diff options
Diffstat (limited to 'Principles_Of_Geotechnical_Engineering_by_B._M._Das')
15 files changed, 4204 insertions, 0 deletions
diff --git a/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter10.ipynb b/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter10.ipynb new file mode 100755 index 00000000..003535c3 --- /dev/null +++ b/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter10.ipynb @@ -0,0 +1,160 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:e88cf5fadb0380ed068b9242245f52a6fc3119add2d6c78c60f47b1c3197bfc1"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter10-Stresses in a Soil Mass"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg257"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#principal stress and normal stresses and shear stresses\n",
+ "##initialisation of variables\n",
+ "sx= 2000. ##lb/ft^3\n",
+ "sy= 2500. ##lb/ft^3\n",
+ "T= 800. ##lb/ft^3\n",
+ "t= 0.348##radians\n",
+ "##calculations\n",
+ "s1= (sx+sy)/2.+math.sqrt(((sy-sx)/2.)**2+T**2)\n",
+ "s2= (sx+sy)/2.-math.sqrt(((sy-sx)/2.)**2+T**2)\n",
+ "sn= (sx+sy)/2.+(sy-sx)*math.cos(2.*t)/2.-T*math.sin(2*t)\n",
+ "Tn= (sy-sx)*math.sin(2.*t)/2.+T*math.cos(2*t)\n",
+ "##results\n",
+ "print'%s %.2f %s'% ('principle stress s1 = ',s1,' lb/ft^3 ')\n",
+ "print'%s %.2f %s'% ('principle stress s2 = ',s2,' lb/ft^3 ')\n",
+ "print'%s %.2f %s'% ('normal stress = ',sn,' lb/ft^3 ')\n",
+ "print'%s %.2f %s'% ('shear stress = ',Tn,' lb/ft^3 ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "principle stress s1 = 3088.15 lb/ft^3 \n",
+ "principle stress s2 = 1411.85 lb/ft^3 \n",
+ "normal stress = 1928.93 lb/ft^3 \n",
+ "shear stress = 774.22 lb/ft^3 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg262"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate vertical stress increase\n",
+ "##initialisation of variables\n",
+ "x= 3. ##m\n",
+ "y= 4. ##m\n",
+ "P= 5. ##kN\n",
+ "z= 2. ##m\n",
+ "##calculations\n",
+ "r= math.sqrt(x**2+y**2)\n",
+ "k= r/z\n",
+ "I= 3./(2.*math.pi*((r/z)**2+1)**2.5)\n",
+ "s= P*I/z**2\n",
+ "##results\n",
+ "print'%s %.4f %s'% ('verticle stress increase at 2m = ',s,' kN/m^3 ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "verticle stress increase at 2m = 0.0042 kN/m^3 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg270"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the value of pressure and plot the graph\n",
+ "import math\n",
+ "%matplotlib inline\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
+ "from math import log\n",
+ "import numpy\n",
+ "from math import tan\n",
+ "import matplotlib\n",
+ "from matplotlib import pyplot\n",
+ "#given\n",
+ "p=numpy.array([-9,-6,-3, 0,3,6,9])\n",
+ "e=numpy.array([0.017,0.084,0.480,0.818,0.480,0.084,0.017])\n",
+ "\n",
+ "#calculations\n",
+ "\n",
+ "\n",
+ "#results\n",
+ "\n",
+ "pyplot.plot(p,e)\n",
+ "pyplot.xlabel('Pressure (ton/ft^2)')\n",
+ "pyplot.ylabel('void ratio ,e')\n",
+ "pyplot.title('Graph of pressure vs void ratio')\n",
+ "pyplot.show()\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEZCAYAAACXRVJOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecFPX9x/HXOxTFXrBiIcYGFiQaxH6KUaxYIEqMKfpT\nTMReECNwaGIJ0dgrKgkqICCIEYP1VGyA9CqoKMWCKIigSPn8/vjOcutx/XZutnyej8c92Jmdnf2w\ntzef+XaZGc4559zPkg7AOedcdvCE4JxzDvCE4JxzLuIJwTnnHOAJwTnnXMQTgnPOOcATgssAScWS\n+mfoXNtJekPSt5L6ZOKcrvokjZR0bgXPNZe0VlJs1w1JD0i6Ia7zu8o1TDoAl3mSzgauAPYBlgMf\nA/82swdiestMDma5EPjSzDbL4DldNZnZifX1XpL+CJxvZkekvf+f6+v93fq8hJBnJF0F3AncBmxn\nZtsBFwGHSWpcwWvq+j1QHV+fbldgRiZOJCnxGx5JDZKOIQnZ8Nm7WjAz/8mTH2Bz4Dvg9CqO6wc8\nAIyMjj8GOAmYACwFPgV6pR3fHFgLXAAsABYCV6U93wsYBPwb+BaYChxYyfsfCowFlgBjgEPS4voR\nWAksA46pIPYHgRej9yoBdkl7fi3wF2A28GG072RgIvAN8BawX9rx3YD50blmpt4TaAOMiz6Pz4Hb\no/1FwLwyMc1Ne10xMAToH732vOj38mj0uc0HbgJ+Vs7/bUdgBbBl2r7WwCKgAbA78Hr0uS0CBlbw\n+b4AXFxm3yTgtMo+/+i5EsJdO9F7/jN6rw+Bi6PPd73Y0z6Ha4HJwPfR668D5kSf77S0GFpEx6yO\nftdfp/1+b0o75wXR73Ix8CywQ9J/Z/n8k3gA/pPBXya0B1ZV9Aebdly/6GKQuhBvABwF7BNt7xdd\nBDtE282jC8GTQBNgX+BLoF30fHH0x92eUFq4GXingvfeinBhPodQQj0b+Dp1EQQeB26sIvZvgcOB\nxoTS0Jtpz68FRgFbRP+v1sAXwK+i2H5PqEJrBOxFSH7bR6/dBdgtevwOcE70eCOgTfS4iPUTwsf8\nNCH8CJwabW8IDCMk4CbANsB7wIUV/P9eAf4vbbsPcH/0eADQPXrcGDi0gnOcC4xO224ZfeaNqvH5\nvwacFz2+iFBaawZsGT23hsoTwvjo+A2ifR3TPt/fEG5Atou2/5D+uyv7+yfcqCwCDoj+v3cDryf9\nd5bPP15llF+aAl+Z2drUDklvS/pG0gpJh6cdO9zM3gEws5Vm9rqZTYu2pwADCUkiXW8z+97MphL+\ncDunPfemmf3Pwl/yE0CrCmI8CZhlZk+a2VozG0i4Mz817ZiqqqD+a2ajzexH4K/AIZKapT1/i5kt\nMbOVhDaJh8xsrAX/IZRADiHcnW4A7COpkZl9amYfRef4EdhDUlMzW2FmY6qIKd3bZjYierw5cAJw\nRfTZLSIksbMreO1TRJ+rJAFnRftSMTWX1MzMfjSztys4x3DgAEk7R9vnAEPNbBXV+/xTfgP8y8wW\nmNk3hERf2e/GgLuj41cCmNkQM/s8evw04W7/4Oj4qn7P5wCPmtnE6HfdnfC73qWK17la8oSQXxYD\nTdPbBMzsUDPbMnoutd+AeekvlHSwpNckfSlpCdAF2LrM+dNf8ymhiiPli7THK4ANK2ib2DF6bbpP\nypyrMkaodgkbZssJd7jpr0+Pc1fgqigpfiPpG2AnQtXDh8DlhLv6LyQNkLRD9LrzgT2BGZLGSDqp\nmvGRHl/0/o2Az9Le/0FCSaE8zxAuetsDRwJrzWx09Ny1hIvoGElTJf2pvBOY2TLgeUoT9tmE0h3U\n7PPfgfV/51Up+736vaQJaf/3fVn/e1WRHaLYgHW/68WEEoiLgSeE/PIO4e73tFq89inCneVOZrYF\n4aJV9vuxS5nHC2rxPgsIF8l0u9bgXAJ2XrchbUKoBlmYdkx6r6dPgb+b2ZZpP5uY2SAAMxtgoZfL\nrtHrbov2zzGz35rZNtG+IZKaEHptbZT2/g1Y/+Ke/v7zCL+TrdPef3Mz26+8/1x0J/4ioWTwW0I1\nUeq5L8zsQjNrRkjY90varYLPaQDQWdIhwIZm9lq0vyaf/2es/zuvyrr/u6RdgYcJbQ9bRTcmUykt\nGVTVO20hoboydb6NCcmkNt87Vw2eEPKImS0BehMuFGdK2lTSzyQdAGycdmh5RfVNgG/M7EdJbQgX\no7J/sDdIaiJpH+CPhIbkmhoJ7Cmps6SGks4C9gb+W0lsZZ0oKdVr6iZCe0VFF4lHgIsktVGwsaST\nJG0iaU9Jx0jagHDR/oFQR46k30lKXeiXEj6LtcAHhNLPiZIaATcQqp3KZWafES7wd6T9Pn4h6chK\n/n9PEerXz6S0ughJnSTtFG0uSYupPCMJF/rehOq/9P2Vff7pngYuldRM0paEBuKa2DiK8SvgZ1GJ\nZt+0578Adoo+xxRR+h0YAPxJUqvod3Qz8K6ZVaek4mrBE0KeMbM+wJWE6oXPo58Ho+13Uoex/sX+\nL8CNkr4FelD+xf51Qo+Rl4E+ZvZyJecr9+7PzL4m9Pq5inChuBo4Odpf0bnKnvcpQs+mxYRG499V\n9L5m9j6hp8q9hKql2YSGZQgX8lsIDZefEdpgukfPHQ9MlbQM+BdwdtTWspTwWfUlVA19x0+rScqL\n//eERtHpUQyDge0r+T+OIPQo+ixqz0k5CHg3iulZ4FIzm1veCaI692eAdqQllWp8/ukeITTQTyL0\nuBpazv+tQmY2Hbid8L37nJAMRqcd8gqh59Hnkr5MvSz1Hmb2CuG7OJRQWvg5Fbe9uAxQaAOM6eRS\ne0IDWgOgr5ndVub5LYHHgN0Id2fnpRo2XfaQ1Bz4CGiY3mCdUCyPA/PNrEeScTiXj+Icgt6AcFfW\nntDtrbOkFmUOux4Yb2atCHdRd8UVj8sbmRwE55xLE2eVURtgjpnNjbq7DQQ6lDmmBaFvM2Y2i9Cl\nrqLeFy5Z2bLWalVVSs65WopzeHkzflq3Op/S/scpk4AzgNFRQ+auhC6Bi2KMy9VQVE+dFVMwmFm5\nXS2dc3UXZwmhOndxtwJbSJoAdCVMnbAmxpicc85VIM4SwgLS+otHj9MH7KQG0JyX2pb0MaHx8ick\neRWBc87VgplVu90tzhLCOMLQ/+ZRf/GzCN3p1pG0eWoGTkkXEOYp+a68k8Uxb0eh/vTq1SvxGPLl\nxz9L/zyz+aemYishmNlqSV0J/ZgbEOYkmSGpS/T8Q4TeR/2iEsBUwnQBzjnnEhDrnOVm9gJhKt70\nfQ+lPX6HMOOkc865hPlI5QJUVFSUdAh5wz/LzPLPM1mxjlTOFEmWC3E651w2kYRlSaOyc865HOIJ\nwTnnHOAJwTnnXMQTgnPOOcATgnPOuYgnBOecc4AnBOeccxFPCM455wBPCM455yKeEJxzzgGeEJxz\nzkU8ITjnnAM8ITjnnIt4QnCulpYuhcceSzoK5zIn1oQgqb2kmZJmS+pWzvNNJf1P0kRJUyX9Mc54\nnMukG26A88+Hl15KOhLnMiO2hCCpAXAv0J6wVGZnSS3KHNYVmGBmBwBFwO2SYl3FzblMmDgRnn4a\n+vWDSy6BH39MOiLn6i7OEkIbYI6ZzTWzVcBAoEOZYz4DNosebwYsNrPVMcbkXJ2tXQtdu8JNN8Ef\n/gB77AH/+lfSUTlXd3EmhGbAvLTt+dG+dI8A+0haCEwCLosxHucyon9/WLkyVBcB3HUX9OkD8+ZV\n/jrnsl2c1TPVWfPyemCimRVJ+gXwkqRWZras7IHFxcXrHhcVFfnaqy4RS5bAddfBiBHQoEHYt9tu\nocRw1VWhGsm5pJSUlFBSUlLr18e2prKktkCxmbWPtrsDa83strRjRgJ/N7O3ou1XgG5mNq7MuXxN\nZZcVLr0UfvgBHn74p/u//x722SfsP/bYZGJzrqxsWlN5HLCHpOaSGgNnASPKHDMTOBZA0nbAXsBH\nMcbkXK1NmgQDB8LNN6//XJMmcOedoaTgDcwuV8WWEKLG4a7AKGA6MMjMZkjqIqlLdNjNwEGSJgEv\nA9ea2ddxxeRcbZnBxReHhuSmTcs/5pRTYPfdQ2JwLhfFVmWUSV5l5JL2n//A3XfDe++Vth2U58MP\n4eCDQ7fUnXaqv/icK09Nq4w8IThXhaVLoUULGD4c2rSp+vhevWDmTBg0KP7YnKuMJwTnMuzyy2H5\ncnjkkeod//330LIl9O0L7drFG5tzlfGE4FwGTZ4ceg1Nn15x20F5nn02dE+dNAkaN44vPucqk029\njJzLaamG5BtvrFkyADj11DA+4a674onNuTh4CcG5CvTvH3oMjRlTeUNyRebMgbZtvYHZJcerjJzL\ngFRD8rBhoddQbfXoAbNnh/ELztU3TwjOZcAVV8CyZaFhuC5WrAgjmB99FI45JjOxOVddnhCcq6Mp\nU0LvoGnTYJtt6n6+4cPh+utD1ZE3MLv65I3KztVBqiG5d+/MJAOADh2gefMwsM25bOYlBOfSPPFE\nWNugtg3JFUk1ME+aBM3KTgLvXEy8ysi5Wvr229CQPHRouHhn2g03hKktBgzI/LmdK48nBOdq6cor\nQ++iRx+N5/wrVoQRzI8/DkcfHc97OJfOE4JztTBlSugFNH165toOyjNsWCgpTJwIjRrF9z7OgTcq\nO1djZmEdg0w2JFfktNNg5529gdllJy8huIL31FPwz3/C2LGZbUiuyOzZcMghYZ6kHXeM//1c4fIq\nI+dqINWQPGRIuEjXl7/+FT7+OCQj5+KSVVVGktpLmilptqRu5Tx/taQJ0c8USaslbRFnTM6l690b\njj++fpMBhIFqb70FdVgP3bmMi62EIKkBMIuwZvICYCzQ2cxmVHD8ycDlZrbeEuVeQnBxmDo19PaZ\nNg223bb+3/+ZZ8JcR97A7OKSTSWENsAcM5trZquAgUCHSo7/LeA9tF29SDUkFxcnkwwATj89zIJ6\nzz3JvL9zZcWZEJoB89K250f71iNpI+B4YGiM8Ti3zsCBYczBRRclF4MUksHNN8PChcnF4VxKwxjP\nXZM6nlOA0Wa2pKIDiouL1z0uKiqiqKio1oG5wvbtt3D11TB4cP30KqrMnnvChRfCNdfAk08mG4vL\nfSUlJZTUoWEqzjaEtkCxmbWPtrsDa83stnKOHQYMMrNyZ433NgSXSVdfDYsXhxHD2WD58tDTqX9/\nOOqopKNx+SRrup1KakhoVG4HLATGUE6jsqTNgY+Anczs+wrO5QnBZcS0aVBUlFxDckWGDoVevWDC\nBG9gdpmTNY3KZrYa6AqMAqYTSgAzJHWR1CXt0NOAURUlA+cyJdWQ3LNndiUDgDPOCIPU7r036Uhc\nIfOBaa5gDBwIt94K48ZBwzhbz2pp1iw47LAwr9IOOyQdjcsHWVNllEmeEFxdLVsW6ukHDQoX3WzV\nvTvMmxfWZXCurjwhOFeOa66BRYugX7+kI6lcqoH5iSfgyCOTjsblOk8IzpUxfXrovTN1Kmy3XdLR\nVG3IkDClxvjx3sDs6iZrGpWdywaphuQePXIjGQCceSZsvz3cd1/SkbhC4yUEl9cGDQojgd9/Pzsb\nkisycyYccUSYItsbmF1teZWRc5FUQ/LAgXD44UlHU3PXXQcLFoQBa87VhicE5yLXXgtffAH//nfS\nkdTOd9+FhPbUU6G04FxNeUJwDpgxI/TSyZWG5Io8/TT87W+hgTmXqrxcdvBGZVfwUg3JN9yQ28kA\noFOnMKraG5hdffASgss7+XZXnSrtTJkSeh85V11eZeQKWr7Wu3frBp9/nrvtIS4ZnhBcQevWLSw2\nk289c1KJbsCA3Owx5ZLhCcEVrHyvWsnVMRUuOd6o7AqSGVxyCfz1r/mZDAB+8xto2hTuvz/pSFy+\n8hKCywuDB8NNN+VPQ3JF8qU7rasfXmXkCk6qfv3JJwtjhtBcmbnVJS+rqowktZc0U9JsSd0qOKZI\n0gRJUyWVxBmPy09/+1uYzbQQkgGEFd9efhneeivpSFy+iXNN5QaENZWPBRYAYymzprKkLYC3gOPN\nbL6kpmb2VTnn8hKCK9fMmaHXTaGtMpbtq7+57JBNJYQ2wBwzm2tmq4CBQIcyx/wWGGpm8wHKSwbO\nVSS9IbmQkgHAWWfBVlvBAw8kHYnLJ3EmhGbAvLTt+dG+dHsAW0l6TdI4SefGGI/LM0OHwmefhWkq\nCo0E99wDN94YJvBzLhPiLGxWp46nEfBLoB2wEfCOpHfNbHbZA4uLi9c9LioqoqioKDNRupy0fDlc\neWUYgFaoq4rtsw/84Q9hmuzHH086GpcNSkpKKCkpqfXr42xDaAsUm1n7aLs7sNbMbks7phvQxMyK\no+2+wP/MbEiZc3kbgvuJ7t3h009Dz6JCllrz4emn4dBDk47GZZtsakMYB+whqbmkxsBZwIgyxzwL\nHC6pgaSNgIOB6THG5PLArFnwyCPQp0/SkSRv003D53DxxbBmTdLRuFwXW0Iws9VAV2AU4SI/yMxm\nSOoiqUt0zEzgf8Bk4D3gETPzhOAqZAaXXgrXXw877ph0NNnh7LNh883hwQeTjsTlOh+Y5nLK0KHQ\nqxdMmFC4bQflmTYNiorCv9tum3Q0Llv4SGWXt5Yvh5YtwxTQ3qdgfVddBd98A489lnQkLlt4QnB5\n6/rrYe7csNaBW9+334YG5iFD4JBDko7GZQNPCC4vffBB6EUzebK3HVTmqafgn/+EsWOhQYOko3FJ\ni62XUdQLyLl6lxqR3L27J4OqdO4Mm20GDz2UdCQuF1WZECQdKmk6YV4iJB0gyWdkd/Vm2DCYPz/0\nLnKVk+Dee6G4OMyI6lxNVFllJGkM0BF41sxaR/ummdk+9RBfKgavMipQqYbkfv3g6KOTjiZ3XHkl\nLF0Kjz6adCQuSbFUGZnZp2V2ra5RVM7V0s03h7YDTwY1U1wML7wA77yTdCQul1RnLqNPJR0GEI04\nvhSYUflLnKu72bNDXfikSUlHkns22yyMYO7aFcaM8QZmVz3VKSH8GbiYMFPpAqB1tO1cbFINyddd\nB83KzpHrquW3v4VNNoGHH046EpcrvNupy0rDhoV1DiZN8hHJdTFlCrRrF0Ywb7NN0tG4+hb7OARJ\nFwNfERa2qZe2BE8IhWXFitCQ/NhjcMwxSUeT+664IsyK2rdv0pG4+lYfs50KOAIYVovXOlelW26B\ntm09GWRKcTGMHAnvvpt0JC7beZWRyyqzZ4dpFyZOhJ12Sjqa/NG/P9x5pzcwF5psWg/BuRoxg8su\ng27dPBlk2u9+BxttFNaRcK4iXkJwWWP48DA9xaRJ0Lhx0tHkn8mT4dhjYfp0aNo06WhcfciqEoKk\n9pJmSpodLZdZ9vkiSUslTYh+bogzHpe9VqyAyy8P0y54MojH/vuHrqjduycdictW1Zm6ojFhLMKR\n0a4S4EEzW1XF6xoQ5j86ljB+YSzQ2cxmpB1TBFxpZqdWcS4vIeS5nj3D0piDBiUdSX5bujRMkT1s\nGBx8cNLRuLjFUUJ4APglcB9wP3BgtK8qbYA5ZjY3Sh4DgQ7lHFftYF1+mjMH7r8fbr896Ujy3+ab\nw623+hrMrnzVSQi/MrM/mNmrZvaKmf2RcLGvSjNgXtr2/GhfOgMOlTRJ0khJLasVtcsbqYbka6/1\nhuT6cu650KSJj0tw66vOXEarJe1uZnMAJP2C6k1uV506nvHAzma2QtIJwHBgz2q8zuWJ556Djz4K\nVRiufqSmyD7uODjzTG9gdqWqkxCuAV6V9HG03Rz4UzVetwDYOW17Z0IpYR0zW5b2+AVJ90vaysy+\nLnuy4uLidY+Liooo8kV1c97334fSwSOPeENyfWvVCs46KyxL6nMd5Y+SkhJKSkpq/fpqdTuVtCGw\nF+Guf5aZrazGaxoSGpXbAQuBMazfqLwd8KWZmaQ2wNNm1rycc3mjch7q1QtmzICnn046ksK0ZElo\nYH72WWhTnUpgl3Nq2qhcYQlBUjsze0XSmYREkDrp7tGbPFPZic1staSuwCigAfComc2Q1CV6/iHC\nwjt/lrQaWAGcXd3AXW778MNQbTFxYtKRFK4ttihtYH73XR/B7CopIUjqbWa9JPWjnPYAM6tOtVFG\neAkh/5x8MhxxRBiV7JKzdi0ceST8/vdw4YVJR+MyLeOznUrazcw+qmpfnDwh5Jfnn4errgojZ73t\nIHmTJoUG5pkzYcstk47GZVIc4xCGlLNvcPVDcq7U2rVhnYNbb/VkkC1atYKTToI77kg6Epe0ytoQ\nWgAtgS0knUFoQzBgM2DD+gnP5ZtnnoGGDaFDeUMUXWJ69ICDDgq9vrwbauGqrA2hA3A6cAowIu2p\nZcBAM3s7/vDWxeJVRnlgzZown06fPnDiiUlH48q66KIwkvm225KOxGVKHG0Ih9bnxb+CGDwh5IGn\nnoJ77oG33w6Do1x2mTcvVB/NmAHbbZd0NC4T4kgITYDzCdVHTYh6HJnZeXWIs0Y8IeS+1athn33g\nvvvCFMwuO116aajS8/aE/BBHo3J/YDugPWGm052B72oVnStYTz4J228fFnx32at7d+jXDxYuTDoS\nl4TqlBAmmtkBkiab2f6SGgGjzazeJs/1EkJuW7UK9t4bHnsMjjoq6WhcVa66ClauDAMHXW6Lo4Tw\nY/TvUkn7AVsA29QmOFeY+vWDn//ck0Gu6NYNBgyATz9NOhJX36pTQvg/4BlgP6AfsAnQw8wejD26\n0hi8hJCjVq6EPfeEgQPhkEOSjsZVV/fusHixT3yX6zLaqCzpZ0AnM0t0HStPCLnrvvvCyOSRI5OO\nxNXE4sUhkY8dC7vtlnQ0rrbi6GX0vpkdWOfI6sATQm76/nvYffcwm+ZBByUdjaupXr3gk09ClZ/L\nTXEkhFuBr4BBwPLU/vLWLIiLJ4Tc9K9/weuvw/DhSUfiamPJEthjDxg9GvbaK+loXG3EkRDmsv5s\np2Zm9VaQ9ISQe5Yvh1/8Al58MYxOdrnp73+HadPCoEKXezKeELKBJ4Tcc9tt8P77vvhNrlu2LFT7\nvfIK7Ltv0tG4mvKE4BL37bfhIlJSAi1bJh2Nq6s+fWDMGBjscxznnDjGIdQlmPaSZkqaLanCpVAk\n/UrS6mhWVZfj7r47zK/vySA/XHwxvPWWr25XCGIrIUhqQFhT+VhgATCWMmsqpx33EmEJzcfNbGg5\n5/ISQo5INUS+/Xb41+WHu+6CV18NPcZc7sjkmsoHUrqWcnlLaI6v4txtgDlmNjc630CgAzCjzHGX\nEBbh+VV1g3bZ6447wvKYngzyS5cuoepo7Fj4lf+l5q0KEwJwOyERNAEOBCZH+/cHxgFVjTttBsxL\n254P/GT+I0nNCEniGEJC8GJADlu8OAxEGzcu6Uhcpm24IVx/PfTsCS+8kHQ0Li4VtiGYWZGZHQ0s\nBH5pZgdGA9RaR/uqUp2L+53AdVF9kKIfl6P69IGOHcO8RS7/nH8+TJ8eqgNdfqqshJCyt5lNSW2Y\n2dRoec2qLCBMlZ2yM6GUkO5AYKDCailNgRMkrTKzEWWOo7i4eN3joqIiioqKqhGCqy9ffBHmvZk0\nKelIXFw22CAstdmjR+iG6rJPSUkJJSUltX59dQamDSSsf/AE4Q7+t8AmZta5itc1JDQqtyOUKMZQ\nTqNy2vGPA8+Z2TPlPOeNylnuyivDNNf33JN0JC5Oq1ZBixbQty/4PVn2y1ijcpo/AX8GLou23wAe\nqOpFZrZaUldgFNAAeNTMZkjqEj3/UHWDdNlt4cIw3820aUlH4uLWqFFoR+jRA954w5dCzTc+MM3V\nWdeuoTrh9tuTjsTVhzVrwnKoqfEmLntlbKSypMFm1knSlHKeNjOrtxlqPCFkr08/hdatw8Ls226b\ndDSuvgwcCHfeCe+846WEbJbJhLCjmS2U1Ly851PjC+qDJ4Ts1aULbLUV3HJL0pG4+rR2LbRqBbfe\nCiedlHQ0riKxzGUkaTvCQDMDxpjZl7UPseY8IWSnjz4Kg5Q++AC23jrpaFx9e+aZMBvquHFeSshW\nGZ/LSNJvCD2EOgG/AcZI6lT7EF2+uOmmMM+NJ4PCdNppoaTg613kj+p0O50MHJsqFUjaBnjF2xAK\n2wcfwGGHwezZsMUWSUfjkvLcc2EE86RJ8LNYp8p0tRHHbKcCFqVtL8ZHFBe83r3hsss8GRS6k0+G\njTbyqbHzRXVKCH2AVsBThERwFjDZzK6NP7x1MXgJIYtMmwZHHw0ffgibbpp0NC5po0bB5ZfD1KnQ\noEHS0bh0cTUqnwkcTmhUftPMhtU+xJrzhJBdOnUKjcnX1tstgctmZnDEEaHH2bnnJh2NSxfHmspX\nAQPNbEFdg6stTwjZY+JEOOEEmDMHNt446WhctnjtNbjggjAepVGjpKNxKXG0IWwKvChptKSuURdU\nV6B69YJu3TwZuJ86+mjYZRf4z3+SjsTVRbWnrpDUitDttCMw38zaxRlYmff2EkIWGDcudDWcMyfM\nj+9curfegnPOCT3QGjdOOhoH8a6p/CXwOaGX0TY1Dczlvp49QxdDTwauPIcdBnvvDY89lnQkrraq\n04bwF0LJYFtgMDDIzKbXQ2zpMXgJIWHvvANnnx3u/jbYIOloXLYaMwbOPDOMT/Ebh+TFUULYGbjc\nzFqaWa/6TgYuO6QWRvFk4CrTpk2Y7PDhh5OOxNWGT3/tqvT663DeeTBzpvcgcVWbMCFMeDdnThi0\n5pITZxuCK0BmoWTQs6cnA1c9rVvDIYfA/fcnHYmrqVgTgqT2kmZKmi2pWznPd5A0SdIESe9LOibO\neFzNvfxyWC/5nHOSjsTlkt69oU8fWLYs6UhcTcRWZSSpAWFN5WOBBcBYyqypLGljM1sePd4PGGZm\nu5dzLq8ySoBZuNO77DLoXOkK2s6tr3Nn2G+/0DPNJSObqozaAHPMbK6ZrQIGAh3SD0glg8gmwFcx\nxuNqaORI+O47OOuspCNxuai4GP71L1i6NOlIXHXFmRCaAfPStudH+35C0mmSZgAvAJfGGI+rAbPQ\nbtC7t09r7Gpnr73gxBNDUnC5oWGM565WHY+ZDQeGSzoC6A/sVd5xxcXF