0.0f L',reactor_vol);
+mclose(fid);
+//===================================================END OF PROGRAM======================================================
+
+
diff --git a/1040/CH7/EX7.2/Chapter7_Ex2.sce b/1040/CH7/EX7.2/Chapter7_Ex2.sce
new file mode 100644
index 000000000..755c5c982
--- /dev/null
+++ b/1040/CH7/EX7.2/Chapter7_Ex2.sce
@@ -0,0 +1,29 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc. USA,pp 436.
+//Chapter-7 Ex7.2 Pg No.270
+//Title:The gradient for B in the liquid film
+//===========================================================================================================
+clear
+clc
+//INPUT
+C_B0_by_C_Ai=40;
+D_A_by_D_B=1.2;
+sqrt_M=10;
+phi=sqrt_M;//Assume the gradient for A is the same as when the gradient for B is negligible
+eff_diff_distA_by_xL=(1/phi);
+
+//CALCULATION
+eff_diff_distB_by_xL=(1-eff_diff_distA_by_xL);
+CB0_minus_CBbar_by_CB0=D_A_by_D_B*(1/C_B0_by_C_Ai)*(eff_diff_distB_by_xL/eff_diff_distA_by_xL);
+C_Bbar_by_C_B0=(1-CB0_minus_CBbar_by_CB0);
+sqrt_kC_B=sqrt(C_Bbar_by_C_B0);
+phi_corrected=phi*sqrt_kC_B;
+Percent_change=((phi-phi_corrected)/(phi))*100;
+
+//OUTPUT
+mprintf('\n Percentage Decrease in Rate :%0.0f%% ',Percent_change);
+mprintf('\n The decrease in rate is significant ,hence the gradient for B is significant in liquid film');
+fid= mopen('.\Chapter7-Ex2-Output.txt','w');
+mfprintf(fid,'\n Percentage Decrease in Rate :%0.0f%% ',Percent_change);
+mfprintf(fid,'\n The decrease in rate is significant ,hence the gradient for B is significant in liquid film');
+mclose(fid);
+//================================================END OF PROGRAM==========================================================
diff --git a/1040/CH7/EX7.3/Chapter7_Ex3.sce b/1040/CH7/EX7.3/Chapter7_Ex3.sce
new file mode 100644
index 000000000..de11fc593
--- /dev/null
+++ b/1040/CH7/EX7.3/Chapter7_Ex3.sce
@@ -0,0 +1,61 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436
+//Chapter-7 Ex7.3 Pg No.274
+//Title:Overall mass transfer coefficient and percent resistance
+//===========================================================================================================
+clear
+clc
+//INPUT
+k2=8500;//(L/mol sec) at 25 °C
+kg_a= 7.4 //(mol/hr ft3 atm)
+k_star_L_a=32;//(hr-1)
+a=34;//(ft2/ft3)
+H_CO2=1.9*10^(3);//(atm/m f) Henry's Constant
+D_CO2=2*10^(-5);//(cm2/sec)
+D_OH=2.8*10^(-5);//(cm2/sec)
+P_CO2_in=0.04;//(atm)
+P_CO2_out=0.004;//(atm)
+Caustic_conc=[0.5 0.75];//Cocentration on both the ends of the column bottom and top(M)
+n=2;
+M_H2O=18;//Molecular Weight
+H_H2O=62.3;//(g/ft3) Henry's Constant
+H_H2O_dash=H_H2O/M_H2O;//Henry's Constant converted into consistent units with kg_a
+
+
+//CALCULATION
+C_Ai=P_CO2_in/H_CO2*(1000/18);
+k_star_L=(k_star_L_a/(a*3600))*(30.5);
+H_CO2_dash=H_CO2*(1/H_H2O_dash);
+for i=1:2
+Phi_a(i)=(1+(Caustic_conc(i)/(n*C_Ai))*(D_OH/D_CO2));//Refer equation7.51
+sqrt_M(i)=sqrt(k2*Caustic_conc(i)*D_CO2)/k_star_L;
+Phi(i)=sqrt_M(i);//Refer fig 7.7
+K_ga(i)=(1/((1/kg_a)+(H_CO2_dash/(Phi(i)*k_star_L_a))));//Overall Mass transfer coefficient
+Percent_resis_gasfilm(i)=(K_ga(i)/kg_a)*100;
+end
+
+//OUTPUT
+mprintf('\n \t\t\t\t\t\t\tTop\t Bottom');
+mprintf('\n Overall mass transfer coefficient (mol/hr ft3 atm): %0.1f\t %0.1f',K_ga(1),K_ga(2));
+mprintf('\n Percenage resistance in gas film: %0.0f%%\t %0.0f%% ',Percent_resis_gasfilm(1) ,Percent_resis_gasfilm(2) );
+
+//FILE OUTPUT
+fid= mopen('.\Chapter7-Ex3-Output.txt','w');
+mfprintf(fid,'\n \t\t\t\t\t\t\tTop\t Bottom');
+mfprintf(fid,'\n Overall mass transfer coefficient (mol/hr ft3 atm): %0.1f\t %0.1f',K_ga(1),K_ga(2));
+mfprintf(fid,'\n Percenage resistance in gas film: %0.0f%%\t %0.0f%% ',Percent_resis_gasfilm(1) ,Percent_resis_gasfilm(2) );
+mclose(fid);
+//========================================================================END OF PROGRAM=================================================================================
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/1040/CH7/EX7.4/Chapter7_Ex4.sce b/1040/CH7/EX7.4/Chapter7_Ex4.sce
new file mode 100644
index 000000000..7b8932178
--- /dev/null
+++ b/1040/CH7/EX7.4/Chapter7_Ex4.sce
@@ -0,0 +1,52 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436
+//Chapter-7 Ex7.4 Pg No.279
+//Title:Local selectivity due to mass transfer limitations
+//===========================================================================================================
+clear
+clc
+//INPUT
+C_Ai=0.02;//(M)
+C_B0=3;//(M)
+D_A=10^(-5);//(cm2/sec)
+D_B=D_A;//(cm2/sec)
+D_C=D_B;//(cm2/sec)
+k_1=10^(4);//(L/mol sec)
+k_star_l=0.015;//(cm/sec)
+n=1;
+C_c0=[0 1.4];
+X=[0 0.5]// Conversion
+Phi=[33 23];//From figure 7.7
+
+
+//CALCULATION
+k_2=0.09*k_1;
+for i=1:2
+ C_B(i)=(1-X(i))*C_B0;
+sqrt_M(i)=sqrt(C_B(i)*k_1*D_A)/k_star_l;
+Phi_a(i)=(1+(C_B(i)/(n*C_Ai))*(D_B/D_A));//Refer equation 7.51
+C_Bbar_by_C_B(i)=(Phi(i)/sqrt_M(i))^2;//Refer equation 7.59
+delta_C_B(i)=(1-C_Bbar_by_C_B(i))*C_B(i);//Refer equation 7.60
+delta_C_c(i)=delta_C_B(i);
+C_cbar(i)=delta_C_c(i)+C_c0(i);
+C_Bbar(i)=C_Bbar_by_C_B(i)*(C_B(i));
+S(i)=(1-(k_2*C_cbar(i)/(C_Bbar(i)*k_1)))*100;//Refer equation 7.56
+end
+
+//OUTPUT
+mprintf('\n\tLocal selectivity due to mass transfer limitations ');
+mprintf('\n\tThe local selectivity for Zero Conversion : %0.0f%%',S(1));
+mprintf('\n\tThe local selectivity for 50%% Conversion : %0.0f%%',S(2));
+
+//FILE OUTPUT
+fid= mopen('.\Chapter7-Ex4-Output.txt','w');
+mfprintf(fid,'\n\tLocal selectivity due to mass transfer limitations ');
+mfprintf(fid,'\n\tThe local selectivity for Zero Conversion is %0.0f%%',S(1));
+mfprintf(fid,'\n\tThe local selectivity for 50%% Conversion is %0.0f%%',S(2));
+mclose(fid);
+//======================================================END OF PROGRAM===================================================
+
+
+
+
+
+
diff --git a/1040/CH7/EX7.5.a/Chapter7_Ex5_a.sce b/1040/CH7/EX7.5.a/Chapter7_Ex5_a.sce
new file mode 100644
index 000000000..1ad78a946
