From 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Tue, 10 Oct 2017 12:27:19 +0530 Subject: initial commit / add all books --- 1040/CH7/EX7.1.a/Chapter7_Ex1_a.sce | 43 +++++++++ 1040/CH7/EX7.1.a/Chapter7_Ex1_a_Output.txt | 4 + 1040/CH7/EX7.1.b/Chapter7_Ex1_b.sce | 51 ++++++++++ 1040/CH7/EX7.1.b/Chapter7_Ex1_b_Output.txt | 3 + 1040/CH7/EX7.1/Chapter7_Ex1.sce | 78 +++++++++++++++ 1040/CH7/EX7.2/Chapter7_Ex2.sce | 29 ++++++ 1040/CH7/EX7.3/Chapter7_Ex3.sce | 61 ++++++++++++ 1040/CH7/EX7.4/Chapter7_Ex4.sce | 52 ++++++++++ 1040/CH7/EX7.5.a/Chapter7_Ex5_a.sce | 57 +++++++++++ 1040/CH7/EX7.5.a/Chapter7_Ex5_a_Output.txt | 4 + 1040/CH7/EX7.5.b/Chapter7_Ex5_b.sce | 45 +++++++++ 1040/CH7/EX7.5.b/Chapter7_Ex5_b_Output.txt | 5 + 1040/CH7/EX7.5.c/Chapter7_Ex5_c.sce | 44 +++++++++ 1040/CH7/EX7.5.c/Chapter7_Ex5_c_Output.txt | 5 + 1040/CH7/EX7.5/Chapter7_Ex5.sce | 114 ++++++++++++++++++++++ 1040/CH7/EX7.6.a/Chapter7_Ex6_a.sce | 44 +++++++++ 1040/CH7/EX7.6.a/Chapter7_Ex6_a_Output.txt | 2 + 1040/CH7/EX7.6.b/Chapter7_Ex6_b.sce | 48 ++++++++++ 1040/CH7/EX7.6.b/Chapter7_Ex6_b_Output.txt | 3 + 1040/CH7/EX7.6.c/Chapter7_Ex6_c.sce | 43 +++++++++ 1040/CH7/EX7.6.c/Chapter7_Ex6_c_Output.txt | 3 + 1040/CH7/EX7.6.d/Chapter7_Ex6_d.sce | 46 +++++++++ 1040/CH7/EX7.6.d/Chapter7_Ex6_d_Output.txt | 4 + 1040/CH7/EX7.6/Chapter7_Ex6.sce | 148 +++++++++++++++++++++++++++++ 1040/CH7/EX7.7.a/Chapter7_Ex7_a.sce | 79 +++++++++++++++ 1040/CH7/EX7.7.a/Chapter7_Ex7_a_Output.txt | 6 ++ 1040/CH7/EX7.7/Chapter7_Ex7.sce | 109 +++++++++++++++++++++ 27 files changed, 1130 insertions(+) create mode 100644 1040/CH7/EX7.1.a/Chapter7_Ex1_a.sce create mode 100644 1040/CH7/EX7.1.a/Chapter7_Ex1_a_Output.txt create mode 100644 1040/CH7/EX7.1.b/Chapter7_Ex1_b.sce create mode 100644 1040/CH7/EX7.1.b/Chapter7_Ex1_b_Output.txt create mode 100644 1040/CH7/EX7.1/Chapter7_Ex1.sce create mode 100644 1040/CH7/EX7.2/Chapter7_Ex2.sce create mode 100644 1040/CH7/EX7.3/Chapter7_Ex3.sce create mode 100644 1040/CH7/EX7.4/Chapter7_Ex4.sce create mode 100644 1040/CH7/EX7.5.a/Chapter7_Ex5_a.sce create mode 100644 1040/CH7/EX7.5.a/Chapter7_Ex5_a_Output.txt create mode 100644 1040/CH7/EX7.5.b/Chapter7_Ex5_b.sce create mode 100644 1040/CH7/EX7.5.b/Chapter7_Ex5_b_Output.txt create mode 100644 1040/CH7/EX7.5.c/Chapter7_Ex5_c.sce create mode 100644 1040/CH7/EX7.5.c/Chapter7_Ex5_c_Output.txt create mode 100644 1040/CH7/EX7.5/Chapter7_Ex5.sce create mode 100644 1040/CH7/EX7.6.a/Chapter7_Ex6_a.sce create mode 100644 1040/CH7/EX7.6.a/Chapter7_Ex6_a_Output.txt create mode 100644 1040/CH7/EX7.6.b/Chapter7_Ex6_b.sce create mode 100644 1040/CH7/EX7.6.b/Chapter7_Ex6_b_Output.txt create mode 100644 1040/CH7/EX7.6.c/Chapter7_Ex6_c.sce create mode 100644 1040/CH7/EX7.6.c/Chapter7_Ex6_c_Output.txt create mode 100644 1040/CH7/EX7.6.d/Chapter7_Ex6_d.sce create mode 100644 1040/CH7/EX7.6.d/Chapter7_Ex6_d_Output.txt create mode 100644 1040/CH7/EX7.6/Chapter7_Ex6.sce create mode 100644 1040/CH7/EX7.7.a/Chapter7_Ex7_a.sce create mode 100644 1040/CH7/EX7.7.a/Chapter7_Ex7_a_Output.txt create mode 100644 1040/CH7/EX7.7/Chapter7_Ex7.sce (limited to '1040/CH7') diff --git a/1040/CH7/EX7.1.a/Chapter7_Ex1_a.sce b/1040/CH7/EX7.1.a/Chapter7_Ex1_a.sce new file mode 100644 index 000000000..fae0a8e8c --- /dev/null +++ b/1040/CH7/EX7.1.a/Chapter7_Ex1_a.sce @@ -0,0 +1,43 @@ +//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436. +//Chapter-7 Ex7.1.a Pg No.260 +//Title:Overall Reaction Rate Coefficient and Percent Resistance +//=========================================================================================================== +clear +clc +//INPUT +k2=8.5;//Reaction rate constant (L/mol-sec) +T=50;//Reaction condition temperature(°C) +P=2;//Reaction Pressure (atm) +H_O2=8*10^4;// Solubility (atm/mol fraction) +F=17000//Feed rate (L/hr) +C_B_feed=1.6;//Feed concentration(M) +C_B_product=0.8;//Product concentration(M) +k_L_a=900;//Liquid film mass transfer coefficient(hr-1) +k_g_a=80;//Gas film mass transfer coefficient(mol/hr L atm) +Epsilon=0.1;//Porosity + + +//CALCULATION +H_O2_conv=H_O2*18/1000;// Convert (atm L/mole O2) +k_L_a_by_H=k_L_a/H_O2_conv; +reaction_resistance=H_O2_conv/(k2*C_B_product*(1-Epsilon)*3600); +Kg_a=1/((1/k_g_a)+(1/k_L_a_by_H)+(reaction_resistance));//Refer equation7.10 +gasfilm_resistance_per=((1/k_g_a)/(1/Kg_a))*100; +liq_film_resistance_per=((1/k_L_a_by_H)/(1/Kg_a))*100; +reaction_resistance_per=((reaction_resistance)/(1/Kg_a))*100; + +//OUTPUT +// Console Output +mprintf('\nThe percentage gas-film resistance : %0.1f%%',gasfilm_resistance_per); +mprintf('\nThe percentage liquid-film resistance: %0.1f%%',liq_film_resistance_per); +mprintf('\nThe percentage chemical reaction resistance: %0.1f%%',reaction_resistance_per); + +// File Output +fid= mopen('.\Chapter7-Ex1-a-Output.txt','w'); +mfprintf(fid,'\nThe percentage gas-film resistance: %0.1f%%',gasfilm_resistance_per); +mfprintf(fid,'\nThe percentage liquid-film resistance: %0.1f%%',liq_film_resistance_per); +mfprintf(fid,'\nThe percentage chemical reaction resistance: %0.1f%%',reaction_resistance_per); +mclose(fid); +//===================================================END OF PROGRAM====================================================== + + diff --git a/1040/CH7/EX7.1.a/Chapter7_Ex1_a_Output.txt b/1040/CH7/EX7.1.a/Chapter7_Ex1_a_Output.txt new file mode 100644 index 000000000..d58fc7cea --- /dev/null +++ b/1040/CH7/EX7.1.a/Chapter7_Ex1_a_Output.txt @@ -0,0 +1,4 @@ + +The percentage gas-film resistance: 0.7% +The percentage liquid-film resistance: 95.4% +The percentage chemical reaction resistance: 3.9% \ No newline at end of file diff --git a/1040/CH7/EX7.1.b/Chapter7_Ex1_b.sce b/1040/CH7/EX7.1.b/Chapter7_Ex1_b.sce new file mode 100644 index 000000000..882f08df8 --- /dev/null +++ b/1040/CH7/EX7.1.b/Chapter7_Ex1_b.sce @@ -0,0 +1,51 @@ +//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436. +//Chapter-7 Ex7.1.b Pg No.260 +//Title:Reaction Volume and Reactor Size +//=========================================================================================================== +clear +clc +//INPUT +k2=8.5;//Reaction rate constant (L/mol-sec) +T=50;//Reaction condition temperature(°C) +P=2;//Reaction Pressure (atm) +H_O2=8*10^4;// Solubility (atm/mol fraction) +F=17000//Feed rate (L/hr) +C_B_feed=1.6;//Feed concentration(M) +C_B_product=0.8;//Product concentration(M) +k_L_a=900;//Liquid film mass transfer coefficient(hr-1) +k_g_a=80;//Gas film mass transfer coefficient(mol/hr L atm) +Epsilon=0.1;//Porosity +Kg_a=0.596;//Refer the overall reaction rate calculated in Ex7.1.a +percent_inc=0.2;//Percentage excess required for reactor volume + +//CALCULATION +delta_C_B=C_B_feed-C_B_product; +mol_O2_needed=F*delta_C_B/4; +N_air=100;//Assuming 100 mole of feed air +f_O2=0.209;//Fraction of O2 +f_N2=1-f_O2;//Fraction of N2 +N_O2_in=N_air*f_O2; +N_N2_in=N_air*f_N2; +N_O2_out=N_O2_in/2;//Half of O2 fed +N_N2_out=N_N2_in; +N_air_out=N_N2_out+N_O2_out; +P_O2_out=P*(N_O2_out/N_air_out); +P_O2_in=P*(N_O2_in/N_air); +P_O2_bar=(P_O2_in-P_O2_out)/(log(P_O2_in/P_O2_out));//Log mean Pressure +volume=mol_O2_needed/(Kg_a*P_O2_bar); +reactor_vol=volume+volume*percent_inc; +volume_gal=volume*0.264; +reactor_vol_gal=reactor_vol*0.264; + +//OUTPUT +//Console Output +mprintf('\n Reaction volume calculated : %0.0f L ',volume ); +mprintf('\n Reactor size to be chosen : %0.0f L',reactor_vol); +//File Output +fid= mopen('.