6x4XFRVRVFRU9whdhZ59\nNix+cvokpIWZAAATLklEQVTpSUficlnPnnDwwXDppWGpVRevkpISSkpKav36ONsQ2gLFZtY+2u4O\nrDWz2yp5zYdAGzNbXGa/tyHUo7Vr4YADwvKIp5ySdDQu111wAWy7bfg+ufqVTW0I44A9JDWX1Jiw\njsKI9AMk/UIKq7FK+iVA2WTg6t+QIdCkSVj8xLm6uuEGePBBWLSo6mNdsmJLCGa2GugKjAKmE6a8\nmCGpi6Qu0WFnAlMkTQDuAs6OKx5XPWvWhMbAG2/0hdNdZuy6a5j25B//SDoSVxUfqex+4oknwt3c\nm296QnCZs2BB6II6fTpsv33S0RSOWFZMS5onhPqxejW0aAEPPQTH+BBBl2GXXx56r911V9KRFA5P\nCK7WHnsM+vcPq185l2mffw4tW8LkybDTTklHUxg8Ibha+fHH0G+8f384/PCko3H56tprw3QWDzyQ\ndCSFwROCq5UHH4Rhw2DUqKQjcfnsq6/Cjcf770Pz5klHk/88Ibga++EH2GMPGDo0zGfvXJxuuAE+\n+wwefTTpSPKfJwRXY3ffDS+9BM89l3QkrhB88024AXn3Xdh9vaksXSZ5QnA1smJF+KN8/vkwj71z\n9eHGG8MCOv/5T9KR5DdPCK5Gbr8d3n47VBc5V1++/TbciLzxBuy9d9LR5C9PCK7avvsu/FG+/DLs\nu2/S0bhCc+utMHEiDByYdCT5yxOCq7Zbbgl9wgcMSDoSV4hSNyQvvRRGMbvM84TgqmXp0vDH+Oab\nXmR3ybnjDhg9Gp55JulI8lM2zXbqstidd8IJJ3gycMm66KLQ22j8+KQjceAlhIL09dew557e7c9l\nh3vuCQMi//vfpCPJP15CcFW6/XY47TRPBi47XHBBaMt6992kI3FeQigwixaFaqLx48M89c5lg4ce\nCl2fX3wx6Ujyi5cQXKX+8Q846yxPBi67/OlPMHt26OTgkhN7QpDUXtJMSbMldSvn+XMkTZI0WdJb\nkvaPO6ZC9fnnYf6Yv/416Uic+6nGjaFnz/DjkhNrQpDUALgXaA+0BDpLalHmsI+AI81sf+Am4OE4\nYypkt94Kv/89NGuWdCTOre/cc8PKaq++mnQkhSvWNgRJhwC9zKx9tH0dgJndWsHxWwJTzGynMvu9\nDaGO5s+HVq1g2jRfwtBlryefhPvvD2MTfAnXusu2NoRmwLy07fnRvoqcD4yMNaICdfPNcP75ngxc\ndjv7bFiyxNflSErDmM9f7dt6SUcD5wGHlfd8cXHxusdFRUUUFRXVMbTC8cknMGgQzJqVdCTOVa5B\nAyguhh494PjjvZRQUyUlJZSUlNT69XFXGbUFitOqjLoDa83stjLH7Q88A7Q3sznlnMerjOrg//4v\nlAz+9rekI3GuamvXhqnYb7oJTj016WhyW1bNZSSpITALaAcsBMYAnc1sRtoxuwCvAr8zs3KHpnhC\nqL05c6BtW/jgA9hqq6Sjca56hg8PJYXx4+Fn3jm+1rKqDcHMVgNdgVHAdGCQmc2Q1EVSl+iwnsCW\nwAOSJkgaE2dMhebGG+GSSzwZuNzSoQM0bOiT3tU3H6mcx2bOhCOOCKWEzTdPOhrnambkSLjmmjCt\nRYMGSUeTm7KqhOCSVVwMV17pycDlphNOgM02Cx0iXP3wEkKemjIFfv3rUDrYZJOko3Gudl5+GS6+\nOIyfaRh3n8g85CUEB4TSwTXXeDJwua1du9BD7sknk46kMHgJIQ9NmAAnnxwmC9too6Sjca5u3ngj\nTH43cyY0apR0NLnFSwiOnj3huus8Gbj8cOSRsNtu0K9f0pHkPy8h5Jn33oNOncK4gw03TDoa5zLj\n3XfDtO0ffAAbbJB0NLnDSwgFrmfPML21JwOXT9q2hX33hb59k44kv3kJIY+MHh2mEJ41K8wv71w+\nef/9MJXFnDnQpEnS0eQGLyEUsB49wo8nA5ePDjwQfvUrePDBpCPJX15CyBOvvgpdusCMGd5f2+Wv\nyZPhuOPgww9h442Tjib7eQmhAJmFkkGvXp4MXH7bf//Q6+jee5OOJD95CSEPjBoFV1wRRif7nC8u\n302fDkVFoS1hs82Sjia7eQmhwKRKB8XFngxcYWjZMlQb3X130pHkHy8h5LjnnoMbbgijk33eeFco\nZs+GQw8N/26xRdLRZC8vIRSQtWvDuIPevT0ZuMKyxx5wyilwxx1JR5JfvISQw4YOhVtugbFjfe1Z\nV3g+/jh0Q501C7beOuloslPWlRAktZc0U9JsSd3KeX5vSe9I+kHSVXHHky/WrAm9im680ZOBK0w/\n/zl07Ah9+iQdSf6Ie03lBoQ1lY8FFgBjWX9N5W2AXYHTgG/M7PZyzuMlhDIGDAiNam+/7QnBFa55\n86BVqzD+Zrvtko4m+2RbCaENMMfM5prZKmAg0CH9ADNbZGbjgFUxx5I3Vq8OvYq8dOAK3c47wznn\nwG23JR1Jfog7ITQD5qVtz4/2uTp48slwN3TssUlH4lzyrr8+TI29cGHSkeS+uMe1Zqyep7i4eN3j\noqIiioqKMnXqnLJqVSgZPPaYlw6cA9hhh7CAzs03+wjmkpISSkpKav36uNsQ2gLFZtY+2u4OrDWz\n9Qp4knoB33kbQuX69oWBA8Nas8654MsvoUWLMB5nl12SjiZ7ZFsbwjhgD0nNJTUGzgJGVHCs3+9W\nYeVKuOmm8OOcK7XttnDhhfD3vycdSW6LfRyCpBOAO4EGwKNmdoukLgBm9pCk7Qm9jzYD1gLLgJZm\n9l3aOQq+hLBwYeheN2sWjByZdDTOZZ/Fi2GvveC++8KgNV9CtuYlBB+YlsXmzw+DzwYPDhN6nXJK\nGHuw225JR+Zcdho5Eu68E8aMCfMddeoEJ55YuFNle0LIcfPmwZAhIQnMmhVWiOrUKfQo8oVvnKue\nr76C4cPD39G778Kvfx3+jk46CTbZJOno6o8nhBz0ySelSWDOHOjQIXx5jznGk4BzdbV4MTz7bPj7\nevttaNcu/H2dfDJsumnS0cXLE0KO+PjjkASGDIGPPoLTTgtf0qOPhkaNko7Oufz0zTelyWH06HDT\n1bFjqI7Nx7UVPCFksY8+Cl/EIUNCqeD000MSOOooTwLO1bclS2DEiPA3+cYbYdGdjh1DNe3mmycd\nXWZ4Qsgyc+aUJoH58+GMM0ISOPJIX+7SuWyxdGlYW2TwYCgpCX+fHTuG6ttcXm/BE0IW+OCD0iTw\n2Wdw5pnhy3Xkkb6qmXPZ7ttv4b//DX/Dr74Khx9emhy22irp6GrGE0JCZs4sTQKLFpUmgcMP9yTg\nXK5atgyefz78bb/8clilrWPH0OaXC2sweEKoR9Onl/YO+vrrkAQ6dYLDDvMVzJzLN999F5LDkCHw\n4ovQtm1IDqefDk2bJh1d+TwhxMgMpk0rTQJLl4YvRKdOcMghngScKxTLl4dBcIMHw6hR0KZNuA6c\nfjpss03S0ZXyhJBhZjB1avjFDx4cvgipJHDwwZ4EnCt0K1bACy+E68P//gcHHliaHJJetMcTQgaY\nweTJpUlg5crSJNCmjU877Zwr3/ffh6QweHAoQbRuHa4bZ5wB229f//F4QqglM5g4sTQJrF4dfpGd\nOsFBB3kScM7VzA8/hOqkwYND28P++5cmhx13rJ8YPCHUgBmMH1/aO8isNAn88peeBJxzmfHDD/DS\nS+Fa89//wj77hOvMmWdCsxjXkPSEUAUzGDeuNAk0aFCaBA44wJOAcy5eK1eGLqyDB4eR0i1alCaH\nnXfO7Ht5QiiHWZgON5UENtigNAnsv78nAedcMn78EV55JVybnn0W9twzXJc6dszMym9ZlRAktad0\ncZy+FSydeTdwArAC+KOZTSjnmDolhKIi+OKL0g96v/08CTjnssuqVWFk9ODBYeru666Dq6+u2zmz\nJiFIagDMAo4FFhBWRetsZjPSjjkR6GpmJ0o6GLjLzNqWc646JYSvvgqjCj0JBCUlJRQVFSUdRl7w\nzzKz/PMMVq0KXdzrOo9SNq2p3AaYY2ZzzWwVMBDoUOaYU4F/A5jZe8AWkjLec7dpU08G6UpKSpIO\nIW/4Z5lZ/nkGjRolM6lenAmhGTAvbXt+tK+qY3aKMSbnnHMViDMhVLeOp+y9e/a3cjvnXB6Ksw2h\nLVBsZu2j7e7A2vSGZUkPAiVmNjDangkcZWZflDmXJwnnnKuFmrQhxLlEyzhgD0nNgYXAWUDnMseM\nALoCA6MEsqRsMoCa/Yecc87VTmwJwcxWS+oKjCJ0O33UzGZI6hI9/5CZjZR0oqQ5wHLgT3HF45xz\nrnI5MTDNOedc/LJ28mZJnSRNk7RG0i/LPNdd0mxJMyUdl1SMuUpSsaT5kiZEP+2TjikXSWoffQdn\nS+qWdDy5TtJcSZOj7+SYpOPJJZIek/SFpClp+7aS9JKkDyS9KKnKjqxZmxCAKcDpwBvpOyW1JLRH\ntATaA/dLyub/RzYy4A4zax39/C/pgHJNNPDyXsJ3sCXQWVKLZKPKeQYURd/JNkkHk2MeJ3wX010H\nvGRmewKvRNuVytoLqZnNNLMPynmqAzDAzFaZ2VxgDmEQnKsZb6ivm+oMvHQ159/LWjCzN4Fvyuxe\nN/A3+ve0qs6TtQmhEjsSBrCllDfgzVXtEkmTJD1anaKkW091Bl66mjHgZUnjJF2QdDB5YLu0Xptf\nAFXOAhFnt9MqSXoJKG8doevN7LkanMpbxsuo5LP9K/AAcGO0fRNwO3B+PYWWL/w7l3mHmdlnkrYB\nXpI0M7rzdXVkZlad8VyJJgQz+3UtXrYASJ81fKdon0tT3c9WUl+gJsnXBWW/hzvz05KrqyEz+yz6\nd5GkYYRqOU8ItfeFpO3N7HNJOwBfVvWCXKkySq9XHAGcLamxpJ8DewDeI6EGoi9HyumEBnxXM+sG\nXkpqTOjoMCLhmHKWpI0kbRo93hg4Dv9e1tUI4A/R4z8Aw6t6QaIlhMpIOh24G2gKPC9pgpmdYGbT\nJT0NTAdWA3+JfcHl/HObpAMI1R4fA10SjifnVDTwMuGwctl2wDCFaYkbAk+a2YvJhpQ7JA0AjgKa\nSpoH9ARuBZ6WdD4wF/hNlefxa6lzzjnInSoj55xzMfOE4JxzDvCE4JxzLuIJwTnnHOAJwTnnXMQT\ngnPOOcATgssS0TTnEyRNkfS0pCZJx1QdkraV9Hz0uJWkEzJwzgclHSJpb0kTJb0vaTdJZVccRNIO\nkuZEx2yStr+JpOclzZA0VdItac9dKuncusbp8o8nBJctVkTTHu8H/AhclP6kpHobRFnD9+oK9Ise\ntwZOzEAIBwPvEWanHGxmBwK7AL9NPyga2TsMuIYwm+WQMrH/w8xaRHEdlrbuxePAJRmI0+UZTwgu\nG70J7C7pKElvSnoWmCrpZ5L6SBoTzdR6Iay7S34jrYRxWHRsv2h7sqTLomNLJB0YPW4q6ePo8R8l\njZD0CmFitY2iRUfekzRe0qkVxNqRMJK+MWHCwLOiODpFC5QMj2J9R9J+0XsVR+d+TdKHktZdnKM1\nFT4AjgcuA/4s6VXgFuCI6NyXRRf+p4BbzWyYmd1NmKrgEQAz+97MXo8erwLGE83GambLgMWS9snE\nL8vlj6ydusIVpuhCdyIwMtrVGtjHzD6JEsASM2sjaQNgtKQXgTOA/5nZzQpzH2wcvW7HqMSBpM2i\n8xkVz1TaGtjPzJZIuhl4xczOi6YHf0/Sy2a2Ii3W7YE1qX2SegAHmtml0fY9wPtmdpqko4H/RO8B\nsCdwNLAZMEvS/Wa2BjgBeMHMXpD0ILDMzO6QdBRwtZmdkhZv+mPM7P4KPtMtomPvTNs9BjgSmFbB\nZ+EKkJcQXLZoImkCMJYw78pjhEkNx5jZJ9ExxwG/j457F9gK2D16zZ8k9QL2N7PvgA+B3STdLel4\nYFk1YnjJzJakvdd10Xu9BmzAT2c3BdgV+CxtW/x0IsbDgP4AZvYasHVUzWPA89EiT4sJs1Cm5qo/\nDkhfwU5l/q2RKMEOAO6KFpRKWQg0r805Xf7yEoLLFt+bWev0HdFEZ8vLHNfVzF4q+2JJRwAnA/0k\n3WFm/SW1IlS9XESY2Ot8woSIqRuhDcucpux7nWFms6uIO/1CXV7Jo6IL+Y9pj9cADSVtBGxhZp9X\n8Z418TAwK6pSKhuXT2TmfsJLCC6XjAL+kmo4lbRnVNe/C7DIzPoCfYFfStoaaGBmzwA9KK2qmQsc\nFD3uWMV7XZrakNS6nGM+4aeLEC0DNk3bfhM4J3p9URTjMspPEiJUIb1aQTxlz10lSX8jVEldUc7T\nOxA+C+fW8YTgskV5d6tl6/v7EqY9Hy9pCmHlt4ZAETBR0nhCSeBOQgPqa1GVT3+ge3SOfxIaascD\nW6edv+x73QQ0ihqkpwK91wsu3Mk3VJi/H0LVUstUozJQDBwoaRJwM6Vz05d9r9TjE/hpdVH6c5OA\nNVE31MvKxlKWpJ2A64EWhM9rgsI0yCm++Ixbj09/7VwdSCoGZpjZoAyc632gTdS4HJuogf0VM/tV\nnO/jco8nBOfqQGH933+bWSbGH9QLSZcCX5vZE0nH4rKLJwTnnHOAtyE455yLeEJwzjkHeEJwzjkX\n8YTgnHMO8ITgnHMu4gnBOeccAP8P/QKt8gmEtZAAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x54c4510>"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter11.ipynb b/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter11.ipynb new file mode 100755 index 00000000..acd23c6c --- /dev/null +++ b/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter11.ipynb @@ -0,0 +1,666 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:5a229faa6e3645196b99851feb0572545419f102708048be683493e984195c30"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter11-Compressibility of Soil"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg303"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#evaluvate The elastic settlement at the centre of foundation\n",
+ "Tz=150.\n",
+ "b=1.\n",
+ "l=2.\n",
+ "z=5.*b\n",
+ "Es= (10000*2 + 8000*1 +12000*2)/5\n",
+ "a=4.\n",
+ "H=z\n",
+ "m=l/b\n",
+ "n=2.*H/b\n",
+ "F1=0.641 ##from tables 11.1 and 11.2\n",
+ "F2=0.031\n",
+ "u=0.3\n",
+ "Is= F1 + ((2.-u)/(1.-u))*F2\n",
+ "If=0.71 ##from table 11.3\n",
+ "Sef= Tz *a*b/l *(1-u**2)*Is*If/Es\n",
+ "Ser=0.93*Sef\n",
+ "print'%s %.3f %s'%('The elastic settlement at the centre of foundation =',Ser,'m')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The elastic settlement at the centre of foundation = 0.012 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg312"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the value of pressure\n",
+ "#find the value of e and plot the graph\n",
+ "## one value of e is done \n",
+ "Gs=2.75\n",
+ "A=30.68\n",
+ "Ms=128.\n",
+ "p=1.\n",
+ "Hs=Ms/(A*Gs*p)\n",
+ "H=2.540\n",
+ "Hv=H-Hs\n",
+ "e=Hv/Hs\n",
+ "print'%s %.3f %s'%('the value of e for give values =',e,'')\n",
+ "import math\n",
+ "%matplotlib inline\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
+ "from math import log\n",
+ "import numpy\n",
+ "from math import tan\n",
+ "import matplotlib\n",
+ "from matplotlib import pyplot\n",
+ "#given\n",
+ "p=numpy.array([0,0.5,1,2,4,8,16,32])\n",
+ "e=numpy.array([0.671,0.637,0.622,0.599,0.572,0.529,0.464,0.390])\n",
+ "e1=.9\n",
+ "e2=.8\n",
+ "sig1=4.\n",
+ "sig2=2.\n",
+ "#calculations\n",
+ "Cc=(e1-e2)/log(sig1/sig2)\n",
+ "\n",
+ "#results\n",
+ "print '%s %.2f %s'%('The value of Cv (cm^2/sec) = ',Cc,'')\n",
+ "pyplot.plot(p,e)\n",
+ "pyplot.xlabel('Pressure (ton/ft^2)')\n",
+ "pyplot.ylabel('void ratio ,e')\n",
+ "pyplot.title('Graph of pressure vs void ratio')\n",
+ "pyplot.show()\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the value of e for give values = 0.674 \n",
+ "The value of Cv (cm^2/sec) = 0.14 \n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEZCAYAAACJjGL9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecXVW5//HPlxRIiEiLAUOJSJEgJURCCcJgKKEGRapK\nUSFK9QoKKF4G8YIRKXr9URQERAVEkCAEAgQGQUIJEIophBIghZYQSIALCXl+f6x9mMNk5syZyZzZ\n58x836/XvHJ2WXs/s8/kPGettdfaigjMzMxaskLeAZiZWXVzojAzs5KcKMzMrCQnCjMzK8mJwszM\nSnKiMDOzkpworGIk1Uu6poOONUDSvyS9I+m8jjimlU/SOEnfamHbIElLJVXs80TSJZLOqNTxrbSe\neQdgnUfSIcB/AZsB7wIvAldHxCUVOmVHDtI5Bng9IlbpwGNamSJir846l6Qjge9ExJeLzv/9zjq/\nLcs1im5C0snARcAYYEBEDAC+BwyX1LuFMsv796HlLF9sfWBqRxxIUu5fkCT1yDuGPFTDtbd2iAj/\ndPEf4NPAIuCrrex3FXAJMC7b/yvA3sATwNvAy8CZRfsPApYCRwOzgTnAyUXbzwSuB64G3gGeAYaW\nOP8OwKPAAuARYPuiuD4EPgAWAl9pIfZLgTuzczUA6xVtXwocC8wAns/W7QNMBt4C/g1sXrT/qcCs\n7FjTCucEhgGTsuvxKnB+tr4OeKVJTDOLytUDfweuycp+O3tfrsiu2yzgbGCFZn63zwLvAasVrRsC\nvAH0ADYE7suu2xvAdS1c39uB45qsexLYv9T1z7Y1kL7lk53z19m5ngeOy67vMrEXXYcfA08B72fl\nTwOey67vf4pi2DTbZ0n2Xs8ven/PLjrm0dl7OQ8YC6yd9/+zrvyTewD+6YQ3GUYCi1v6j1y031XZ\nh0ThA3pFYGdgs2x58+zDcVS2PCj7gPgL0Af4IvA6MCLbXp/9px9Jql2cA0xs4dyrkz6wv0Gq6R4C\nzC98OAJXAj9vJfZ3gB2B3qTa0/1F25cC44FVs99rCPAasE0W2+GkprhewCakpLhWVnY9YIPs9UTg\nG9nrvsCw7HUdyyaKF/lkovgQ2C9bXgn4Bykx9wH6Aw8Dx7Tw+00Avlu0fB5wcfb6WuD07HVvYIcW\njvEt4IGi5cHZNe9VxvW/F/h29vp7pNrdQGC1bNtHlE4Uj2f7r5it+3rR9T2I9MVkQLZ8RPF71/T9\nJ32BeQPYKvt9fwvcl/f/s67846an7mFN4M2IWFpYIelBSW9Jek/SjkX73hwREwEi4oOIuC8i/pMt\nPw1cR0oexc6KiPcj4hnSf+hDi7bdHxF3RPof/mdgyxZi3BuYHhF/iYilEXEd6Zv8fkX7tNaUdWtE\nPBARHwI/BbaXNLBo+7kRsSAiPiD1eVwWEY9G8idSjWV70rfZFYHNJPWKiJcj4oXsGB8CG0laMyLe\ni4hHWomp2IMRcUv2+tPAnsB/ZdfuDVJyO6SFsn8lu66SBBycrSvENEjSwIj4MCIebOEYNwNbSVo3\nW/4GcGNELKa8619wEHBhRMyOiLdIXwBKvTcB/Dbb/wOAiPh7RLyavf4bqXawbbZ/a+/zN4ArImJy\n9l6fTnqv12ulnLWTE0X3MA9Ys7jPISJ2iIjVsm2F9QG8UlxQ0raS7pX0uqQFwGhgjSbHLy7zMqmp\npOC1otfvASu10Pfx2axssZeaHKuUIDXfpIWId0nfiIvLF8e5PnBylizfkvQWsA6pCeN54AekWsBr\nkq6VtHZW7jvAxsBUSY9I2rvM+CiOLzt/L2Bu0fkvJdUsmnMT6cNwLWAnYGlEPJBt+zHpw/URSc9I\nOqq5A0TEQuA2GhP5IaTaILTt+q/Nsu95a5r+XR0u6Ymi3/2LLPt31ZK1s9iAj9/reaQai1WAE0X3\nMJH0bXn/dpT9K+mb6DoRsSrpw6zp3816TV7Pbsd5ZpM+PIut34ZjCVj34wWpH6k5ZU7RPsV3Yb0M\n/E9ErFb00y8irgeIiGsj3XWzflZuTLb+uYg4LCL6Z+v+LqkP6S6yvkXn78GyH/rF53+F9J6sUXT+\nT0fE5s39ctk39ztJNYnDSM1NhW2vRcQxETGQlMgvlrRBC9fpWuBQSdsDK0XEvdn6tlz/uSz7nrfm\n499d0vrA70l9G6tnX1ieobEm0drdcnNIzZ6F461MSjLt+buzMjhRdAMRsQA4i/QBcoCkT0laQdJW\nwMpFuzZX5e8HvBURH0oaRvqQavof+QxJfSRtBhxJ6sBuq3HAxpIOldRT0sHAF4BbS8TW1F6SCndx\nnU3qD2npw+MPwPckDVOysqS9JfWTtLGkr0hakfRh/n+kNngkfVNSIQG8TboWS4FnSbWlvST1As4g\nNV81KyLmkj74Lyh6Pz4vaacSv99fSe33B9DY7ISkAyWtky0uKIqpOeNICeAsUjNi8fpS17/Y34AT\nJQ2UtBqpY7otVs5ifBNYIasBfbFo+2vAOtl1LBCNfwPXAkdJ2jJ7j84BHoqIcmo21g5OFN1ERJwH\n/JDUTPFq9nNptjyxsBvLJoFjgZ9Legf4Gc0ngftId7DcDZwXEXeXOF6z3xYjYj7pLqSTSR8gpwD7\nZOtbOlbT4/6VdKfVPFJn9TdbOm9EPEa6c+Z3pCaqGaQObUgf8OeSOkznkvp4Ts+27QE8I2khcCFw\nSNaX8zbpWl1OamJaxCebW5qL/3BSZ+yULIYbgLVK/I63kO5wmpv1FxV8CXgoi2kscGJEzGzuAFmb\n/k3ACIqSTRnXv9gfSDcGPEm6A+zGZn63FkXEFOB80t/dq6Qk8UDRLhNId0K9Kun1QrHCOSJiAulv\n8UZS7eJztNy3Yx1AqY+xQgeXRpI66HoAl0fEmCbbTyF1TEEa/LcpsGZELGitrOVP0iDgBaBncUd5\nTrFcCcyKiJ/lGYdZV1TJIfc9SN/WRpJuwztU0qbF+0TEryNiSEQMIX1ja8iSRKtlzZroyMF9Zlak\nkk1Pw4DnImJmdvvddcCoEvsXd9C1tazlp1qepdta05SZtVMlh9MP5JNttLNovE/6EyT1JbX9HtvW\nspafrB28KqaiiIhmbwk1s+VXyRpFW77d7UsaMbqgHWXNzKyCKlmjmE3Rfe3Z61kt7HsIRfeFl1tW\nkhOKmVk7RETZ/XqVrFFMIk11MCi7r/1g0u19nyDp06SRpmPbWhZqe66qM888M/cYHH/+cXTH+Gs5\n9q4Qf1tVrEYREUskHU+637oHaW6WqZJGZ9svy3bdHxgfEe+3VrZSsZqZWcsqOjd8RNxOmtq4eN1l\nTZavJk1D3WpZMzPrfB6ZnaO6urq8Q1gujj9ftRx/LccOtR9/W1V0ZHalSYpajt/MLA+SiCrpzDYz\nsy7AicLMzEpyojAzs5KcKMzMrCQnCjMzK8mJwszMSnKiMDOzkpwozMysJCcKMzMryYnCzMxKcqIw\nM7OSnCjMzKwkJwozMyup5hPFu+/mHYGZWddW84niscfyjsDMrGur+UQxcWLeEZiZdW01nygeeijv\nCMzMuraaf8LdgAHB3Lmgsp/VZGbWvXW7J9xJ8NJLeUdhZtZ11Xyi2H57Nz+ZmVVSzSeK7bZzh7aZ\nWSVVNFFIGilpmqQZkk5tYZ86SU9IekZSQ9H6mZKeyrY90tI5XKMwM6usinVmS+oBTAd2BWYDjwKH\nRsTUon1WBf4N7BERsyStGRFvZtteBIZGxPwS54h33w3694d582CllSryq5iZdSnV1Jk9DHguImZG\nxGLgOmBUk30OA26MiFkAhSRRpNVfpG9f2HRTePzxjgjZzMyaqmSiGAi8UrQ8K1tXbCNgdUn3Spok\n6VtF2wK4O1t/dKkTuZ/CzKxyelbw2OW0afUCtgZGAH2BiZIeiogZwI4RMUdSf+AuSdMi4v6mB6iv\nr2fOHLjnHhg6tI66urqO/B3MzGpeQ0MDDQ0N7S5fyT6K7YD6iBiZLZ8OLI2IMUX7nAr0iYj6bPly\n4I6I+HuTY50JLIqI85usj4jg+eehrg5eKa6/mJlZs6qpj2ISsJGkQZJ6AwcDtzTZZyywo6QekvoC\n2wJTJPWV9CkASSsDuwNPt3SiDTaADz6AWbMq8nuYmXVrFUsUEbEEOB4YD0wBro+IqZJGSxqd7TMN\nuAN4CngY+ENETAHWAu6XNDlbf2tE3NnSuaTUT+HbZM3MOl7Nz/VUiP/cc+HNN+H881spZGbWzVVT\n01Onco3CzKwyukyNYtEiWGstmD8fevfOOTAzsyrWbWsU/frBhhvC5Ml5R2Jm1rV0mUQBad6n++7L\nOwozs66lyzQ9QeqjOPhgmDHDzU9mZi3ptk1PkDq0Bw+GK6/MOxIzs66jS9UowLUKM7PWdOsaBbhW\nYWbW0bpcjQJcqzAzK6Xb1yjAtQozs47UJWsU4FqFmVlLXKPIuFZhZtYxumyNAlyrMDNrjmsURbbb\nDjbfHC68MO9IzMxqV5euUQDMnAnbbAMPPACbbNI5cZmZVTPXKJoYNAj++7/hu9+FpUvzjsbMrPZ0\n+UQBcNxxEAEXX5x3JGZmtafLNz0VTJ8OO+4Ijz6aahlmZt2Vm55asMkmcPLJcMwxqXZhZmbl6TaJ\nAuCUU2DePLjqqrwjMTOrHd2m6angySdht93Sv2uvXaHAzMyqmJueWrHlljB6NBx7rJugzMzK0e0S\nBcAZZ8Czz8INN+QdiZlZ9atoopA0UtI0STMkndrCPnWSnpD0jKSGtpRtrxVXhCuugJNOgjff7Mgj\nm5l1PRXro5DUA5gO7ArMBh4FDo2IqUX7rAr8G9gjImZJWjMi3iynbFa+zX0UxX74Q3j9dfjzn9t9\nCDOzmlNNfRTDgOciYmZELAauA0Y12ecw4MaImAUQEW+2oexy+8UvYOJEuO22jj6ymVnXUclEMRB4\npWh5Vrau2EbA6pLulTRJ0rfaUHa59e0Ll18O3/sevP12Rx/dzKxr6FnBY5fTJtQL2BoYAfQFJkp6\nqMyyANTX13/8uq6ujrq6ujYFucsusNde8IMfwB//CCq7MmZmVhsaGhpoaGhod/lK9lFsB9RHxMhs\n+XRgaUSMKdrnVKBPRNRny5cDd5BqECXLZuuXq4+i4J13YNdd05Tkl10GPSuZPs3MclZNfRSTgI0k\nDZLUGzgYuKXJPmOBHSX1kNQX2BaYUmbZDrPKKnDPPTBnDnz1q/Dee5U6k5lZ7alYooiIJcDxwHjS\nh//1ETFV0mhJo7N9ppFqEE8BDwN/iIgpLZWtVKwA/frBLbfA6qvDiBFpqg8zM+uGU3i0JgJOPx1u\nvhnGj4f11+/Qw5uZ5a6tTU9ujW9Cgl/+Ms0DteOOMG5c6rswM+uunChacNJJMGBAaoa64QbYeee8\nIzIzy0e3nOupXIccAtdeCwceCDfemHc0Zmb5cI2iFSNGpL6KffaB115Ls86amXUn7swu0wsvwMiR\ncNBBcPbZHphnZrWrrZ3ZThRt8MYbsPfeHphnZrWtmgbcdTn9+3tgnpl1P04UbeSBeWbW3ThRtEOv\nXnDVVemW2eHD4aWX8o7IzKxy3MreTh6YZ2bdhRPFcvLAPDPr6tz01AEOOQSuu84D88ysa3KNooN8\n5SuNA/PmzoXjjvNYCzPrGjyOooO98ALsuy9suSVccgl8+tN5R2Rm9kkVG0eRPVjIWrHBBvDoo7Dq\nqrDVVvDvf+cdkZnZ8mk1UUjaQdIUYHq2vJWkiyseWQ3r2xcuvhh+8xs44ACor4clS/KOysysfcqp\nUVwEjATeBIiIyYDv7SnDfvvB44+nWsXOO8PMmXlHZGbWdmU1PUXEy01W+ftxmT772dTJ/dWvwrBh\nadpyM7NaUk6ieFnScABJvSWdAlT0+dVdzQorwCmnwB13pGaoI46AhQvzjsrMrDzlJIrvA8cBA4HZ\nwJBs2dpo661TU9SKK6aO7ocfzjsiM7PW+fbYnNx0E3z/+3DiiXDaadCjR94RmVl3UfHnUUg6jtSx\nfWNE5NpXUcuJAmDWLPjWt2DpUrjmGlhvvbwjMrPuoDOeRyHgy8A/2lHWiqyzDtx9N+y5J3zpS2mu\nKDOzalPRpidJI0m31/YALo+IMU221wFjgReyVTdFxNnZtpnAO8BHwOKIGNbM8Wu6RlHs0UfhsMNg\np53S+It+/fKOyMy6qqp5wp2kHsDvSGMwBgOHStq0mV3vi4gh2c/ZResDqMvWL5MkuppttoEnnoCI\n1Ok9aVLeEZmZJZWcPXYY8FxEzIyIxcB1wKhm9iuV1brVtHr9+sEf/wi/+AXstReMGZP6L8zM8lTJ\nRDEQeKVoeVa2rlgAO0h6UtI4SYObbLtb0iRJR1cwzqpz0EGpKerWW2G33WD27LwjMrPurNVpxiX1\nJo2l2Clb1QBcmtUSSimn8+BxYN2IeE/SnsDNwMbZtuERMVdSf+AuSdMi4v6mB6ivr//4dV1dHXV1\ndWWctvqtvz40NMC556amqEsvTaO7zczaqqGhgYaGhnaXb7UzW9IVpIRyNakp6FvAkoj4bivltgPq\nI2Jktnw6sLRph3aTMi8CQyNifpP1ZwKLIuL8Juu7TGd2KRMnwje/CbvuChdcACuvnHdEZlbLKtGZ\nvU1EHBER90TEhIg4ktT/0JpJwEaSBmW1koOBW5oEO0BKj/eRNIyUuOZL6ivpU9n6lYHdgafL/aW6\nmu23Tx3d778PQ4em12ZmnaWcRLFE0oaFBUmfp4xJAbPBeMcD44EpwPURMVXSaEmjs92+DjwtaTLp\nNtpDsvVrAfdn6x8Gbo2IO8v9pbqiVVaBP/0JfvYz2H13OP98d3SbWecop+lpBHAl8GK2ahBwVETc\nU9nQWtddmp6aevFF+MY30l1SV18Na6+dd0RmVksqMoWHpJWATUgd1NMj4oP2h9hxumuigPQgpLPP\nhssugz/8IT1+1cysHB2WKCSNiIgJkg4gJYjCQQMgIm5a3mCXV3dOFAUPPJA6uvfeG379a+jTJ++I\nzKzadWRnduF22H2zn32yn8KyVYEdd4TJk2H+/DRf1FNP5R2RmXU15fRRbBARL7S2Lg+uUTSKSDPQ\nnnxy6vA+4QRQtxrXbmbl6vA+CkmPR8TWTdY9FhFD2xljh3GiWNZzz6XJBddcE668EgYMyDsiM6s2\nHdb0JGnTrH9iVUlfk3RA9u+RwEodEKtVwIYbwr//DUOGpKfojRuXd0RmVutKdWaPAr5K6o8oHii3\nELguIh6sfHiluUZRWkMDHH54mvpjzBhYyendzKhM09MO1ZAUmuNE0br582H0aJg+Ha69FjbbLO+I\nzCxvlUgUfYDvkJ4p0YfG22O/vRxxdggnivJEpOnLTzsNjj0WTjkFPvWpvKMys7xUYq6na4ABpAcQ\nNQDrAovaFZ3lQoLvfCdNXf7CC7DRRvC738GHH+YdmZnVgnJqFJMjYitJT0XEFpJ6AQ9ExLadE2LJ\n2FyjaIfJk+HUU+H55+Gcc+DAA30rrVl3UokaReF759uSNgdWBfq3JzirDlttBePHp2dcjBkDw4bB\nvffmHZWZVatyEsXvJa0OnEG6+2kK8KuKRmWdYtddU3PUD3+Ymqb23NMju81sWSUThaQVgIURMT8i\n7ouIz0VE/4i4tJPiswpbYQU49FCYNi0lit12gyOOgJdfzjsyM6sWJRNFRCwFftxJsViOeveGE0+E\nGTNgvfXSgL1TTkm315pZ91ZO09Ndkk6RtK6k1Qs/FY/McrHKKmn68meegYULYZNN4Fe/Sk/XM7Pu\nqZy7nmaSjZ0oEhGxQaWCKpfveqq8adPgJz9JfRk//3ka6d2jR95RmdnyqMiDi6qVE0XnefBB+PGP\nYcEC+OUv0/MvfEutWW1yorCKiYB//jON8O7fPzVJbZv7aBoza6tKjKMwA1INYr/90i20hx8OBxwA\nX/86PPts3pGZWSU5UVib9eyZxl08+2x6qt4OO6Q5pF59Ne/IzKwSSk0zPpTGZ2Uvs1NEPF7Z0Frn\npqfqMG8e/M//wNVXw/HHe9JBs2rXYX0UkhpICaIPMBQojNndApgUEdsvX6jLz4miusycmR7Detdd\ncMYZcMwxaXyGmVWXDuujiIi6iNgFmANsHRFDs8efDsnWlRPMSEnTJM2QdGoz2+skvS3pieznjHLL\nWvUZNCg9t/uOO1Kn9+DB8Le/pU5wM6td5YyjmBIRg1tb10y5HsB0YFdgNvAocGhETC3apw74YUTs\n19ay2X6uUVSxu+9Os9SusEK6Q2qXXfKOyMygMnc9PSXp8uzb/y6S/gA8WUa5YcBzETEzIhYD1wGj\nmot5OcpaFWs66eBee3nSQbNaVE6iOIo0Y+xJwInZ66PKKDcQeKVoeVa2rlgAO0h6UtI4SYPbUNZq\nQPGkgyNHetJBs1rUs7UdIuJ94ILspy3KaRN6HFg3It6TtCdwM7BxW05SX1//8eu6ujrq6uraUtw6\nSWHSwSOPhPPOS5MOHnVUmh5kdc8cZlZRDQ0NNDQ0tLt8qbueboiIAyU93czmiIgtSh5Y2g6oj4iR\n2fLpwNKIGFOizIukO6w2Lqes+yhq19y5cNZZcOON8KMfwQknQJ8+eUdl1j105O2xn42IOZIGNbc9\nIma2EkhPUof0CNJdUo+wbGf2AOD1iAhJw4C/RcSgcspm5Z0oapwnHTTrfB15e+yc7N+ZwPvA5sAX\ngfdaSxJZuSXA8cB4Ur/G9RExVdJoSaOz3b4OPC1pMnARcEipsuX+UlY7vvAFuOkmuP56uOKK9JjW\n227zLbVm1aSc22MPAs4D7stW7QT8KCJuqHBsrXKNomvxpINmnaPDZ4+V9BSwa0S8ni33Bya01kfR\nGZwouqYlS9J0IGeeCdttB+ecAxu36RYHMyulEuMoBLxRtDyP5sc+mHUITzpoVl3KSRR3AOMlHSnp\nKGAccHtlwzKDvn1TM9T06bDSSrDZZqmWsXBh3pGZdS9lPbhI0gHAjqSxEfdHxD8qHVg53PTUvRQm\nHbz77jTp4NFHe9JBs/aoRB/FycB1ETF7eYPraE4U3dPkyamm8dxzqf/iwAP9WFaztqhEoqgHDgTe\nIs25dENEvLY8QXYUJ4rubcKE9BzvHj1gzBhPOmhWroo9M1vSlsBBpLEPsyJiRPtC7DhOFLZ0aRqD\n8dOfpjEZv/wlbJH7/Xhm1a2Sz8x+HXiVdNdT/7YGZlYJnnTQrPJaTRSSjs2edjcBWBP4bjWMoTAr\nVph0cMYMWG+9NOngj34E8+fnHZlZ7SunRrEu8IOIGBwRZ0bElEoHZdZeq6wCZ58NzzyTbqPdZJM0\nwvv99/OOzKx2ld1HUY3cR2GtKUw6OGlSmq3Wkw6aVbAzuxo5UVi5Hnww3SH19tupw3uvvXxLrXVf\nThRmLfCkg2ZJJe96MqtpEuy3X3pu9+GHwwEHpMF6zz6bd2Rm1c2Jwrqd4kkHhw5tnHTwtaoYRmpW\nfZworNtqOung4MGedNCsOU4U1u2tsQZccAE89hi88EJ69sX/+3/w4Yd5R2ZWHZwozDKDBsE118Dt\nt6dO78GD0wOUFizIOzKzfPmuJ7MWTJgAF10E990Hw4bBqFHpZ7318o7MbPn49lizDvbuu3DnnTB2\nLNx2G6yzTmPS2Gorj8ew2uNEYVZBS5akwXtjx6afxYvTLbejRsHOO0OvXnlHaNY6JwqzThIBU6Y0\nJo0ZM9IMtqNGwZ57pnmnzKqRE4VZTubMSZ3gt9wC998P22+fksa++8K66+YdnVmjqkoUkkYCFwE9\ngMsjYkwL+20DTAQOjogbs3UzgXeAj4DFETGsmXJOFFaVFi2C8eMb+zUGDWrs19hiC/drWL6qJlFI\n6gFMB3YFZgOPAodGxNRm9rsLeA+4sihRvAgMjYgWnyjgRGG1YMkSeOCBxiaqiMZ+jS9/2f0a1vmq\naa6nYcBzETEzIhaTnrc9qpn9TgD+DrzRzDZ/77Ka17Mn1NXBhRfC88+npqn+/eHUU2GtteCb34Qb\nbvCIcKtelUwUA4FXipZnZes+JmkgKXlckq0qrh4EcLekSZKOrmCcZp1Ggs03hzPOgEcfTRMUDh8O\nV1wBAwemTvBLL4XZs/OO1KxRzwoeu5w2oYuA0yIiJIlP1iCGR8RcSf2BuyRNi4j7mx6gvr7+49d1\ndXXU1dUtX9RmnWjgQPj+99PPO+809mv85Cfw+c839mt88Yvu17D2a2hooKGhod3lK9lHsR1QHxEj\ns+XTgaXFHdqSXqAxOaxJ6qc4OiJuaXKsM4FFEXF+k/Xuo7AuafHidOdUoV9jhRUak8aOO6bmLLP2\nqqbO7J6kzuwRwBzgEZrpzC7a/0rgnxFxk6S+QI+IWChpZeBO4KyIuLNJGScK6/IiUhNVIWm89FJ6\nQt+oUbDHHtCvX94RWq2pmkSRBbMnjbfHXhER50oaDRARlzXZtzhRbADclG3qCfwlIs5t5vhOFNbt\nvPJK6hAfOxYeeijdOVUYr7H22nlHZ7WgqhJFpTlRWHf39ttpttuxY+GOO9IU6YUmqsGD3a9hzXOi\nMOumPvwQ/vWvxiaq3r0bk8bw4dCjR94RWrVwojAzImDy5MakMWsW7L13Shq77w4rr5x3hJYnJwoz\nW8ZLLzX2azzySJrpttCvMWBA3tFZZ3OiMLOS3nqrsV9j/PjUl1FoovrCF/KOzjqDE4WZle2DD6Ch\nISWNW25JTVKFeai23979Gl2VE4WZtUsEPP54Y7/G3Lmwzz4paey2G/Ttm3eE1lGcKMysQ7z4YmO/\nxqRJsMsuKWnssw985jN5R2fLw4nCzDrc/PkwblxKGnfdleaeKvRrbLxx3tFZWzlRmFlFffAB3HNP\nY7/Gpz/dmDS23TbNS2XVzYnCzDrN0qWpWarQr/Hmm439GrvuCn365B2hNceJwsxyU3gw09ix8MQT\n8JWvNPZrrLlm3tFZgROFmVWFefPS88LHjoW774Ytt2xsotpww7yj696cKMys6vzf/8GECSlp/POf\nsPrqjUljm23cr9HZnCjMrKotXZqmESn0ayxYkKYS2W8/GDECVlop7wi7PicKM6spM2Y0Jo2nnkqd\n4KNGpUkM11gj7+i6JicKM6tZb7wBt96aOsQnTICtt25sotpgg7yj6zqcKMysS3j//dQJXujX+Mxn\nGpPG0KHr5CsFAAAMbElEQVTu11geThRm1uV89BE8/HBjE9XChalPY7/90i24K66Yd4S1xYnCzLq8\n6dMbk8Z//pMmLSz0a6y2Wt7RVT8nCjPrVl57LfVrjB2bpkz/0pcam6gGDco7uurkRGFm3da77zb2\na9x6K6y9dmPS2HprUNkfjV2bE4WZGalfY+LExiaq999vfChTXR307p13hPlxojAzayICpk1rTBrT\npsEee6SkseeesOqqeUfYudqaKCp6g5mkkZKmSZoh6dQS+20jaYmkA9pa1sysNRJsuimcdlqqZUyd\nmkaB/+UvsN56aZDf//4vvPxy3pFWp4rVKCT1AKYDuwKzgUeBQyNiajP73QW8B1wZETe2oaxrFGa2\nXBYtgjvvTIP8br0V1l23sV9jq626Zr9GNdUohgHPRcTMiFgMXAeMama/E4C/A2+0o6yZ2XLp1w++\n9jW46ip49VX4zW/SOI0DD0x3TZ1wQuogX7w470jzU8lEMRB4pWh5VrbuY5IGkhLAJdmqQvWg1bJm\nZh2tZ0/YaSc4//w0B9W4cenOqZ/+FAYMgMMOg+uvh3feyTvSztWzgscup03oIuC0iAhJAgpVobLb\nk+rr6z9+XVdXR11dXRtCNDNrngSbbZZ+fvITmDMnTSVy9dVw9NGw/faNo8PXXTfvaEtraGigoaGh\n3eUr2UexHVAfESOz5dOBpRExpmifF2hMDmuS+imOBl5vrWy23n0UZtbpFi6E8ePTHVTjxqUmqkK/\nxhZbVH+/RtXcHiupJ6lDegQwB3iEZjqki/a/EvhnRNxUblknCjPL2+LF8MADjY+AjWgcr/HlL0Ov\nXnlHuKyq6cyOiCXA8cB4YApwfURMlTRa0uj2lK1UrGZm7dWrF+yyC1x4YeMzw/v3h1NPhbXWgm9+\nE264IdVCapUH3JmZVcisWalfY+xYePBBGD481TT23RcG5nh7TtU0PXUGJwozqxXvvAN33JGSxu23\nw+c/n5LG/vvDF7/YubE4UZiZVbnFi+Ff/0pJ48034a9/7dzzO1GYmVlJVdOZbWZmXYMThZmZleRE\nYWZmJTlRmJlZSU4UZmZWkhOFmZmV5ERhZmYlOVGYmVlJThRmZlaSE4WZmZXkRGFmZiU5UZiZWUlO\nFGZmVpIThZmZleREYWZmJTlRmJlZSU4UZmZWkhOFmZmV5ERhZmYlVTRRSBopaZqkGZJObWb7KElP\nSnpC0mOSvlK0baakp7Jtj1QyTjMza1nFEoWkHsDvgJHAYOBQSZs22e3uiNgyIoYARwK/L9oWQF1E\nDImIYZWKM08NDQ15h7BcHH++ajn+Wo4daj/+tqpkjWIY8FxEzIyIxcB1wKjiHSLi3aLFfsCbTY6h\nCsaXu1r/Y3P8+arl+Gs5dqj9+NuqkoliIPBK0fKsbN0nSNpf0lTgduDEok0B3C1pkqSjKxinmZmV\n0LOCx46ydoq4GbhZ0peBa4BNsk3DI2KupP7AXZKmRcT9FYrVzMxaoIiyPs/bfmBpO6A+IkZmy6cD\nSyNiTIkyzwPDImJek/VnAosi4vwm6ysTvJlZFxcRZTftV7JGMQnYSNIgYA5wMHBo8Q6SPg+8EBEh\naWuAiJgnqS/QIyIWSloZ2B04q+kJ2vKLmplZ+1QsUUTEEknHA+OBHsAVETFV0uhs+2XAAcDhkhYD\ni4BDsuJrATdJKsT4l4i4s1KxmplZyyrW9GRmZl1DzY7Mbm0wX7WrpQGFkv4o6TVJTxetW13SXZKe\nlXSnpFXzjLGUFuKvlzQru/5PSBqZZ4ylSFpX0r2S/iPpGUknZutr4j0oEX9NvAeSVpL0sKTJkqZI\nOjdbX/XXv0Tsbbr2NVmjyAbzTQd2BWYDjwKHRsTUXANrA0kvAkMjYn7esbQmuyNtEfCniNg8W/cr\n4M2I+FWWqFeLiNPyjLMlLcR/JrAwIi7INbgySFoLWCsiJkvqBzwG7A8cRQ28ByXiP4jaeQ/6RsR7\nknoCDwCnAPtRG9e/udhH0IZrX6s1ilYH89WImuiMz25LfqvJ6v2Aq7PXV5P+41elFuKH2rn+r0bE\n5Oz1ImAqaUxSTbwHJeKH2nkP3ste9ib1ub5F7Vz/5mKHNlz7Wk0UZQ3mq3K1PqBwQES8lr1+DRiQ\nZzDtdEI219gV1dhs0JzsLsIhwMPU4HtQFP9D2aqaeA8krSBpMuk63xsR/6FGrn8LsUMbrn2tJora\nay9b1vBsjqs9geOy5pGaFKn9stbek0uAzwFbAXOB80vvnr+s2eZG4KSIWFi8rRbegyz+v5PiX0QN\nvQcRsTQitgLWAXaStEuT7VV7/ZuJvY42XvtaTRSzgXWLltcl1SpqRkTMzf59A/gHqTmtlryWtT0j\naW3g9ZzjaZOIeD0ywOVU+fWX1IuUJK7JZjOAGnoPiuL/cyH+WnsPACLibeA2YCg1dP3hE7F/qa3X\nvlYTxceD+ST1Jg3muyXnmMomqa+kT2WvCwMKny5dqurcAhyRvT4CuLnEvlUn+49d8FWq+PorDSi6\nApgSERcVbaqJ96Cl+GvlPZC0ZqFpRlIfYDfgCWrg+rcUeyHBZVq99jV51xOApD2Bi2gczHduziGV\nTdLnSLUIaBxQWLXxS7oW2BlYk9TO+d/AWOBvwHrATOCgiFiQV4ylNBP/mUAdqdodwIvA6KL25qoi\naUfgX8BTNDZvnA48Qg28By3E/xPSTA1V/x5I2pzUWb1C9nNNRJwnaXWq/PqXiP1PtOHa12yiMDOz\nzlGrTU9mZtZJnCjMzKwkJwozMyvJicLMzEpyojAzs5KcKMzMrCQnCqtqkj7KpkF+WtLfskFDVU/S\nZyTdlr3eMhv3s7zHvFTS9pK+kE0b/ZikDSQd2sy+a0t6LtunX9H6PpJukzQ1m/L73KJtJ0r61vLG\naV2PE4VVu/ciYkg2PfiHwPeKN2ZTJ3eKNp7reOCq7PUQYK8OCGFb0mSA+wM3RMRQ0mCvw4p3ykb9\n/wP4EWmw1d+bxP6riNg0i2t40bMIrgRO6IA4rYtxorBacj+woaSdJd0vaSzwTDY75nmSHslmwzwG\nPv5W/a+iGsnwbN+rsuWnJJ2U7dsgaWj2es3seSFIOlLSLZImAHdl06/8UelhMI9L2q+FWL8O3JZN\nMfNz4OAsjgOVHnhzcxbrxGz0bOFhMn9UesjP85I+/tCWtCnwLLAHcBLwfUn3AOcCX86OfVKWEP4K\n/DIi/hERvyVNNfEHgIh4PyLuy14vBh4nm3k5m2hwnqTNOuLNsq6j076NmS2P7ANwL2BctmoIsFlE\nvJQlhgURMUzSisADku4EvgbcERHnZPMNrZyV+2zRA4xWyY5XavbPIcDmEbFA0jnAhIj4djaHzsOS\n7i6a87/woJ6PCusk/Yz0kKrCk93+F3gsIvZXmoX0T9k5ADYGdgFWAaZLujgiPiLNMnx7RNwu6VKy\nh85I2hk4JSL2LYq3+DURcXEL13TVbN/i+aMeAXYC/tNcGeueXKOwatdH0hOkpxjOBP5IeuDKIxHx\nUrbP7sDh2X4PAasDG2ZljlJ6mt0W2dTWzwMbSPqtpD2AT0zX3YK7iubw2R04LTvXvcCKfHImY4D1\nSVM3F4hPPiRmOHANQETcC6yRNRcFcFtELI6IeaTZSAvPONgduKPJMYv/bZMs8V4L/CYiZhZtmgMM\nas8xretyjcKq3fvZczs+lioHvNtkv+Mj4q6mhZWe87EPcJWkCyLiGklbkppwvkd6HOd3gCU0fnFa\nqclhmp7raxExo5W4iz/Am6uptPQB/2HR64+AnpL6AqtGxKutnLMtfg9Mz5qmmsblCeDsE1yjsK5g\nPHBsocNW0sZZX8J6wBsRcTlpzv2tJa0B9IiIm4Cf0djkMxP4Uvb6662c68TCgqQhzezzElA8jfNC\n4FNFy/cD38jK12UxLqT55CFSU9Q9LcTT9NitkvQLUtPWfzWzeW3StTD7mBOFVbvmvt027U+4HJgC\nPC7padLTu3qSphKfLOlxUs3hIlLH7b1Z09E1pOm6AX5N6iB+HFij6PhNz3U20CvrCH8GOGuZ4NI3\n/55KzxqB1EQ1uNCZDdQDQyU9CZxD4zMNmp6r8HpPPtnsVLztSeCj7HbZk5rG0pSkdUhTfG9Kul5P\nSPpO0S7DSInM7GOeZtysAiTVA1Mj4voOONZjwLCsU7tiso79CRGxTSXPY7XHicKsAiT1B66OiI4Y\nP9EpJJ0IzI+IP+cdi1UXJwozMyvJfRRmZlaSE4WZmZXkRGFmZiU5UZiZWUlOFGZmVpIThZmZlfT/\nAaONSfy0Nv4aAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x5b0e130>"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg321"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#find the value compression index\n",
+ "import math\n",
+ "%matplotlib inline\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
+ "#calculate Compression index\n",
+ "e11=0.9\n",
+ "e21=0.8\n",
+ "T2=4.\n",
+ "T1=2.\n",
+ "Cc= (e11-e21)/math.log10(T2/T1) ## from loading branch\n",
+ "e1=0.67\n",
+ "e2=0.655\n",
+ "Cs=(e1-e2)/math.log10(T2/T1)\n",
+ "k=Cs/Cc\n",
+ "T3=12.\n",
+ "e3=e11-Cc*math.log10(T3/T1)\n",
+ "print'%s %.2f %s'%('Compression index Cc= ',Cc,'')\n",
+ "print'%s %.2f %s'%(' Cs/Cc = ',k,'')\n",
+ "print'%s %.2f %s'%(' e3 = ',e3,'')\n",
+ "#calculate the value of Cv\n",
+ "%matplotlib inline\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
+ "import math\n",
+ "from math import log\n",
+ "import numpy\n",
+ "from math import tan\n",
+ "import matplotlib\n",
+ "from matplotlib import pyplot\n",
+ "#given\n",
+ "p=numpy.array([.25,.5,1.,2.,4.,8.,16.,8.,4.,2.])\n",
+ "e=numpy.array([1.03,1.02,0.98,0.91,0.79,0.71,0.62,0.635,0.655,0.67])\n",
+ "e1=.9\n",
+ "e2=.8\n",
+ "sig1=4.\n",
+ "sig2=2.\n",
+ "#calculations\n",
+ "Cc=(e1-e2)/log(sig1/sig2)\n",
+ "\n",
+ "#results\n",
+ "print 'The value of Cv (cm^2/sec) = ',Cc\n",
+ "pyplot.plot(p,e)\n",
+ "pyplot.xlabel('Pressure (ton/ft^2)')\n",
+ "pyplot.ylabel('void ratio ,e')\n",
+ "pyplot.title('Graph of pressure vs void ratio')\n",
+ "pyplot.show()\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Compression index Cc= 0.33 \n",
+ " Cs/Cc = 0.15 \n",
+ " e3 = 0.64 \n",