--- /dev/null
+++ b/1040/CH7/EX7.5.a/Chapter7_Ex5_a.sce
@@ -0,0 +1,57 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436
+//Chapter-7 Ex7.5.a Pg No.293
+//Title:Maximum rate of CO absorption
+//===========================================================================================================
+clear
+clc
+//INPUT
+P_dash=5;//Partial pressure of acetic acid (atm)
+P_total=20;//Total Pressure (atm)
+myu=0.19;// Viscosity of acetic acid
+T_C=180;//Temperature in (°C)
+T_K=T_C+273;//Temperature in (K)
+sigma_20=28;//Surface Tension(Dynes/cm) at 20 (°C)
+sigma_180=20;//Surface Tension (Dynes/cm)at 180 (°C)
+M_CO=28;//Molecular weight of CO
+M_B=60.05;//Molecular weight acetic acid
+V_A= 30.7;//Molar volume
+S_CO=7*10^(-3);//Solubility of CO (mol/L atm)
+f_CO=0.75;//Fraction of CO
+f_acetic_acid=1-f_CO;//Fraction of Acetic acid
+R=82.056*(10^-3);//(cm3 atm/ K  mol)
+rho_air=1.21;//(kg/m3)density of air at 20 (°C)
+sigma_H2O=72;//Surface tension (Dynes/cm)
+myu_H2O=1;//Viscosity of water
+k_L_a_air_water=0.051;//(sec-1)
+D_O2_water=2.4*(10^-5);//(cm2/sec)diffusivity for oxygen in water at 20(°C)
+Conc_Rh=4*10^(-3);//Concentration of Rohdium(M)
+Conc_CH3I=1;//Concentration of Methyl Iodide(M)
+
+//CALCUATION
+D_CO=(7.4*10^(-8)*M_B^(1/2)*T_K)/(myu*V_A^(0.6));//Diffusivity of CO (Wilke–Chang equation Eq4.17)
+M_ave=f_CO*M_CO+M_B*f_acetic_acid;//Average Molecular weight
+rho_g=M_ave*P_total/(R*T_K);//From ideal gas law
+epsilon_air_water= 0.12;//At velocity 6(cm/sec)
+epsilon=epsilon_air_water*(sigma_H2O/sigma_180)^(0.4)*(myu/myu_H2O)^(0.2)*(rho_g/rho_air)^(0.2);//From equation 7.64
+u_G=6;//From figure 7.12(cm/sec)
+k_L_a=k_L_a_air_water*(D_CO/D_O2_water)^(0.5)*(epsilon/epsilon_air_water);//From equation 7.69
+P_CO=P_total-P_dash;
+C_CO_Star=S_CO*P_CO;
+r_max=C_CO_Star*k_L_a;//Rate of CO absorption at 15 atm
+r_test=158.8*(10^(6))*exp(-8684/T_K)*(Conc_Rh)*(Conc_CH3I);//Kinetic rate at 180 (°C)
+
+//OUTPUT
+//Console Output
+mprintf('\n\tThe maximum rate of CO absorption at 15 atm : %0.3f (mol/L s)',r_max);
+mprintf('\n\tThe kinetic rate of CO absorption at 180(°C) : %0.3f (mol/L s)',r_test);
+mprintf('\n\tThe predicted value of k_L_a : %0.2f (s-1)',k_L_a);
+//File Output
+fid= mopen('.\Chapter7_Ex5_a_Output.txt','w');
+mfprintf(fid,'\n\tThe maximum rate of CO absorption at 20 atm : %0.3f (mol/L s)',r_max);
+mfprintf(fid,'\n\tThe kinetic rate of CO absorption at 180(°C) : %0.3f (mol/L s)',r_test);
+mfprintf(fid,'\n\tThe predicted value of k_L_a : %0.2f (s-1)',k_L_a);
+mclose(fid);
+//=================================================END OF PROGRAM===========================================================
+
+
+
diff --git a/1040/CH7/EX7.5.a/Chapter7_Ex5_a_Output.txt b/1040/CH7/EX7.5.a/Chapter7_Ex5_a_Output.txt
new file mode 100644
index 000000000..d8a7fc127
--- /dev/null
+++ b/1040/CH7/EX7.5.a/Chapter7_Ex5_a_Output.txt
@@ -0,0 +1,4 @@
+
+ The maximum rate of CO absorption at 20 atm : 0.030 (mol/L s)
+ The kinetic rate of CO absorption at 180(°C) : 0.003 (mol/L s)
+ The predicted value of k_L_a : 0.29 (s-1) \ No newline at end of file
diff --git a/1040/CH7/EX7.5.b/Chapter7_Ex5_b.sce b/1040/CH7/EX7.5.b/Chapter7_Ex5_b.sce
new file mode 100644
index 000000000..fe7690a68
--- /dev/null
+++ b/1040/CH7/EX7.5.b/Chapter7_Ex5_b.sce
@@ -0,0 +1,45 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc., USA,pp 436.
+//Chapter-7 Ex7.5.b Pg No.293
+//Title:Dimensions of the bubble column reactor
+//===========================================================================================================
+clear
+clc
+//INPUT
+F_product_acetic_acid=0.1;// Rate of acetic acid produced (kmol/sec)
+f_CO_reacted=0.8;//80% of CO reacted
+f_CO=0.75;//Fraction of CO in feed
+T_C=180;//Temperature in (°C)
+T_K=T_C+273;//Temperature in (K)
+P_total=20;//Total Pressure (atm)
+R=82.056*(10^-3);//(cm3 atm/ K  mol)
+u_g=0.1;//(m/sec)
+Conc_Rh=4*10^(-3);//Concentration of Rohdium(M)
+Conc_CH3I=1;//Concentration of Methyl Iodide(M)
+Epsilon=0.25;//Value calculated from Ex7.5.a
+
+//CALCULATION
+F_feed_CO=F_product_acetic_acid/f_CO_reacted;//Rate of flow of CO (kmol/sec)
+F_total=F_feed_CO/f_CO;
+Q=F_total*R*T_K/(P_total);
+S=Q/u_g;
+D_t=sqrt(4*S/%pi);
+r_test=(158.8*(10^(6))*exp(-8684/T_K)*(Conc_Rh)*(Conc_CH3I))*(10^(-3));//Kinetic rate at 180 (°C)
+liquid_vol= (F_product_acetic_acid/r_test)*(10^(-3));//liquid volume (m3)
+h0=liquid_vol/S;//clear liquid
+h=h0/(1-Epsilon);//aerated liquid
+
+//OUTPUT
+//Console Output
+mprintf('\n\tThe Dimensions of the reactor are ');
+mprintf('\n\tDiameter:%0.0f m',D_t);
+mprintf('\n\tHeight:%0.2f m',h);
+mprintf('\n\t The upper limit value of reactor height is 15 m and diameter is 2 m');
+//File Output
+fid= mopen('.\Chapter7_Ex5_b_Output.txt','w');
+mfprintf(fid,'\n\tThe Dimensions of the reactor are ');
+mfprintf(fid,'\n\tDiameter:%0.0f m',D_t);
+mfprintf(fid,'\n\tHeight:%0.2f m',h);
+mfprintf(fid,'\n\t The upper limit value of reactor height is 15 m and diameter is 2 m');
+mclose(fid);
+//================================================END OF PROGRAM=========================================================
+//Disclaimer: The numerically calculated value of reactor height is 14.34 m not 14.4 m as mentioned in the textbook
diff --git a/1040/CH7/EX7.5.b/Chapter7_Ex5_b_Output.txt b/1040/CH7/EX7.5.b/Chapter7_Ex5_b_Output.txt
new file mode 100644
index 000000000..bf37fd4df
--- /dev/null
+++ b/1040/CH7/EX7.5.b/Chapter7_Ex5_b_Output.txt
@@ -0,0 +1,5 @@
+
+ The Dimensions of the reactor are
+ Diameter:2 m
+ Height:14.34 m
+ The upper limit value of reactor height is 15 m and diameter is 2 m \ No newline at end of file
diff --git a/1040/CH7/EX7.5.c/Chapter7_Ex5_c.sce b/1040/CH7/EX7.5.c/Chapter7_Ex5_c.sce
new file mode 100644
index 000000000..77a59926f
--- /dev/null
+++ b/1040/CH7/EX7.5.c/Chapter7_Ex5_c.sce
@@ -0,0 +1,44 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc., USA,pp 436.