\Chapter7_Ex1_b_Output.txt','w'); +mfprintf(fid,'\n Reaction volume calculated : %0.0f L ',volume ); +mfprintf(fid,'\n Reactor size to be chosen : %0.0f L',reactor_vol); +mclose(fid); +//=============================================END OF PROGRAM============================================================ +// Disclaimer : The numerically calculated value of reaction volume is 18008 L not 18000 L as mentioned in the textbook + diff --git a/1040/CH7/EX7.1.b/Chapter7_Ex1_b_Output.txt b/1040/CH7/EX7.1.b/Chapter7_Ex1_b_Output.txt new file mode 100644 index 000000000..1274ce70d --- /dev/null +++ b/1040/CH7/EX7.1.b/Chapter7_Ex1_b_Output.txt @@ -0,0 +1,3 @@ + + Reaction volume calculated : 18008 L + Reactor size to be chosen : 21610 L \ No newline at end of file diff --git a/1040/CH7/EX7.1/Chapter7_Ex1.sce b/1040/CH7/EX7.1/Chapter7_Ex1.sce new file mode 100644 index 000000000..d3f4bfd49 --- /dev/null +++ b/1040/CH7/EX7.1/Chapter7_Ex1.sce @@ -0,0 +1,78 @@ +//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436. +//Chapter-7 Ex7.1 Pg No.260 +//Title:Overall Reaction Rate Coefficient, Percent Resistance, Reaction Volume and Reactor Size +//=========================================================================================================== +clear +clc +// COMMON INPUT +k2=8.5;//Reaction rate constant (L/mol-sec) +T=50;//Reaction condition temperature(°C) +P=2;//Reaction Pressure (atm) +H_O2=8*10^4;// Solubility (atm/mol fraction) +F=17000//Feed rate (L/hr) +C_B_feed=1.6;//Feed concentration(M) +C_B_product=0.8;//Product concentration(M) +k_L_a=900;//Liquid film mass transfer coefficient(hr-1) +k_g_a=80;//Gas film mass transfer coefficient(mol/hr L atm) +Epsilon=0.1;//Porosity +percent_inc=0.2;//Percentage excess required for reactor volume + + +//CALCULATION (Ex7.1.a) +H_O2_conv=H_O2*18/1000;// Convert (atm L/mole O2) +k_L_a_by_H=k_L_a/H_O2_conv; +reaction_resistance=H_O2_conv/(k2*C_B_product*(1-Epsilon)*3600); +Kg_a=1/((1/k_g_a)+(1/k_L_a_by_H)+(reaction_resistance));//Refer equation7.10 +gasfilm_resistance_per=((1/k_g_a)/(1/Kg_a))*100; +liq_film_resistance_per=((1/k_L_a_by_H)/(1/Kg_a))*100; +reaction_resistance_per=((reaction_resistance)/(1/Kg_a))*100; + +//CALCULATION (Ex7.1.b) +delta_C_B=C_B_feed-C_B_product; +mol_O2_needed=F*delta_C_B/4; +N_air=100;//Assuming 100 mole of feed air +f_O2=0.209;//Fraction of O2 +f_N2=1-f_O2;//Fraction of N2 +N_O2_in=N_air*f_O2; +N_N2_in=N_air*f_N2; +N_O2_out=N_O2_in/2;//Half of O2 fed +N_N2_out=N_N2_in; +N_air_out=N_N2_out+N_O2_out; +P_O2_out=P*(N_O2_out/N_air_out); +P_O2_in=P*(N_O2_in/N_air); +P_O2_bar=(P_O2_in-P_O2_out)/(log(P_O2_in/P_O2_out));//Log mean Pressure +volume=mol_O2_needed/(Kg_a*P_O2_bar); +reactor_vol=volume+volume*percent_inc; +volume_gal=volume*0.264; +reactor_vol_gal=reactor_vol*0.264; + + +//OUTPUT (Ex7.1.a) +mprintf('\n OUTPUT Ex7.1.a'); +mprintf('\n=========================================================='); +mprintf('\nThe percentage gas-film resistance : %0.1f%%',gasfilm_resistance_per); +mprintf('\nThe percentage liquid-film resistance: %0.1f%%',liq_film_resistance_per); +mprintf('\nThe percentage chemical reaction resistance: %0.1f%%',reaction_resistance_per); + +//OUTPUT (Ex7.1.b) +mprintf('\n\n\n OUTPUT Ex7.1.b'); +mprintf('\n=========================================================='); +mprintf('\n Reaction volume calculated : %0.0f L ',volume ); +mprintf('\n Reactor size to be chosen : %0.0f L',reactor_vol); + + +// FILE OUTPUT +fid= mopen('.\Chapter7-Ex1-Output.txt','w'); +mfprintf(fid,'\n OUTPUT Ex7.1.a'); +mfprintf(fid,'\n=========================================================='); +mfprintf(fid,'\nThe percentage gas-film resistance : %0.1f%%',gasfilm_resistance_per); +mfprintf(fid,'\nThe percentage liquid-film resistance: %0.1f%%',liq_film_resistance_per); +mfprintf(fid,'\nThe percentage chemical reaction resistance: %0.1f%%',reaction_resistance_per); +mfprintf(fid,'\n\n\n OUTPUT Ex7.1.b'); +mfprintf(fid,'\n=========================================================='); +mfprintf(fid,'\n Reaction volume calculated : %0.0f L ',volume ); +mfprintf(fid,'\n Reactor size to be chosen : %0.0f L',reactor_vol); +mclose(fid); +//===================================================END OF PROGRAM====================================================== + + diff --git a/1040/CH7/EX7.2/Chapter7_Ex2.sce b/1040/CH7/EX7.2/Chapter7_Ex2.sce new file mode 100644 index 000000000..755c5c982 --- /dev/null +++ b/1040/CH7/EX7.2/Chapter7_Ex2.sce @@ -0,0 +1,29 @@ +//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc. USA,pp 436. +//Chapter-7 Ex7.2 Pg No.270 +//Title:The gradient for B in the liquid film +//=========================================================================================================== +clear +clc +//INPUT +C_B0_by_C_Ai=40; +D_A_by_D_B=1.2; +sqrt_M=10; +phi=sqrt_M;//Assume the gradient for A is the same as when the gradient for B is negligible +eff_diff_distA_by_xL=(1/phi); + +//CALCULATION +eff_diff_distB_by_xL=(1-eff_diff_distA_by_xL); +CB0_minus_CBbar_by_CB0=D_A_by_D_B*(1/C_B0_by_C_Ai)*(eff_diff_distB_by_xL/eff_diff_distA_by_xL); +C_Bbar_by_C_B0=(1-CB0_minus_CBbar_by_CB0); +sqrt_kC_B=sqrt(C_Bbar_by_C_B0); +phi_corrected=phi*sqrt_kC_B; +Percent_change=((phi-phi_corrected)/(phi))*100; + +//OUTPUT +mprintf('\n Percentage Decrease in Rate :%0.0f%% ',Percent_change); +mprintf('\n The decrease in rate is significant ,hence the gradient for B is significant in liquid film'); +fid= mopen('.\Chapter7-Ex2-Output.txt','w'); +mfprintf(fid,'\n Percentage Decrease in Rate :%0.0f%% ',Percent_change); +mfprintf(fid,'\n The decrease in rate is significant ,hence the gradient for B is significant in liquid film'); +mclose(fid); +//================================================END OF PROGRAM========================================================== diff --git a/1040/CH7/EX7.3/Chapter7_Ex3.sce b/1040/CH7/EX7.3/Chapter7_Ex3.sce new file mode 100644 index 000000000..de11fc593 --- /dev/null +++ b/1040/CH7/EX7.3/Chapter7_Ex3.sce @@ -0,0 +1,61 @@ +//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436 +//Chapter-7 Ex7.3 Pg No.274 +//Title:Overall mass transfer coefficient and percent resistance +//=========================================================================================================== +clear +clc +//INPUT +k2=8500;//(L/mol sec) at 25 °C +kg_a= 7.4 //(mol/hr ft3 atm) +k_star_L_a=32;//(hr-1) +a=34;//(ft2/ft3) +H_CO2=1.9*10^(3);//(atm/m f) Henry's Constant +D_CO2=2*10^(-5);//(cm2/sec) +D_OH=2.8*10^(-5);//(cm2/sec) +P_CO2_in=0.04;//(atm) +P_CO2_out=0.004;//(atm) +Caustic_conc=[0.5 0.75];//Cocentration on both the ends of the column bottom and top(M) +n=2; +M_H2O=18;//Molecular Weight +H_H2O=62.3;//(g/ft3) Henry's Constant +H_H2O_dash=H_H2O/M_H2O;//Henry's Constant converted into consistent units with kg_a + + +//CALCULATION +C_Ai=P_CO2_in/H_CO2*(1000/18); +k_star_L=(k_star_L_a/(a*3600))*(30.5); +H_CO2_dash=H_CO2*(1/H_H2O_dash); +for i=1:2 +Phi_a(i)=(1+(Caustic_conc(i)/(n*C_Ai))*(D_OH/D_CO2));//Refer equation7.51 +sqrt_M(i)=sqrt(k2*Caustic_conc(i)*D_CO2)/k_star_L; +Phi(i)=sqrt_M(i);//Refer fig 7.7 +K_ga(i)=(1/((1/kg_a)+(H_CO2_dash/(Phi(i)*k_star_L_a))));//Overall Mass transfer coefficient +Percent_resis_gasfilm(i)=(K_ga(i)/kg_a)*100; +end + +//OUTPUT +mprintf('\n \t\t\t\t\t\t\tTop\t Bottom'); +mprintf('\n Overall mass transfer coefficient (mol/hr ft3 atm): %0.1f\t %0.1f',K_ga(1),K_ga(2)); +mprintf('\n Percenage resistance in gas film: %0.0f%%\t %0.0f%% ',Percent_resis_gasfilm(1) ,Percent_resis_gasfilm(2) ); + +//FILE OUTPUT +fid= mopen('.