+ "The value of Cv (cm^2/sec) = 0.144269504089\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEZCAYAAACJjGL9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcneP9//HXWxKRxdoQRAglLSkqqVhaTEUJraUbtdP+\nVKuqlCJUjSrhq9Witq99j5ZSbSmRGuJriSUhmsQekiDWEIQs8/n9cd0jJ5NZzkzOmfucmffz8ZjH\nnHv/zDlzzudc13Vf16WIwMzMrDnL5R2AmZlVNicKMzNrkROFmZm1yInCzMxa5ERhZmYtcqIwM7MW\nOVFY2UiqlXRdic7VX9IDkj6QdE4pzmnFk3SnpAOb2TZIUr2ksn2eSLpY0q/LdX5rWfe8A7COI+kH\nwDHAEOAj4GXgmoi4uEyXLGUnnR8Db0bESiU8pxUpInbrqGtJOgT4UURsV3D9n3bU9W1pLlF0EZKO\nBf4EnA30j4j+wE+Ar0pavpljlvX/Q8t4fKH1gKmlOJGk3L8gSeqWdwx5qITn3tohIvzTyX+AlYEP\ngW+3st/VwMXAndn+OwLfBCYC7wOvAqcW7D8IqAcOA2YBrwHHFmw/FbgZuAb4AHgGGNbC9bcFHgPm\nABOAbQrimg98CswFdmwm9kuAe7Jr1QHrFmyvB44AngdezNZ9C5gEvAf8H7Bpwf4nADOzc01ruCYw\nHHg8ez7eAP6Qra8BZjSKaXrBcbXALcB12bE/zF6XK7LnbSZwOrBcE3/b2sDHwKoF67YA3gK6ARsC\n92fP21vAmGae37uAnzVa9xSwV0vPf7atjvQtn+yav8+u9SLws+z5XSr2gufheOBpYF52/InAC9nz\n+9+CGDbO9lmYvdbvFry+pxec87DstXwH+DuwVt7vs878k3sA/umAFxlGAguaeyMX7Hd19iHR8AHd\nE9gBGJItb5p9OO6ZLQ/KPiBuAHoBXwLeBEZk22uzN/1IUuniTODhZq69GukDe39SSfcHwLsNH47A\nVcBvW4n9A+BrwPKk0tP4gu31wN3AKtnftQUwG9gyi+0gUlVcD+ALpKS4ZnbsusAG2eOHgf2zx72B\n4dnjGpZOFC+zZKKYD+yRLa8A3EZKzL2A1YFHgR838/eNA/5fwfI5wEXZ45uAUdnj5YFtmznHgcCD\nBcubZM95jyKe//uAH2aPf0Iq3Q0AVs22LaLlRPFktn/PbN33Cp7fvUlfTPpnywcXvnaNX3/SF5i3\ngC9nf+/5wP15v88684+rnrqGfsDbEVHfsELSQ5Lek/SxpK8V7Ht7RDwMEBGfRsT9EfHfbHkyMIaU\nPAqdFhHzIuIZ0ht634Jt4yPi35He4dcDmzcT4zeBZyPihoioj4gxpG/yexTs01pV1j8j4sGImA+c\nDGwjaUDB9tERMSciPiW1eVwaEY9Fci2pxLIN6dtsT2CIpB4R8WpEvJSdYz6wkaR+EfFxRExoJaZC\nD0XEHdnjlYFdgWOy5+4tUnL7QTPH3kj2vEoSsE+2riGmQZIGRMT8iHiomXPcDnxZ0sBseX/g1ohY\nQHHPf4O9gT9GxKyIeI/0BaCl1yaA87P9PwWIiFsi4o3s8V9IpYOtsv1be533B66IiEnZaz2K9Fqv\n28px1k5OFF3DO0C/wjaHiNg2IlbNtjWsD2BG4YGStpJ0n6Q3Jc0BDgc+1+j8hce8SqoqaTC74PHH\nwArNtH2snR1b6JVG52pJkKpv0kLER6RvxIXHF8a5HnBslizfk/QesA6pCuNF4GhSKWC2pJskrZUd\n9yNgMDBV0gRJ3ywyPgrjy67fA3i94PqXkEoWTfkb6cNwTWB7oD4iHsy2HU/6cJ0g6RlJhzZ1goiY\nC/yLxYn8B6TSILTt+V+LpV/z1jT+vzpI0sSCv/1LLP1/1Zy1stiAz17rd0glFisDJ4qu4WHSt+W9\n2nHsjaRvoutExCqkD7PG/zfrNno8qx3XmUX68Cy0XhvOJWDgZwtSX1J1ymsF+xTehfUqcEZErFrw\n0zcibgaIiJsi3XWzXnbc2dn6FyJiv4hYPVt3i6RepLvIehdcvxtLf+gXXn8G6TX5XMH1V46ITZv6\n47Jv7veQShL7kaqbGrbNjogfR8QAUiK/SNIGzTxPNwH7StoGWCEi7svWt+X5f52lX/PWfPa3S1oP\n+F9S28Zq2ReWZ1hckmjtbrnXSNWeDefrQ0oy7fm/syI4UXQBETEHOI30AfJdSStKWk7Sl4E+Bbs2\nVeTvC7wXEfMlDSd9SDV+I/9aUi9JQ4BDSA3YbXUnMFjSvpK6S9oH+CLwzxZia2w3SQ13cZ1Oag9p\n7sPjMuAnkoYr6SPpm5L6ShosaUdJPUkf5p+Q6uCRdICkhgTwPum5qAeeI5WWdpPUA/g1qfqqSRHx\nOumD/9yC1+PzkrZv4e+7kVR//10WVzsh6fuS1skW5xTE1JQ7SQngNFI1YuH6lp7/Qn8BjpI0QNKq\npIbptuiTxfg2sFxWAvpSwfbZwDrZ89hALP4fuAk4VNLm2Wt0JvBIRBRTsrF2cKLoIiLiHOCXpGqK\nN7KfS7Llhxt2Y+kkcATwW0kfAKfQdBK4n3QHy73AORFxbwvna/LbYkS8S7oL6VjSB8hxwLey9c2d\nq/F5byTdafUOqbH6gOauGxFPkO6c+TOpiup5UoM2pA/40aQG09dJbTyjsm27AM9Imgv8EfhB1pbz\nPum5upxUxfQhS1a3NBX/QaTG2ClZDH8F1mzhb7yDdIfT61l7UYOvAI9kMf0dOCoipjd1gqxO/2/A\nCAqSTRHPf6HLSDcGPEW6A+zWJv62ZkXEFOAPpP+7N0hJ4sGCXcaR7oR6Q9KbDYc1XCMixpH+F28l\nlS7Wp/m2HSsBpTbGMp1cupLUSPZmc0VqSeeTGvU+Bg6JiInZ+umku1gWAQsiYnjZArV2kTQIeAno\nXthQnlMsVwEzI+KUPOMw64zKXaK4inRrZJMk7QZsGBEbke5CKewhHEBNRGzhJGFFKGXnPjMrUNZE\nERHjSfdmN2cPUmcsIuJRYBVJ/Qu2+81f+SplLt3WqqbMrJ3y7k4/gCXrcWdm62aT3vT3SlpEut/9\nshzisxZk9eAVMRRFRDR5S6iZLbu8EwU0X2r4WkS8lt1hMlbStKyEYmZmHSjvRDGLgnvfSR2eZgFE\nxGvZ77ck3UYaY2eJRCHJVQ1mZu0QEUVX7ed9e+wdZLckStoamBMRsyX1lrRitr4PsDMwuakTLMv4\nJR31c+qpp+Yeg+N0nNUao+Ms/U9blbVEIekm0rhA/STNIN3j3gMgIi6NiDuzDkovkHq2NtQzrwn8\nLQ1pQ3fghoi4p5yxmplZ08qaKCJi3yL2ObKJdS+RRoY0M7Oc5V311CXU1NTkHUJRHGdpVUOc1RAj\nOM68lbVndrlJimqO38wsD5KIKmrMNjOzCudEYWZmLep0iWLevLwjMDPrXDpVonj7bfjiF2FCWyan\nNDOzFnWqRNGvH/z5z/DNb8L99+cdjZlZ59CpEgXA7rvDmDHwve/BXXflHY2ZWfXrdIkCYMQIuOMO\nOOQQuOWWvKMxM6tueQ8KWDbbbAN33w277goffQQHH5x3RGZm1anTd7ibNg123BFuvhm2266DAjMz\nq2Bt7XDX6RMFwDXXwGWXwfjxIM+ZZ2ZdnHtmN+GAA+C99+DOO/OOxMys+nSJRNGtG/zud3DyyVBf\nn3c0ZmbVpUskCoC99oKePVNbhZmZFa9LtFE0GDcODj8cpk6FHj3KGJiZWQWrqDYKSVdKmi2pyWlM\ns33Ol/S8pKckbVGwfqSkadm2E0oRz4gRMGgQXHllKc5mZtY1lLvq6SpgZHMbJe0GbBgRGwE/Bi7O\n1ncD/pwduwmwr6SNSxHQmWfC6ad78EAzs2KVNVFExHjgvRZ22QO4Jtv3UWAVSWsCw4EXImJ6RCwA\nxgB7liKm4cPTz5//XIqzmZl1fnk3Zg8AZhQsz8zWrd3M+pL43e/gnHPg/fdLdUYzs86rEobwWKYu\ncLW1tZ89rqmpKWrO2k02gd12g9//PlVDmZl1ZnV1ddTV1bX7+LLf9SRpEPCPiNi0iW2XAHURMSZb\nngbsAKwP1EbEyGz9KKA+Is5udHy758yePh2GDYMpU6B//3adwsysKlXUXU9FuAM4CEDS1sCciJgN\nPA5sJGmQpOWBfbJ9S2bQINh//9S4bWZmzStriULSTaQSQj9gNnAq0AMgIi7N9mm4u+kj4NCIeDJb\nvyvwJ6AbcEVEjG7i/O0uUQDMnp2qoZ58EtZbr92nMTOrKh4UsI1+/WuYNQuuuqpEQZmZVTgnijaa\nMwcGD4a6ulS6MDPr7KqtjSJ3q6wCxx0Hp5ySdyRmZpWpy5coAD7+GDbaCG6/HbbcsgSBmZlVMJco\n2qF371SiOOmkvCMxM6s8ThSZH/0IXn4Z/vOfvCMxM6ssThSZHj3S0B7HHguLFuUdjZlZ5XCiKLDP\nPrDyynDxxXlHYmZWOdyY3ch//ws1NfDMMx7aw8w6J/ejKIHjjoO334arry75qc3McudEUQJz58LG\nG8OYMfC1r5X89GZmufLtsSWw4orwhz/Az34GCxfmHY2ZWb6cKJqx997Qrx9ceGHekZiZ5ctVTy2Y\nOhW22w4mT4a11irbZczMOpTbKErshBPS6LLXX1/Wy5iZdRgnihL78MM0qux118EOO5T1UmZmHcKN\n2SXWty+ce25q2F6wIO9ozMw6XlkThaSRkqZJel7SCU1sX1XSbZKekvSopCEF26ZLelrSREkTyhln\na777XVh7bbjggjyjMDPLR9mqniR1A54FdgJmAY8B+0bE1IJ9zgE+iIjTJX0BuDAidsq2vQwMi4h3\nW7hG2aueGjz3HGy7LTz1FAwY0CGXNDMri0qqehoOvBAR0yNiATAG2LPRPhsD9wFExLPAIEmrF2wv\n+g8pt8GD4fDDU69tM7OupJyJYgAwo2B5Zrau0FPAdwAkDQfWA9bJtgVwr6THJR1WxjiLdtJJ8NBD\nHorczLqW7mU8dzF1QmcB50maCEwGJgINg3x/LSJey0oYYyVNi4jxjU9QW1v72eOamhpqamqWNe5m\n9ekDf/oTHHkkTJoEyy9ftkuZmZVMXV0ddXV17T6+nG0UWwO1ETEyWx4F1EfE2S0c8zKwaUR82Gj9\nqcCHEfGHRus7rI2iQQR885tphNnjj+/QS5uZlUQltVE8DmwkaZCk5YF9gDsKd5C0craNrHrp/oj4\nUFJvSStm6/sAO5NKHLmT4Pzz4eyzYcaM1vc3M6t2ZUsUEbEQOBK4G5gC3BwRUyUdLunwbLdNgMmS\npgG7AL/I1vcHxkuaBDwK/DMi7ilXrG214YapX8Wxx+YdiZlZ+blndjvNmwdDhsAll8DOO+cSgplZ\nu1RS1VOn1qsXnHce/Pzn8OmneUdjZlY+ThTLYPfdU/+Kc8/NOxIzs/Jx1dMyevll2HJLePJJWHfd\nXEMxMyuKq5462Prrw1FHwdFH5x2JmVl5OFGUwPHHpzGg7ror70jMzErPiaIEVlghjSx71FHwySd5\nR2NmVlpOFCWy227wpS/B73+fdyRmZqXlxuwSmj4dhg2Dxx9PbRdmZpXIjdk5GjQIfvlLN2ybWefi\nRFFixx0HU6fCP/+ZdyRmZqXhRFFiPXsubtieNy/vaMzMlp0TRRnssgsMHZpGmDUzq3ZuzC6TGTNg\niy3g0Ufh85/POxozs8XcmF0hBg6EX/0qVUFVaC4zMyuKE0UZHXMMvPgi/P3veUdiZtZ+rnoqs/vv\nh333TUN8rL563tGYmVVY1ZOkkZKmSXpe0glNbF9V0m2SnpL0qKQhxR5bLXbYAQ44AA47zFVQZlad\nypYoJHUD/gyMJE15uq+kjRvtdhLwZERsDhwEnNeGY6vG6aenXttXXJF3JGZmbVfOEsVw4IWImB4R\nC4AxwJ6N9tkYuA8gIp4FBklao8hjq0bPnnDDDXDiifD883lHY2bWNuVMFAOAGQXLM7N1hZ4CvgMg\naTiwHrBOkcdWlSFD4De/SdVQCxbkHY2ZWfG6l/HcxdTInwWcJ2kiMBmYCCwq8lgAamtrP3tcU1ND\nTU1Nm4LsSEceCf/6F5xxBhSEbWZWVnV1ddTV1bX7+LLd9SRpa6A2IkZmy6OA+ohotr+ypJeBTYEv\nFXNsNdz11Nhrr6WOeLffDttsk3c0ZtYVVdJdT48DG0kaJGl5YB/gjsIdJK2cbUPSYcD9EfFhMcdW\nq7XXhosvhgMPhLlz847GzKx1ZUsUEbEQOBK4G5gC3BwRUyUdLunwbLdNgMmSpgG7AL9o6dhyxdrR\nvvMd2H771CHPzKzSucNdTubOhS9/Oc2I9+1v5x2NmXUlba16cqLI0UMPpdLFxImw1lp5R2NmXUUl\ntVFYK7bdFn78Yzj0UPfaNrPK5USRs1NOgXffhQsvzDsSM7OmFV31JKl3RHxc5njapNqrnho891wq\nXTzwAGyySd7RmFlnV/KqJ0nbSpoCPJstf1nSRcsQozUyeDCceSbsvz/Mn593NGZmSyqm6ulPpMH5\n3gaIiEnADuUMqis67LA02dFvfpN3JGZmSyqqjSIiXm20amEZYunSJLj8crj22jSHhZlZpSgmUbwq\n6asAkpaXdBzQaTq/VZI11oDLLoODDoI5c/KOxswsabUxW9LqpHkidgIE3AMcFRHvlD+8lnWWxuzG\njjgCPvgArr8+70jMrDNyh7tO4OOPYehQOPXUNI2qmVkplT1RSPoZqWH71mxMptx01kQB8PjjsNtu\n6fe66+YdjZl1Jh3RM1vAdsBt7TjWivSVr8DRR8PBB0N9fd7RmFlX5qqnCrZoEdTUwJ57wnHH5R2N\nmXUWbqPoZKZPhy23hHvvhc03zzsaM+sMPChgJzNoEJx7buq1PW9e3tGYWVdU1kQhaaSkaZKel3RC\nE9v7Sfq3pEmSnpF0SMG26ZKeljRR0oRyxlnpDjgAhgyBUaPyjsTMuqJi+lEsD/wU2D5bVQdcEhEL\nWjmuG2l8qJ2AWcBjwL6FM9VJqgV6RsQoSf2y/ftHxMJs/uxhEfFuC9fo9FVPDd59N1U9XXEF7Lxz\n3tGYWTUrR9XTxcBQ4ELgImBYtq41w4EXImJ6llTGAHs22ud1YKXs8UrAO41uuS36D+nsVlsNrr4a\nfvhDeCf3ro5m1pV0L2KfLSNis4LlcZKeLuK4AcCMguWZwFaN9rkM+I+k14AVgb0LtgVwr6RFwKUR\ncVkR1+zURoyAffZJkx3dcksaH8rMrNyKKVEslLRhw4Kkz1PcoIDF1AmdBEyKiLWBLwMXSlox2/bV\niNgC2BX4maTtijhfp3fGGfD883DNNXlHYmZdRTElil+RvvW/nC0PAg4t4rhZwMCC5YGkUkWhbYEz\nACLixewaXwAej4jXs/VvSbqNVJU1vvFFamtrP3tcU1NDTU1NEaFVrxVWgBtugB13hO23hw02yDsi\nM6t0dXV11NXVtfv4ovpRSFqB9AEewLMR8WkRx3QnNU6PAF4DJrB0Y/a5wPsRcZqk/sATwGbAJ0C3\niJgrqQ9pIMLTIuKeRtfoMo3Zjf3xj6n66f77oXsx6d7MLFOyDneSRkTEOEnfJSWIhpMGQET8rYhg\ndiVNfNQNuCIiRks6PDv+0uxOp6uAdUnVYKMj4kZJGwAN5+8O3BARo5s4f5dNFPX16e6nmhr49a/z\njsbMqkkpE8VpEXGqpKtpor0hIoqpfiqrrpwoAGbOhGHD4B//gOHD847GzKpFyYfwkLRBRLzU2ro8\ndPVEAfDXv8LJJ8PEidCnT97RmFk1KEeieDIihjZa90REDGtnjCXjRJEcfDD06gWXXJJ3JGZWDdqa\nKJptBpW0MbAJsIqk75DaKILUMW6FZQ3USueCC1Kv7X/8A3bfPe9ozKyzael+mcHA7sDK2e8Gc4HD\nyhmUtc1KK8G118Lee8OkSdC/f94RmVlnUkzV07YR8VAHxdMmrnpa0sknw1NPpZKFe22bWXPK0UbR\nC/gRqRqqF4tvj/3hMsRZEk4US5o/H7bdFv7f/4Of/CTvaMysUpVjUMDrgP7ASNLIsQOBD9sVnZXV\n8svD9dfDKafAs8/mHY2ZdRbFlCgmRcSXJT0dEZtJ6gE8GBGNB/jrcC5RNO3ii9Nw5A8/DD165B2N\nmVWacpQo5me/35e0KbAKsHp7grOO8ZOfpAbt007LOxIz6wyKSRT/K2k14NfAHcAU4H/KGpUtEwmu\nvDKVKh58MO9ozKzatTicnKTlgLnZLHP3A+t3SFS2zPr3h0svhQMPTHdCrbRS68eYmTWlmDaKiuiF\n3RS3UbTu8MPh00/T7HhmZlCeNoqxko6TNFDSag0/yxCjdaBzz4WHHkpjQpmZtUcxJYrpLD16bERE\n7lPmuERRnAkT0tAeTz4JAwbkHY2Z5a3kHe4qmRNF8U4/HR54AO6+G5YrphxpZp1WOaqerBMYNQo+\n+gjOPz/vSMys2pQ1UUgaKWmapOclndDE9n6S/i1pkqRnJB1S7LHWNt27w3XXwRlnwOTJeUdjZtWk\nbFVPkrqR5szeCZgFPMbSc2bXAj0jYlQ2LeqzpOFCorVjs+Nd9dRGV12V5tueMAFW8GDxZl1Syaqe\nJA2TNLTg9xI/RZx7OPBCREyPiAXAGGDPRvu8Tprfguz3OxGxsMhjrR0OOQQ22sjzbJtZ8VrqcPcH\n0jf7XsAw4Ols/WbA48A2rZx7ADCjYHkm0Hh8qMuA/0h6DVgR2LsNx1o7SKkj3uabw667wogReUdk\nZpWu2RJFRNRExNeB14ChETEs63i3RbauNcXUCZ0ETIqItYEvAxdKWrGI42wZ9OuXhvg49FB47728\nozGzStfiEB6ZL0bEZ82fEfFMNk1qa2aRhiRvMJBUMii0LXBGdt4XJb0MfCHbr7VjAaitrf3scU1N\nDTU1NUWEZrvsAt/+dhpAcMwYT3Rk1pnV1dVRV1fX7uOL6XA3hjT/xPWkebP3A/pGxL6tHNed1CA9\nglQCmcDSjdnnAu9HxGmS+gNPkKq2Pmjt2Ox4N2Yvg3nz4CtfSbfOHnBA3tGYWUcp1wx3PwW2y1Y9\nAFwcEZ8UEcyuwJ+AbsAVETFa0uEAEXFpdqfTVcC6pGqw0RFxY3PHNnF+J4plNGkSfOMb8NhjMGhQ\n3tGYWUdwz2xrs3POSfNs33cfdOuWdzRmVm4lSxSS/hoR35fUVPesiIjN2htkqThRlMaiRalU0b17\nmkZ1u+1aP8bMqlcpE8XaEfGapEFNbY+I6e0JsJScKErn00/h2mvh7LNhzTXhpJPS7bNu5DbrfMpS\n9ZQ1NA8n3fI6ISLebH+IpeNEUXoLF8Itt8Do0SlJnHgifP/7rpIy60zK0Zi9N3AOaYY7gO2BX0VE\n7jMcOFGUTwTceSeceSa8+SYcfzwcdBD07Jl3ZGa2rMqRKJ4GdmooRUhaHRjnNoquIQLGj08ljMmT\n4Ze/hB//GPr2zTsyM2uvcgwzLuCtguV3snXWBUiw/fZw111wxx3wyCOw/vpw2mnw7rt5R2dmHaGY\nRPFv4G5Jh0g6FLgTuKu8YVklGjoU/vIXePBBePVV2HBDOPZYmDUr78jMrJyKbcz+LvA1UmP2+Ii4\nrdyBFcNVT/maMSPNyX3NNfC976V2jA03zDsqM2tNOdoojgXGRETFfW90oqgMb7+dZs676KLUH+PE\nE9PotGZWmcrRRrEicI+kByUdmd0qa/aZfv3gt7+Fl15K1VO77grf+hb83//lHZmZlULRQ3hI2pw0\nX8T3gJkRkftMBi5RVKZPPoGrr4b/+R9YZ53UeW+XXdx5z6xSlKNE0eBN4A3SXU+rtzUw6zpWWCEN\nX/7cc+n3r34Fw4alhvBFi/KOzszaqpg2iiNIJYk1gL8CN0fElA6IrVUuUVSH+nr4179S57133oET\nToADD4Tll887MrOuqRyN2aNJyWHSsgZXak4U1SUC7r8/dd6bMiXdWnvYYdCnT96RmXUtHmbcqsIT\nT6SE8cAD8POfw5FHwqqr5h2VWddQzjYKs5IZNiwNPvjAA+luqQ03TG0Zr7+ed2Rm1lhZE4WkkZKm\nSXpe0glNbD9O0sTsZ7KkhZJWybZNl/R0tm1COeO0/Hzxi3DVVTBxIsyfD0OGpAbwl17KOzIza1C2\nqidJ3UjzXu8EzAIeo4l5rwv2/xZwdETslC2/DAyLiGZHFHLVU+fz1ltw3nlwySXpltoTT4RNN807\nKrPOpZKqnoYDL0TE9IhYAIwB9mxh//2Amxqt8533Xczqq8PvfpdKFJttBjvvDHvsAQ8/nHdkZl1X\nORPFAGBGwfLMbN1SJPUGdgFuLVgdwL2SHpd0WNmitIq00krpNtqXXoKRI2G//eDrX4d77kl3T5lZ\nx+lexnO35e28O/BgRMwpWPfViHg9m/9irKRpETG+8YG1tbWfPa6pqaGmpqad4Vol6tULjjgi3UZ7\n881wzDFp3ahR8O1vw3K+HcOsVXV1ddTV1bX7+HK2UWwN1EbEyGx5FFAfEWc3se9tpL4aY5o516nA\nhxHxh0br3UbRxdTXwz/+kTrvvf9+KnXsv78775m1RSW1UTwObCRpkKTlgX2AOxrvJGll0vSqfy9Y\n11vSitnjPsDOwOQyxmpVYrnlYM890wRKF10EN96Ybq09/3z4+OO8ozPrnMqWKCJiIXAkcDcwhVRi\nmCrpcEmHF+y6F3B3RMwrWNcfGC9pEvAo8M+IuKdcsVr1kWDHHWHsWLj1VqirSzPvnXEGzJnT6uFm\n1gbumW2dxpQpcPbZ8M9/pjaNo4+GNdfMOyqzylNJVU9mHWqTTdJse08+CR99lJaPOAJefjnvyMyq\nmxOFdTrrrQcXXABTp8Iqq8CWW6bRav/737wjM6tOThTWafXvn+6OevHFVLoYMQL22gsefTTvyMyq\ni9sorMuYNw+uvDLNvLfhhqkvxogRnnnPuh4PM27WigUL4Kab4Kyz0lwYJ52Ubrl15z3rKpwozIpU\nXw9//3uaF+PDD1Pnvf32gx498o7MrLycKMzaKALGjUsJ48UX4bjj4Ec/SkOFmHVGvj3WrI0k2Gmn\nlCxuvhnuvTd13hs9Og0TYtbVOVGYFdhqK7j99pQ0pk6FDTZIjd6zZ+cdmVl+nCjMmjBkCFx7LTz+\nOHzwAWx9vXmZAAARIElEQVS8cZrX+5VX8o7MrOM5UZi1YP314cIL0/AgffvC0KFw8MFp2ayrcKIw\nK8Kaa6bbaV98EQYPTpMofec78NhjeUdmVn5OFGZtsMoqcPLJafyor38dvvvd1BD+n/945j3rvHx7\nrNkymD8/zYlx1lmw8sqp4XuPPdx5zyqb+1GY5WDRonS31OjRaaiQE05Ivb1XXjnvyMyW5kRhlqOI\n1A/jj3+E8eNh003hG99I1VNbbeUpW60yVFSikDQS+BPQDbi88XzZko4D9s8WuwMbA/0iYk5rx2bH\nO1FYxZo3Dx56KCWOsWPhuedgu+0WJ44hQzwgoeWjYhKFpG7As8BOwCzgMWDfiJjazP7fAo6OiJ2K\nPdaJwqrJO+/AffctThwff5xGr/3GN9LvddbJO0LrKiopUWwDnBoRI7PlEwEi4qxm9r8RGBcRVxR7\nrBOFVbOXXko9wMeOTXdNrb764tLGDju4fcPKp5LGehoAzChYnpmtW4qk3sAuwK1tPdasWm2wQZrb\n+y9/gTffhBtuSKWKCy5Iv7fdFk49NbV1zJ+fd7TWlXUv47nb8lV/d+DBiJjT1mNra2s/e1xTU0NN\nTU0bLmtWGZZbLvX6HjoUjj9+yfaNY45x+4Ytm7q6Ourq6tp9fDmrnrYGaguqj0YB9c00St8G3BwR\nY9pyrKuerKtw+4aVUiW1UXQnNUiPAF4DJtB0g/TKwEvAOhExr43HOlFYl+T2DVsWFZMosmB2ZfEt\nrldExGhJhwNExKXZPgcDu0TEfq0d28T5nSisy6uvh0mTFpc2HnnE/TesZRWVKMrNicJsae6/Ya1x\nojCzJbh9wxpzojCzFrl9w5wozKxoDe0bY8emEofbN7oGJwoza7eG9o2GxOH2jc7JicLMSqahfaMh\ncbh9o3NwojCzsnnppZQw7r3X7RvVzInCzDqE2zeqlxOFmeXC7RvVw4nCzCqC2zcqlxNFhZk4EaZO\nhc02gy98AXr0yDsis3y4faNyOFFUmHHj4JJLYPJkeOUVGDw41eNuttni32uv7SK5dS1u38iXE0UF\nmzcPpkyBp59OiePpp9PPwoVLJo5NN4UvfQn69s07YrOO4faNjuVEUYVmz16cOBp+T50Ka621dALZ\ncEPo1i3viM3Ky+0b5eVE0UksXAgvvLB0Apk9GzbeeOkEssYaeUdsVj5u3ygtJ4pObu5ceOaZJZPH\n5MnQs+fSbR+bbAIrrJB3xGal5faNZedE0QVFwMyZS5c+XngBBg1aOoGst16ao9msM3D7RttVVKKQ\nNJLFs9Rd3sx82TXAH4EewNsRUZOtnw58ACwCFkTE8CaOdaJowfz5MG3a0gnkgw9SY3lhAtl0U1h1\n1bwjNlt2bt9oXcUkCkndSPNe7wTMAh6j0bzXklYB/o80FepMSf0i4u1s28vAsIh4t4VrOFG0w7vv\npqRRmECeeSZVU623Hqy7bvpp/Hj11f3NzKqP2zeWVkmJYhvg1IgYmS2fCBARZxXscwSwZkT8ponj\nXwa+EhHvtHANJ4oSqa+HN9+EV19N/T1efXXpxx99tDhxNJVI1lkntZWYVSq3bySVlCi+RyopHJYt\nHwBsFRE/L9inocppCLAicF5EXJdtewl4n1T1dGlEXNbENZwoOtCHH8KMGc0nk1mz4HOfa7lUsuqq\nLpVY5eiq7RttTRTdyxhLMZ/gPYChwAigN/CwpEci4nngaxHxmqTVgbGSpkXE+MYnqK2t/exxTU0N\nNTU1pYjdmtC3b7o1d+ONm96+aBG8/vqSCWTaNLjnnsXJZOHCphNIw+MBAzzMiXWcXr1Su8WIEWm5\nsH3jggs6T/tGXV0ddXV17T6+nCWKrYHagqqnUUB9YYO2pBOAXhFRmy1fDvw7Im5pdK5TgQ8j4g+N\n1rtEUWXef7/paq2Gx7NnQ//+LZdKVlop77/CuorO2r5RSVVP3UmN2SOA14AJLN2Y/UXgz8AuQE/g\nUWAfYDrQLSLmSuoD3AOcFhH3NLqGE0Uns2BBqsJqKpk0LHfv3nKpZK213HvdSq8ztW9UTKLIgtmV\nxbfHXhERoyUdDhARl2b7HAccCtQDl0XE+ZI2AP6WnaY7cENEjG7i/E4UXUwEvPde8w3ur7yS7upa\ne+2Wk0mfPnn/JVbtqrl9o6ISRbk5UVhTPv00dUBsLpm8+mpKFC0lkjXWcKdEa5tq6r/hRGHWigh4\n662WbwX+4AMYOLD5ZDJwoIdHsZZVcvuGE4VZCXz8ccu3As+cmW71ba7BfeDA9EFQLXXWVl6V1r7h\nRGHWAerr4Y03mm8nmTEjlUog3Vbcp8/i3809bsv23r1dNVbN8m7fcKIwqyDz56ce7R9+mH4XPm5q\nXWvbG35/8kmq+mpvomlpu0tBHa+j2zecKMy6gPr69GFSiuTTeDu4FJS3crdvOFGY2TJpaymo2OTk\nUlD7lKN9w4nCzCpSR5WCljURVXopqBTtG04UZtblNC4FlSL5fPRR+lDu1auyS0Htad9wojAzK5G2\nlILampygPKWg2bNh3LiW2zecKMzMqkBHlIJ6905jpy1cmK7ZrRsMHw4PP1w5w4ybmVkzll8+/ZR6\nCuLCUlBzCeXhh9t2TpcozMy6mLZWPVVYe76ZmVUaJwozM2uRE4WZmbWorIlC0khJ0yQ9n0172tQ+\nNZImSnpGUl1bjjUzs/IrW6KQ1I00zelIYBNgX0kbN9pnFeBCYPeI+BLwvWKPrSbLMql5R3KcpVUN\ncVZDjOA481bOEsVw4IWImB4RC4AxwJ6N9tkPuDUiZgJExNttOLZqVMs/j+MsrWqIsxpiBMeZt3Im\nigHAjILlmdm6QhsBq0m6T9Ljkg5sw7FmZtYBytnhrpgODj2AocAIoDfwsKRHijzWzMw6QNk63Ena\nGqiNiJHZ8iigPiLOLtjnBKBXRNRmy5cD/yaVIFo8NlvvhGJm1g6VMoTH48BGkgYBrwH7APs22ufv\nwJ+zxuuewFbAucBzRRzbpj/UzMzap2yJIiIWSjoSuBvoBlwREVMlHZ5tvzQipkn6N/A0UA9cFhFT\nAJo6tlyxmplZ86p6rCczMyu/qu2ZXQ0d8iQNzO7o+m/WofCovGNqjqRuWcfHf+QdS3MkrSLpFklT\nJU3J2sEqjqRR2Ws+WdKNknrmHROApCslzZY0uWDdapLGSnpO0j1Z36ZcNRPnOdnr/pSkv0laxlmj\nl11TcRZsO1ZSvaTV8oitII4mY5T08+z5fEbS2c0d36AqE0UVdchbABwTEUOArYGfVWicAL8AplDZ\nd5ydB9wZERsDmwEVVx2ZtasdBgyNiE1JVac/yDOmAleR3jOFTgTGRsRgYFy2nLem4rwHGBIRm5Pa\nMEd1eFRLaypOJA0EvgG80uERLW2pGCV9HdgD2Czr6Pz71k5SlYmCKumQFxFvRMSk7PGHpA+2tfON\nammS1gF2Ay4HKvIGgewb5HYRcSWkNrCIeD/nsJryAekLQm9J3Um3fc/KN6QkIsYD7zVavQdwTfb4\nGmCvDg2qCU3FGRFjI6I+W3wUaGKCz47VzPMJ6Yac4zs4nCY1E+NPgdHZZycR8VZr56nWRFF1HfKy\nb5pbkP7JK80fgV+RbiioVOsDb0m6StKTki6T1DvvoBqLiHeBPwCvku7YmxMR9+YbVYv6R8Ts7PFs\noH+ewRTph8CdeQfRFEl7AjMj4um8Y2nBRsD2kh6RVCfpK60dUK2JopKrR5YiqS9wC/CLrGRRMSR9\nC3gzIiZSoaWJTHdS58yLImIo8BGVUU2yBEmfB44GBpFKj30l7Z9rUEXKZgGr6PeWpJOB+RFxY96x\nNJZ9cTkJOLVwdU7htKQ7sGpEbE36gviX1g6o1kQxCxhYsDyQVKqoOJJ6ALcC10fE7XnH04RtgT0k\nvQzcBOwo6dqcY2rKTNI3tcey5VtIiaPSfAV4KCLeiYiFwN9Iz3Glmi1pTQBJawFv5hxPsyQdQqoi\nrdTE+3nSF4SnsvfTOsATktbINaqlzST9X5K9n+olfa6lA6o1UXzWmU/S8qQOeXfkHNNSJAm4ApgS\nEX/KO56mRMRJETEwItYnNbr+JyIOyjuuxiLiDWCGpMHZqp2A/+YYUnOmAVtL6pW9/juRbhKoVHcA\nB2ePDwYq8csMkkaSvv3uGRGf5B1PUyJickT0j4j1s/fTTNJNDZWWfG8HdgTI3k/LR8Q7LR1QlYki\n+6bW0CFvCnBzhXbI+ypwAPD17NbTidk/fCWr5KqHnwM3SHqKdNfTmTnHs5SIeAq4lvRlpqGe+n/z\ni2gxSTcBDwFfkDRD0qHAWcA3JD1H+vA4K88Yock4fwhcAPQFxmbvo4tyDZIl4hxc8HwWyv291EyM\nVwIbZLfM3gS0+sXQHe7MzKxFVVmiMDOzjuNEYWZmLXKiMDOzFjlRmJlZi5wozMysRU4UZmbWIicK\nq2iSFmX3zU+W9BdJvfKOqRiS1pD0r+zx5pJ2LcE5L5G0jaQvSpok6QlJG0haavZHSWtJeiHbp2/B\n+l6S/lUwxPTogm1HSTpwWeO0zseJwirdxxGxRTZk93zgJ4UbsxFaO0Qbr3UkcHX2eAvS0BPLaivS\noJJ7AX+NiGHAusB+hTtJWhG4jdST+Rrglkax/082VPsWwFcLOoFeRerUaLYEJwqrJuOBDSXtIGm8\npL8Dz0haLpvYZkI2sc2P4bNv1Q8UlEi+mu17dbb8tKRfZPvWSRqWPe6XjdWDpEMk3SFpHKlXcG+l\nyWAezUax3aOZWL8H/CsbYua3wD5ZHN9Xmizo9izWhyVtml2rNjv3fZJelPTZh7bSPCbPAbuQ5g75\nqaT/AKOB7bJz/yJLCDcCZ0XEbRFxPmmYjssAImJeRNyfPV4APEk28nJEzAXekTSkFC+WdR4d9m3M\nbFlkH4C7sXh46S1IE9m8kiWGORExXGk2uQcl3QN8B/h3RJyZjbvUJztu7ayEgqSVsvO1NHLqFsCm\nETFH0pnAuIj4odJscI9KujciPi6IdU1gUcM6SacAwyLiqGz5AuCJiNhLaRKZa7NrAAwGvg6sBDwr\n6aKIWATsCtwVEXdJugSYGxHnStoBOC4idi+It/AxEdHkcBdZ/LsDheOQTQC2pzLH0bKcuERhla6X\npInAY8B00jg1AiZERMMMYjsDB2X7PQKsBmyYHXOopFNJs3l9CLxIGufmfEm7AHOLiGFsRMwpuNaJ\n2bXuA3qy5EjGAOsBrxcsiyWHm/4qcB1ARNwHfC6rLgrgXxGxIBuk7U0Wzw+xM/DvRucs/N0mWeK9\nCTgvIqYXbHqNNAKq2WdcorBKNy8itihckQoHfNRovyMjYmzjgyVtB3wLuFrSuRFxnaTNSVU4PwH2\nBn4ELGTxF6cVGp2m8bW+ExHPtxJ34Qd4UyWV5j7g5xc8XgR0V5rnYJVsBN1S+V/g2axqqnFcHgDO\nluAShXUGdwNHNDTYShqctSWsC7wVEZeTpnkdqjTufreI+BtwCourfKaT5pKA1L7Q0rWOaliQtEUT\n+7wCrFmwPBdYsWB5PNmcCpJqshjn0nTyEKkq6j/NxNP43K2S9DtS1dYxTWxei/RcmH3GicIqXVPf\nbhu3J1xOGm7+yWzo5ItJpeUaYJKkJ0klhz+RGm7vy6qOrgNGZef4PamB+EngcwXnb3yt04EeWUP4\nM8BpSwWXvvl3l9QnW3UfsElDYzZQCwxTGi79TBbPB9H4Wg2Pd2XJaqfCbU8Bi7LbZX/ROJbGlOZH\nPwnYmPR8TZT0o4JdhpMSmdlnPMy4WRlIqgWmRsTNJTjXE8DwrFG7bLKG/XERsWU5r2PVx4nCrAwk\nrQ5cExGl6D/RISQdBbwbEdfnHYtVFicKMzNrkdsozMysRU4UZmbWIicKMzNrkROFmZm1yInCzMxa\n5ERhZmYt+v/jvQbqw2EtYAAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x5d2cab0>"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg323"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate Primary Consolidation Sc in three parts\n",