+//Chapter-7 Ex7.5.c Pg No.293
+//Title:Dimension of reactor using lower gas velocity
+//===========================================================================================================
+clear
+clc
+//INPUT
+u_g=5*(10^(-2))//Gas Velocity
+R=82.056*(10^-3);//(cm3 atm/ K  mol)
+T_C=180;//Temperature in (°C)
+T_K=T_C+273;//Temperature in (K)
+Epsilon_old=0.25;//Value calculated from Ex7.5.a
+Epsilon_air_water_new=0.07;//At velocity 3(cm/sec)
+Epsilon_air_water_old= 0.12;//At velocity 6(cm/sec)
+P_total=20;//Total Pressure (atm)
+F_product_acetic_acid=0.1;// Rate of acetic acid produced (kmol/sec)
+F_total=0.167;//Value calculated from Ex7.5.b
+r_test=3*(10^(-6));//Kinetic rate at 180 (°C) calculated in Ex7.5.a
+
+//CALCULATION
+Q=F_total*R*T_K/(P_total);
+S=Q/u_g;
+D_t=sqrt(4*S/%pi);
+Epsilon_new=(Epsilon_air_water_new/Epsilon_air_water_old)*Epsilon_old;
+liquid_vol= (F_product_acetic_acid/r_test)*(10^(-3));//liquid volume (m3)
+h0=liquid_vol/S;//clear liquid
+h_new=h0/(1-Epsilon_new);//aerated liquid
+
+//OUTPUT
+//Console Output
+mprintf('\n\tThe new dimensions of the reactor');
+mprintf('\n\tDiameter:%0.1f m',D_t);
+mprintf('\n\tHeight:%0.1f m',h_new);
+mprintf('\n\t The upper limit value of reactor height is 7 m and diameter is 2.8 m');
+//File Output
+fid= mopen('.\Chapter7_Ex5_c_Output.txt','w');
+mfprintf(fid,'\n\tThe new dimensions of the reactor');
+mfprintf(fid,'\n\tDiameter:%0.1f m',D_t);
+mfprintf(fid,'\n\tHeight:%0.1f m',h_new);
+mfprintf(fid,'\n\t The upper limit value of reactor height is 7 m and diameter is 2.8 m');
+mclose(fid);
+//====================================================END OF PROGRAM====================================================
+//Disclaimer: The numerically calculated value of reactor height is 6.3 m not 6.4 m as mentioned in the textbook
+
diff --git a/1040/CH7/EX7.5.c/Chapter7_Ex5_c_Output.txt b/1040/CH7/EX7.5.c/Chapter7_Ex5_c_Output.txt
new file mode 100644
index 000000000..7ff2097bd
--- /dev/null
+++ b/1040/CH7/EX7.5.c/Chapter7_Ex5_c_Output.txt
@@ -0,0 +1,5 @@
+
+ The new dimensions of the reactor
+ Diameter:2.8 m
+ Height:6.3 m
+ The upper limit value of reactor height is 7 m and diameter is 2.8 m \ No newline at end of file
diff --git a/1040/CH7/EX7.5/Chapter7_Ex5.sce b/1040/CH7/EX7.5/Chapter7_Ex5.sce
new file mode 100644
index 000000000..b987b4f34
--- /dev/null
+++ b/1040/CH7/EX7.5/Chapter7_Ex5.sce
@@ -0,0 +1,114 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436
+//Chapter-7 Ex7.5 Pg No.293
+//Title:Maximum rate of CO absorption and Dimensions of Bubble Column Reactor
+//===========================================================================================================
+clear
+clc
+// COMMON INPUT
+P_dash=5;//Partial pressure of acetic acid (atm)
+P_total=20;//Total Pressure (atm)
+myu=0.19;// Viscosity of acetic acid
+T_C=180;//Temperature in (°C)
+T_K=T_C+273;//Temperature in (K)
+sigma_20=28;//Surface Tension(Dynes/cm) at 20 (°C)
+sigma_180=20;//Surface Tension (Dynes/cm)at 180 (°C)
+M_CO=28;//Molecular weight of CO
+M_B=60.05;//Molecular weight acetic acid
+V_A= 30.7;//Molar volume
+S_CO=7*10^(-3);//Solubility of CO (mol/L atm)
+f_CO=0.75;//Fraction of CO in feed
+f_acetic_acid=1-f_CO;//Fraction of Acetic acid
+R=82.056*(10^-3);//(cm3 atm/ K  mol)
+rho_air=1.21;//(kg/m3)density of air at 20 (°C)
+sigma_H2O=72;//Surface tension (Dynes/cm)
+myu_H2O=1;//Viscosity of water
+k_L_a_air_water=0.051;//(sec-1)
+D_O2_water=2.4*(10^-5);//(cm2/sec)diffusivity for oxygen in waterat 20(°C)
+Conc_Rh=4*10^(-3);//Concentration of Rohdium(M)
+Conc_CH3I=1;//Concentration of Methyl Iodide(M)
+F_product_acetic_acid=0.1;// Rate of acetic acid produced (kmol/sec)
+f_CO_reacted=0.8;//80% of CO reacted
+u_g=0.1;//(m/sec)
+Epsilon_air_water_new=0.07;//At velocity 3(cm/sec)
+Epsilon_air_water_old= 0.12;//At velocity 6(cm/sec)
+u_g_c=5*(10^(-2));//Gas Velocity Ex7.5.c(m/sec)
+
+
+
+//CALCUATION (Ex7.5.a)
+D_CO=(7.4*10^(-8)*M_B^(1/2)*T_K)/(myu*V_A^(0.6));//Diffusivity of CO (Wilke–Chang equation Eq4.17)
+M_ave=f_CO*M_CO+M_B*f_acetic_acid;//Average Molecular weight
+rho_g=M_ave*P_total/(R*T_K);//From ideal gas law
+epsilon_air_water= 0.12;//At velocity 6(cm/sec)
+epsilon=epsilon_air_water*(sigma_H2O/sigma_180)^(0.4)*(myu/myu_H2O)^(0.2)*(rho_g/rho_air)^(0.2);//From equation 7.64
+u_G=6;//From figure 7.12(cm/sec)
+k_L_a=k_L_a_air_water*(D_CO/D_O2_water)^(0.5)*(epsilon/epsilon_air_water);//From equation 7.69
+P_CO=P_total-P_dash;
+C_CO_Star=S_CO*P_CO;
+r_max=C_CO_Star*k_L_a;//Rate of CO absorption at 15 atm
+r_test=158.8*(10^(6))*exp(-8684/T_K)*(Conc_Rh)*(Conc_CH3I);//Kinetic rate at 180 (°C)
+
+//CALCULATION(Ex7.5.b)
+F_feed_CO=F_product_acetic_acid/f_CO_reacted;//Rate of flow of CO (kmol/sec)
+F_total=F_feed_CO/f_CO;
+Q=F_total*R*T_K/(P_total);
+S=Q/u_g;
+D_t=sqrt(4*S/%pi);
+r_test_b=(158.8*(10^(6))*exp(-8684/T_K)*(Conc_Rh)*(Conc_CH3I))*(10^(-3));//Kinetic rate at 180 (°C)
+liquid_vol= (F_product_acetic_acid/r_test_b)*(10^(-3));//liquid volume (m3)
+h0=liquid_vol/S;//clear liquid
+h=h0/(1-epsilon);//aerated liquid
+
+//CALCULATION(Ex7.5.c)
+Q=F_total*R*T_K/(P_total);
+S=Q/u_g_c;
+D_t_c=sqrt(4*S/%pi);