\Chapter7-Ex3-Output.txt','w'); +mfprintf(fid,'\n \t\t\t\t\t\t\tTop\t Bottom'); +mfprintf(fid,'\n Overall mass transfer coefficient (mol/hr ft3 atm): %0.1f\t %0.1f',K_ga(1),K_ga(2)); +mfprintf(fid,'\n Percenage resistance in gas film: %0.0f%%\t %0.0f%% ',Percent_resis_gasfilm(1) ,Percent_resis_gasfilm(2) ); +mclose(fid); +//========================================================================END OF PROGRAM================================================================================= + + + + + + + + + + + + + + diff --git a/1040/CH7/EX7.4/Chapter7_Ex4.sce b/1040/CH7/EX7.4/Chapter7_Ex4.sce new file mode 100644 index 000000000..7b8932178 --- /dev/null +++ b/1040/CH7/EX7.4/Chapter7_Ex4.sce @@ -0,0 +1,52 @@ +//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436 +//Chapter-7 Ex7.4 Pg No.279 +//Title:Local selectivity due to mass transfer limitations +//=========================================================================================================== +clear +clc +//INPUT +C_Ai=0.02;//(M) +C_B0=3;//(M) +D_A=10^(-5);//(cm2/sec) +D_B=D_A;//(cm2/sec) +D_C=D_B;//(cm2/sec) +k_1=10^(4);//(L/mol sec) +k_star_l=0.015;//(cm/sec) +n=1; +C_c0=[0 1.4]; +X=[0 0.5]// Conversion +Phi=[33 23];//From figure 7.7 + + +//CALCULATION +k_2=0.09*k_1; +for i=1:2 + C_B(i)=(1-X(i))*C_B0; +sqrt_M(i)=sqrt(C_B(i)*k_1*D_A)/k_star_l; +Phi_a(i)=(1+(C_B(i)/(n*C_Ai))*(D_B/D_A));//Refer equation 7.51 +C_Bbar_by_C_B(i)=(Phi(i)/sqrt_M(i))^2;//Refer equation 7.59 +delta_C_B(i)=(1-C_Bbar_by_C_B(i))*C_B(i);//Refer equation 7.60 +delta_C_c(i)=delta_C_B(i); +C_cbar(i)=delta_C_c(i)+C_c0(i); +C_Bbar(i)=C_Bbar_by_C_B(i)*(C_B(i)); +S(i)=(1-(k_2*C_cbar(i)/(C_Bbar(i)*k_1)))*100;//Refer equation 7.56 +end + +//OUTPUT +mprintf('\n\tLocal selectivity due to mass transfer limitations '); +mprintf('\n\tThe local selectivity for Zero Conversion : %0.0f%%',S(1)); +mprintf('\n\tThe local selectivity for 50%% Conversion : %0.0f%%',S(2)); + +//FILE OUTPUT +fid= mopen('.\Chapter7-Ex4-Output.txt','w'); +mfprintf(fid,'\n\tLocal selectivity due to mass transfer limitations '); +mfprintf(fid,'\n\tThe local selectivity for Zero Conversion is %0.0f%%',S(1)); +mfprintf(fid,'\n\tThe local selectivity for 50%% Conversion is %0.0f%%',S(2)); +mclose(fid); +//======================================================END OF PROGRAM=================================================== + + + + + + diff --git a/1040/CH7/EX7.5.a/Chapter7_Ex5_a.sce b/1040/CH7/EX7.5.a/Chapter7_Ex5_a.sce new file mode 100644 index 000000000..1ad78a946 --- /dev/null +++ b/1040/CH7/EX7.5.a/Chapter7_Ex5_a.sce @@ -0,0 +1,57 @@ +//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436 +//Chapter-7 Ex7.5.a Pg No.293 +//Title:Maximum rate of CO absorption +//=========================================================================================================== +clear +clc +//INPUT +P_dash=5;//Partial pressure of acetic acid (atm) +P_total=20;//Total Pressure (atm) +myu=0.19;// Viscosity of acetic acid +T_C=180;//Temperature in (°C) +T_K=T_C+273;//Temperature in (K) +sigma_20=28;//Surface Tension(Dynes/cm) at 20 (°C) +sigma_180=20;//Surface Tension (Dynes/cm)at 180 (°C) +M_CO=28;//Molecular weight of CO +M_B=60.05;//Molecular weight acetic acid +V_A= 30.7;//Molar volume +S_CO=7*10^(-3);//Solubility of CO (mol/L atm) +f_CO=0.75;//Fraction of CO +f_acetic_acid=1-f_CO;//Fraction of Acetic acid +R=82.056*(10^-3);//(cm3 atm/ K  mol) +rho_air=1.21;//(kg/m3)density of air at 20 (°C) +sigma_H2O=72;//Surface tension (Dynes/cm) +myu_H2O=1;//Viscosity of water +k_L_a_air_water=0.051;//(sec-1) +D_O2_water=2.4*(10^-5);//(cm2/sec)diffusivity for oxygen in water at 20(°C) +Conc_Rh=4*10^(-3);//Concentration of Rohdium(M) +Conc_CH3I=1;//Concentration of Methyl Iodide(M) + +//CALCUATION +D_CO=(7.4*10^(-8)*M_B^(1/2)*T_K)/(myu*V_A^(0.6));//Diffusivity of CO (Wilke–Chang equation Eq4.17) +M_ave=f_CO*M_CO+M_B*f_acetic_acid;//Average Molecular weight +rho_g=M_ave*P_total/(R*T_K);//From ideal gas law +epsilon_air_water= 0.12;//At velocity 6(cm/sec) +epsilon=epsilon_air_water*(sigma_H2O/sigma_180)^(0.4)*(myu/myu_H2O)^(0.2)*(rho_g/rho_air)^(0.2);//From equation 7.64 +u_G=6;//From figure 7.12(cm/sec) +k_L_a=k_L_a_air_water*(D_CO/D_O2_water)^(0.5)*(epsilon/epsilon_air_water);//From equation 7.69 +P_CO=P_total-P_dash; +C_CO_Star=S_CO*P_CO; +r_max=C_CO_Star*k_L_a;//Rate of CO absorption at 15 atm +r_test=158.8*(10^(6))*exp(-8684/T_K)*(Conc_Rh)*(Conc_CH3I);//Kinetic rate at 180 (°C) + +//OUTPUT +//Console Output +mprintf('\n\tThe maximum rate of CO absorption at 15 atm : %0.3f (mol/L s)',r_max); +mprintf('\n\tThe kinetic rate of CO absorption at 180(°C) : %0.3f (mol/L s)',r_test); +mprintf('\n\tThe predicted value of k_L_a : %0.2f (s-1)',k_L_a); +//File Output +fid= mopen('.\Chapter7_Ex5_a_Output.txt','w'); +mfprintf(fid,'\n\tThe maximum rate of CO absorption at 20 atm : %0.3f (mol/L s)',r_max); +mfprintf(fid,'\n\tThe kinetic rate of CO absorption at 180(°C) : %0.3f (mol/L s)',r_test); +mfprintf(fid,'\n\tThe predicted value of k_L_a : %0.2f (s-1)',k_L_a); +mclose(fid); +//=================================================END OF PROGRAM=========================================================== + + + diff --git a/1040/CH7/EX7.5.a/Chapter7_Ex5_a_Output.txt b/1040/CH7/EX7.5.a/Chapter7_Ex5_a_Output.txt new file mode 100644 index 000000000..d8a7fc127 --- /dev/null +++ b/1040/CH7/EX7.5.a/Chapter7_Ex5_a_Output.txt @@ -0,0 +1,4 @@ + + The maximum rate of CO absorption at 20 atm : 0.030 (mol/L s) + The kinetic rate of CO absorption at 180(°C) : 0.003 (mol/L s) + The predicted value of k_L_a : 0.29 (s-1) \ No newline at end of file diff --git a/1040/CH7/EX7.5.b/Chapter7_Ex5_b.sce b/1040/CH7/EX7.5.b/Chapter7_Ex5_b.sce new file mode 100644 index 000000000..fe7690a68 --- /dev/null +++ b/1040/CH7/EX7.5.b/Chapter7_Ex5_b.sce @@ -0,0 +1,45 @@ +//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc., USA,pp 436. +//Chapter-7 Ex7.5.b Pg No.293 +//Title:Dimensions of the bubble column reactor +//=========================================================================================================== +clear +clc +//INPUT +F_product_acetic_acid=0.1;// Rate of acetic acid produced (kmol/sec) +f_CO_reacted=0.8;//80% of CO reacted +f_CO=0.75;//Fraction of CO in feed +T_C=180;//Temperature in (°C) +T_K=T_C+273;//Temperature in (K) +P_total=20;//Total Pressure (atm) +R=82.056*(10^-3);//(cm3 atm/ K  mol) +u_g=0.1;//(m/sec) +Conc_Rh=4*10^(-3);//Concentration of Rohdium(M) +Conc_CH3I=1;//Concentration of Methyl Iodide(M) +Epsilon=0.25;//Value calculated from Ex7.5.a + +//CALCULATION +F_feed_CO=F_product_acetic_acid/f_CO_reacted;//Rate of flow of CO (kmol/sec) +F_total=F_feed_CO/f_CO; +Q=F_total*R*T_K/(P_total); +S=Q/u_g; +D_t=sqrt(4*S/%pi); +r_test=(158.8*(10^(6))*exp(-8684/T_K)*(Conc_Rh)*(Conc_CH3I))*(10^(-3));//Kinetic rate at 180 (°C) +liquid_vol= (F_product_acetic_acid/r_test)*(10^(-3));//liquid volume (m3) +h0=liquid_vol/S;//clear liquid +h=h0/(1-Epsilon);//aerated liquid + +//OUTPUT +//Console Output +mprintf('\n\tThe Dimensions of the reactor are '); +mprintf('\n\tDiameter:%0.0f m',D_t); +mprintf('\n\tHeight:%0.2f m',h); +mprintf('\n\t The upper limit value of reactor height is 15 m and diameter is 2 m'); +//File Output +fid= mopen('.