+ "Gd=14.\n",
+ "Gss=18.\n",
+ "Gsc=19.\n",
+ "Gw=9.81\n",
+ "To= 2.*Gd+4.*(Gss-Gw)+2*(Gsc-Gw)\n",
+ "LL=40.\n",
+ "Cc=0.009*(LL-10)\n",
+ "H=4.\n",
+ "T=100.\n",
+ "e=0.8\n",
+ "Sc= Cc*H*math.log10((To+T)/To)/(1.+e)\n",
+ "print'%s %.2f %s'%('a)Primary Consolidation Sc = ',Sc,' m')\n",
+ "\n",
+ "\n",
+ "Tc=190\n",
+ "Cs=Cc/6\n",
+ "Sc= Cs*H*math.log10((To+T)/To)/(1+e)\n",
+ "print'%s %.2f %s'%(' b)Primary Consolidation Sc =',Sc,'m')\n",
+ "\n",
+ "\n",
+ "Tc=170\n",
+ "Sc= Cc*H*math.log10((To+T)/Tc)/(1+e)+ Cs*H*math.log10(Tc/To)/(1+e)\n",
+ "print'%s %.3f %s'%(' c)Primary Consolidation Sc =',Sc,' m')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "a)Primary Consolidation Sc = 0.21 m\n",
+ " b)Primary Consolidation Sc = 0.04 m\n",
+ " c)Primary Consolidation Sc = 0.047 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg325"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate The settlement in the field Sc\n",
+ "Gs=18.\n",
+ "Gw=9.81\n",
+ "H=10.\n",
+ "eo=1.1\n",
+ "To=5.*(Gs-Gw)\n",
+ "T1=48.\n",
+ "T=To+T1\n",
+ "e1=1.045 ## void ratio corresponding to T \n",
+ "e=eo-e1\n",
+ "Sc=H*e/(1.+eo)\n",
+ "print'%s %.2f %s'%('The settlement in the field Sc = ',Sc,' m')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The settlement in the field Sc = 0.26 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg329"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate Total consolidation settlement of the clay\n",
+ "T=8.5\n",
+ "eo=0.8\n",
+ "Cc=0.28\n",
+ "To=2650.\n",
+ "T1=970.\n",
+ "C1=0.02\n",
+ "t2=5.\n",
+ "t1=1.5\n",
+ "H=8.5*12\n",
+ "epr=Cc*math.log10((To+T1)/To)\n",
+ "ep=eo-epr\n",
+ "C2=C1/(1.+ep)\n",
+ "Sc=epr*H/(1.+eo)\n",
+ "Ss=C2*H*math.log10(t2/t1)\n",
+ "TS=Sc+Ss\n",
+ "print'%s %.1f %s'%('Total consolidation settlement of the clay =',TS,' in')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Total consolidation settlement of the clay = 2.8 in\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg336"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate t field\n",
+ "##T50 = Cvtlab /H^2 lab = Cvtfield?H^2 fiels\n",
+ "tl=140.\n",
+ "Hf=3.\n",
+ "Hd=0.025/2.\n",
+ "tf=tl*Hf**2/Hd**2\n",
+ "k=tf/(3600.*24.)\n",
+ "print'%s %.1f %s'%('t field = ',k,' days')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "t field = 93.3 days\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8-pg336"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Tv is directly proportional to U^2\n",
+ "t1=93.333\n",
+ "U2=30.\n",
+ "U1=50.\n",
+ "t2=t1*U2**2./U1**2.\n",
+ "print'%s %.2f %s'%('t2 =',t2,' days')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "t2 = 33.60 days\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9-pg337"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#evaluvate Cv\n",
+ "#intilization variable\n",
+ "t90=75.*24.*60.*60. ## time in sec\n",
+ "T90=0.848\n",
+ "Hd=1.5*100. ##in cm\n",
+ "Cv=T90*Hd**2/t90\n",
+ "print'%s %.3f %s'%('Cv =',Cv,' cm^2/sec')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Cv = 0.003 cm^2/sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10-pg337"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate K and t60\n",
+ "To=3000. ## lb/ft^2\n",
+ "eo=1.1\n",
+ "e1=0.9\n",
+ "e=eo-e1\n",
+ "ea=(eo+e1)/2.\n",
+ "T1=3000. ## lb/ft^2\n",
+ "T=1. ## in\n",
+ "t = 2. ## min\n",
+ "m=(e/T1)/(1.+ea)\n",
+ "U=50.\n",
+ "Tv=0.197\n",
+ "Gw=62.4 ##lb/ft^3\n",
+ "Cv=Tv*(T/(2.*12.)**2)/t\n",
+ "k=Cv*m*Gw *10**7\n",
+ "print'%s %.3f %s'%('a)k = ',k,' x10^-7 ft/min')\n",
+ "\n",
+ "\n",
+ "U=60\n",
+ "Tv=0.286\n",
+ "H=6\n",
+ "t60=Tv*H**2/(Cv*60*24)\n",
+ "print'%s %.1f %s'%(' b)t60 =',t60,' days')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "a)k = 3.557 x10^-7 ft/min\n",
+ " b)t60 = 41.8 days\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11-pg344"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the value of Cv\n",
+ "import math\n",
+ "#Cv\n",
+ "t50=19\n",
+ "Hd=2.24/2\n",
+ "Cv=0.197*Hd**2/t50\n",
+ "print'%s %.3f %s'%('Cv = ',Cv,' cm^2/min')\n",
+ "%matplotlib inline\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
+ "import math\n",
+ "import numpy\n",
+ "from math import tan\n",
+ "import matplotlib\n",
+ "from matplotlib import pyplot\n",
+ "#given\n",
+ "t=numpy.array([.02,.1,.25,.5,1,2.,4.,8.,16.,30.,60.,120.,240.,480.,960.,1440.])\n",
+ "gauge=numpy.array([3975.,4082.,4102.,4128.,4166.,4224.,4298.,4420.,4572.,4737.,4923.,5080.,5207.,5283.,5334.,5364.])\n",
+ "Hdr=2.24\n",
+ "t50=19.\n",
+ "#calculations\n",
+ "Cv=.197*(Hdr/2)**2 /t50/60.\n",
+ "leng=len(t)\n",
+ "logt=numpy.zeros(leng)\n",
+ "for i in range(0,leng):\n",
+ "\tlogt[i]=math.log(t[i])\n",
+ "\n",
+ "#results\n",
+ "print 'The value of Cv (cm^2/sec) = ',Cv\n",
+ "pyplot.plot(logt,gauge)\n",
+ "pyplot.xlabel('Time(min) - log scale')\n",
+ "pyplot.ylabel('Dial reading (cm)')\n",
+ "pyplot.title('Graph of dial reading vs time')\n",
+ "pyplot.show()\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Cv = 0.013 cm^2/min\n",
+ "The value of Cv (cm^2/sec) = 0.000216769122807\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEZCAYAAABmTgnDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmclXX5//HXW1zAwi2NZFGpUEEtERV3xkzEJTE3NMU1\n/SVf06+WpX4zsJLMcsFMW8yEcgk3RAMElXHJBU1UFDcqVFA0txQ3lrl+f3w+A8dxlgNzzpxZ3s/H\n4zy4z33u5boHmOt8dkUEZmZmjVml0gGYmVnr52RhZmZNcrIwM7MmOVmYmVmTnCzMzKxJThZmZtYk\nJwurKEmjJP25RNfqJuleSe9K+mURxx8j6b6C9+9J2qSI8zaRVCOpIv9/8r2/mLevkPSjSsSxsor9\nOVvrsmqlA7DWRdJhwGnAFsD7wL+BsRFxRZluWcqBPicCr0fEWisVSETXEsbSIiLipErH0BhJ1cCf\nI+KPtfva4s/ZXLKwApK+B1wC/ALoFhHdgO8AO0tavYFzmvtvSM08v9DGwDMlvF6zSeroX8g86red\ncLIwACStDZwLnBQRN0fE+wAR8XhEHBkRi/JxV+eqj0mSFgJVkvaVNFPSfyW9JGlkwXVrq2xOkDRf\n0is5KdUKYHVJY3P10VOSBjQS506SHpH0jqQZknasjQs4CvhBrub4Wj3nfk7SxBznw8CX6nxeWL3T\n4DMV8bOcK+kHkp4E3pO0iqQdJD0g6W1Jj0saVHD8sZJm5+f/p6QT61zvjPxzmyfpuDqfXS3pp3m7\nKh9zuqTX8jnH1Hn+2/IzzZD0s8JquDrXnSzpf+rse0LSAXn74nyP/0p6UtIW9VzjPGBX4LL8d3Jp\nPT/nqyVdnv89vSfpPklfkDQm/6yekbR1wTW7S7pJ0uuS/iXpu8X9rVizRYRffgEMARYDqzRx3NXA\nO8CO+f0awCBgi/x+K2ABMDS/3wSoAa4BugBbAq8De+TPRwEf5vsLGA082MC91wPeBo4gfdE5DHgL\nWDd//ifgJ43Efn1+dSFVs80D7i34vAb4Yt4u5pnq/VkBc4HHgB7559MDeAMYkj//en7/ufx+H6B3\n3t6NVP3Xv+DvZQHQD1gTuLZOnMueGajKf4ejgE7A3vlaaxc8/7VAZ6Av8FLh89d5huHA/QXv++Wf\n/WrAXsCjwFr5s82ALzRwnenAcXX2FcZ/NfAfoH/+Wd2Vf35H5n8PPwXuzseuAvwD+BGpCr038E9g\ncKX//3SEl0sWVmt94I2IqKndUfBN+ANJuxQcOyEiHgSIiI8j4p6IeDq/n0X6pTSITzo3Ij6MiKdI\nv+AOL/jsvoiYEuk3wl+ArzYQ477AcxFxTUTURMT1wLPA/gXH1FutJakTcCDw4xzH08DYho4v8pka\nEsClETE/Ij4m/eKbFBFT8vXuJP2y3Te/nxQR/87b9wJTSd/IAQ4FroqI2RHxAVBfCafwGRaTksfS\niJgMLAQ2K3j+kRHxUUQ809jzAxOArSX1yu+PAG6KiMX5Hl2BvpJWiYjnImJBIz+PxqoaA7g5Imbm\nn9UtwPsR8Zf872E8KZEAbAesHxE/i4gl+Wd2JelLg5WZk4XVehNYv7ANIiJ2ioh182e1+wN4ufBE\nSQMlTc9VA+8A/w/4XJ3rF57zEtC94P1rBdsfAJ0baAvpns8t9GKdazVkA9K30bpx1KvIZ2pM4X02\nBg7JifdtSW8DOwNfyPfaW9JDkt7Mn+1TcK8Ni405e7Mw4ZN+np+l/uef19BFIuI94G8sT+qHkUqH\nRMTdwGXAb4DXJP1OUmON1k21W7xesP1Rnfcf5vgh/Ry71/k5ngV8vonrWwk4WVitB4GPgQNW4txr\nSd9Ee0bEOsBv+fS/rY3qbM9fifvMJ/3CKLRxkdf6D7CknjgaUswzNabwF+RLpB5B6xa8ukbEBZLW\nAG4CLgA+n5PzJJZ/G3+1iJiLaUSuff5eBft6NXBsreuAw3O7UOeImL7shhG/johtSdVTmwJnNHCN\nUjZwvwz8u87Pca2I2K+E97AGOFkYABHxDqmB+3JJB0nqmhtmtwY+U3BofVUKnwXejohFkrYHvsWn\nf0n8SFKX3BB6DPDXlQhzErCppMMlrSppGLA5cHsjsdU+31LgZmBUjqMfcHQj9yrmmYr1F+AbkgZL\n6iSpc26M7gGsnl9vADWS9gYGF5w7HjhGUl9Ja/LpaihRRI+yep5/c1K7RGPPNImUjM8lVcOlG0rb\n5pLXaqSSy0fA0gau8Rp1OhLUE3+xZpA6DPwgP0MnSVtK2nYFrmErycnClomIXwKnAz8gNaouIH2j\n/gGp5AHpl0vdXzAjgJ9Iehc4h/oTwT3AHOBO4Je53r6h69X7Cywi3gL2A75H+uX6fWC/vL+haxU6\nmZQEFgBX5Vfh8YXbTT1T0YkjIuYBQ4GzSVUsL+VnUK7uOYWUFN4iVfvcWnDuFFJ35ruB50kNwHVj\nbugZ6joZWJv0/GNJJYdFjcS9iJRg9iCVtGqtBfw+xzuX9HfR0CDIMcDBkt6SdEl9t6kn/nr/PeSE\ntx+wNfAvUmnp9zkeKzOlNqQy3kCaC7xL+uaxOCK2L/jse6R/ZOvX/oeXdBZwXD7+lIiYmvcPIPWc\n6ExqLDy1rIFbSSiN1P0XsGqdunSrMEm/IFV9HVvpWKz1a4mSRQBVEdG/TqLoBexJaqCs3dcPGEaq\nBx1CqhKpLaZeARwfEX2APpKGtEDsZu2GpM0kfUXJ9qQvZbdUOi5rG1qqGqq+esmLSNUbhYYC10XE\n4oiYS6q2GChpQ6BrRMzIx41j5RpirTI8ird16EpqTF9IaoP4VURMrGxI1la0xFQEAdwpaSnwu4j4\ng6ShwLyIeHJ5wQFIXSAfKng/jzSgaTGf7OY3P++3Vi4n/U6VjsMgIh4F+lQ6DmubWiJZ7BwRr0ra\nAJgm6VlS3+jCHh+lnB/IzMxKrOzJIiJezX/+R9ItpFGwvYEncqmiJ/APSQNJJYbCvt89SSWK+Xm7\ncP+n+tZLcnWHmdkKiogmv7CXtc1C0pq1IzslfYZUmpgREd0iondE9CYlg20i4jVgInCYpNUl9SYV\nmWfkqQTezX27ReofPqG+e5ZjTpTW8Bo5cmTFY/Dz+fn8fO3vVaxylyy6AbfkEsSqwDWRu8IWWBZt\nRMyWNB6YTRptOiKWP80IUtfZLhTMs2NmZuVX1mQRaaKvrZs45ot13o8mzTxa97h/kGb/NDPrsCJA\nFWjl9QjuNqKqqqrSIZSVn69t8/OV1wcfwDXXwF57wehPfZVuGWUfwd2SJEV7eh4z67hqauC++2Dc\nOLj5ZthhBzj6aBg6FLp0Kd19JBFFNHB39CUfzcxalTlz4M9/Tknis59NCeLpp6F7MRPxl5GThZlZ\nhf33vzB+PIwdC88/D4cfDjfdBP37V6Z9oj6uhjIzq4AlS2DatFSCmDwZvv51OOoo2HtvWG21louj\n2GooJwszsxb0xBMpQVx7LWy8cUoQhx0G661XmXjcZmFm1kosWJCSw7hx8PbbMHw4VFfDZptVOrLi\nuWRhZlYGH34It96aEsSDD8I3v5lKEbvtBqu0okELLlmYmbWwmhr4+99TgrjpJthuu5QgbrgBPvOZ\nps9vzZwszMyaqba765//nMZAHH00zJoFPdrRQgpOFmZmK+Htt1OJYezYlCwOPxxuvLF1dXctJbdZ\nmJmtgMcfT1Nu3HEHDB6cShF77dWy3V1Lqdg2i1bUzGJm1nq99FJKDEOGwM47w9y5qWSx335tN1Gs\nCCcLM7NGvPMO/PCHqXppo43SCOtTT4V11610ZC3LycLMrB4ffwyXXAKbbgpvvZUarH/6U1hrrUpH\nVhlu4DYzKxCR5mk6+2zo2xfuvhu23LLSUVWek4WZWXbPPXDGGWm8xJVXwu67Vzqi1sPJwsw6vNmz\n4cwzU1XT6NEwbFjrGmXdGvjHYWYd1quvwoknQlVVej37bBov4UTxaWX/kUiaK+lJSTMlzcj7finp\nGUlPSLpZ0toFx58l6QVJz0oaXLB/gKRZ+bMx5Y7bzNqv996DkSNTW8Q668Bzz8Hpp8Maa1Q6star\nJfJnAFUR0T8its/7pgJbRMRXgeeBswAk9QOGAf2AIcDl0rKxkFcAx0dEH6CPpCEtELuZtSOLF8Nv\nf5t6OP3rX/DYY3DBBR2vG+zKaKnC1idGB0bEtIioyW8fBnrm7aHAdRGxOCLmAnOAgZI2BLpGxIx8\n3DjggPKHbWbtQQRMmABbbZWm5Pjb39I8ThtvXOnI2o6WaOAO4E5JS4HfRcQf6nx+HHBd3u4OPFTw\n2TygB7A4b9ean/ebmTXq44/T+hHPPJPGTey1V/ucu6ncWiJZ7BwRr0raAJgm6dmIuA9A0v8BiyLi\n2haIw8w6mPfegwMOSKvQPfqo2ySao+zJIiJezX/+R9ItwPbAfZKOAfYB9ig4fD7Qq+B9T1KJYj7L\nq6pq98+v736jRo1atl1VVUVVVVVzH8HM2qDXX4d99oFtt4Xf/AY6dap0RK1DdXU11dXVK3xeWWed\nlbQm0Cki3pP0GVLD9rmktpILgUER8UbB8f2Aa0kJpQdwJ/DliAhJDwOnADOAvwGXRsSUOvfzrLNm\nxty5qbpp2DA491xXOzWmtayU1w24JXdoWhW4JiKmSnoBWJ1ULQXwYESMiIjZksYDs4ElwIiC3/4j\ngKuBLsCkuonCzAzgqadg773TSOxTTql0NO2H17Mws3bjgQfSWtcXXwzf+lalo2kbWkvJwsysRUye\nnNabGDcurTlhpeVB7WbW5l1zDRx7LEyc6ERRLi5ZmFmbNmYMXHhhmkq8X79KR9N+OVmYWZsUAT/6\nEdx0E9x/f1rFzsrHycLM2pylS+Gkk2DmTLjvPthgg0pH1P45WZhZm/LRR3DEEfDuu6nqqWvXSkfU\nMbiB28zajHffTaOyO3WC2293omhJThZm1ia8/npa5nTzzeG66zzPU0tzsjCzVm/uXNhlF/jGNzzP\nU6U4WZhZqzZrFuy6a5q6Y9Qoz/NUKW7gNrNW6+9/hwMPTGMpDjus0tF0bE4WZtYqTZoExxwDf/kL\nDB5c6WjMEwmaWatzzz1wyCFw220wcGClo2nfip1I0G0WZtaqPP00HHooXH+9E0Vr4mRhZq3GK6+k\ncRQXXQRf+1qlo7FCThZm1irUDrg76aQ0QttaF7dZmFnFLVoE++4LffqkcRTuHttyim2zcLIws4qK\nSL2e3nkHbr7ZA+5amlfKM7M24cc/hueeS5MCOlG0XmVvs5A0V9KTkmZKmpH3rSdpmqTnJU2VtE7B\n8WdJekHSs5IGF+wfIGlW/mxMueM2s/L7/e9Tr6fbboM116x0NNaYlmjgDqAqIvpHxPZ535nAtIjY\nFLgrv0dSP2AY0A8YAlwuLau9vAI4PiL6AH0kefFEszbs9tth5Mi0drbXo2j9Wqo3VN36sP2BsXl7\nLHBA3h4KXBcRiyNiLjAHGChpQ6BrRMzIx40rOMfM2phHHoHjjoMJE+DLX650NFaMlipZ3CnpUUkn\n5H3dIuK1vP0a0C1vdwfmFZw7D+hRz/75eb+ZtTH//CcMHQpXXulBd21JSzRw7xwRr0raAJgm6dnC\nDyMiJJWsC9OoUaOWbVdVVVFVVVWqS5tZM/3nP7D33qlRe//9Kx1Nx1RdXU11dfUKn9eiXWcljQQW\nAieQ2jEW5Cqm6RGxuaQzASLi/Hz8FGAk8GI+pm/efzgwKCK+U+f67jpr1kp98AHssUdawGj06EpH\nY7VaxdxQktaU1DVvfwYYDMwCJgJH58OOBibk7YnAYZJWl9Qb6APMiIgFwLuSBuYG7+EF55hZK7d0\nKXzrW6l94rzzKh2NrYxyV0N1A27JHZpWBa6JiKmSHgXGSzoemAscChARsyWNB2YDS4ARBUWFEcDV\nQBdgUkRMKXPsZlYCEWnhooULYfx4j85uqzyC28zK6oIL0poU990Ha69d6WisLo/gNrOKu/ZauOwy\neOABJ4q2ziULMyuL6dNh2LA0jceWW1Y6GmtIq2jgNrOOadaslCj++lcnivbCycLMSmrevDTd+CWX\npG6y1j44WZhZyfz3v2kBo5NPTl1lrf1wm4WZlcSiRWl0dt++8Otfu4tsW+E2CzNrUWedBZ07w5gx\nThTtkbvOmlmz3XYb3HgjPPaYFzBqr5wszKxZXnoJvv1tuOUW+NznKh2NlUvR1VCSOktao5zBmFnb\nsngxHH44nH467LRTpaOxcmqwgVvSKqQFhg4HdiIlFgFLgQeBa4AJralF2Q3cZi3rzDPhiSfgb3+D\nVdwC2iYV28DdWLK4F7iPNBPs4xHxcd6/BtCftNrdLhGxW8mibiYnC7OWM3kynHACzJzpZVHbslIk\nizVqE0QjN2nymJbkZGHWMubPhwED0iyyu7War4u2MpqdLOpcbF1gI2BZP4eIeKxZEZaBk4VZ+S1Z\nAl/7GgweDD/6UaWjseYq2ayzkn4KHAP8C6gp+MgD+c06oHPPhTXWSOMqrOMopuvsMOBLEbGo3MGY\nWet2551w1VUeT9ERFdN/4Wlg3XIHYmat26uvwlFHwbhx0K1bpaOxltZkm4Wk7YBbgaeA2sbsiIj9\nyxzbCnObhVl5LF0Ke+4Ju+6aqqGs/SjlSnnjgPNJyaK2zcK/kc06kPPOS2tp//jHlY7EKqWYZLEw\nIi5d2RtI6gQ8CsyLiG9I2h64DFgNWAKMiIhH8rFnAceRBv6dEhFT8/4BwNVAZ2BSRJy6svGY2Yqp\nroYrroB//MPtFB1ZMW0W90n6uaQdJW1T+1qBe5wKzGZ5aeQC4JyI6A/8OL9HUj9SY3o/YAhwubRs\n7sorgOMjog/QR9KQFbi/ma2k11+HI4+Eq6+G7t0rHY1VUjEli21Iv+h3qLO/ya6zknoC+wDnAafn\n3a8CtUu3rwPMz9tDgesiYjEwV9IcYKCkF4GuETEjHzeONA3JlCJiN7OVVFMDw4enRu299qp0NFZp\nTSaLiKhqxvUvBs4A1irYdyZwv6RfkUo2O+b93YGHCo6bB/QAFuftWvPzfjMro/PPhw8+gJ/8pNKR\nWGtQzKC80cAFEfFOfr8u8L2IaHTspqT9gNcjYqakqoKP/khqj7hF0iHAVcCeK/sAdY0aNWrZdlVV\nFVVVVQ0ea2b1u+8+uPRSePRRWNULGbQr1dXVVFdXr/B5xXSdfTwitq6zb2Zuc2jsvNHAcFIjdmdS\n6eJmYGhErJWPEfBORKwt6UyAiDg/fzYFGAm8CEyPiL55/+HAoIj4Tj33dNdZs2Z64w3YZpvUqL3v\nvpWOxsqtlMuqriKpc8GFuwCrN3VSRJwdEb0iojdwGHB3RAwH5kgalA/7GvB83p4IHCZpdUm9gT7A\njIhYALwraWBOLsOBCUXEbWYrqKYGjj4ahg1zorBPKqaAeQ1wl6SrSOtZHEtqZF5RtV/5TwR+k6c6\n/zC/JyJmSxpP6jlV26W29pwRpK6zXUhdZ924bVYGF14Ib70Fo0dXOhJrbYqddXZvYI/8dlpE3FHW\nqFaSq6HMVt6DD8IBB8CMGbDxxpWOxlpKKdazaPI3bzHHtKRWFo5Zm/HWW9C/f2rUHjq00tFYSypF\nm0W1pDMkbVrPxTeT9EPgnuYEaWaVFwHHHgsHHuhEYQ1rrM1iMHAEqX1hS+A9UpvFZ0nzRF0DfL3s\nEZpZWY0ZA6+8AjfcUOlIrDUrts2iE7B+fvtGRCwta1QrydVQZivmkUdSr6eHHoIvfrHS0VgllHLW\nWXJyeK3ZUZlZq/HWW3DooWk8hROFNaWokkVb4ZKFWXFqalL7xJe+BJdcUulorJJKWrIws/bll79M\nI7VvuqnSkVhb4WRh1sHcey9cfHFqr1i9ybkYzJImp/uQ9F49r3mSbpHkmk6zNuS11+Bb30rrU/Tq\nVelorC0ppmQxBngZuC6/Pwz4EjCTNGNsVVkiM7OSWro0JYpjj4UhXj7MVlAxs84+GRFfqbPv8YjY\nWtITEfHVska4AtzAbdawc86BBx6AqVO9PKotV8oG7g8kDQNqh+wcDHyUt/2b2awNmDIF/vQnr6Nt\nK6+YksWXSFVRtcuqPgT8L2nFugERcX9ZI1wBLlmYfdrLL8N228H48bDbbpWOxlqbZk8k2BY5WZh9\n0qJFMGhQmk32hz+sdDTWGpUsWUj6PHACsAnLq60iIo5rbpCl5mRh9kmnnQZz5sCtt8IqxSx1Zh1O\nKdssbgXuBaYBNXmffyObtXI33QQTJqR2CicKa66VWoO7tXLJwix54QXYaSeYPBm23bbS0VhrVso1\nuG+X5NV4zdqIDz+Egw+Gc891orDSKaZksRBYE1gELM67IyLWKnNsK8wlCzP49rfh/ffh2mtBTX5f\ntI6uZCWLiPhsRKwSEZ0jomt+FZ0oJHWSNFPSbQX7vivpGUlPSfpFwf6zJL0g6VlJgwv2D5A0K382\npth7m3U0Y8fC/ffD73/vRGGl1WADt6S+EfGMpG3q+zwiHivyHqcCs4Gu+bq7A/sDX4mIxZI2yPv7\nAcOAfkAP4E5JfXJR4Qrg+IiYIWmSpCERMaXI+5t1CLNmwfe/D9OnQ9eulY7G2pvGekOdTuoyexH1\n937avamLS+oJ7AOcl68HcBLw84hYDBAR/8n7hwLX5f1zJc0BBkp6EegaETPyceOAAwAnC7Psvffg\nkEPgwgthyy0rHY21Rw0mi4g4If9Z1YzrXwycARRWW/UBdpM0mjRtyPcj4lGgO2l0eK15pBLG4rxd\na37eb2ZABJxwAuy6Kxx1VKWjsfaqsWqog2hkPEVE3NzYhSXtB7weETMlVdW557oRsYOk7YDxQMmm\nOh81atSy7aqqKqqqqho81qw9uPxyeO65NEmgWVOqq6uprq5e4fMa7A0l6WpSsvg8sBNwd/5od+CB\niNiv0QunksNwYAnQmVS6uBlYHzg/Iu7Jx80hzTv1bYCIOD/vnwKMBF4EpkdE37z/cGBQRHynnnu6\nN5R1KI88AvvumxLFl79c6WisLWp2b6iIOCYijgVWB/pFxEERcRCwRd7XqIg4OyJ6RURv0hoYd0fE\ncGAC8LUc5KbA6hHxBjAROEzS6pJ6k6qrZkTEAuBdSQMliZSAJjR1f7P27q234NBD4be/daKw8itm\nuo9ewIKC968BG63EvWq/8l8FXCVpFmnsxlEAETFb0nhSz6klwIiCYsII4GqgCzDJPaGso6upgaOP\nThMEHnhgpaOxjqCYQXmXAZsC1wIidW99ISK+W/7wVoyroawjiIBTTkldZadO9Tra1jylnHVWwDeB\n3Uilg3sj4paSRFliThbWEfzsZ3DjjXDPPbD22pWOxto6r2dh1g797ndwwQVplPaGG1Y6GmsPSjbd\nh6QdJT0iaaGkxZJqJL1bmjDNrFg33ZQmB7zjDicKa3nFzDp7GfAt4AVSF9jjgcvLGZSZfdL06XDS\nSfC3v7nnk1VGUUuiRMQLQKeIWBoRfwKGlDcsM6s1cyYMGwZ//Sv071/paKyjKqbr7PuS1gCekHQB\nqRut57M0awFz5qRBd1dcAbs3ORubWfkUU7I4Kh93MvAB0BM4qJxBmRksWAB77QUjR8JB/h9nFVZU\nbyhJawK9IuK58oe08twbytqL//4XBg1KSeKccyodjbVnpewNtT8wE7gjv+8vaWLzQzSz+nz0EQwd\nCrvsAj/6UaWjMUuKGZT3GGkup+kR0T/veyoiWt2s+S5ZWFu3ZElal2KNNdKyqKsU1QXFbOUVW7Io\npoF7cUS8o0+u0Viz0pGZWb0iUvfYhQvh+uudKKx1KSZZPC3pCGBVSX2AUwDPnG9WYuecA48/Dnff\nnUoWZq1JMd9dTiZNS/4xcB3wLvC/5QzKrKO59FK44QaYNMnrZ1vr1GibhaRVgWkR0SZ6eLvNwtqi\na6+FH/4Q7rsPNtmk0tFYR1OS3lARsQSokbROySIzs2XuuANOOw0mT3aisNatqBHcwCxJ0/I2QETE\nKeULy6z9e/hhOPJIuOUW2LLV9S00+6RiksXN+VVbv6OCbTNbCc8+m8ZSXHVVGk9h1tp5PQuzFjZv\nHuy8c5pu/JhjKh2NdXQlG8FtZqXz1ltpvqeTT3aisLal7MlCUidJMyXdVmf/9/JCSusV7DtL0guS\nnpU0uGD/AEmz8mdjyh2zWTm8/z7stx/svTeccUalozFbMS1RsjgVmE1BO4ekXsCewIsF+/oBw4B+\npPUyLtfyYeNXAMdHRB+gjySvp2FtyhtvwJ57wuabp2VRzdqaBhu465YE6oiI2L+pi0vqCewDnAec\nXvDRRcAPgFsL9g0FrouIxcBcSXOAgZJeBLpGxIx83DjgAGBKU/c3aw3++c9UmjjoIDjvPE/jYW1T\nY72hLizB9S8GzgDWqt0haSgwLyKerDPfVHfgoYL384AewOK8XWt+3m/W6s2YAQcckKbyOOmkSkdj\ntvIaTBYRUd2cC0vaD3g9ImZKqsr71gTOJlVBLTu0Ofepa9SoUcu2q6qqqKqqKuXlzYp2221w3HHw\nxz/C/k2Ww81aRnV1NdXV1St8XjFTlG8KjCbND9U5746I+GIT540GhgNL8nlrAZOBXUkr7kFadW8+\nMBA4Nl/4/Hz+FGAkqV1jekT0zfsPBwZFxHfquae7zlqrcMUV8JOfwK23wvbbVzoas4aVsuvsn4Df\nkqqDqoCxwDVNnRQRZ0dEr4joDRwG3B0RB0dEt4jonffPA7aJiNeAicBhklaX1BvoA8yIiAXAu5IG\n5gbv4cCEIuI2a3E1NXDWWXDxxXD//U4U1n4UM4K7S0TcqfS1/UVgVF4QaUUXe6zvK/+yfRExW9J4\nUs+pJcCIgmLCCOBqoAswKSLcuG2tzscfp2qnf/8bHngA1l+/0hGZlU4x1VAPkKqObgTuAl4Bfh4R\nm5U/vBXjaiirlHfegQMPhHXWgWuugS5dKh2RWXFKWQ31v8CapEWPtgWOBI5uXnhm7cfLL6f5nbba\nKq1J4URh7ZHnhjJrhieeSKOyTzstvVTSvn1m5dfsNbgljYmIUxsYnFfUoDyz9mzaNDjiCLjsMjj0\n0EpHY1ZejTVwj8t/1jc4z1/frUMbOxZ+8AO46SbYdddKR2NWfkVVQ0naACAi/lP2iJrB1VBWbhHw\ns5+ldSggMJazAAASJ0lEQVQmTYK+fSsdkVnzNLuBW8koSW8AzwPPS3pD0shSBmrWVixeDCeeCBMm\npK6xThTWkTTWG+o0YGdgu4hYNyLWBbYHdpZ0eiPnmbU7CxemKTvmzYN77oENN6x0RGYtq8FqKEmP\nA3vWrXrKVVLTImLrFohvhbgaysphwQLYd1/o3z9N47HaapWOyKx0SjHOYtX62ijyvmJGfpu1ec88\nAzvumGaO/cMfnCis42rsl/7ilfzMrM174w0YPTr1erroIjjaw1Ctg2usZPEVSe/V9wK2aqkAzVrS\nwoWpt9Pmm6e5np56yonCDBpfz6JTSwZiVkmLFqVqpp/9DKqq4KGH4MtfrnRUZq2H2x6sQ6upgeuv\nTyvZ9emTxk7071/pqMxaHycL65AiYMqUtPbEGmvAlVfC7rtXOiqz1svJwjqchx6CM89MXWJHj4Zv\nftMTAJo1pZgpys3ahWeeSYnhkENg+PDUeH3ggU4UZsVwsrB27+WX4fjjYdAg2GkneP759H5Vl6vN\niuZkYe3Wm2/C978PW28N3bqlJHHGGV6cyGxlOFlYu/P++6ktYrPN0vasWen9OutUOjKztqvsyUJS\nJ0kzaxdRkvRLSc9IekLSzZLWLjj2LEkvSHpW0uCC/QMkzcqfjSl3zNY2vfoqnHtu6gL75JPw4INp\nLqfu3SsdmVnb1xIli1OB2SxfMGkqsEVEfJU09flZAJL6AcOAfsAQ4HJpWdPjFcDxEdEH6CNpSAvE\nbW1ABNx7LwwbBv36pR5OU6emsRN9+lQ6OrP2o6zJQlJPYB/gSkAAETEtImryIQ8DPfP2UOC6iFgc\nEXOBOcBASRsCXSNiRj5uHHBAOeO21m/hQvjd7+CrX01rTOy8M8ydm0oSW25Z6ejM2p9y9we5GDgD\nWKuBz48Drsvb3YGHCj6bB/QgTVo4r2D//LzfOqDnnoPLL4e//AV22y1N8rfHHu7+alZuZUsWkvYD\nXo+ImZKq6vn8/4BFEXFtKe87atSoZdtVVVVUVX3q1tbGLFkCt98Ov/lNaov49rdh5kzYaKNKR2bW\n9lRXV1NdXb3C5xW1BvfKkDQaGA4sATqTShc3RcRRko4BTgD2iIiP8vFnAkTE+fn9FGAk8CIwPSL6\n5v2HA4Mi4jv13NOLH7Ujr7+epuH47W+hZ0/4n/+Bgw9O03OYWWmUYvGjZomIsyOiV0T0Bg4D7s6J\nYgipampobaLIJgKHSVpdUm+gDzAjIhYA70oamBu8hwMTyhW3VVZE6sV05JGp6+u//rV8zesjjnCi\nMKuUlhrDKpb3hvo1sDowLXd2ejAiRkTEbEnjST2nlgAjCooJI4CrgS7ApIiY0kJxWwv54IPUg+my\ny+Ddd+Gkk+DSS2G99SodmZlBGauhKsHVUG3Lm2/CXXelrq633goDB6aqpr32glU8XNSsRRRbDeVk\nYS1m8eI04+sdd6QE8eyzqUfT4MHwjW9A796VjtCs43GysIqLgDlzUmKYOhWqq9Pqc3vtlRLEjju6\nDcKs0pwsrCLeeWd51dLUqWm50sGD0+vrX4cNNqh0hGZWyMnCWsSSJTBjxvLkMGsW7LLL8gTRr58H\nzJm1Zk4WVhbvvZcGxs2cCXffDdOnw8YbL08Ou+wCnTtXOkozK5aThTVLBLzyCjz++Cdfr7wCW2yR\n5mTabTfYc0/4whcqHa2ZrSwnCyvakiVpYaDahDBzZvoToH//tHhQ7WvTTb3CnFl74mRh9Vq4MFUj\nFZYWnn4aevT4ZFLYemvYcEO3N5i1d04WHVBEGug2b94nX/Pnpz///e+0QNAWW3wyKWy1FXTtWuno\nzawSnCzamZqaNLFe3URQNymsuWYqJfTs+enXRhulcQ6uRjKzWk4WbcjSpanhuG5JoPD16qtpDen6\nkkDtq0ePlCzMzIrlZNHKLV6cBq/dcEOaF2mNNRpPBN27e7SzmZWek0UrtGjRJxPEZpvBIYfAQQd5\nIR8zqwwni1aiNkGMHw8TJy5PEAcfDL16VTo6M+vonCwqaNEiuPPOVIKYOBE233x5CcIJwsxaEyeL\nFrZoEUybtjxB9Ou3PEH07FmRkMzMmuRk0QI+/nh5grjtNicIM2t7nCzKpDZBjB8Pt9+eBrjVJoge\nPcp6azOzknOyKKGPP07Tb99wQ0oQW265PEF0717y25mZtZhik0XZVzqW1EnSTEm35ffrSZom6XlJ\nUyWtU3DsWZJekPSspMEF+wdImpU/G1PumAE++ii1PQwfnmZV/dWvYPvt4amn4N574bvfdaIws46j\n7MkCOBWYDdR+5T8TmBYRmwJ35fdI6gcMA/oBQ4DLpWXT2F0BHB8RfYA+koaUI9DaBHHkkWkSvQsv\nhIEDYfZsuOceOPlkJwgz65jKmiwk9QT2Aa4Ean/x7w+MzdtjgQPy9lDguohYHBFzgTnAQEkbAl0j\nYkY+blzBOc320UdpgFxtgrjoorQ2dGGC2HDDUt3NzKxtKveUchcDZwBrFezrFhGv5e3XgG55uzvw\nUMFx84AewOK8XWt+3r/SPvoIpkxJbRCTJqWZVw85JFU1eSEfM7NPK1uykLQf8HpEzJRUVd8xERGS\nStoiPWrUqGXbVVVVVFWlW3/44ScTxDbbpARx0UXQrVv91zIza2+qq6uprq5e4fPK1htK0mhgOLAE\n6EwqXdwMbAdURcSCXMU0PSI2l3QmQEScn8+fAowEXszH9M37DwcGRcR36rnnJ3pD1SaI8eNh8uTl\nCeLAA50gzMyglXWdlTQI+H5EfEPSBcCbEfGLnCDWiYgzcwP3tcD2pGqmO4Ev59LHw8ApwAzgb8Cl\nETGlnvvEBx8EkyenEsTkyTBgQEoQ3/ymE4SZWV3FJouWXAanNiudD4yXdDwwFzgUICJmSxpP6jm1\nBBhRUEwYAVwNdAEm1Zcoap1/Pvz97ylBjBkDn/98WZ7FzKxDaXeD8mpqwutGm5kVqdUMymtpThRm\nZqXX7pKFmZmVnpOFmZk1ycnCzMya5GRhZmZNcrIwM7MmOVmYmVmTnCzMzKxJThZmZtYkJwszM2uS\nk4WZmTXJycLMzJrkZGFmZk1ysjAzsyY5WZiZWZOcLMzMrElOFmZm1iQnCzMza1LZkoWkzpIelvS4\npNmSfp73by9phqSZkh6RtF3BOWdJekHSs5IGF+wfIGlW/mxMuWI2M7P6lS1ZRMRHwO4RsTXwFWB3\nSbsAvwDOiYj+wI+BCwAk9QOGAf2AIcDl0rJFUq8Ajo+IPkAfSUPKFXdrVV1dXekQysrP17b5+dq/\nslZDRcQHeXN1oBPwNrAAWDvvXweYn7eHAtdFxOKImAvMAQZK2hDoGhEz8nHjgAPKGXdr1N7/sfr5\n2jY/X/u3ajkvLmkV4DHgS8AVEfG0pDOB+yX9ipSsdsyHdwceKjh9HtADWJy3a83P+83MrIWUu2RR\nk6uhegK7SaoC/gicEhEbAacBV5UzBjMzaz5FRMvcSDoH+BD4cUSslfcJeCci1s4lDiLi/PzZFGAk\n8CIwPSL65v2HA4Mi4jv13KNlHsbMrB2JCDV1TNmqoSStDyyJiHckdQH2BH4CzJE0KCLuAb4GPJ9P\nmQhcK+kiUjVTH2BGRISkdyUNBGYAw4FL67tnMQ9sZmYrrpxtFhsCY3O7xSrAnyPiTkknAr+RtAap\npHEiQETMljQemA0sAUbE8mLPCOBqoAswKSKmlDFuMzOro8WqoczMrO1qlyO4JX1PUo2k9SodSylJ\n+qWkZyQ9IelmSWs3fVbrJ2lIHoj5gqQfVjqeUpLUS9J0SU9LekrSKZWOqdQkdcqDbG+rdCylJmkd\nSTfm/3ezJe1Q6ZhKKQ+EfjoPer421/jUq90lC0m9SO0jL1Y6ljKYCmwREV8ltfWcVeF4mk1SJ+Ay\n0kDMfsDhkvpWNqqSWgycFhFbADsA/9POng/gVFL1cXusphhDqvruSxpc/EyF4ykZSZsAJwDbRMRW\npLFwhzV0fLtLFsBFwA8qHUQ5RMS0iKjJbx8mdUlu67YH5kTE3IhYDFxPGqDZLkTEgoh4PG8vJP2y\n6V7ZqEpHUk9gH+BKoF11MMkl910j4iqAiFgSEf+tcFil9C7py8yaklYF1mT5IOlPaVfJQtJQYF5E\nPFnpWFrAccCkSgdRAj2Alwve1w7GbHfyN7n+pETfXlwMnAHUNHVgG9Qb+I+kP0l6TNIfJK1Z6aBK\nJSLeAi4EXgJeIQ1juLOh49tcspA0Ldev1X3tT6qWGVl4eIXCXGmNPN83Co75P2BRRFxbwVBLpT1W\nXXyKpM8CNwKn5hJGmydpP+D1iJhJG/y/VoRVgW2AyyNiG+B94MzKhlQ6kr4E/C+wCam0+1lJRzR0\nfFmn+yiHiNizvv2StiR9E3gizz/YE/iHpO0j4vUWDLFZGnq+WpKOIRX792iRgMpvPtCr4H0vPjm9\nS5snaTXgJuAvETGh0vGU0E7A/pL2AToDa0kaFxFHVTiuUplHqql4JL+/kXaULIBtgQci4k0ASTeT\n/k6vqe/gNleyaEhEPBUR3SKid0T0Jv1Fb9OWEkVT8my7ZwBD86y+7cGjpJmEN5G0Omnm4YkVjqlk\n8iwFfwRmR8QllY6nlCLi7Ijolf+/HQbc3Y4SBRGxAHhZ0qZ519eBpysYUqk9C+wgqUv+d/p1UkeF\nerW5ksUKaI/VG78mzeA7LZeeHoyIEZUNqXkiYomkk4E7SL0x/hgR7abHCbAzcCTwpKSZed9Z7XRg\naXv8P/dd4Jr8ReafwLEVjqdkIuIJSeNIX9hqSJO+/r6h4z0oz8zMmtRuqqHMzKx8nCzMzKxJThZm\nZtYkJwszM2uSk4WZmTXJycLMzJrkZGGtkqTP5WmvZ0p6VdK8vP2epMtKeJ9f5bXhiz2+u6Qbijju\nLkldVzCWTSTNWpFzyknS3PY2zb+tPI+zsFZP0kjgvYi4qMTX7QrcFRHbl/K6+donAF1XJOY80eBt\nebroipP0b2BAnnDOOjiXLKytEICkqtpFdiSNkjRW0r35W/CBuaTwpKTJedplJA2QVC3pUUlTJH0h\nX3MosGyWzXyN0bkE86ikbSRNlTRH0v/Lxyz79i/pGKVFqCZLel7SLwrinUgjawM0+bBS5zzb6ZN5\nxtOqvH9NSePzgjU3S3pI0oB6zj8/H/OEpF/mfd0k3SLp8fzaIe+/JT/vUznJ1RfPkZIezj+b3yot\nl2wdiP/Cra3rDewO7A/8BZgWEV8hre++b57E79fAQRGxLfAn4Lx87i6kqQ5qBfBiRPQH7iWt+/5N\n0qJF5zZw/68ChwJbAcOU1ncgIl4D1pf0mZV8rv8BluZnOZy0nv0apPXo38yLKZ0DDKDONBuSPgcc\nEBG1C2X9NH90KTA9IrYmzaZaOw/Qcflnsx1wiqR161yvb37GnfLPpgZocHZSa5/a89xQ1v4FMDki\nlkp6ClglIu7In80iTb28KbAFcGeeT6sTae5+gI2AV+tcc2LB+Z+JiPeB9yV9LGmtemK4KyLeA5A0\nG9iY5bPmvkaaRffZlXi2nUm/3ImI5yS9mJ9lZ+CSvP9pSfWt3fIO8JGkPwK35xekpHpkPreGtPgN\nwKmSDsjbvYA+wIz8XqQZjgcAj+afYRdgwUo8k7VhThbW1i2C9MtP0uKC/TWkf98Cno6InRo4v27p\n+uOC8xfVc726Pi7YXkpKRrXEp7/1H8DyNVeOj4jHGoir9vwV2Q9ATp7bk37JHwyczPIp7T9xbq7e\n2gPYISI+kjSdNN14XWMj4uzG7mvtm6uhrC0rZsGd54ANCurnV5PUL3/2IvCFBs5b2cV8Cs/rRp21\nOSJiQkT0z6/GEsV95KqePEX2RqRn+TupSoj8HJ9qDM9VX+tExGTgdFJVGcBdwEn5mE65pLQW8HZO\nFJuTqtw+EXI+72BJG+Rz15O0UeM/BmtvnCysrYiCP+vbhk9PkR15Xe+DgV9IehyYCeyYP7+ftABM\nfec3du2G7r/ss9yI/mauxloRtde7HFglVzNdDxwdEYvy/g0kPU1qi3gaqLsudFfgNklPkJLOaXn/\nqcDu+ZqPAn2BKcCquQrt58CDnwooTRn/I2BqvuZUGk6y1k6566x1WEpLnU6PiO3KcO0TSW0eF5f4\nuqsAq0XEx0rLYk4DNo2IJaW8j1ldbrOwDisiFkqaLmn3iJhe4ssPI3XNLbXPAHfnXl4CTnKisJbg\nkoWZmTXJbRZmZtYkJwszM2uSk4WZmTXJycLMzJrkZGFmZk1ysjAzsyb9f7OvE0+0Y33YAAAAAElF\nTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x5dbcf50>"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12-pg346"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate SC\n",
+ "LL=40.\n",
+ "Cc=0.009*(LL-10)\n",
+ "H=10.*12.\n",
+ "eo=1.0\n",
+ "Gss=120.\n",
+ "Gsc=110.\n",
+ "Gd=100.\n",
+ "To=10.*Gd +10.*(Gss-62.4)+10.*(Gsc-62.4)/2.\n",
+ "\n",
+ "Tt=0.408\n",
+ "Tm=0.232\n",
+ "Tb=0.019\n",
+ "Tav= (Tt+4.*Tm+Tb)/6.\n",
+ "Sc=Cc*H*math.log10((To+Tav*1000.)/To)/(1.+eo)\n",
+ "print'%s %.3f %s'%('Sc =',Sc,' in')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Sc = 0.826 in\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex13-pg356"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#intilization variable\n",
+ "#Calculate total primary\n",
+ "import math\n",
+ "H = 6.\n",
+ "Cc = 0.28\n",
+ "eo = 0.9\n",
+ "Cv = 0.36\n",
+ "To=210.\n",
+ "Tp=115.\n",
+ "Sc= Cc*H*math.log10((To+Tp)/To)/(1+eo)\n",
+ "t2=9.\n",
+ "Hd=3.\n",
+ "Tv=Cv*t2/Hd**2\n",
+ "U=0.67\n",
+ "Tf=0.677*Tp\n",
+ "print'%s %.1f %s'%('Tf =',Tf,' kN/m^2')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Tf = 77.9 kN/m^2\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter12.ipynb b/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter12.ipynb new file mode 100755 index 00000000..cbcbfe36 --- /dev/null +++ b/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter12.ipynb @@ -0,0 +1,325 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:72543990db7f8372d360761435a730b82b5eb7400e08be2b7657eafbc30628e4"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter12-Shear Strength of Soil"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg378"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#Determine the relationships for peak shear strength(tf) and residual shear strength(tr).\n",
+ "D=50 ## in mm\n",
+ "A= math.pi/4. *(D/1000.)**2\n",
+ "## solving for test 1 \n",
+ "N=150.\n",
+ "Sp=157.5\n",
+ "Sr=44.2\n",
+ "Tf=Sp/A\n",
+ "Tr=Sr/A\n",
+ "## from graph\n",
+ "k=math.tan(27/57.3)\n",
+ "k1=math.tan(14.6/57.3)\n",
+ "\n",
+ "print'%s %.3f %s'%('Peak strength Tf = 40+ t*',k,'')\n",
+ "print'%s %.3f %s'%(' Residual strength Tr = t*',k1,'')\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Peak strength Tf = 40+ t* 0.509 \n",
+ " Residual strength Tr = t* 0.260 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg385"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#Determine\n",
+ "#a.Angle of friction,f\u0004\n",
+ "#b.Angleuthat the failure plane makes with the major principal plane\n",
+ "T3=16. ## lb/in^2\n",
+ "Tf=25. ## lb/in^2\n",
+ "T1=T3+Tf\n",
+ "a= math.asin((T1-T3)/(T1+T3))*57.3 ## Mohr's circle\n",
+ "print'%s %.2f %s'%('a)Angle of friction,a = ',a,'')\n",
+ "b= 45.+ a/2.\n",
+ "print'%s %.2f %s'%(' b)Angle b that the failure plane makes with the major principal plane = ',b,'')\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "a)Angle of friction,a = 26.02 \n",
+ " b)Angle b that the failure plane makes with the major principal plane = 58.01 \n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg386"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#Find the normal stress s\u0004and the shear stress tfon the failure plane.\n",
+ "#b.Determine the effective normal stress on the plane of maximum shear stress\n",
+ "T1=41.\n",
+ "T3=16.\n",
+ "a=58.\n",
+ "T=(T1+T3)/2. + (T1-T3)*math.cos(2.*a/57.3)/2.\n",
+ "tf=(T1-T3)*math.sin(2.*a/57.3)/2\n",
+ "print'%s %.2f %s'%('a)the normal stress T = ',T,' lb/in^2')\n",
+ "print'%s %.2f %s'%('(b) and the shear stress tf = ',tf,' lb/in^2')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "a)the normal stress T = 23.02 lb/in^2\n",
+ "(b) and the shear stress tf = 11.24 lb/in^2\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg387"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#The equation of the effective stress failure envelope for normally consolidated clayey soilistf \u0001s\u0004tan 30\u0005. A drained triaxial test was conducted with the same soil at a chamberconfining pressure of 10 lb/in.2Calculate the deviator stress at failure.\n",
+ "##For normally consolidated clay, c' \u0004= 0.\n",
+ "a=30.\n",
+ "T3=10.\n",
+ "T1=T3*(math.tan(60/57.3))**2\n",
+ "Tf=T1-T3\n",
+ "print'%s %.2f %s'%('The deviator stress at failure = ',Tf,' lb/in^2')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The deviator stress at failure = 19.99 lb/in^2\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg387"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#Determine the shear strength parameters.\n",