+Epsilon_new=(Epsilon_air_water_new/Epsilon_air_water_old)*epsilon;
+liquid_vol= (F_product_acetic_acid/r_test_b)*(10^(-3));//liquid volume (m3)
+h0=liquid_vol/S;//clear liquid
+h_new=h0/(1-Epsilon_new);//aerated liquid
+
+//OUTPUT (Ex7.5.a)
+mprintf('\n OUTPUT Ex7.5.a');
+mprintf('\n==========================================================');
+mprintf('\n\tThe maximum rate of CO absorption at 15 atm : %f (mol/L s)',r_max);
+mprintf('\n\tThe kinetic rate of CO absorption at 180(°C) : %f (mol/L s)',r_test);
+mprintf('\n\tThe predicted value of k_L_a : %0.2f (s-1)',k_L_a);
+
+//OUTPUT (Ex7.5.b)
+mprintf('\n\n\n OUTPUT Ex7.5.b');
+mprintf('\n==========================================================');
+mprintf('\n\tThe Dimensions of the reactor are ');
+mprintf('\n\tDiameter:%0.0f m',D_t);
+mprintf('\n\tHeight:%0.2f m',h);
+
+//OUTPUT (Ex7.5.c)
+mprintf('\n\n\n OUTPUT Ex7.5.c');
+mprintf('\n==========================================================');
+mprintf('\n\tThe new dimensions of the reactor');
+mprintf('\n\tDiameter:%0.1f m',D_t_c);
+mprintf('\n\tHeight:%0.1f m',h_new);
+
+//FILE OUTPUT
+fid= mopen('.\Chapter7-Ex5-Output.txt','w');
+mfprintf(fid,'\n OUTPUT Ex7.5.a');
+mfprintf(fid,'\n==========================================================');
+mfprintf(fid,'\n\tThe maximum rate of CO absorption at 15 atm : %f (mol/L s)',r_max);
+mfprintf(fid,'\n\tThe kinetic rate of CO absorption at 180(°C) : %f (mol/L s)',r_test);
+mfprintf(fid,'\n\tThe predicted value of k_L_a : %0.2f (s-1)',k_L_a);
+mfprintf(fid,'\n\n\n OUTPUT Ex7.5.b');
+mfprintf(fid,'\n==========================================================');
+mfprintf(fid,'\n\tThe Dimensions of the reactor are ');
+mfprintf(fid,'\n\tDiameter:%0.0f m',D_t);
+mfprintf(fid,'\n\tHeight:%0.2f m',h);
+mfprintf(fid,'\n\n\n OUTPUT Ex7.5.c');
+mfprintf(fid,'\n==========================================================');
+mfprintf(fid,'\n\tThe new dimensions of the reactor');
+mfprintf(fid,'\n\tDiameter:%0.1f m',D_t_c);
+mfprintf(fid,'\n\tHeight:%0.1f m',h_new);
+mclose(fid);
+
+//=================================================END OF PROGRAM===========================================================
+
+
+
diff --git a/1040/CH7/EX7.6.a/Chapter7_Ex6_a.sce b/1040/CH7/EX7.6.a/Chapter7_Ex6_a.sce
new file mode 100644
index 000000000..9fce8ca2c
--- /dev/null
+++ b/1040/CH7/EX7.6.a/Chapter7_Ex6_a.sce
@@ -0,0 +1,44 @@
+//Harriot P,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc., USA,pp 436.
+//Chapter-7 Ex7.6.a Pg No.300
+//Title:Fraction of O2 used
+//======================================================================================================================
+clear
+clc
+//INPUT
+Vol_reactor=200;//Volume of reactor (m3)
+D=4;//Diameter of reactor (m)
+depth=12;//Depth of reactor (m)
+u_g=3;//Superficial velocity (cm/sec)
+T_C=30;//Temperature (°C)
+T_K=273+T_C;//Temperature (K)
+f_O2=0.21;//Fraction of O2 in air
+myu_soln=1.5*(10^(-3));//Viscosity of solution (Pa sec)
+R=0.08206;//Gas constant (m3 atm/ K kmol)
+r_O2_peak=45*(10^(-3));//Flow rate of O2 at peak demand
+
+//CALCULATION
+S=%pi*(D^2)/4;//Cross section area (m2)
+V=S*depth;//Volume of solution(m3)
+F_air=(S*u_g*(10^(-2))*3600)/(R*(10^(-3))*T_K);
+F_O2=f_O2*F_air;//Feed rate of O2 (mol/hr)
+F_O2_used=r_O2_peak*V*(10^(3));//O2 used for aerobic fermentation (mol/hr)
+F_O2_left=F_O2-F_O2_used;//O2 left after aerobic fermentation(mol/hr)
+f_O2_exitgas=F_O2_left/F_air;//Fraction of O2 in exit gas
+Percent_O2_exitgas=(f_O2_exitgas)*(100);
+Frac_O2_used=((f_O2-f_O2_exitgas)/f_O2);
+
+//OUTPUT
+//Console Output
+mprintf('\n\tAt the peak demand, fraction of the oxygen supplied = %.3f ',Frac_O2_used);
+//File Output
+fid= mopen('.\Chapter7_Ex6_a_Output.txt','w');
+mfprintf(fid,'\n\tAt the peak demand, fraction of the oxygen supplied = %.3f ',Frac_O2_used);
+mclose('all');
+//===================================================END OF PROGRAM======================================================
+//Disclaimer: The numerically calculated value of oxygen fraction supplied is 0.592 not 0.591 as mentioned in the textbook
+
+
+
+
+
+
diff --git a/1040/CH7/EX7.6.a/Chapter7_Ex6_a_Output.txt b/1040/CH7/EX7.6.a/Chapter7_Ex6_a_Output.txt
new file mode 100644
index 000000000..45f422ad5
--- /dev/null
+++ b/1040/CH7/EX7.6.a/Chapter7_Ex6_a_Output.txt
@@ -0,0 +1,2 @@
+
+ At the peak demand, fraction of the oxygen supplied = 0.592 \ No newline at end of file
diff --git a/1040/CH7/EX7.6.b/Chapter7_Ex6_b.sce b/1040/CH7/EX7.6.b/Chapter7_Ex6_b.sce
new file mode 100644
index 000000000..dc1e0f2f9
--- /dev/null
+++ b/1040/CH7/EX7.6.b/Chapter7_Ex6_b.sce
@@ -0,0 +1,48 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc., USA,pp 436.
+//Chapter-7 Ex7.6.b Pg No.300
+//Title:Power of agitator before and after air is on
+//======================================================================================================================
+clear
+clc
+//INPUT
+Da_by_Dt=(1/3);
+Da=1.333;//(m)
+N=120;//(rpm)
+N_conv=(N/60);//(sec-1)
+Press_top=1;//Pressure at the top of the vessel (atm)
+myu_soln=1.5*(10^(-3));//Viscosity of solution (Pa sec)
+rho=1000;//Density of water (kg/m3)
+ug_sup1=3*(10^(-2));//based on 30(°C) and 1 (atm).