\Chapter7_Ex5_b_Output.txt','w'); +mfprintf(fid,'\n\tThe Dimensions of the reactor are '); +mfprintf(fid,'\n\tDiameter:%0.0f m',D_t); +mfprintf(fid,'\n\tHeight:%0.2f m',h); +mfprintf(fid,'\n\t The upper limit value of reactor height is 15 m and diameter is 2 m'); +mclose(fid); +//================================================END OF PROGRAM========================================================= +//Disclaimer: The numerically calculated value of reactor height is 14.34 m not 14.4 m as mentioned in the textbook diff --git a/1040/CH7/EX7.5.b/Chapter7_Ex5_b_Output.txt b/1040/CH7/EX7.5.b/Chapter7_Ex5_b_Output.txt new file mode 100644 index 000000000..bf37fd4df --- /dev/null +++ b/1040/CH7/EX7.5.b/Chapter7_Ex5_b_Output.txt @@ -0,0 +1,5 @@ + + The Dimensions of the reactor are + Diameter:2 m + Height:14.34 m + The upper limit value of reactor height is 15 m and diameter is 2 m \ No newline at end of file diff --git a/1040/CH7/EX7.5.c/Chapter7_Ex5_c.sce b/1040/CH7/EX7.5.c/Chapter7_Ex5_c.sce new file mode 100644 index 000000000..77a59926f --- /dev/null +++ b/1040/CH7/EX7.5.c/Chapter7_Ex5_c.sce @@ -0,0 +1,44 @@ +//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc., USA,pp 436. +//Chapter-7 Ex7.5.c Pg No.293 +//Title:Dimension of reactor using lower gas velocity +//=========================================================================================================== +clear +clc +//INPUT +u_g=5*(10^(-2))//Gas Velocity +R=82.056*(10^-3);//(cm3 atm/ K  mol) +T_C=180;//Temperature in (°C) +T_K=T_C+273;//Temperature in (K) +Epsilon_old=0.25;//Value calculated from Ex7.5.a +Epsilon_air_water_new=0.07;//At velocity 3(cm/sec) +Epsilon_air_water_old= 0.12;//At velocity 6(cm/sec) +P_total=20;//Total Pressure (atm) +F_product_acetic_acid=0.1;// Rate of acetic acid produced (kmol/sec) +F_total=0.167;//Value calculated from Ex7.5.b +r_test=3*(10^(-6));//Kinetic rate at 180 (°C) calculated in Ex7.5.a + +//CALCULATION +Q=F_total*R*T_K/(P_total); +S=Q/u_g; +D_t=sqrt(4*S/%pi); +Epsilon_new=(Epsilon_air_water_new/Epsilon_air_water_old)*Epsilon_old; +liquid_vol= (F_product_acetic_acid/r_test)*(10^(-3));//liquid volume (m3) +h0=liquid_vol/S;//clear liquid +h_new=h0/(1-Epsilon_new);//aerated liquid + +//OUTPUT +//Console Output +mprintf('\n\tThe new dimensions of the reactor'); +mprintf('\n\tDiameter:%0.1f m',D_t); +mprintf('\n\tHeight:%0.1f m',h_new); +mprintf('\n\t The upper limit value of reactor height is 7 m and diameter is 2.8 m'); +//File Output +fid= mopen('.\Chapter7_Ex5_c_Output.txt','w'); +mfprintf(fid,'\n\tThe new dimensions of the reactor'); +mfprintf(fid,'\n\tDiameter:%0.1f m',D_t); +mfprintf(fid,'\n\tHeight:%0.1f m',h_new); +mfprintf(fid,'\n\t The upper limit value of reactor height is 7 m and diameter is 2.8 m'); +mclose(fid); +//====================================================END OF PROGRAM==================================================== +//Disclaimer: The numerically calculated value of reactor height is 6.3 m not 6.4 m as mentioned in the textbook + diff --git a/1040/CH7/EX7.5.c/Chapter7_Ex5_c_Output.txt b/1040/CH7/EX7.5.c/Chapter7_Ex5_c_Output.txt new file mode 100644 index 000000000..7ff2097bd --- /dev/null +++ b/1040/CH7/EX7.5.c/Chapter7_Ex5_c_Output.txt @@ -0,0 +1,5 @@ + + The new dimensions of the reactor + Diameter:2.8 m + Height:6.3 m + The upper limit value of reactor height is 7 m and diameter is 2.8 m \ No newline at end of file diff --git a/1040/CH7/EX7.5/Chapter7_Ex5.sce b/1040/CH7/EX7.5/Chapter7_Ex5.sce new file mode 100644 index 000000000..b987b4f34 --- /dev/null +++ b/1040/CH7/EX7.5/Chapter7_Ex5.sce @@ -0,0 +1,114 @@ +//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436 +//Chapter-7 Ex7.5 Pg No.293 +//Title:Maximum rate of CO absorption and Dimensions of Bubble Column Reactor +//=========================================================================================================== +clear +clc +// COMMON INPUT +P_dash=5;//Partial pressure of acetic acid (atm) +P_total=20;//Total Pressure (atm) +myu=0.19;// Viscosity of acetic acid +T_C=180;//Temperature in (°C) +T_K=T_C+273;//Temperature in (K) +sigma_20=28;//Surface Tension(Dynes/cm) at 20 (°C) +sigma_180=20;//Surface Tension (Dynes/cm)at 180 (°C) +M_CO=28;//Molecular weight of CO +M_B=60.05;//Molecular weight acetic acid +V_A= 30.7;//Molar volume +S_CO=7*10^(-3);//Solubility of CO (mol/L atm) +f_CO=0.75;//Fraction of CO in feed +f_acetic_acid=1-f_CO;//Fraction of Acetic acid +R=82.056*(10^-3);//(cm3 atm/ K  mol) +rho_air=1.21;//(kg/m3)density of air at 20 (°C) +sigma_H2O=72;//Surface tension (Dynes/cm) +myu_H2O=1;//Viscosity of water +k_L_a_air_water=0.051;//(sec-1) +D_O2_water=2.4*(10^-5);//(cm2/sec)diffusivity for oxygen in waterat 20(°C) +Conc_Rh=4*10^(-3);//Concentration of Rohdium(M) +Conc_CH3I=1;//Concentration of Methyl Iodide(M) +F_product_acetic_acid=0.1;// Rate of acetic acid produced (kmol/sec) +f_CO_reacted=0.8;//80% of CO reacted +u_g=0.1;//(m/sec) +Epsilon_air_water_new=0.07;//At velocity 3(cm/sec) +Epsilon_air_water_old= 0.12;//At velocity 6(cm/sec) +u_g_c=5*(10^(-2));//Gas Velocity Ex7.5.c(m/sec) + + + +//CALCUATION (Ex7.5.a) +D_CO=(7.4*10^(-8)*M_B^(1/2)*T_K)/(myu*V_A^(0.6));//Diffusivity of CO (Wilke–Chang equation Eq4.17) +M_ave=f_CO*M_CO+M_B*f_acetic_acid;//Average Molecular weight +rho_g=M_ave*P_total/(R*T_K);//From ideal gas law +epsilon_air_water= 0.12;//At velocity 6(cm/sec) +epsilon=epsilon_air_water*(sigma_H2O/sigma_180)^(0.4)*(myu/myu_H2O)^(0.2)*(rho_g/rho_air)^(0.2);//From equation 7.64 +u_G=6;//From figure 7.12(cm/sec) +k_L_a=k_L_a_air_water*(D_CO/D_O2_water)^(0.5)*(epsilon/epsilon_air_water);//From equation 7.69 +P_CO=P_total-P_dash; +C_CO_Star=S_CO*P_CO; +r_max=C_CO_Star*k_L_a;//Rate of CO absorption at 15 atm +r_test=158.8*(10^(6))*exp(-8684/T_K)*(Conc_Rh)*(Conc_CH3I);//Kinetic rate at 180 (°C) + +//CALCULATION(Ex7.5.b) +F_feed_CO=F_product_acetic_acid/f_CO_reacted;//Rate of flow of CO (kmol/sec) +F_total=F_feed_CO/f_CO; +Q=F_total*R*T_K/(P_total); +S=Q/u_g; +D_t=sqrt(4*S/%pi); +r_test_b=(158.8*(10^(6))*exp(-8684/T_K)*(Conc_Rh)*(Conc_CH3I))*(10^(-3));//Kinetic rate at 180 (°C) +liquid_vol= (F_product_acetic_acid/r_test_b)*(10^(-3));//liquid volume (m3) +h0=liquid_vol/S;//clear liquid +h=h0/(1-epsilon);//aerated liquid + +//CALCULATION(Ex7.5.c) +Q=F_total*R*T_K/(P_total); +S=Q/u_g_c; +D_t_c=sqrt(4*S/%pi); +Epsilon_new=(Epsilon_air_water_new/Epsilon_air_water_old)*epsilon; +liquid_vol= (F_product_acetic_acid/r_test_b)*(10^(-3));//liquid volume (m3) +h0=liquid_vol/S;//clear liquid +h_new=h0/(1-Epsilon_new);//aerated liquid + +//OUTPUT (Ex7.5.a) +mprintf('\n OUTPUT Ex7.5.a'); +mprintf('\n=========================================================='); +mprintf('\n\tThe maximum rate of CO absorption at 15 atm : %f (mol/L s)',r_max); +mprintf('\n\tThe kinetic rate of CO absorption at 180(°C) : %f (mol/L s)',r_test); +mprintf('\n\tThe predicted value of k_L_a : %0.2f (s-1)',k_L_a); + +//OUTPUT (Ex7.5.b) +mprintf('\n\n\n OUTPUT Ex7.5.b'); +mprintf('\n=========================================================='); +mprintf('\n\tThe Dimensions of the reactor are '); +mprintf('\n\tDiameter:%0.0f m',D_t); +mprintf('\n\tHeight:%0.2f m',h); + +//OUTPUT (Ex7.5.c) +mprintf('\n\n\n OUTPUT Ex7.5.c'); +mprintf('\n=========================================================='); +mprintf('\n\tThe new dimensions of the reactor'); +mprintf('\n\tDiameter:%0.1f m',D_t_c); +mprintf('\n\tHeight:%0.1f m',h_new); + +//FILE OUTPUT +fid= mopen('.