+ "T13=70.\n",
+ "T1f=130.\n",
+ "T11=T13+T1f\n",
+ "\n",
+ "T23=160.\n",
+ "T2f=223.5\n",
+ "T21=T23+T2f\n",
+ "\n",
+ "a= 2*(math.atan(((T11-T21)/(T13-T23))**0.5) *57.3-45)\n",
+ "c= (T11-T13*((math.tan((45+a/2.)/57.3))**2)/(2*math.tan(45+a/2.)/57.3))\n",
+ "d=c-267\n",
+ "print'%s %.2f%s'%('the shear strength parameter d = ',d,' kN/m^2')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the shear strength parameter d = 20.69 kN/m^2\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg394"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#a.Consolidated-undrained angle of shearing resistance,f\n",
+ "#b.Drained friction angle,f\u0004\n",
+ "T3=12.\n",
+ "Tf=9.1\n",
+ "T1=T3+Tf\n",
+ "u=6.8\n",
+ "a=math.asin((T1-T3)/(T1+T3))\n",
+ "\n",
+ "a1= math.asin((T1-T3)/(T1+T3-2*u))\n",
+ "\n",
+ "print'%s %.1f %s'%('a)Consolidated-undrained angle of shearing resistance = ',a*57.3,' degrees')\n",
+ "print'%s %.1f %s'%(' b)Drained friction angle =',a1*57.3,' degrees')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "a)Consolidated-undrained angle of shearing resistance = 16.0 degrees\n",
+ " b)Drained friction angle = 27.8 degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg395"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#What would be the deviatorstress at failure, (\u0010sd)f, if a drained test was conducted with the same chamber allaround pressure (that is, 12 lb/in.2)?\n",
+ "T3=12.\n",
+ "a=27.8\n",
+ "T1=T3*(math.tan(59./57.3))**2\n",
+ "Tf=T1-T3\n",
+ "print'%s %.1f %s'%('the deviator stress at failure = ',Tf,' lb/in^2')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the deviator stress at failure = 21.2 lb/in^2\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8-pg400"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#Estimate the average undrained shear strength of the clay [that is,cu(VST)].\n",
+ "PI=28.\n",
+ "OCR=3.2\n",
+ "To=160.\n",
+ "Kn=0.11+0.0037*PI\n",
+ "Ko=OCR**0.8 * Kn\n",
+ "Cu=Ko*To\n",
+ "print'%s %.1f %s'%('the average undrained shear strength of the clay =',Cu,' kN/m^2')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the average undrained shear strength of the clay = 86.7 kN/m^2\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter13.ipynb b/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter13.ipynb new file mode 100755 index 00000000..20c28288 --- /dev/null +++ b/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter13.ipynb @@ -0,0 +1,434 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:0e1b8f59fb3a5d8de0f3a9b8d0a65d58dfc4a0a36944d60860dc12f3ce3b3032"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter13-Lateral Earth Pressure: At-Rest, Rankine, and Coulomb"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-430"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#Calculate the lateral force Poper unit length of the wall. Also, determine the location ofthe resultant force. Assume that for sand OCR\u00012\n",
+ "OCR=2.\n",
+ "a=30.\n",
+ "Ko=(1.-math.sin(a/57.3))*(OCR)**math.sin(a/57.3)\n",
+ "##at z=0\n",
+ "To1=0.\n",
+ "Th1=0.\n",
+ "u1=0.\n",
+ "##at z=10\n",
+ "To2=10.*100.\n",
+ "Th2=Ko*To2\n",
+ "u2=0.\n",
+ "##at z=15\n",
+ "To3= 10.*100.+5.*(122.4-62.4)\n",
+ "Th3=Ko*To3\n",
+ "u3=5.*62.4\n",
+ "##Lateral force Po =Area 1 +\u0007 Area 2+\u0007 Area3+\u0007 Area 4\n",
+ "Po =(1./2.)*10.*707.+5.*707.+(1./2.)*5.*212.1+(1/2.)*5.*312.\n",
+ "z=((3535.)*(5.+10./3.)+3535.*(5./2.)+530.3*(5./3.)+780.*(5./3.))/Po\n",
+ "print'%s %.1f %s'%('z = ',z,' ft')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "z = 4.8 ft\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg449"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#a.Rankine active force per unit length of the wall and the location of theresultant\n",
+ "#b.Rankine passive force per unit length of the wall and the location of the resultant\n",
+ "##c=0\n",
+ "a=36.\n",
+ "G=16.\n",
+ "Ka=(1.-math.sin(a/57.3))/(1.+math.sin(a/57.3))\n",
+ "##at z=0 Tp=0\n",
+ "z=6.\n",
+ "To=G*z\n",
+ "Ta=Ka*To\n",
+ "Pa=z*Ta/2.\n",
+ "\n",
+ "print'%s %.1f %s'%('a)Rankine active force per unit length of the wall = ',Pa,' kN/m')\n",
+ "print(' and the location of the resultant is z = 2m')\n",
+ "\n",
+ "\n",
+ "p=36.\n",
+ "G=16.\n",
+ "Kp=(1+math.sin(a/57.3))/(1-math.sin(a/57.3))\n",
+ "##at z=0 Tp=0\n",
+ "z=6.\n",
+ "To=G*z\n",
+ "Tp=Kp*To\n",
+ "Pp=z*Tp/2.\n",
+ "\n",
+ "print'%s %.1f %s'%(' b)Rankine passive force per unit length of the wall = ',Pp,' kN/m')\n",
+ "print (' and the location of the resultant is z = 2m')\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "a)Rankine active force per unit length of the wall = 74.8 kN/m\n",
+ " and the location of the resultant is z = 2m\n",
+ " b)Rankine passive force per unit length of the wall = 1109.2 kN/m\n",
+ " and the location of the resultant is z = 2m\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg450"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#Determine the active force Paperunit length of the wall as well as the location and direction of the resultant.\n",
+ "H=12.\n",
+ "a=20.\n",
+ "b=20.\n",
+ "G=115.\n",
+ "c=30.\n",
+ "Oa= math.asin(math.sin(a/57.3)/math.sin(c/57.3))*57.3-a+2.*b\n",
+ "Ka= (math.cos((a-b)/57.3)*math.sqrt(1.+(math.sin(c/57.3))**2.-2.*math.sin(c/57.3)*math.cos(Oa/57.3)))/((math.cos(b/57.3))**2.*(math.cos(a/57.3)+math.sqrt((math.sin(c/57.3))**2.-(math.sin(a/57.3))**2)))\n",
+ "Pa=G*H**2.*Ka/2.\n",
+ "B= math.atan((math.sin(c/57.3)*math.sin(Oa/57.3))/(1.-(math.sin(c/57.3)*math.cos(Oa/57.3))))*57.3\n",
+ "print'%s %.1f %s'%('The active force Pa per unit length of the wall = ',Pa,' lb/ft')\n",
+ "print'%s %.1f %s'%( ' The resultant will act a distance of 12/3 = 4 ft above the bottom of the wall with B = ',B,' degree')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The active force Pa per unit length of the wall = 6423.5 lb/ft\n",
+ " The resultant will act a distance of 12/3 = 4 ft above the bottom of the wall with B = 30.0 degree\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg451"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#determine the force per unit length of the wall for Rankine\u2019s active state. Also find the location of the resultant.\n",
+ "a=30.\n",
+ "Ka1=(1.-math.sin(a/57.3))/(1.+math.sin(a/57.3))\n",
+ "a=35.\n",
+ "Ka2=(1-math.sin(a/57.3))/(1+math.sin(a/57.3))\n",
+ "##at z=0 so T0=0\n",
+ "##atz=3\n",
+ "To=3.*16.\n",
+ "Ta1=Ka1*To\n",
+ "Ta2=Ka2*To\n",
+ "\n",
+ "## At z=6\n",
+ "To=3.*16.+3.*(18.-9.81)\n",
+ "Ta2=Ka2*To\n",
+ "\n",
+ "Pa =(1/2.)*3.*16.+3.*13.0+ (1/2.)*3.*36.1\n",
+ "z= (24 *(3.+3./3.)+39.0*(3/2.)+54.15*(3/3.))/Pa\n",
+ "print'%s %.1f %s'%('The force per unit length of the wall = ',Pa,' kN/m')\n",
+ "print'%s %.1f %s'% (' The location of the resultant = ',z,'m ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The force per unit length of the wall = 117.2 kN/m\n",
+ " The location of the resultant = 1.8 m \n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg453"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#a.Maximum depth of the tensile crack\n",
+ "#b.Pabefore the tensile crack occurs\n",
+ "#c. Pa after the tensile crack occurs\n",
+ "Ka= (math.tan(1./57.3))**2.\n",
+ "G=16.5\n",
+ "cu=10.\n",
+ "H=6.\n",
+ "##at z=0\n",
+ "z=0.\n",
+ "Ta=G*z-2.*cu\n",
+ "##zt z=6\n",
+ "z=6.\n",
+ "Ta=G*z-2.*cu\n",
+ "\n",
+ "zo=2.*cu/G\n",
+ "## Before the tensile crack occurs\n",
+ "Pa= G*H**2./2. - 2.*cu*H\n",
+ "print'%s %.1f %s'%('Pa before the tensile crack occurs = ',Pa,' kN/m')\n",
+ "##After the tensile crack occurs\n",
+ "Pa=(H-zo)*Ta/2.\n",
+ "print'%s %.1f %s'%(' Pa after the tensile crack occurs = ',Pa,' kN/m')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Pa before the tensile crack occurs = 177.0 kN/m\n",
+ " Pa after the tensile crack occurs = 189.1 kN/m\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg457"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#Determine the Rankine active force Paon the retaining wall after the tensile crack occurs.\n",
+ "H=15.\n",
+ "a=10.\n",
+ "G=118.\n",
+ "b=20.\n",
+ "C=250\n",
+ "Zo=2.*C*math.sqrt((1+math.sin(b/57.3))/(1.-math.sin(b/57.3)))/G\n",
+ "##at z=0 Ta=0\n",
+ "##at z=15 \n",
+ "z=15.\n",
+ "K=0.3\n",
+ "Ta=G*z*K*math.cos(a/57.3)\n",
+ "Pa=(H -Zo)*Ta/2.\n",
+ "print'%s %.1f %s'%('The Rankine active force Pa on the retaining wall after the tensile crack occurs = ',Pa,' lb/ft')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Rankine active force Pa on the retaining wall after the tensile crack occurs = 2339.8 lb/ft\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg459"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Estimate the active force,Pa , per unit length of the wall. Also, state the direction and location of the resultant force,Pa.\n",
+ "import math\n",
+ "c=30.\n",
+ "b=15.\n",
+ "a=10.\n",
+ "Ka=0.3872 ## from table 13.8\n",
+ "H=4.\n",
+ "G=15.\n",
+ "Pa=G*H**2.*Ka/2.\n",
+ "print'%s %.1f %s'%('The active force per unit length Pa = ',Pa,' kN/m')\n",
+ "print(' The resultant will act at a vertical distance equal to H/3 = 4/3 = 1.33 m above ' ' the bottom of the wall and will be inclined at an angle of 15\u0005to the back face of the wall.')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The active force per unit length Pa = 46.5 kN/m\n",
+ " The resultant will act at a vertical distance equal to H/3 = 4/3 = 1.33 m above the bottom of the wall and will be inclined at an angle of 15\u0005to the back face of the wall.\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9-pg478"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#Determine Pae.Also determine the location of the resultant line of action of Pae\u2014that is, .\n",
+ "kh=0.2\n",
+ "kv=0.\n",
+ "H=4.\n",
+ "a=0.\n",
+ "b=0.\n",
+ "c=15.\n",
+ "d=30.\n",
+ "G=15.5\n",
+ "B= math.atan(kh/(1-kv)/57.3)\n",
+ "b1=b+B\n",
+ "a1=a+B\n",
+ "Ka=0.452\n",
+ "Pa=G*H**2.*Ka/2.\n",
+ "Pae=Pa*(1.-kv)*((math.cos(b1/57.3))**2./((math.cos(b/57.3))**2.*(math.cos(B/57.3))**2.))\n",
+ "Ka=0.3014\n",
+ "Pa=G*H**2*Ka/2.\n",
+ "P1=Pae-Pa\n",
+ "z= ((Pa*H/3)+P1*0.6*H)/Pae\n",
+ "print'%s %.1f %s'%('Pae = ',Pae,' kN/m')\n",
+ "print'%s %.1f %s'%(' Z = ',z,' m')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Pae = 56.0 kN/m\n",
+ " Z = 1.7 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10-pg479"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#Determine the magnitude of the active force,Pae.\n",
+ "H=28.\n",
+ "C=210.\n",
+ "b=10.\n",
+ "G=118.\n",
+ "c=20.\n",
+ "kh=0.1\n",
+ "Ka=math.tan(35./57.3)\n",
+ "zo=2.*C/(G*(Ka))\n",
+ "n=zo/(H-zo)\n",
+ "Nac=1.60\n",
+ "Nav=0.375\n",
+ "L=1.17\n",
+ "Pae= G*(H-zo)**2*(L*Nav)-C*(H-zo)*Nac\n",
+ "print'%s %.1f %s'%('The magnitude of the active force, Pae = ',Pae,' lb/ft')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The magnitude of the active force, Pae = 19488.8 lb/ft\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter14.ipynb b/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter14.ipynb new file mode 100755 index 00000000..b6a23eb1 --- /dev/null +++ b/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter14.ipynb @@ -0,0 +1,122 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:48c1632c9bf2565b11bcfc44de09d03ed2fce97fd897e255ae43ede2375057bf"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter14-Lateral Earth Pressure: Curved Failure Surface"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-497"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#a.Coulomb\u2019s theory\n",
+ "#b.Terzaghi and Peck\u2019s wedge theory\n",
+ "#c. Shields and Tolunay\u2019s solution (method of slices)\n",
+ "#d.Zhu and Qian\u2019s solution (method of triangular slices)\n",
+ "G=15.7\n",
+ "a=0.\n",
+ "b=15.\n",
+ "c=30.\n",
+ "H=3.\n",
+ "Kp=4.977 ## from table 13.9\n",
+ "Pp=Kp*G*H**2./2.\n",
+ "print'%s %.1f %s'%('a)the passive force = ',Pp,' kN/m')\n",
+ "## for part b\n",
+ "Kp=4.53\n",
+ "Pp=Kp*G*H**2./2.\n",
+ "print'%s %.1f %s'%('b)the passive force = ',Pp,' kN/m')\n",
+ "## for part c\n",
+ "Kp=4.13\n",
+ "Pp=Kp*G*H**2/2.\n",
+ "print'%s %.1f %s'%('c)the passive force =',Pp,' kN/m')\n",
+ "##for part d\n",
+ "Kp=4.56\n",
+ "Pp=Kp*G*H**2/2.\n",
+ "print'%s %.1f %s'%('d)the passive force =',Pp,' kN/m')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "a)the passive force = 351.6 kN/m\n",
+ "b)the passive force = 320.0 kN/m\n",
+ "c)the passive force = 291.8 kN/m\n",
+ "d)the passive force = 322.2 kN/m\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg507"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the design strut loads.\n",
+ "G=16.\n",
+ "H=7.\n",
+ "c=30.\n",
+ "Ta=0.65*G*H*(math.tan(30./57.3))**2\n",
+ "A=Ta*3.*3./4.\n",
+ "B1=Ta*3.-54.61\n",
+ "C=Ta*4.*4./4.\n",
+ "B2=Ta*4.-97.08\n",
+ "s=2.\n",
+ "As=A*s\n",
+ "Bs=(B1+B2)*s\n",
+ "Cs=C*s\n",
+ "print'%s %.1f %s'%( 'The strut loads at level A = ',As,' kN')\n",
+ "print'%s %.1f %s'%( ' The strut loads at level B = ',Bs,' kN')\n",
+ "print'%s %.1f %s'%( ' The strut loads at level C =',Cs,' kN')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The strut loads at level A = 109.2 kN\n",
+ " The strut loads at level B = 36.3 kN\n",
+ " The strut loads at level C = 194.1 kN\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter15.ipynb b/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter15.ipynb new file mode 100755 index 00000000..04d58e71 --- /dev/null +++ b/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter15.ipynb @@ -0,0 +1,499 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:4c2cef1cd7673363b2ef6cb15cb908c88921a9f728253dd7a799bca223f736c1"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter15-Slope Stability"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg518"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#a.The factor of safety against sliding along the soil-rock interface.\n",
+ "#b.The height,H, that will give a factor of safety (Fs) of 2 against sliding alongthe soil-rock interface.\n",
+ "Gs=17.8\n",
+ "Gw=9.81\n",
+ "C=10.\n",
+ "c=20.\n",
+ "b=15.\n",
+ "H=6.\n",
+ "G=Gs-Gw\n",
+ "Fs= C/(Gs*H*math.cos(b/57.3)*math.cos(b/57.3)*math.tan(b/57.3))+G*math.tan(c/57.3)/(Gs*math.tan(b/57.3))\n",
+ "print'%s %.2f %s'%('a)The factor of safety = ',Fs,' ')\n",