+S=12.6;//Value calculated for cross section area in Ex7.6.b
+
+//CALCULATION
+Re=(rho*N_conv*Da^2)/myu_soln;
+N_p=6;//For a standard turbine
+N_p_pitched=1.7;//For a pitched-blade turbine
+P0=(N_p*rho*(N_conv^3)*(Da^5))*(10^(-3));//Refer equation 7.73 (kW)
+//If the turbine is 2 m from the bottom, or 10 m below the surface,the pressure is about 2 atm since 1atm= 10.3 m water
+Press_bottom=2
+ug_sup2=ug_sup1/Press_bottom;
+Q=ug_sup2*S;
+N_Ae=Q/(N_conv*(Da^3));
+Pg_by_P0=0.55;//From figure 7.15 based on N_Ae value calculated
+Pg=Pg_by_P0*P0;//When aerated
+P0_pitched=(N_p_pitched/N_p)*P0;
+Pg_by_P0_pitched=0.8;//Solution reaching the upper stirrers is already aerated
+Pg_pitched=Pg_by_P0_pitched*P0_pitched;
+Tot_Pow_no_air=P0+Press_bottom*P0_pitched;//Total power when no air is presented
+Tot_Pow_aerated=Pg+Press_bottom*Pg_pitched;//Total power when it is aerated
+
+//OUTPUT
+//ConsoleOutput
+mprintf('\n\tThe total power required for the agitator before the air is turned on: %0.0f kW',Tot_Pow_no_air);
+mprintf('\n\tThe total power required for the agitator after the air is turned on: %0.0f kW',Tot_Pow_aerated);
+//File Output
+fid= mopen('.\Chapter7_Ex6_b_Output.txt','w');
+mfprintf(fid,'\n\tThe total power required for the agitator before the air is turned on: %0.0f kW',Tot_Pow_no_air);
+mfprintf(fid,'\n\tThe total power required for the agitator after the air is turned on: %0.0f kW',Tot_Pow_aerated);
+mclose('all')
+//=========================================================END OF PROGRAM===============================================
+
+
+
diff --git a/1040/CH7/EX7.6.b/Chapter7_Ex6_b_Output.txt b/1040/CH7/EX7.6.b/Chapter7_Ex6_b_Output.txt
new file mode 100644
index 000000000..360317b09
--- /dev/null
+++ b/1040/CH7/EX7.6.b/Chapter7_Ex6_b_Output.txt
@@ -0,0 +1,3 @@
+
+ The total power required for the agitator before the air is turned on: 316 kW
+ The total power required for the agitator after the air is turned on: 203 kW \ No newline at end of file
diff --git a/1040/CH7/EX7.6.c/Chapter7_Ex6_c.sce b/1040/CH7/EX7.6.c/Chapter7_Ex6_c.sce
new file mode 100644
index 000000000..eec204ed3
--- /dev/null
+++ b/1040/CH7/EX7.6.c/Chapter7_Ex6_c.sce
@@ -0,0 +1,43 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc. USA,pp 436.
+//Chapter-7 Ex7.6.c Pg No.300
+//Title:k_L_a and the average dissolved oxygen concentration.
+//======================================================================================================================
+clear
+clc
+//INPUT
+P_aerated=203;//Total power of agitator when aerated (kW) calculated in Ex7.6.b
+V=151;//Volume of solution calculated Ex7.6.a (m3)
+ug_sup1=3*(10^(-2));//based on 30(°C) and 1 atm.
+Press_top=1;//Pressure at the top of the vessel (atm)
+Press_bottom=2;//From Ex7.6.c
+ug_sup2=ug_sup1/Press_bottom;// at 2atm superficial velocity (cm/sec)
+ug_ave=(ug_sup1+ug_sup2)/2;//Average superficial velocity (cm/sec)
+depth=12;//Depth of reactor (m)
+one_atm_water=10.3;//1 atm pressure corresponds to 10.3 (m) height of water
+k_H_O2=5.2*10^(4)// Henery's law constant for O2 in water for O2 (atm/mol fraction)
+r_O2_peak=45*(10^(-3));//Flow rate of O2 at peak demand
+M_O2=32;//Molecular weight of O2
+M_H2O=18;//Molecular weight of water
+
+//CALCULATION
+P_by_V_ave=P_aerated/V;
+kLa_O2_sulfite=0.32;//Using figure7.16 based on ave(P/V) value and ug_average value
+kLa_soln=0.7*kLa_O2_sulfite;//kLa for this solution is 70% of the value for oxygen absorption in sodium sulfite (sec-1)
+y_O2=0.086;//If gas is backmixed
+depth_ave=depth/2;
+Press_ave=(Press_top+(depth_ave/one_atm_water));//Pressure at average depth (atm)
+C_O2_star=(Press_ave*y_O2/k_H_O2)*(1000/M_H2O);//Conversion (mol/L)
+r_conv=r_O2_peak/3600;//Rate at peak O2 demand (mol/L sec)
+C_ave=(C_O2_star-(r_conv/kLa_soln))
+C_ave_conv=C_ave*M_O2*1000;//Converted value of O2 concentration in(mg/L)
+//OUTPUT
+//Console Output
+mprintf('\n\tThe calculated value of kLa (mass transfer coefficient) of solution:%0.2f (sec-1)',kLa_soln);
+mprintf('\n\tThe calculated value of average dissolved O2 concentration: %0.2f (mg/L)',C_ave_conv);
+//File Output
+fid= mopen('.\Chapter7_Ex6_c_Output.txt','w');
+mfprintf(fid,'\n\tThe calculated value of kLa (mass transfer coefficient) of solution:%0.2f (sec-1)',kLa_soln);
+mfprintf(fid,'\n\tThe calculated value of average dissolved O2 concentration: %0.2f (mg/L)',C_ave_conv);
+mclose('all');
+//=================================================END OF PROGRAM===================================================================
+// Disclaimer :The numerically calculated value of dissolved O2 concentration is 2.87 mg/L not 2.8 mg/L as mentioned in the textbook
diff --git a/1040/CH7/EX7.6.c/Chapter7_Ex6_c_Output.txt b/1040/CH7/EX7.6.c/Chapter7_Ex6_c_Output.txt
new file mode 100644
index 000000000..9708e9562
--- /dev/null
+++ b/1040/CH7/EX7.6.c/Chapter7_Ex6_c_Output.txt
@@ -0,0 +1,3 @@
+
+ The calculated value of kLa (mass transfer coefficient) of solution:0.22 (sec-1)
+ The calculated value of average dissolved O2 concentration: 2.87 (mg/L) \ No newline at end of file
diff --git a/1040/CH7/EX7.6.d/Chapter7_Ex6_d.sce b/1040/CH7/EX7.6.d/Chapter7_Ex6_d.sce
new file mode 100644
index 000000000..bc9e2b7e3
--- /dev/null
+++ b/1040/CH7/EX7.6.d/Chapter7_Ex6_d.sce
@@ -0,0 +1,46 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436
+//Chapter-7 Ex7.6.d Pg No.300
+//Title:Effect on dissolved oxygen concentration.
+//======================================================================================================================
+clear
+clc
+//INPUT
+C_O2_critical=1*10^(-3);//Critical O2 Concentration (g/L)
+percent_reduction=40/100;//Mass transfer coefficient in the upper region of the reactor is 40% less than the average
+kLa_soln=0.22;//Value calculated in Ex7.6.d
+r_conv=1.25*10^(-5);//Rate at peak O2 demand (mol/L sec)
+C_O2_star=1.45*10^(-4);// Concentration of O2 calculated in Ex7.6.c
+M_O2=32;//Molecular weight of O2
+Press_top=1;//Pressure at the top of the vessel (atm)
+depth=12;//Depth of reactor (m)
+one_atm_water=10.3;//1 atm pressure corresponds to 10.3 (m) height of water
+
+//CALCULATION
+depth_ave=depth/2;
+Press_ave=(Press_top+(depth_ave/one_atm_water));//Pressure at average depth (atm)
+kLa_soln_reduced=kLa_soln*(1-percent_reduction);
+C_star_minus_C=r_conv/kLa_soln_reduced;
+C_O2_new=(C_O2_star-(C_star_minus_C));
+C_O2_new_conv=C_O2_new*M_O2*1000;//Converted value of O2 concentration in(mg/L)
+C_O2_star_new=C_O2_star/Press_ave;
+
+ //OUTPUT
+ //Console Output
+ mprintf('\n\tThe new calculated value of average dissolved O2 concentration %0.1f (mg/L)',C_O2_new_conv);
+ mprintf('\n\tThe new calculated value of critical dissolved O2 concentration %0.1E (mol/L)',C_O2_star_new);
+ if(C_star_minus_C>C_O2_star_new)
+ mprintf('\n\tThe reactor is operated above critical O2 concentration ');
+ else
+ mprintf('\n\tThe reactor should be operated at higher air rate otherwise C_O2 would drop to zero')
+ end
+ //File Output
+fid= mopen('.\Chapter7_Ex6_d_Output.txt','w');
+mfprintf(fid,'\n\tThe new calculated value of average dissolved O2 concentration %0.1f (mg/L)',C_O2_new_conv);
+mfprintf(fid,'\n\tThe new calculated value of critical dissolved O2 concentration %0.1E (mol/L)',C_O2_star_new);
+ if(C_star_minus_C>C_O2_star_new)
+ mfprintf(fid,'\n\tThe reactor is operated above critical O2 concentration ');
+ else
+ mfprintf(fid,'\n\tThe reactor should be operated at higher air rate otherwise C_O2 would drop to zero');
+ end
+ mclose('all');
+//====================================================END OF PROGRAM====================================================
diff --git a/1040/CH7/EX7.6.d/Chapter7_Ex6_d_Output.txt b/1040/CH7/EX7.6.d/Chapter7_Ex6_d_Output.txt
new file mode 100644
index 000000000..d78b9824b
--- /dev/null
+++ b/1040/CH7/EX7.6.d/Chapter7_Ex6_d_Output.txt
@@ -0,0 +1,4 @@
+
+ The new calculated value of average dissolved O2 concentration 1.6 (mg/L)
+ The new calculated value of critical dissolved O2 concentration 9.2E-05 (mol/L)
+ The reactor is operated above critical O2 concentration \ No newline at end of file
diff --git a/1040/CH7/EX7.6/Chapter7_Ex6.sce b/1040/CH7/EX7.6/Chapter7_Ex6.sce
new file mode 100644
index 000000000..46631e743
--- /dev/null
+++ b/1040/CH7/EX7.6/Chapter7_Ex6.sce
@@ -0,0 +1,148 @@
+//Harriot P,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc., USA,pp 436.