\Chapter7-Ex5-Output.txt','w'); +mfprintf(fid,'\n OUTPUT Ex7.5.a'); +mfprintf(fid,'\n=========================================================='); +mfprintf(fid,'\n\tThe maximum rate of CO absorption at 15 atm : %f (mol/L s)',r_max); +mfprintf(fid,'\n\tThe kinetic rate of CO absorption at 180(°C) : %f (mol/L s)',r_test); +mfprintf(fid,'\n\tThe predicted value of k_L_a : %0.2f (s-1)',k_L_a); +mfprintf(fid,'\n\n\n OUTPUT Ex7.5.b'); +mfprintf(fid,'\n=========================================================='); +mfprintf(fid,'\n\tThe Dimensions of the reactor are '); +mfprintf(fid,'\n\tDiameter:%0.0f m',D_t); +mfprintf(fid,'\n\tHeight:%0.2f m',h); +mfprintf(fid,'\n\n\n OUTPUT Ex7.5.c'); +mfprintf(fid,'\n=========================================================='); +mfprintf(fid,'\n\tThe new dimensions of the reactor'); +mfprintf(fid,'\n\tDiameter:%0.1f m',D_t_c); +mfprintf(fid,'\n\tHeight:%0.1f m',h_new); +mclose(fid); + +//=================================================END OF PROGRAM=========================================================== + + + diff --git a/1040/CH7/EX7.6.a/Chapter7_Ex6_a.sce b/1040/CH7/EX7.6.a/Chapter7_Ex6_a.sce new file mode 100644 index 000000000..9fce8ca2c --- /dev/null +++ b/1040/CH7/EX7.6.a/Chapter7_Ex6_a.sce @@ -0,0 +1,44 @@ +//Harriot P,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc., USA,pp 436. +//Chapter-7 Ex7.6.a Pg No.300 +//Title:Fraction of O2 used +//====================================================================================================================== +clear +clc +//INPUT +Vol_reactor=200;//Volume of reactor (m3) +D=4;//Diameter of reactor (m) +depth=12;//Depth of reactor (m) +u_g=3;//Superficial velocity (cm/sec) +T_C=30;//Temperature (°C) +T_K=273+T_C;//Temperature (K) +f_O2=0.21;//Fraction of O2 in air +myu_soln=1.5*(10^(-3));//Viscosity of solution (Pa sec) +R=0.08206;//Gas constant (m3 atm/ K kmol) +r_O2_peak=45*(10^(-3));//Flow rate of O2 at peak demand + +//CALCULATION +S=%pi*(D^2)/4;//Cross section area (m2) +V=S*depth;//Volume of solution(m3) +F_air=(S*u_g*(10^(-2))*3600)/(R*(10^(-3))*T_K); +F_O2=f_O2*F_air;//Feed rate of O2 (mol/hr) +F_O2_used=r_O2_peak*V*(10^(3));//O2 used for aerobic fermentation (mol/hr) +F_O2_left=F_O2-F_O2_used;//O2 left after aerobic fermentation(mol/hr) +f_O2_exitgas=F_O2_left/F_air;//Fraction of O2 in exit gas +Percent_O2_exitgas=(f_O2_exitgas)*(100); +Frac_O2_used=((f_O2-f_O2_exitgas)/f_O2); + +//OUTPUT +//Console Output +mprintf('\n\tAt the peak demand, fraction of the oxygen supplied = %.3f ',Frac_O2_used); +//File Output +fid= mopen('.\Chapter7_Ex6_a_Output.txt','w'); +mfprintf(fid,'\n\tAt the peak demand, fraction of the oxygen supplied = %.3f ',Frac_O2_used); +mclose('all'); +//===================================================END OF PROGRAM====================================================== +//Disclaimer: The numerically calculated value of oxygen fraction supplied is 0.592 not 0.591 as mentioned in the textbook + + + + + + diff --git a/1040/CH7/EX7.6.a/Chapter7_Ex6_a_Output.txt b/1040/CH7/EX7.6.a/Chapter7_Ex6_a_Output.txt new file mode 100644 index 000000000..45f422ad5 --- /dev/null +++ b/1040/CH7/EX7.6.a/Chapter7_Ex6_a_Output.txt @@ -0,0 +1,2 @@ + + At the peak demand, fraction of the oxygen supplied = 0.592 \ No newline at end of file diff --git a/1040/CH7/EX7.6.b/Chapter7_Ex6_b.sce b/1040/CH7/EX7.6.b/Chapter7_Ex6_b.sce new file mode 100644 index 000000000..dc1e0f2f9 --- /dev/null +++ b/1040/CH7/EX7.6.b/Chapter7_Ex6_b.sce @@ -0,0 +1,48 @@ +//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc., USA,pp 436. +//Chapter-7 Ex7.6.b Pg No.300 +//Title:Power of agitator before and after air is on +//====================================================================================================================== +clear +clc +//INPUT +Da_by_Dt=(1/3); +Da=1.333;//(m) +N=120;//(rpm) +N_conv=(N/60);//(sec-1) +Press_top=1;//Pressure at the top of the vessel (atm) +myu_soln=1.5*(10^(-3));//Viscosity of solution (Pa sec) +rho=1000;//Density of water (kg/m3) +ug_sup1=3*(10^(-2));//based on 30(°C) and 1 (atm). +S=12.6;//Value calculated for cross section area in Ex7.6.b + +//CALCULATION +Re=(rho*N_conv*Da^2)/myu_soln; +N_p=6;//For a standard turbine +N_p_pitched=1.7;//For a pitched-blade turbine +P0=(N_p*rho*(N_conv^3)*(Da^5))*(10^(-3));//Refer equation 7.73 (kW) +//If the turbine is 2 m from the bottom, or 10 m below the surface,the pressure is about 2 atm since 1atm= 10.3 m water +Press_bottom=2 +ug_sup2=ug_sup1/Press_bottom; +Q=ug_sup2*S; +N_Ae=Q/(N_conv*(Da^3)); +Pg_by_P0=0.55;//From figure 7.15 based on N_Ae value calculated +Pg=Pg_by_P0*P0;//When aerated +P0_pitched=(N_p_pitched/N_p)*P0; +Pg_by_P0_pitched=0.8;//Solution reaching the upper stirrers is already aerated +Pg_pitched=Pg_by_P0_pitched*P0_pitched; +Tot_Pow_no_air=P0+Press_bottom*P0_pitched;//Total power when no air is presented +Tot_Pow_aerated=Pg+Press_bottom*Pg_pitched;//Total power when it is aerated + +//OUTPUT +//ConsoleOutput +mprintf('\n\tThe total power required for the agitator before the air is turned on: %0.0f kW',Tot_Pow_no_air); +mprintf('\n\tThe total power required for the agitator after the air is turned on: %0.0f kW',Tot_Pow_aerated); +//File Output +fid= mopen('.\Chapter7_Ex6_b_Output.txt','w'); +mfprintf(fid,'\n\tThe total power required for the agitator before the air is turned on: %0.0f kW',Tot_Pow_no_air); +mfprintf(fid,'\n\tThe total power required for the agitator after the air is turned on: %0.0f kW',Tot_Pow_aerated); +mclose('all') +//=========================================================END OF PROGRAM=============================================== + + + diff --git a/1040/CH7/EX7.6.b/Chapter7_Ex6_b_Output.txt b/1040/CH7/EX7.6.b/Chapter7_Ex6_b_Output.txt new file mode 100644 index 000000000..360317b09 --- /dev/null +++ b/1040/CH7/EX7.6.b/Chapter7_Ex6_b_Output.txt @@ -0,0 +1,3 @@ + + The total power required for the agitator before the air is turned on: 316 kW + The total power required for the agitator after the air is turned on: 203 kW \ No newline at end of file diff --git a/1040/CH7/EX7.6.c/Chapter7_Ex6_c.sce b/1040/CH7/EX7.6.c/Chapter7_Ex6_c.sce new file mode 100644 index 000000000..eec204ed3 --- /dev/null +++ b/1040/CH7/EX7.6.c/Chapter7_Ex6_c.sce @@ -0,0 +1,43 @@ +//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc. USA,pp 436. +//Chapter-7 Ex7.6.c Pg No.300 +//Title:k_L_a and the average dissolved oxygen concentration. +//====================================================================================================================== +clear +clc +//INPUT +P_aerated=203;//Total power of agitator when aerated (kW) calculated in Ex7.6.b +V=151;//Volume of solution calculated Ex7.6.a (m3) +ug_sup1=3*(10^(-2));//based on 30(°C) and 1 atm. +Press_top=1;//Pressure at the top of the vessel (atm) +Press_bottom=2;//From Ex7.6.c +ug_sup2=ug_sup1/Press_bottom;// at 2atm superficial velocity (cm/sec) +ug_ave=(ug_sup1+ug_sup2)/2;//Average superficial velocity (cm/sec) +depth=12;//Depth of reactor (m) +one_atm_water=10.3;//1 atm pressure corresponds to 10.3 (m) height of water +k_H_O2=5.2*10^(4)// Henery's law constant for O2 in water for O2 (atm/mol fraction) +r_O2_peak=45*(10^(-3));//Flow rate of O2 at peak demand +M_O2=32;//Molecular weight of O2 +M_H2O=18;//Molecular weight of water + +//CALCULATION +P_by_V_ave=P_aerated/V; +kLa_O2_sulfite=0.32;//Using figure7.16 based on ave(P/V) value and ug_average value +kLa_soln=0.7*kLa_O2_sulfite;//kLa for this solution is 70% of the value for oxygen absorption in sodium sulfite (sec-1) +y_O2=0.086;//If gas is backmixed +depth_ave=depth/2; +Press_ave=(Press_top+(depth_ave/one_atm_water));//Pressure at average depth (atm) +C_O2_star=(Press_ave*y_O2/k_H_O2)*(1000/M_H2O);//Conversion (mol/L) +r_conv=r_O2_peak/3600;//Rate at peak O2 demand (mol/L sec) +C_ave=(C_O2_star-(r_conv/kLa_soln)) +C_ave_conv=C_ave*M_O2*1000;//Converted value of O2 concentration in(mg/L) +//OUTPUT +//Console Output +mprintf('\n\tThe calculated value of kLa (mass transfer coefficient) of solution:%0.2f (sec-1)',kLa_soln); +mprintf('\n\tThe calculated value of average dissolved O2 concentration: %0.2f (mg/L)',C_ave_conv); +//File Output +fid= mopen('.