+//Chapter-7 Ex7.6 Pg No.300
+//Title:Fraction of O2,Power of agitator, k_L_a and average dissolved oxygen concentration.
+//======================================================================================================================
+clear
+clc
+// COMMON INPUT
+Vol_reactor=200;//Volume of reactor (m3)
+D=4;//Diameter of reactor (m)
+depth=12;//Depth of reactor (m)
+u_g=3;//Superficial velocity (cm/sec)
+T_C=30;//Temperature (°C)
+T_K=273+T_C;//Temperature (K)
+f_O2=0.21;//Fraction of O2 in air
+myu_soln=1.5*(10^(-3));//Viscosity of solution (Pa sec)
+R=0.08206;//Gas constant (m3 atm/ K kmol)
+r_O2_peak=45*(10^(-3));//Flow rate of O2 at peak demand
+Da_by_Dt=(1/3);
+Da=1.333;//(m)
+N=120;//(rpm)
+N_conv=(N/60);//(sec-1)
+Press_top=1;//Pressure at the top of the vessel (atm)
+rho=1000;//Density of water (kg/m3)
+ug_sup1=3*(10^(-2));//based on 30(°C) and 1 (atm)
+V=151;//Volume of solution calculated Ex7.6.a (m3)
+ug_sup1=3*(10^(-2));//based on 30(°C) and 1 atm.
+Press_top=1;//Pressure at the top of the vessel (atm)
+Press_bottom=2;//From Ex7.6.c
+ug_sup2=ug_sup1/Press_bottom;// at 2atm superficial velocity (cm/sec)
+ug_ave=(ug_sup1+ug_sup2)/2;//Average superficial velocity (cm/sec)
+depth=12;//Depth of reactor (m)
+one_atm_water=10.3;//1 atm pressure corresponds to 10.3 (m) height of water
+k_H_O2=5.2*10^(4)// Henery's law constant for O2 in water for O2 (atm/mol fraction)
+M_O2=32;//Molecular weight of O2
+M_H2O=18;//Molecular weight of water
+C_O2_critical=1*10^(-3);//Critical O2 Concentration (g/L)
+percent_reduction=40/100;//Mass transfer coefficient in the upper region of the reactor is 40% less than the average
+kLa_soln=0.22;//Value calculated in Ex7.6.d
+r_conv=1.25*10^(-5);//Rate at peak O2 demand (mol/L sec)
+depth=12;//Depth of reactor (m)
+
+
+//CALCULATION (Ex7.6.a )
+S=%pi*(D^2)/4;//Cross section area (m2)
+V=S*depth;//Volume of solution(m3)
+F_air=(S*u_g*(10^(-2))*3600)/(R*(10^(-3))*T_K);
+F_O2=f_O2*F_air;//Feed rate of O2 (mol/hr)
+F_O2_used=r_O2_peak*V*(10^(3));//O2 used for aerobic fermentation (mol/hr)
+F_O2_left=F_O2-F_O2_used;//O2 left after aerobic fermentation(mol/hr)
+f_O2_exitgas=F_O2_left/F_air;//Fraction of O2 in exit gas
+Percent_O2_exitgas=(f_O2_exitgas)*(100);
+Frac_O2_used=((f_O2-f_O2_exitgas)/f_O2);
+
+//CALCULATION (Ex7.6.b )
+Re=(rho*N_conv*Da^2)/myu_soln;
+N_p=6;//For a standard turbine
+N_p_pitched=1.7;//For a pitched-blade turbine
+P0=(N_p*rho*(N_conv^3)*(Da^5))*(10^(-3));//Refer equation 7.73 (kW)
+//If the turbine is 2 m from the bottom, or 10 m below the surface,the pressure is about 2 atm since 1atm= 10.3 m water
+Press_bottom=2
+ug_sup2=ug_sup1/Press_bottom;
+Q=ug_sup2*S;
+N_Ae=Q/(N_conv*(Da^3));
+Pg_by_P0=0.55;//From figure 7.15 based on N_Ae value calculated
+Pg=Pg_by_P0*P0;//When aerated
+P0_pitched=(N_p_pitched/N_p)*P0;
+Pg_by_P0_pitched=0.8;//Solution reaching the upper stirrers is already aerated
+Pg_pitched=Pg_by_P0_pitched*P0_pitched;
+Tot_Pow_no_air=P0+Press_bottom*P0_pitched;//Total power when no air is presented
+Tot_Pow_aerated=Pg+Press_bottom*Pg_pitched;//Total power when it is aerated
+
+//CALCULATION (Ex7.6.c )
+P_by_V_ave=Tot_Pow_aerated/V;
+kLa_O2_sulfite=0.32;//Using figure7.16 based on ave(P/V) value and ug_average value
+kLa_soln=0.7*kLa_O2_sulfite;//kLa for this solution is 70% of the value for oxygen absorption in sodium sulfite (sec-1)
+y_O2=0.086;//If gas is backmixed
+depth_ave=depth/2;
+Press_ave=(Press_top+(depth_ave/one_atm_water));//Pressure at average depth (atm)
+C_O2_star=(Press_ave*y_O2/k_H_O2)*(1000/M_H2O);//Conversion (mol/L)
+r_conv=r_O2_peak/3600;//Rate at peak O2 demand (mol/L sec)
+C_ave=(C_O2_star-(r_conv/kLa_soln))
+C_ave_conv=C_ave*M_O2*1000;//Converted value of O2 concentration in(mg/L)
+
+//CALCULATION (Ex7.6.d)
+depth_ave=depth/2;
+Press_ave=(Press_top+(depth_ave/one_atm_water));//Pressure at average depth (atm)
+kLa_soln_reduced=kLa_soln*(1-percent_reduction);
+C_star_minus_C=r_conv/kLa_soln_reduced;
+C_O2_new=(C_O2_star-(C_star_minus_C));
+C_O2_new_conv=C_O2_new*M_O2*1000;//Converted value of O2 concentration in(mg/L)
+C_O2_star_new=C_O2_star/Press_ave;
+
+//OUTPUT (Ex7.6.a)
+mprintf('\n OUTPUT Ex7.6.a');
+mprintf('\n==========================================================');
+mprintf('\nAt the peak demand, fraction of the oxygen supplied = %.3f ',Frac_O2_used);
+
+//OUTPUT(Ex7.6.b )
+mprintf('\n\n\n OUTPUT Ex7.6.b');
+mprintf('\n==========================================================');
+mprintf('\nThe total power required for the agitator before the air is turned on: %0.0f kW',Tot_Pow_no_air);
+mprintf('\nThe total power required for the agitator after the air is turned on: %0.0f kW',Tot_Pow_aerated);
+
+//OUTPUT (Ex7.6.c )
+mprintf('\n\n\n OUTPUT Ex7.6.c');
+mprintf('\n==========================================================');
+mprintf('\nThe calculated value of kLa (mass transfer coefficient) of solution:%0.2f (sec-1)',kLa_soln);
+mprintf('\nThe calculated value of average dissolved O2 concentration: %0.2f (mg/L)',C_ave_conv);
+
+ //OUTPUT (Ex7.6.d)
+ mprintf('\n\n\n OUTPUT Ex7.6.d');
+mprintf('\n==========================================================');
+ mprintf('\nThe new calculated value of average dissolved O2 concentration %0.2f (mg/L)',C_O2_new_conv);
+ if(C_star_minus_C>C_O2_star_new)
+ mprintf('\nThe reactor is operated above critical O2 concentration ');
+ else
+ mprintf('\nThe reactor should be operated at higher air rate otherwise C_O2 would drop to zero')