\Chapter7_Ex6_c_Output.txt','w'); +mfprintf(fid,'\n\tThe calculated value of kLa (mass transfer coefficient) of solution:%0.2f (sec-1)',kLa_soln); +mfprintf(fid,'\n\tThe calculated value of average dissolved O2 concentration: %0.2f (mg/L)',C_ave_conv); +mclose('all'); +//=================================================END OF PROGRAM=================================================================== +// Disclaimer :The numerically calculated value of dissolved O2 concentration is 2.87 mg/L not 2.8 mg/L as mentioned in the textbook diff --git a/1040/CH7/EX7.6.c/Chapter7_Ex6_c_Output.txt b/1040/CH7/EX7.6.c/Chapter7_Ex6_c_Output.txt new file mode 100644 index 000000000..9708e9562 --- /dev/null +++ b/1040/CH7/EX7.6.c/Chapter7_Ex6_c_Output.txt @@ -0,0 +1,3 @@ + + The calculated value of kLa (mass transfer coefficient) of solution:0.22 (sec-1) + The calculated value of average dissolved O2 concentration: 2.87 (mg/L) \ No newline at end of file diff --git a/1040/CH7/EX7.6.d/Chapter7_Ex6_d.sce b/1040/CH7/EX7.6.d/Chapter7_Ex6_d.sce new file mode 100644 index 000000000..bc9e2b7e3 --- /dev/null +++ b/1040/CH7/EX7.6.d/Chapter7_Ex6_d.sce @@ -0,0 +1,46 @@ +//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436 +//Chapter-7 Ex7.6.d Pg No.300 +//Title:Effect on dissolved oxygen concentration. +//====================================================================================================================== +clear +clc +//INPUT +C_O2_critical=1*10^(-3);//Critical O2 Concentration (g/L) +percent_reduction=40/100;//Mass transfer coefficient in the upper region of the reactor is 40% less than the average +kLa_soln=0.22;//Value calculated in Ex7.6.d +r_conv=1.25*10^(-5);//Rate at peak O2 demand (mol/L sec) +C_O2_star=1.45*10^(-4);// Concentration of O2 calculated in Ex7.6.c +M_O2=32;//Molecular weight of O2 +Press_top=1;//Pressure at the top of the vessel (atm) +depth=12;//Depth of reactor (m) +one_atm_water=10.3;//1 atm pressure corresponds to 10.3 (m) height of water + +//CALCULATION +depth_ave=depth/2; +Press_ave=(Press_top+(depth_ave/one_atm_water));//Pressure at average depth (atm) +kLa_soln_reduced=kLa_soln*(1-percent_reduction); +C_star_minus_C=r_conv/kLa_soln_reduced; +C_O2_new=(C_O2_star-(C_star_minus_C)); +C_O2_new_conv=C_O2_new*M_O2*1000;//Converted value of O2 concentration in(mg/L) +C_O2_star_new=C_O2_star/Press_ave; + + //OUTPUT + //Console Output + mprintf('\n\tThe new calculated value of average dissolved O2 concentration %0.1f (mg/L)',C_O2_new_conv); + mprintf('\n\tThe new calculated value of critical dissolved O2 concentration %0.1E (mol/L)',C_O2_star_new); + if(C_star_minus_C>C_O2_star_new) + mprintf('\n\tThe reactor is operated above critical O2 concentration '); + else + mprintf('\n\tThe reactor should be operated at higher air rate otherwise C_O2 would drop to zero') + end + //File Output +fid= mopen('.\Chapter7_Ex6_d_Output.txt','w'); +mfprintf(fid,'\n\tThe new calculated value of average dissolved O2 concentration %0.1f (mg/L)',C_O2_new_conv); +mfprintf(fid,'\n\tThe new calculated value of critical dissolved O2 concentration %0.1E (mol/L)',C_O2_star_new); + if(C_star_minus_C>C_O2_star_new) + mfprintf(fid,'\n\tThe reactor is operated above critical O2 concentration '); + else + mfprintf(fid,'\n\tThe reactor should be operated at higher air rate otherwise C_O2 would drop to zero'); + end + mclose('all'); +//====================================================END OF PROGRAM==================================================== diff --git a/1040/CH7/EX7.6.d/Chapter7_Ex6_d_Output.txt b/1040/CH7/EX7.6.d/Chapter7_Ex6_d_Output.txt new file mode 100644 index 000000000..d78b9824b --- /dev/null +++ b/1040/CH7/EX7.6.d/Chapter7_Ex6_d_Output.txt @@ -0,0 +1,4 @@ + + The new calculated value of average dissolved O2 concentration 1.6 (mg/L) + The new calculated value of critical dissolved O2 concentration 9.2E-05 (mol/L) + The reactor is operated above critical O2 concentration \ No newline at end of file diff --git a/1040/CH7/EX7.6/Chapter7_Ex6.sce b/1040/CH7/EX7.6/Chapter7_Ex6.sce new file mode 100644 index 000000000..46631e743 --- /dev/null +++ b/1040/CH7/EX7.6/Chapter7_Ex6.sce @@ -0,0 +1,148 @@ +//Harriot P,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc., USA,pp 436. +//Chapter-7 Ex7.6 Pg No.300 +//Title:Fraction of O2,Power of agitator, k_L_a and average dissolved oxygen concentration. +//====================================================================================================================== +clear +clc +// COMMON INPUT +Vol_reactor=200;//Volume of reactor (m3) +D=4;//Diameter of reactor (m) +depth=12;//Depth of reactor (m) +u_g=3;//Superficial velocity (cm/sec) +T_C=30;//Temperature (°C) +T_K=273+T_C;//Temperature (K) +f_O2=0.21;//Fraction of O2 in air +myu_soln=1.5*(10^(-3));//Viscosity of solution (Pa sec) +R=0.08206;//Gas constant (m3 atm/ K kmol) +r_O2_peak=45*(10^(-3));//Flow rate of O2 at peak demand +Da_by_Dt=(1/3); +Da=1.333;//(m) +N=120;//(rpm) +N_conv=(N/60);//(sec-1) +Press_top=1;//Pressure at the top of the vessel (atm) +rho=1000;//Density of water (kg/m3) +ug_sup1=3*(10^(-2));//based on 30(°C) and 1 (atm) +V=151;//Volume of solution calculated Ex7.6.a (m3) +ug_sup1=3*(10^(-2));//based on 30(°C) and 1 atm. +Press_top=1;//Pressure at the top of the vessel (atm) +Press_bottom=2;//From Ex7.6.c +ug_sup2=ug_sup1/Press_bottom;// at 2atm superficial velocity (cm/sec) +ug_ave=(ug_sup1+ug_sup2)/2;//Average superficial velocity (cm/sec) +depth=12;//Depth of reactor (m) +one_atm_water=10.3;//1 atm pressure corresponds to 10.3 (m) height of water +k_H_O2=5.2*10^(4)// Henery's law constant for O2 in water for O2 (atm/mol fraction) +M_O2=32;//Molecular weight of O2 +M_H2O=18;//Molecular weight of water +C_O2_critical=1*10^(-3);//Critical O2 Concentration (g/L) +percent_reduction=40/100;//Mass transfer coefficient in the upper region of the reactor is 40% less than the average +kLa_soln=0.22;//Value calculated in Ex7.6.d +r_conv=1.25*10^(-5);//Rate at peak O2 demand (mol/L sec) +depth=12;//Depth of reactor (m) + + +//CALCULATION (Ex7.6.a ) +S=%pi*(D^2)/4;//Cross section area (m2) +V=S*depth;//Volume of solution(m3) +F_air=(S*u_g*(10^(-2))*3600)/(R*(10^(-3))*T_K); +F_O2=f_O2*F_air;//Feed rate of O2 (mol/hr) +F_O2_used=r_O2_peak*V*(10^(3));//O2 used for aerobic fermentation (mol/hr) +F_O2_left=F_O2-F_O2_used;//O2 left after aerobic fermentation(mol/hr) +f_O2_exitgas=F_O2_left/F_air;//Fraction of O2 in exit gas +Percent_O2_exitgas=(f_O2_exitgas)*(100); +Frac_O2_used=((f_O2-f_O2_exitgas)/f_O2); + +//CALCULATION (Ex7.6.b ) +Re=(rho*N_conv*Da^2)/myu_soln; +N_p=6;//For a standard turbine +N_p_pitched=1.7;//For a pitched-blade turbine +P0=(N_p*rho*(N_conv^3)*(Da^5))*(10^(-3));//Refer equation 7.73 (kW) +//If the turbine is 2 m from the bottom, or 10 m below the surface,the pressure is about 2 atm since 1atm= 10.3 m water +Press_bottom=2 +ug_sup2=ug_sup1/Press_bottom; +Q=ug_sup2*S; +N_Ae=Q/(N_conv*(Da^3)); +Pg_by_P0=0.55;//From figure 7.15 based on N_Ae value calculated +Pg=Pg_by_P0*P0;//When aerated +P0_pitched=(N_p_pitched/N_p)*P0; +Pg_by_P0_pitched=0.8;//Solution reaching the upper stirrers is already aerated +Pg_pitched=Pg_by_P0_pitched*P0_pitched; +Tot_Pow_no_air=P0+Press_bottom*P0_pitched;//Total power when no air is presented +Tot_Pow_aerated=Pg+Press_bottom*Pg_pitched;//Total power when it is aerated + +//CALCULATION (Ex7.6.c ) +P_by_V_ave=Tot_Pow_aerated/V; +kLa_O2_sulfite=0.32;//Using figure7.16 based on ave(P/V) value and ug_average value +kLa_soln=0.7*kLa_O2_sulfite;//kLa for this solution is 70% of the value for oxygen absorption in sodium sulfite (sec-1) +y_O2=0.086;//If gas is backmixed +depth_ave=depth/2; +Press_ave=(Press_top+(depth_ave/one_atm_water));//Pressure at average depth (atm) +C_O2_star=(Press_ave*y_O2/k_H_O2)*(1000/M_H2O);//Conversion (mol/L) +r_conv=r_O2_peak/3600;//Rate at peak O2 demand (mol/L sec) +C_ave=(C_O2_star-(r_conv/kLa_soln)) +C_ave_conv=C_ave*M_O2*1000;//Converted value of O2 concentration in(mg/L) + +//CALCULATION (Ex7.6.d) +depth_ave=depth/2; +Press_ave=(Press_top+(depth_ave/one_atm_water));//Pressure at average depth (atm) +kLa_soln_reduced=kLa_soln*(1-percent_reduction); +C_star_minus_C=r_conv/kLa_soln_reduced; +C_O2_new=(C_O2_star-(C_star_minus_C)); +C_O2_new_conv=C_O2_new*M_O2*1000;//Converted value of O2 concentration in(mg/L) +C_O2_star_new=C_O2_star/Press_ave; + +//OUTPUT (Ex7.6.a) +mprintf('\n OUTPUT Ex7.6.a'); +mprintf('\n=========================================================='); +mprintf('\nAt the peak demand, fraction of the oxygen supplied = %.3f ',Frac_O2_used); + +//OUTPUT(Ex7.6.b ) +mprintf('\n\n\n OUTPUT Ex7.6.b'); +mprintf('\n=========================================================='); +mprintf('\nThe total power required for the agitator before the air is turned on: %0.0f kW',Tot_Pow_no_air); +mprintf('\nThe total power required for the agitator after the air is turned on: %0.0f kW',Tot_Pow_aerated); + +//OUTPUT (Ex7.6.c ) +mprintf('\n\n\n OUTPUT Ex7.6.c'); +mprintf('\n=========================================================='); +mprintf('\nThe calculated value of kLa (mass transfer coefficient) of solution:%0.2f (sec-1)',kLa_soln); +mprintf('\nThe calculated value of average dissolved O2 concentration: %0.2f (mg/L)',C_ave_conv); + + //OUTPUT (Ex7.6.d) + mprintf('\n\n\n OUTPUT Ex7.6.d'); +mprintf('\n=========================================================='); + mprintf('\nThe new calculated value of average dissolved O2 concentration %0.2f (mg/L)',C_O2_new_conv); + if(C_star_minus_C>C_O2_star_new) + mprintf('\nThe reactor is operated above critical O2 concentration '); + else + mprintf('\nThe reactor should be operated at higher air rate otherwise C_O2 would drop to zero') + end + // FILE OUTPUT +fid= mopen('.\Chapter7-Ex6-Output.txt','w'); +mfprintf(fid,'\n OUTPUT Ex7.6.a'); +mfprintf(fid,'\n=========================================================='); +mfprintf(fid,'\nAt the peak demand, fraction of the oxygen supplied = %.3f ',Frac_O2_used); +mfprintf(fid,'\n\n\n OUTPUT Ex7.6.b'); +mfprintf(fid,'\n=========================================================='); +mfprintf(fid,'\nThe total power required for the agitator before the air is turned on: %0.0f kW',Tot_Pow_no_air); +mfprintf(fid,'\nThe total power required for the agitator after the air is turned on: %0.0f kW',Tot_Pow_aerated); +mfprintf(fid,'\n\n\n OUTPUT Ex7.6.c'); +mfprintf(fid,'\n=========================================================='); +mfprintf(fid,'\nThe calculated value of kLa (mass transfer coefficient) of solution:%0.2f (sec-1)',kLa_soln); +mfprintf(fid,'\nThe calculated value of average dissolved O2 concentration: %0.2f (mg/L)',C_ave_conv); +mfprintf(fid,'\n\n\n OUTPUT Ex7.6.d'); +mfprintf(fid,'\n=========================================================='); +mfprintf(fid,'\nThe new calculated value of average dissolved O2 concentration %0.2f (mg/L)',C_O2_new_conv); + if(C_star_minus_C>C_O2_star_new) + mfprintf(fid,'\nThe reactor is operated above critical O2 concentration '); + else + mfprintf(fid,'\nThe reactor should be operated at higher air rate otherwise C_O2 would drop to zero') + end + mclose(fid); +//===================================================END OF PROGRAM====================================================== + + + + + + + diff --git a/1040/CH7/EX7.7.a/Chapter7_Ex7_a.sce b/1040/CH7/EX7.7.a/Chapter7_Ex7_a.sce new file mode 100644 index 000000000..a1b767e3e --- /dev/null +++ b/1040/CH7/EX7.7.a/Chapter7_Ex7_a.sce @@ -0,0 +1,79 @@ +//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436. +//Chapter-7 Ex7.7.a Pg No.304 +//Title:Apparent value of kLa and regime of operation +//====================================================================================================================== +clear +clc +//INPUT +Vol_reactor=35;//Volume of reactor(L) +No_reactor=3;//No. of reactor +T_C=155;//Operating Temperature (°C) +T_ref=273;//Reference Temperature (°C) +T_K= T_C+T_ref;//Operating Temperature (K) +P=8.2;//Operating Pressure (atm) +X_conversion=9.5*10^(-2);//Conversion +S=73*10^(-2);//Selectivity +M_cyclohexane=84.16;//Molecular weight of cyclohexane +F_cyclohexane=100;//Feed rate of cyclohexane (L/hr) +F_air=9.9;//Feed rate of air (nm3/hr) +f_O2_air=0.21;//Fraction of O2 in air +V_ref=22400;//Reference volume at STP(cm3/mol) +y_O2=0.002;//O2 in vent gas +f_O2_consumed=0.99;//Fraction of O2 Consumed +rho_cyclohexane=0.779;//Density of cyclohexane at 20 (°C) +main_pdt_ratio=3/2; +by_pdt_ratio=(1-main_pdt_ratio); +stoi_rxn_O2=[0.5 1]; +rho_M=0.650;//Density of Cyclohexane at 155 (°C) +P_dash=5.8;//Vapour Pressure of cyclohexane at 155 (°C) +D_reactor=30;//Diameter of reactor (cm) +h_reactor=50;//Height of reactor (cm) +myu_20=0.98;//(cp) Viscosity at 20(°C) +myu_155=0.2// (cp) Viscosity at 155(°C) + +//CALCULATION +F_O2=(F_air*10^(6)*f_O2_air)/(3600*V_ref); +delta_N_O2=F_O2*f_O2_consumed; +F_C6=(F_cyclohexane*10^(3)*rho_cyclohexane)/(3600*M_cyclohexane) +F_prdts=F_C6*X_conversion*S; +F_O2_prdts=F_prdts*(main_pdt_ratio*stoi_rxn_O2(1)+by_pdt_ratio*stoi_rxn_O2(2)); +F_O2_remain_used=delta_N_O2-F_O2_prdts; +F_O2_prdts_conver=F_O2_prdts/(F_C6*X_conversion*S); +F_O2_remain_used_conver=F_O2_remain_used/(F_C6*X_conversion*(1-S)); +X_O2=10^(0.366*log10(T_K)-3.8385);//O2 solubility from Wild et al. [37]: +PO2_plus_PN2=P-P_dash; +P_O2=y_O2*PO2_plus_PN2; +x_O2=P_O2*X_O2;//Mol fraction of O2 +C_M=rho_M*10^(3)/M_cyclohexane; +C_O2_star=C_M*x_O2; + +//Assume each reactor has 30 L solution +V_soln_n=30;//Volume of solution in each reactor +apparent_kLa=(delta_N_O2)/(V_soln_n*No_reactor*C_O2_star); +F_total=(F_air*10^(6)/3600)*(T_K/T_ref)*(8.2/2.4)*(1/8.2);//The total vapor flow is 8.2/2.4 times the air flow +CSA_reactor=%pi*(D_reactor^2)/4; +u_g=F_total/(CSA_reactor*No_reactor); +//Calculation for predicted value of kLa +kLa_20=0.16;//From Figure 7.16, for O2–C6H12 at 20 (°C), 2 cm/sec, 5 kW/m3 +T_data=20+T_ref;//Temperature at which data is taken from the table +D_155_by_D_20=(T_K/T_data)*(myu_20/myu_155); +Predicted_kLa=kLa_20*(D_155_by_D_20^(0.5))*(u_g/2)^(0.5); + +//OUTPUT +mprintf('\nThe value of apparent kLa: %0.1f (sec-1)',apparent_kLa); +mprintf('\n The value of predicted kLa: %0.2f (sec-1)',Predicted_kLa); +if (apparent_kLa>Predicted_kLa) + mprintf('\nThe absorption of oxygen is greatly enhanced by chemical reactions in the liquid film') + mprintf('\nThe kinetics can be approximated by a first-order expression,the reaction would fall in the pseudo-first-order regime,\nwhere the rate varies with the square root of the oxygen diffusivity and the rate constant.') +end +fid= mopen('.\Chapter7_Ex7_a_Output.txt','w'); +mfprintf(fid,'\nThe value of apparent kLa: %0.1f (sec-1)',apparent_kLa); +mfprintf(fid,'\n The value of predicted kLa: %0.2f (sec-1)',Predicted_kLa); +if (apparent_kLa>Predicted_kLa) + mfprintf(fid,'\nThe absorption of oxygen is greatly enhanced by chemical reactions in the liquid film') + mfprintf(fid,'\nThe kinetics can be approximated by a first-order expression,the reaction would fall in the pseudo-first-order regime,\nwhere the rate varies with the square root of the oxygen diffusivity and the rate constant.') +end +mclose('all'); +//==========================================================END OF PROGRAM=============================================== + + diff --git a/1040/CH7/EX7.7.a/Chapter7_Ex7_a_Output.txt b/1040/CH7/EX7.7.a/Chapter7_Ex7_a_Output.txt new file mode 100644 index 000000000..b96d1ff99 --- /dev/null +++ b/1040/CH7/EX7.7.a/Chapter7_Ex7_a_Output.txt @@ -0,0 +1,6 @@ + +The value of apparent kLa: 5.7 (sec-1) + The value of predicted kLa: 0.28 (sec-1) +The absorption of oxygen is greatly enhanced by chemical reactions in the liquid film +The kinetics can be approximated by a first-order expression,the reaction would fall in the pseudo-first-order regime, +where the rate varies with the square root of the oxygen diffusivity and the rate constant. \ No newline at end of file diff --git a/1040/CH7/EX7.7/Chapter7_Ex7.sce b/1040/CH7/EX7.7/Chapter7_Ex7.sce new file mode 100644 index 000000000..4fe4a5709 --- /dev/null +++ b/1040/CH7/EX7.7/Chapter7_Ex7.sce @@ -0,0 +1,109 @@ +//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436. +//Chapter-7 Ex7.7 Pg No.304 +//Title:Apparent value of kLa, regime of operation and selectivity dependency on gas mixing +//====================================================================================================================== +clear +clc +//INPUT +Vol_reactor=35;//Volume of reactor(L) +No_reactor=3;//No. of reactor +T_C=155;//Operating Temperature (°C) +T_ref=273;//Reference Temperature (°C) +T_K= T_C+T_ref;//Operating Temperature (K) +P=8.2;//Operating Pressure (atm) +X_conversion=9.5*10^(-2);//Conversion +S=73*10^(-2);//Selectivity +M_cyclohexane=84.16;//Molecular weight of cyclohexane +F_cyclohexane=100;//Feed rate of cyclohexane (L/hr) +F_air=9.9;//Feed rate of air (nm3/hr) +f_O2_air=0.21;//Fraction of O2 in air +V_ref=22400;//Reference volume at STP(cm3/mol) +y_O2=0.002;//O2 in vent gas +f_O2_consumed=0.99;//Fraction of O2 Consumed +rho_cyclohexane=0.779;//Density of cyclohexane at 20 (°C) +main_pdt_ratio=3/2; +by_pdt_ratio=(1-main_pdt_ratio); +stoi_rxn_O2=[0.5 1]; +rho_M=0.650;//Density of Cyclohexane at 155 (°C) +P_dash=5.8;//Vapour Pressure of cyclohexane at 155 (°C) +D_reactor=30;//Diameter of reactor (cm) +h_reactor=50;//Height of reactor (cm) +myu_20=0.98;//(cp) Viscosity at 20(°C) +myu_155=0.2// (cp) Viscosity at 155(°C) +x_O2=6.38*(10^(-6));//Mol fraction of O2 +D_B_by_D_A=0.5;//Assumed value (refer Ex7.7) +Phi=20;//Refer Fig. 7.7 +n=1/(0.7); + + +//CALCULATION (Ex7.7.a ) +F_O2=(F_air*10^(6)*f_O2_air)/(3600*V_ref); +delta_N_O2=F_O2*f_O2_consumed; +F_C6=(F_cyclohexane*10^(3)*rho_cyclohexane)/(3600*M_cyclohexane) +F_prdts=F_C6*X_conversion*S; +F_O2_prdts=F_prdts*(main_pdt_ratio*stoi_rxn_O2(1)+by_pdt_ratio*stoi_rxn_O2(2)); +F_O2_remain_used=delta_N_O2-F_O2_prdts; +F_O2_prdts_conver=F_O2_prdts/(F_C6*X_conversion*S); +F_O2_remain_used_conver=F_O2_remain_used/(F_C6*X_conversion*(1-S)); +X_O2=10^(0.366*log10(T_K)-3.8385);//O2 solubility from Wild et al. [37]: +PO2_plus_PN2=P-P_dash; +P_O2=y_O2*PO2_plus_PN2; +x_O2=P_O2*X_O2;//Mol fraction of O2 +C_M=rho_M*10^(3)/M_cyclohexane; +C_O2_star=C_M*x_O2; + +//Assume each reactor has 30 L solution +V_soln_n=30;//Volume of solution in each reactor +apparent_kLa=(delta_N_O2)/(V_soln_n*No_reactor*C_O2_star); +F_total=(F_air*10^(6)/3600)*(T_K/T_ref)*(8.2/2.4)*(1/8.2);//The total vapor flow is 8.2/2.4 times the air flow +CSA_reactor=%pi*(D_reactor^2)/4; +u_g=F_total/(CSA_reactor*No_reactor); +//Calculation for predicted value of kLa +kLa_20=0.16;//From Figure 7.16, for O2–C6H12 at 20 (°C), 2 cm/sec, 5 kW/m3 +T_data=20+T_ref;//Temperature at which data is taken from the table +D_155_by_D_20=(T_K/T_data)*(myu_20/myu_155); +Predicted_kLa=kLa_20*(D_155_by_D_20^(0.5))*(u_g/2)^(0.5); + +//CALCULATION (Ex7.7.b ) +C_M=rho_M*10^(3)/M_cyclohexane; +C_B0=(1-X_conversion)*C_M; +C_Ai=C_M*x_O2; +Phi_a=(1+(C_B0/(C_Ai*n))*(D_B_by_D_A)^(0.5)); +ratio=Phi_a/Phi; + +//OUTPUT (Ex7.7.a ) +mprintf('\n OUTPUT Ex7.7.a'); +mprintf('\n=========================================================='); +mprintf('\nThe value of apparent kLa: %0.2f (sec-1)',apparent_kLa); +mprintf('\n The value of predicted kLa: %0.2f (sec-1)',Predicted_kLa); +if (apparent_kLa>Predicted_kLa) + mprintf('\nThe absorption of oxygen is greatly enhanced by chemical reactions in the liquid film') + mprintf('\nThe kinetics can be approximated by a first-order expression,the reaction would fall in the pseudo-first-order regime,\nwhere the rate varies with the square root of the oxygen diffusivity and the rate constant.') +end + +//OUTPUT (Ex7.7.b ) +mprintf('\n\n\n OUTPUT Ex7.7.b'); +mprintf('\n=========================================================='); +mprintf('\nThe value of Phi (enhancement factor) %0.4E ',Phi_a); +mprintf('\nThe value of ratio Phi_a_by_Phi:%0.1E',ratio); +mprintf('\nFrom the ratio value Phi_a is greater than Phi hence there is no significant gradient for cyclohexane'); + +// FILE OUTPUT +fid= mopen('.\Chapter7-Ex7-Output.txt','w'); +mfprintf(fid,'\n OUTPUT Ex7.7.a'); +mfprintf(fid,'\n=========================================================='); +mfprintf(fid,'\nThe value of apparent kLa: %0.2f (sec-1)',apparent_kLa); +mfprintf(fid,'\n The value of predicted kLa: %0.2f (sec-1)',Predicted_kLa); +if (apparent_kLa>Predicted_kLa) + mfprintf(fid,'\nThe absorption of oxygen is greatly enhanced by chemical reactions in the liquid film') + mfprintf(fid,'\nThe kinetics can be approximated by a first-order expression,the reaction would fall in the pseudo-first-order regime,\nwhere the rate varies with the square root of the oxygen diffusivity and the rate constant.') +end +mfprintf(fid,'\n\n\n OUTPUT Ex7.7.b'); +mfprintf(fid,'\n=========================================================='); +mfprintf(fid,'\nThe value of Phi (enhancement factor) %0.4E ',Phi_a); +mfprintf(fid,'\nThe value of ratio Phi_a_by_Phi:%0.1E',ratio); +mfprintf(fid,'\nFrom the ratio value Phi_a is greater than Phi hence there is no significant gradient for cyclohexane'); +mclose(fid); +//==========================================================END OF PROGRAM=============================================== + + -- cgit