+ end
+ // FILE OUTPUT
+fid= mopen('.\Chapter7-Ex6-Output.txt','w');
+mfprintf(fid,'\n OUTPUT Ex7.6.a');
+mfprintf(fid,'\n==========================================================');
+mfprintf(fid,'\nAt the peak demand, fraction of the oxygen supplied = %.3f ',Frac_O2_used);
+mfprintf(fid,'\n\n\n OUTPUT Ex7.6.b');
+mfprintf(fid,'\n==========================================================');
+mfprintf(fid,'\nThe total power required for the agitator before the air is turned on: %0.0f kW',Tot_Pow_no_air);
+mfprintf(fid,'\nThe total power required for the agitator after the air is turned on: %0.0f kW',Tot_Pow_aerated);
+mfprintf(fid,'\n\n\n OUTPUT Ex7.6.c');
+mfprintf(fid,'\n==========================================================');
+mfprintf(fid,'\nThe calculated value of kLa (mass transfer coefficient) of solution:%0.2f (sec-1)',kLa_soln);
+mfprintf(fid,'\nThe calculated value of average dissolved O2 concentration: %0.2f (mg/L)',C_ave_conv);
+mfprintf(fid,'\n\n\n OUTPUT Ex7.6.d');
+mfprintf(fid,'\n==========================================================');
+mfprintf(fid,'\nThe new calculated value of average dissolved O2 concentration %0.2f (mg/L)',C_O2_new_conv);
+ if(C_star_minus_C>C_O2_star_new)
+ mfprintf(fid,'\nThe reactor is operated above critical O2 concentration ');
+ else
+ mfprintf(fid,'\nThe reactor should be operated at higher air rate otherwise C_O2 would drop to zero')
+ end
+ mclose(fid);
+//===================================================END OF PROGRAM======================================================
+
+
+
+
+
+
+
diff --git a/1040/CH7/EX7.7.a/Chapter7_Ex7_a.sce b/1040/CH7/EX7.7.a/Chapter7_Ex7_a.sce
new file mode 100644
index 000000000..a1b767e3e
--- /dev/null
+++ b/1040/CH7/EX7.7.a/Chapter7_Ex7_a.sce
@@ -0,0 +1,79 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436.
+//Chapter-7 Ex7.7.a Pg No.304
+//Title:Apparent value of kLa and regime of operation
+//======================================================================================================================
+clear
+clc
+//INPUT
+Vol_reactor=35;//Volume of reactor(L)
+No_reactor=3;//No. of reactor
+T_C=155;//Operating Temperature (°C)
+T_ref=273;//Reference Temperature (°C)
+T_K= T_C+T_ref;//Operating Temperature (K)
+P=8.2;//Operating Pressure (atm)
+X_conversion=9.5*10^(-2);//Conversion
+S=73*10^(-2);//Selectivity
+M_cyclohexane=84.16;//Molecular weight of cyclohexane
+F_cyclohexane=100;//Feed rate of cyclohexane (L/hr)
+F_air=9.9;//Feed rate of air (nm3/hr)
+f_O2_air=0.21;//Fraction of O2 in air
+V_ref=22400;//Reference volume at STP(cm3/mol)
+y_O2=0.002;//O2 in vent gas
+f_O2_consumed=0.99;//Fraction of O2 Consumed
+rho_cyclohexane=0.779;//Density of cyclohexane at 20 (°C)
+main_pdt_ratio=3/2;
+by_pdt_ratio=(1-main_pdt_ratio);
+stoi_rxn_O2=[0.5 1];
+rho_M=0.650;//Density of Cyclohexane at 155 (°C)
+P_dash=5.8;//Vapour Pressure of cyclohexane at 155 (°C)
+D_reactor=30;//Diameter of reactor (cm)
+h_reactor=50;//Height of reactor (cm)
+myu_20=0.98;//(cp) Viscosity at 20(°C)
+myu_155=0.2// (cp) Viscosity at 155(°C)
+
+//CALCULATION
+F_O2=(F_air*10^(6)*f_O2_air)/(3600*V_ref);
+delta_N_O2=F_O2*f_O2_consumed;
+F_C6=(F_cyclohexane*10^(3)*rho_cyclohexane)/(3600*M_cyclohexane)
+F_prdts=F_C6*X_conversion*S;
+F_O2_prdts=F_prdts*(main_pdt_ratio*stoi_rxn_O2(1)+by_pdt_ratio*stoi_rxn_O2(2));
+F_O2_remain_used=delta_N_O2-F_O2_prdts;
+F_O2_prdts_conver=F_O2_prdts/(F_C6*X_conversion*S);
+F_O2_remain_used_conver=F_O2_remain_used/(F_C6*X_conversion*(1-S));
+X_O2=10^(0.366*log10(T_K)-3.8385);//O2 solubility from Wild et al. [37]:
+PO2_plus_PN2=P-P_dash;
+P_O2=y_O2*PO2_plus_PN2;
+x_O2=P_O2*X_O2;//Mol fraction of O2
+C_M=rho_M*10^(3)/M_cyclohexane;
+C_O2_star=C_M*x_O2;
+
+//Assume each reactor has 30 L solution
+V_soln_n=30;//Volume of solution in each reactor
+apparent_kLa=(delta_N_O2)/(V_soln_n*No_reactor*C_O2_star);
+F_total=(F_air*10^(6)/3600)*(T_K/T_ref)*(8.2/2.4)*(1/8.2);//The total vapor flow is 8.2/2.4 times the air flow
+CSA_reactor=%pi*(D_reactor^2)/4;
+u_g=F_total/(CSA_reactor*No_reactor);
+//Calculation for predicted value of kLa
+kLa_20=0.16;//From Figure 7.16, for O2–C6H12 at 20 (°C), 2 cm/sec, 5 kW/m3
+T_data=20+T_ref;//Temperature at which data is taken from the table
+D_155_by_D_20=(T_K/T_data)*(myu_20/myu_155);
+Predicted_kLa=kLa_20*(D_155_by_D_20^(0.5))*(u_g/2)^(0.5);
+
+//OUTPUT
+mprintf('\nThe value of apparent kLa: %0.1f (sec-1)',apparent_kLa);
+mprintf('\n The value of predicted kLa: %0.2f (sec-1)',Predicted_kLa);
+if (apparent_kLa>Predicted_kLa)
+ mprintf('\nThe absorption of oxygen is greatly enhanced by chemical reactions in the liquid film')
+ mprintf('\nThe kinetics can be approximated by a first-order expression,the reaction would fall in the pseudo-first-order regime,\nwhere the rate varies with the square root of the oxygen diffusivity and the rate constant.')
+end
+fid= mopen('.\Chapter7_Ex7_a_Output.txt','w');
+mfprintf(fid,'\nThe value of apparent kLa: %0.1f (sec-1)',apparent_kLa);
+mfprintf(fid,'\n The value of predicted kLa: %0.2f (sec-1)',Predicted_kLa);
+if (apparent_kLa>Predicted_kLa)
+ mfprintf(fid,'\nThe absorption of oxygen is greatly enhanced by chemical reactions in the liquid film')
+ mfprintf(fid,'\nThe kinetics can be approximated by a first-order expression,the reaction would fall in the pseudo-first-order regime,\nwhere the rate varies with the square root of the oxygen diffusivity and the rate constant.')
+end
+mclose('all');
+//==========================================================END OF PROGRAM===============================================
+
+
diff --git a/1040/CH7/EX7.7.a/Chapter7_Ex7_a_Output.txt b/1040/CH7/EX7.7.a/Chapter7_Ex7_a_Output.txt
new file mode 100644
index 000000000..b96d1ff99
--- /dev/null
+++ b/1040/CH7/EX7.7.a/Chapter7_Ex7_a_Output.txt
@@ -0,0 +1,6 @@
+
+The value of apparent kLa: 5.7 (sec-1)
+ The value of predicted kLa: 0.28 (sec-1)
+The absorption of oxygen is greatly enhanced by chemical reactions in the liquid film
+The kinetics can be approximated by a first-order expression,the reaction would fall in the pseudo-first-order regime,
+where the rate varies with the square root of the oxygen diffusivity and the rate constant. \ No newline at end of file
diff --git a/1040/CH7/EX7.7/Chapter7_Ex7.sce b/1040/CH7/EX7.7/Chapter7_Ex7.sce
new file mode 100644
index 000000000..4fe4a5709
--- /dev/null
+++ b/1040/CH7/EX7.7/Chapter7_Ex7.sce
@@ -0,0 +1,109 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436.
+//Chapter-7 Ex7.7 Pg No.304
+//Title:Apparent value of kLa, regime of operation and selectivity dependency on gas mixing
+//======================================================================================================================
+clear
+clc
+//INPUT
+Vol_reactor=35;//Volume of reactor(L)
+No_reactor=3;//No. of reactor
+T_C=155;//Operating Temperature (°C)
+T_ref=273;//Reference Temperature (°C)
+T_K= T_C+T_ref;//Operating Temperature (K)
+P=8.2;//Operating Pressure (atm)
+X_conversion=9.5*10^(-2);//Conversion
+S=73*10^(-2);//Selectivity
+M_cyclohexane=84.16;//Molecular weight of cyclohexane
+F_cyclohexane=100;//Feed rate of cyclohexane (L/hr)
+F_air=9.9;//Feed rate of air (nm3/hr)
+f_O2_air=0.21;//Fraction of O2 in air
+V_ref=22400;//Reference volume at STP(cm3/mol)
+y_O2=0.002;//O2 in vent gas
+f_O2_consumed=0.99;//Fraction of O2 Consumed
+rho_cyclohexane=0.779;//Density of cyclohexane at 20 (°C)
+main_pdt_ratio=3/2;
+by_pdt_ratio=(1-main_pdt_ratio);
+stoi_rxn_O2=[0.5 1];
+rho_M=0.650;//Density of Cyclohexane at 155 (°C)
+P_dash=5.8;//Vapour Pressure of cyclohexane at 155 (°C)
+D_reactor=30;//Diameter of reactor (cm)
+h_reactor=50;//Height of reactor (cm)
+myu_20=0.98;//(cp) Viscosity at 20(°C)
+myu_155=0.2// (cp) Viscosity at 155(°C)
+x_O2=6.38*(10^(-6));//Mol fraction of O2
+D_B_by_D_A=0.5;//Assumed value (refer Ex7.7)
+Phi=20;//Refer Fig. 7.7
+n=1/(0.7);
+
+
+//CALCULATION (Ex7.7.a )
+F_O2=(F_air*10^(6)*f_O2_air)/(3600*V_ref);
+delta_N_O2=F_O2*f_O2_consumed;
+F_C6=(F_cyclohexane*10^(3)*rho_cyclohexane)/(3600*M_cyclohexane)
+F_prdts=F_C6*X_conversion*S;
+F_O2_prdts=F_prdts*(main_pdt_ratio*stoi_rxn_O2(1)+by_pdt_ratio*stoi_rxn_O2(2));
+F_O2_remain_used=delta_N_O2-F_O2_prdts;
+F_O2_prdts_conver=F_O2_prdts/(F_C6*X_conversion*S);
+F_O2_remain_used_conver=F_O2_remain_used/(F_C6*X_conversion*(1-S));
+X_O2=10^(0.366*log10(T_K)-3.8385);//O2 solubility from Wild et al. [37]:
+PO2_plus_PN2=P-P_dash;
+P_O2=y_O2*PO2_plus_PN2;
+x_O2=P_O2*X_O2;//Mol fraction of O2
+C_M=rho_M*10^(3)/M_cyclohexane;
+C_O2_star=C_M*x_O2;
+
+//Assume each reactor has 30 L solution
+V_soln_n=30;//Volume of solution in each reactor
+apparent_kLa=(delta_N_O2)/(V_soln_n*No_reactor*C_O2_star);
+F_total=(F_air*10^(6)/3600)*(T_K/T_ref)*(8.2/2.4)*(1/8.2);//The total vapor flow is 8.2/2.4 times the air flow
+CSA_reactor=%pi*(D_reactor^2)/4;
+u_g=F_total/(CSA_reactor*No_reactor);
+//Calculation for predicted value of kLa
+kLa_20=0.16;//From Figure 7.16, for O2–C6H12 at 20 (°C), 2 cm/sec, 5 kW/m3
+T_data=20+T_ref;//Temperature at which data is taken from the table
+D_155_by_D_20=(T_K/T_data)*(myu_20/myu_155);
+Predicted_kLa=kLa_20*(D_155_by_D_20^(0.5))*(u_g/2)^(0.5);
+
+//CALCULATION (Ex7.7.b )
+C_M=rho_M*10^(3)/M_cyclohexane;
+C_B0=(1-X_conversion)*C_M;
+C_Ai=C_M*x_O2;
+Phi_a=(1+(C_B0/(C_Ai*n))*(D_B_by_D_A)^(0.5));
+ratio=Phi_a/Phi;
+
+//OUTPUT (Ex7.7.a )
+mprintf('\n OUTPUT Ex7.7.a');
+mprintf('\n==========================================================');
+mprintf('\nThe value of apparent kLa: %0.2f (sec-1)',apparent_kLa);
+mprintf('\n The value of predicted kLa: %0.2f (sec-1)',Predicted_kLa);
+if (apparent_kLa>Predicted_kLa)
+ mprintf('\nThe absorption of oxygen is greatly enhanced by chemical reactions in the liquid film')
+ mprintf('\nThe kinetics can be approximated by a first-order expression,the reaction would fall in the pseudo-first-order regime,\nwhere the rate varies with the square root of the oxygen diffusivity and the rate constant.')
+end
+
+//OUTPUT (Ex7.7.b )
+mprintf('\n\n\n OUTPUT Ex7.7.b');
+mprintf('\n==========================================================');
+mprintf('\nThe value of Phi (enhancement factor) %0.4E ',Phi_a);
+mprintf('\nThe value of ratio Phi_a_by_Phi:%0.1E',ratio);
+mprintf('\nFrom the ratio value Phi_a is greater than Phi hence there is no significant gradient for cyclohexane');
+
+// FILE OUTPUT
+fid= mopen('.\Chapter7-Ex7-Output.txt','w');
+mfprintf(fid,'\n OUTPUT Ex7.7.a');
+mfprintf(fid,'\n==========================================================');
+mfprintf(fid,'\nThe value of apparent kLa: %0.2f (sec-1)',apparent_kLa);
+mfprintf(fid,'\n The value of predicted kLa: %0.2f (sec-1)',Predicted_kLa);
+if (apparent_kLa>Predicted_kLa)
+ mfprintf(fid,'\nThe absorption of oxygen is greatly enhanced by chemical reactions in the liquid film')
+ mfprintf(fid,'\nThe kinetics can be approximated by a first-order expression,the reaction would fall in the pseudo-first-order regime,\nwhere the rate varies with the square root of the oxygen diffusivity and the rate constant.')
+end
+mfprintf(fid,'\n\n\n OUTPUT Ex7.7.b');
+mfprintf(fid,'\n==========================================================');
+mfprintf(fid,'\nThe value of Phi (enhancement factor) %0.4E ',Phi_a);
+mfprintf(fid,'\nThe value of ratio Phi_a_by_Phi:%0.1E',ratio);
+mfprintf(fid,'\nFrom the ratio value Phi_a is greater than Phi hence there is no significant gradient for cyclohexane');
+mclose(fid);
+//==========================================================END OF PROGRAM===============================================
+
+