+ "Fs=2.\n",
+ "H=2.247/(Fs-0.61)\n",
+ "print'%s %.2f %s'%(' b)H= ',H,' m')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "a)The factor of safety = 0.98 \n",
+ " b)H= 1.62 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg529"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#a.Determine the maximum depth up to which the excavation can be carried out.\n",
+ "#b.Find the radius,r, of the critical circle when the factor of safety is equal to 1(Part a).\n",
+ "#c. Find the distance . BC\n",
+ "Cu=40.\n",
+ "G=17.5\n",
+ "b=60.\n",
+ "a=35.\n",
+ "c=72.5\n",
+ "m=0.195\n",
+ "Hc=Cu/(G*m)\n",
+ "r=Hc/(2.*math.sin(a/57.3)*math.sin((c/2)/57.3))\n",
+ "BC=Hc*((1./math.tan(a/57.3))-(1./math.tan(b/57.3)))\n",
+ "print'%s %.1f %s'%('a)The maximum depth Hc = ',Hc,' m')\n",
+ "print'%s %.2f %s'%(' b)The radius, r = ',r,' m')\n",
+ "print'%s %.3f %s'%(' c)The distance BC.= ',BC,' m')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "a)The maximum depth Hc = 11.7 m\n",
+ " b)The radius, r = 17.28 m\n",
+ " c)The distance BC.= 9.973 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg531"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#a.Determine the undrained cohesion of the clay (Figure 15.13).\n",
+ "#b.What was the nature of the critical circle?\n",
+ "#c. With reference to the toe of the slope, at what distance did the surface of sliding intersect the bottom of the excavation?\n",
+ "Gs=17.29\n",
+ "d=9.15\n",
+ "d1=6.1\n",
+ "D=d/d1\n",
+ "a=40.\n",
+ "m=0.175\n",
+ "b=40.\n",
+ "H=6.1\n",
+ "Cu=H*Gs*m\n",
+ "print'%s %.1f %s'%('a)The undrained cohesion of the clay Cu = ',Cu,' kN/m^2')\n",
+ "print(' b)The nature of the critical circle is midpointcircle')\n",
+ "d=1.5\n",
+ "b=40.\n",
+ "n=0.9\n",
+ "D1=n*H\n",
+ "print'%s %.1f %s'%(' c)Distance = ',D1,' m')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "a)The undrained cohesion of the clay Cu = 18.5 kN/m^2\n",
+ " b)The nature of the critical circle is midpointcircle\n",
+ " c)Distance = 5.5 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg534"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#a.Determine the maximum depth up to which the cut could be made.\n",
+ "#b.How deep should the cut be made if a factor of safety of 2 against sliding is required\n",
+ "Fs=1.\n",
+ "b=56.\n",
+ "Kh=0.25\n",
+ "M=3.66\n",
+ "Cu=500.\n",
+ "G=100.\n",
+ "Hc=Cu*M/G\n",
+ "print'%s %.1f %s'%('a)The maximum depth =',Hc,' ft')\n",
+ "Fs=2.\n",
+ "H=Cu*M/(G*Fs)\n",
+ "print'%s %.1f %s'%(' b)H= ',H,' ft')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "a)The maximum depth = 18.3 ft\n",
+ " b)H= 9.2 ft\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg541"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#a.Find the critical height of the slope.\n",
+ "#b.If the height of the slope is 10 m, determine the factor of safety with respect to strength.\n",
+ "b=45.\n",
+ "c=20.\n",
+ "C=24.\n",
+ "G=18.9\n",
+ "m=0.06\n",
+ "Hc=C/(G*m)\n",
+ "Cd=G*Hc*m\n",
+ "Fc=C/Cd\n",
+ "print'%s %.1f %s'%('a)Critical height of slope = ',Hc,'')\n",
+ "#calculate the factor of safety using spencers solution\n",
+ "import math\n",
+ "%matplotlib inline\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
+ "import numpy\n",
+ "from math import tan\n",
+ "import matplotlib\n",
+ "from matplotlib import pyplot\n",
+ "phid=numpy.array([20,15,10,5])*math.pi/180.\n",
+ "mx=numpy.array([.06,.083,.105,.136])\n",
+ "cdx=numpy.array([11.34,15.69,19.85,25.7])\n",
+ "m=.06\n",
+ "g=18.9\n",
+ "cd=24.\n",
+ "#calculations\n",
+ "Hcr=cd/g/m\n",
+ "leng=len(phid)\n",
+ "Fcd=numpy.zeros(leng)\n",
+ "Fphi=numpy.zeros(leng)\n",
+ "tanphid=numpy.zeros(leng)\n",
+ "for i in range(0,leng):\n",
+ "\ttanphid[i]=math.tan(phid[i])\n",
+ "\tFphi[i]= tan(phid[0])/tan(phid[i])\n",
+ "\tFcd[i]=cd/cdx[i]\n",
+ "\n",
+ "\n",
+ "#results\n",
+ "print'%s %.2f %s'%('The value of Hcr (in m) = ',Hcr,'')\n",
+ "print 'from graph, Fss=1.4'\n",
+ "pyplot.plot(Fcd,Fphi)\n",
+ "pyplot.xlabel('Fc assumed')\n",
+ "pyplot.ylabel('Fc calculated')\n",
+ "pyplot.title('Graph of Fc assumed vs Fc calculated')\n",
+ "pyplot.show()\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "a)Critical height of slope = 21.2 \n",
+ "The value of Hcr (in m) = 21.16 \n",
+ "from graph, Fss=1.4\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEZCAYAAACTsIJzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8lHXd//HXm01AXHBJU3EFBVwQTVSSm6O2SUrdmWlp\n6l2pueeSJWmipubPSlNLzSW1O7VS71wyM6tjlkaZgOwKLmApauCC4AJ8fn98rwNzhjnnzFnmXDPn\nvJ+PxzzOtc11feY6M/OZ73J9L0UEZmZmDXrkHYCZmVUXJwYzM2vEicHMzBpxYjAzs0acGMzMrBEn\nBjMza8SJoRuSNFHSzzpoX5tI+rOkNyVd1hH77Mok1UlakHccldJR7y1JKyVt2xExlXGseklf7oxj\n1Qonhiog6TBJkyQtkbRQ0t8kHV/BQ3bkxSvHAq9ExLoR8fXilZJulvSupLcKHod04PGtSM7nvFMv\njJK0dZZE2vNdFnRy3NXOiSFnks4ArgAuBTaJiE2ArwIfltSniee09/+mdj6/0FbArGbWB3BpRKxT\n8PhVBx7f1pTnOe/I91YtHLdLcmLIkaT1gPOB4yPi7oh4GyAipkTEERHxXrbdzZKukfSApCVAnaRP\nSpos6Q1J8yWdV7Dfhl9Rx0j6l6R/ZwmoQQB9JN2SVQFNl7R7M3GOlvQPSa9L+rukvRviAo4Ezsp+\nle7Xytc/SNLdkl6R9Jqkq5rYbpSkxyUtzl7LVZJ6F6y/PCtpvSHpKUk7ZsvHSZqRvcYXG86BpKMl\nPVp0jFVVF9n5/nF2vt+S9KikTSX9MIthlqRdC567maS7stfxrKSTC9b1y/a3SNIMYI9mzsc1xdVx\nku6R9LVs+hvZ63hT0uzWnu9sH+We8x6SJkiamx3vCUmbZ+t+mL3n3siW79PM8faR9Fh23uZLOjJb\n3qj6ptT/pGBdk+914M/Z39ez/9We2XO+JGlmdt4flLRlwf4+mp2/17PXL5xYGosIP3J6AJ8A3gd6\ntLDdzcDrwN7Z/FrAWGDHbH5n4GXgU9n81sBK4OdAP2An4BVg/2z9RGBZdnwBFwOPN3HsDYDFwOGk\nHxKHAYuAgdn6nwIXNBP7T4ELSyzvCUwFvp/FuBbw4Sb2sRswKjv+VsBM4NRs3ceBJ4B1s/kdgE2z\n6Zca9gmsB4zMpo8GHi06xkpg24Lz/SowMovrD8DzwBHZ+boQ+GO2bQ/gn8A5QC9gG2Ae8LFs/XeB\nR4D1gS2A6cD8Jl7nmMJ1wEBgKbBp9rrmF7y2LRvirdA5/zrwFDCk4D22QTZ9eBZbD+D07Dz3KXhv\n/Syb3gp4Ezg0O/YGwIhs3Z+ALxUcr9H/pOj/0dx7fats2x4Fz/0U8Ex2znoA3wL+mq3bKIvpM1lM\nXyN9Br9U6jx010fuAXTnR/ZF81LRssdIX8RLgX2yZTcDN7ewryuAH2TTW2cflu0L1l8K3JBNTwQe\nKlg3HFjaxH6/CPytRIxHZdMlv4QKtr2ZlIQWZ49XsuV7k5JVs0mxiX1+Dbg7m94PmAPsWbwv4AVS\nG8i6RcsbfQllywq/iH4KXFew7iRgRsH8zsDibHpP4IWifZ0N3JRNr0oS2fwxwIImXpeymMcUbPtw\nNj0YWAjsD/Ru4fy0+5wDs4GDyvx/LAJ2LnhvNSSGs4G7mnhO2YmhzPd6YWL4bdG+ewBvk5LpkcBj\nRftbgBNDo4erkvL1H2CjwjaDiBgdEQOzdQ3Lg/TmXUXSnpL+lFUJvA4cB2xYtP/C58wHNiuYX1gw\nvRToq9JtF5tlzy30QtG+mhPAZRExMHt8IFs+iPSFurKlHUjaXtL9kl6S9AZwEdlrjYg/AlcDPwIW\nSrpO0jrZUw8GxgHPZ1UXe5UZM6Qv0AbvFM0vAwZk01sBm2VVJYslLSZ9ITa8zs1Y8/9QUqRvqTuA\nz2eLvkAq9RERc0kJcWL2Om+X9MGmdkU7z3m27bxSKySdmVXTvJ693vVIv8RL7ePZMo7VrDLf64W2\nAn5Y8P/4T7Z8c+CDwItF23fZXmJt5cSQr8eBd4FPt+G5twG/BraIiPWBa1nz/7ll0fS/2nCcf5E+\naIW2auW+StXfLgC2lNSzjOdfQ6o+GhwR65GqBgqT6VUR8SFSyWd7UjUIEfFERHwa2Jh0rn6ZPeVt\noP+q4KRNW/FaSr2O5wq+hAdG6qF1YLb+Jdb8PzTnduCzkrYiVZ/d1bAiIm6PiDGk8x+kUmBT2nvO\nF5BKKY13Ko0hnd9DImL97EfMG00cbz6wXRP7fxtYu2C+uf9Bc+/1Ur2J5gPHFv1P1o6Ix0n/j0EF\nr0eF85Y4MeQoIl4nNT7/WNLBktbJGv12pfGHptSHbgCpOuM9SaNIvy6LPyTnZI2fO5KK6r9oQ5gP\nANtL+rykXpIOBYYC9zcTW6Gm1k8ifUi/K6m/pL6SRjex7QDgLWCppKHA8WSvVdKHsl+UvUkln3eA\nFZJ6Szpc0noRsSJ7/opsf1OBHSWNkNSX9Cu8nJhL+TvwlqSzsnPdU9JOkj6Urf8lcLak9SVtAZzc\n9K5SxwPgNeAG4MGIeDN7ndtL2k/SWqQfE+8UvJ5iHXHObwAulDRYyS6SNiD9L5YDr0nqI+nbwLpN\n7OM24COSDsneOxtKGpGtmwJ8Jjtng4HmriNo7r3+KqkqqTABXQtMkDQcUicPre6u+wDpf//fknoB\np9B8UuqWnBhyFhGXkRrwziI1qr1MemOfRSpRQOl+1icAF0h6EziX0l/6jwBzgYdJVQsPN7O/kv24\nI2IRcCBwBukL60zgwGx5U/sq3u8a67PqjINIv0rnk36hfq6JfZxJ+jJ4E/gJqbqlwbrZskWkBuLX\ngIaePUcAz2XVT8eSGk2JiKeBC0jnZQ7waFGMxTE3eb6ypHMgsCup2uTVLJ6GL8vzSVVvzwEPAreW\nOh9FbiO1ndxWsGwt4JJs/y+Rqm7ObuL5HXHOf0BKag+RSgTXA32B32Wv42nS+V5G4+qxVceOiPmk\nqrwzSNU5k4Fdsu0uB94jVWn+FPhf1jznDZp8r0fEUlLV4l+zqqNREfFrUmnqjux/P43USYGIeA04\nhNQp4LXsXPyliXPQbSlrfKncAVKx9QngxYg4qGhdHXAPq+sh74qI71Q0oG5A0takc9qrzPpkM7NV\nenXCMU4l1Q+v08T6RyJifCfEYWZmZahoVVJWpzqOVF/ZVL2nLyypjMoWBc2sy6p0G8PlpB4MTVVn\nBDBa0lSlq0yHVziebiEino+Inq5GMrO2qFhikHQg6cKayTRdKngSGBQRI4CrSF3SzMwsRxVrfJZ0\nMemq2eWk3gzrkhqXj2zmOc8Buxf0eGlY7moRM7M2iIhWV9dXrMQQERMiYlBEbEMaX+ePxUlBaSx/\nZdOjSIlqUYnd5X6JeHse5513Xu4xdNf4azl2x5//o9bjb6vO6JXUoOGCpOMAIuI64LPA8ZKWky5O\nOqwT4zEzsxI6JTFExCOki60aEkLD8h+RxrgxM7Mq4SufO0FdXV3eIbRLLcdfy7GD489brcffVhW/\n8rkjSIpaiNPMrJpIIqqp8dnMzGqTE4OZmTXixGBmZo04MZiZWSNODGZm1ogTg5mZNeLEYGZmjTgx\nmJlZI04MZmbWiBODmZk14sRgZmaNODGYmVkjTgxmZtaIE4OZmTXixNCC116D55/POwozs87jxNCC\n22+HU0/NOwozs87jG/W0YNky2G47+M1vYOTIXEIwM2sT36inQvr1g69/Hb7znbwjMTPrHC4xlGHp\nUth2W/j972HnnXMLw8ysVVxiqKD+/eGMM1xqMLPuwSWGMi1ZkkoN9fUwfHiuoZiZlaVqSwySekqa\nLOm+JtZfKekZSVMlVW3z7oABcNppcNFFeUdiZlZZnVGVdCowE1jjJ7+kccDgiBgCHAtc0wnxtNmJ\nJ8JDD8GcOXlHYmZWORVNDJK2AMYBNwClijPjgVsAImISsL6kTSoZU3usu266puHii/OOxMyscipd\nYrgc+Dqwson1mwMLCuZfBLaocEztcvLJ6ZqGuXPzjsTMrDJ6VWrHkg4EXomIyZLqmtu0aL5kK/PE\niRNXTdfV1VFX19wuK2e99eCkk+CSS+DGG3MJwcyspPr6eurr69u9n4r1SpJ0MfBFYDnQF1gXuCsi\njizY5lqgPiLuyOZnA2MjYmHRvnLvlVRo8WIYPBieeAK22SbvaMzMSqu6XkkRMSEiBkXENsBhwB8L\nk0LmXuBIAEl7Aa8XJ4VqNHAgHH88fPe7eUdiZtbxOvMCtwCQdJyk4wAi4gHgWUlzgeuAEzoxnnY5\n7TS4806YPz/vSMzMOpYvcGuHb34T3noLfvSjvCMxM1tTW6uSnBja4ZVXYOhQmDYNNt8872jMzBqr\nujaG7uADH4AvfQkuvTTvSMzMOo5LDO308stp7KQZM+CDH8w7GjOz1VxiyMmmm8KRR8Jll+UdiZlZ\nx3CJoQP8+9+w004waxZsUrUDephZd+MSQ4422wy+8AX4/vfzjsTMrP1cYuggCxbAiBFp5NWNN847\nGjMzlxhyN2gQfO5zcPnleUdiZtY+LjF0oOefh913h2eegQ02yDsaM+vuXGKoAltvDf/933DFFXlH\nYmbWdi4xdLBnn4VRo9L9GtZfP+9ozKw7c4mhSmy7LRx0EFx5Zd6RmJm1jUsMFfDMMzB6NMybl24H\namaWB5cYqsiQIfCJT8DVV+cdiZlZ67nEUCGzZ8N//VcqNayzTt7RmFl35BJDlRk6FPbfH665Ju9I\nzMxaxyWGCpoxIyWHefNg7bXzjsbMuhuXGKrQjjvCmDFw3XV5R2JmVj6XGCps6tTUEP3ss9CvX97R\nmFl34hJDlRoxAvbaC66/Pu9IzMzK4xJDJ3jySRg/Pl0N3bdv3tGYWXfhEkMV2203GDkSbrwx70jM\nzFrmEkMn+fvf4eCDU6lhrbXyjsbMuoOqLDFI6itpkqQpkmZKuqTENnWS3pA0OXucU8mY8jJqVLr9\n58035x2JmVnzKl5ikNQ/IpZK6gX8BTgzIv5SsL4OOD0ixjezj5ovMQA8/jh8/vPw9NPQp0/e0ZhZ\nV1eVJQaAiFiaTfYBegKLSmzW6sBr0d57p3GUfvazvCMxM2taxRODpB6SpgALgT9FxMyiTQIYLWmq\npAckDa90THn69rfhoovg/ffzjsTMrLRelT5ARKwEdpW0HvA7SXURUV+wyZPAoKy66QDg18D2xfuZ\nOHHiqum6ujrq6uoqGXbFjBmT7vR2221w1FF5R2NmXUl9fT319fXt3k+n9kqSdC6wLCK+18w2zwG7\nR8SigmVdoo2hQX09HHsszJwJvSqems2su6rKNgZJG0laP5vuB3wUmFy0zSaSlE2PIiWrUu0QXcbY\nsbDppvCLX+QdiZnZmipaYpC0M3ALKQH1AH4WEZdJOg4gIq6TdCJwPLAcWErqofS3ov10qRIDwMMP\nw8knw/Tp0LNn3tGYWVfU1hKDL3DLSQR8+MNw6qlw6KF5R2NmXZETQw168EE480x46ino4cFJzKyD\nVWUbgzXv4x+H/v3h//4v70jMzFZzYsiRlK5ruOACWLky72jMzBInhpx98pOp8fm++/KOxMwscWLI\nWWGpoQs2o5hZDXJiqALjx8Py5fDAA3lHYmbmxFAVevSAc891qcHMqoMTQ5X4zGdgyRJ46KG8IzGz\n7s6JoUo0lBrOP9+lBjPLlxNDFTnkEFi0CP74x7wjMbPuzImhivTsCeec41KDmeWrySExJO1OuomO\nsr+NRMSTlQ2tUSxdckiMUpYvh2HD4PrroUZvOWFmVaLDx0qSVE9KCP2A3YGnslW7AE9ExN5tC7X1\nulNiALj5Zrj1VlcpmVn7dPhYSRFRFxH7Av8GdouI3SNid2Bktswq5PDD4YUX4NFH847EzLqjctoY\nhkbEtIaZiJgODKtcSNa7N0yYABdemHckZtYdtTjstqQ7gCXA/5LaG74ADIiIz1c+vFUxdKuqJID3\n3oPtt4fbb4e9O63Szsy6kordjyG7JefxwJhs0Z+BayLinVZH2UbdMTEAXHcd3HOPh8ows7ap6I16\nJPUHtoyI2W0Jrr26a2J4910YPBjuvhv22CPvaMys1lTsRj2SxgOTgQez+ZGS7m19iNZaa60F3/ym\n2xrMrHOVU5X0JLAf8KeIGJktmx4RO3VCfA0xdMsSA8A778B228H998PIkXlHY2a1pJK39nw/Il4v\nWub7jXWSvn3hrLNcajCzzlNOYpgh6XCgl6Qhkq4CHqtwXFbgmGPg8cfhqada3tbMrL3KSQwnAzsC\n7wK3A28CX6tkUNZY//5w5pnwne/kHYmZdQfltDEcEhG/amlZief1BR4B1gL6APdExNkltrsSOABY\nChwdEZNLbNNt2xgavP02bLttGiZjxx3zjsbMakEl2xgmlLmskew6h30jYlfS+Er7StqncBtJ44DB\nETEEOBa4pox4uqW114bTT4eLLso7EjPr6no1tULSAcA4YPPsV31D1lkHeL+cnUfE0myyD9ATWFS0\nyXjglmzbSZLWl7RJRCws/yV0HyeckHoozZ4NQ4fmHY2ZdVXNlRj+DfwTeCf72/C4F/h4OTuX1EPS\nFGAhqbvrzKJNNgcWFMy/CGxRXujdzzrrwKmnwsUX5x2JmXVlTZYYImIqMFXSbRHxXlt2HhErgV0l\nrQf8TlJdRNQXbVZc/1WyMWHixImrpuvq6qjrpjcrOOmkdDX03Lnpr5lZg/r6eurr69u9n3Ian7cH\nLgaGk+7NABARsW2rDiSdCyyLiO8VLLsWqI+IO7L52cDY4qokNz43dv75aVjum27KOxIzq2aVbHz+\nKXAtsByoI7UJ/LyMgDaStH423Q/4KGlojUL3Akdm2+wFvO72hZadcgrcey8891zekZhZV1ROYugX\nEQ+TShcvRMRE4JNlPO+DwB+zNoZJwH0R8QdJx0k6DiAiHgCelTQXuA44oU2vopsZODA1RF9ySd6R\nmFlXVE5V0mOkIbfvBP5AapS+JCJ2qHx4q2JwVVKRRYtgyBB48knYaqu8ozGzalTJ+zGMAmYB6wMX\nAusC/y8i/taWQNvCiaG0CRNg8WK4xld/mFkJFb0fQ96cGEp77TXYYQeYMgUGDco7GjOrNh2eGCTd\n18zzIiLGt/ZgbeXE0LSzzoJly+Cqq/KOxMyqTSUSQ11zTyxxPULFODE0beFCGDYMpk+HzTbLOxoz\nqyauSurGTj8dIuDyy/OOxMyqSSUbn0v1lm/1BW7t4cTQvJdeSiOuzpwJm26adzRmVi0qmRg2Kpjt\nC3wW2DAizm3twdrKiaFlp5yS7hF92WV5R2Jm1aJTq5IkPRkRu7X6iW3kxNCyF1+EXXaBOXNg443z\njsbMqkElSwy7s3pgux7Ah4DjI2JEq6NsIyeG8pxwAqy3nq+INrOkkomhntWJYTnwPPC9iJjT2oO1\nlRNDeebPh5Ej4emnYcMN847GzPLmXkkGwLHHwiabwIUX5h2JmeWtYqOrSrq4YZTUbH6gJN+Wvkqd\nfXYaImPx4rwjMbNaVc7oquMi4vWGmYhYTHmjq1oOttkGxo+HK6/MOxIzq1XlJIYekvo2zGT3VuhT\nuZCsvSZMgKuvhjfeyDsSM6tF5SSGnwN/kPRlSV8BHgZurWxY1h6DB8MBB6TkYGbWWmU1Pks6APgI\nqXfS7yPid5UOrOj4bnxupTlzYMwYmDcP1lkn72jMLA/ulWRrOPzwdNHbN76RdyRmlodKjK66hNXX\nLxSLiFi3tQdrKyeGtpk5E/bdF559FtZeO+9ozKyzucRgJR16KIwaBWeckXckZtbZKp4YJH2ANIge\nABExv7UHaysnhrabNg0+9rHU1tC/f97RmFlnquQFbuMlPQM8BzxCGhLjt62O0HKx884wejT85Cd5\nR2JmtaKcsZKeAvYj9UYaKWlf4IsR8aXOCDCLwSWGdpgyBcaNS6WGfv3yjsbMOkvFSgzA+xHxGulC\nt54R8SfSCKtWI3bdFfbYA268Me9IzKwWlJMYFktaB3gU+LmkK4El5exc0iBJf5I0Q9J0SaeU2KZO\n0huSJmePc1r3Eqwc554Ll14K776bdyRmVu3KqUpaG3iHlEQOB9YFfh4R/2lx59KmwKYRMUXSAOCf\nwKcjYlbBNnXA6RExvpn9uCqpA3zyk3DQQfDVr+YdiZl1hkpWJX0A6BMR70fEzcD1QFnX0kbEyxEx\nJZteAswCNiuxaasDt9Y799x0E5/33ss7EjOrZuUkhjuBFQXzK7NlrSJpa2AkMKloVQCjJU2V9ICk\n4a3dt5Vnr71g6FC41SNdmVkzepWxTc+IWPUbMyLeldS7NQfJqpHuBE7NSg6FngQGRcTSbEymXwPb\nF+9j4sSJq6br6uqoq6trTQiW+fa34YtfhKOOgt6t+i+aWbWrr6+nvr6+3fspp43hYeCqiLgnm/8U\ncEpE7F/WAVISuR/4bURcUcb2zwG7R8SigmVuY+hA+++fksPRR+cdiZlVUiXv+TyYNPR2Q9vAi6Tr\nGOaWEZSAW4D/RMRpTWyzCfBKRISkUcAvI2Lrom2cGDrQI4/AV74Cs2ZBr3LKjGZWkzpjSIx1ACLi\nrVYEtQ/wZ+ApVg/INwHYMtvXdZJOBI4HlgNLST2U/la0HyeGDjZ2LBxzDBxxRN6RmFmleBA9a5U/\n/AFOPBFmzICePfOOxswqoZLdVa0L2m8/2HBD+NWv8o7EzKqNSwzd2EMPwWmnpRFYe/gnglmXU8nR\nVU+SNLBgfqCkE1p7IKs+H/1ouu3n3XfnHYmZVZNyeiVNjYgRRcumRMSuFY2s8fFcYqiQBx6As8+G\nyZNdajDrairZxtBD0qrtJPUEfGlUF3HAAelCt3vvzTsSM6sW5SSG3wF3SNpf0keAO4AHKxuWdRYp\nXQ19wQXgQpmZQXlVST2BY4GGK51/D9wQESuaflbHclVSZUXAyJHwne/AgQfmHY2ZdZQOv45B0pad\neV/n5jgxVN7dd8N3vwuTJqVShJnVvkq0MdxTsPO72hSV1YxPfxqWLYMHXUlo1u2V2w9l24pGYbnr\n0SPdr+H8893WYNbduYOirXLwwfDmm/Dww3lHYmZ5aq6NYQVpUDuAfsCygtUREetWOLbCWNzG0Elu\nuw1+/GN49FG3NZjVOg+iZx1ixQoYPhyuvRb23TfvaMysPTyInnWInj3hW99K1zWYWffkxGBr+MIX\nYMEC+POf847EzPLgxGBr6NULJkyACy/MOxIzy4MTg5X0xS/C3Lnw2GN5R2Jmnc2JwUrq3TuNuupS\ng1n3415J1qT33oMhQ9Jd3kaNyjsaM2st90qyDtenD3zzmy41mHU3LjFYs959F7bbLt2vYbfd8o7G\nzFrDJQariLXWgm98w6UGs+7EJQZr0bJlqdRwww0wblze0ZhZuaqyxCBpkKQ/SZohabqkU5rY7kpJ\nz0iaKmlkJWOy1uvXD372MzjxRDjkEHjhhbwjMrNKqnRV0vvAaRGxI7AXcKKkYYUbSBoHDI6IIaQ7\nxV1T4ZisDfbfH2bOhJ13ht13T0NmLFvW8vPMrPZUNDFExMsRMSWbXgLMAjYr2mw8cEu2zSRgfUmb\nVDIua5t+/dL9of/5T5g2LQ22d/fdvn+DWVfTaY3PkrYGRgKTilZtDiwomH8R2KJzorK22GqrdG3D\njTemRPGxj6XShJl1Db064yCSBgB3AqdmJYc1NimaX+M36MSJE1dN19XVUVdX14ERWlvstx9MmQLX\nXANjx8IRR8DEibDeenlHZtY91dfXU19f3+79VLxXkqTewP3AbyPiihLrrwXqI+KObH42MDYiFhZs\n415JVe7VV9Nw3ffdBxddBEcfnW4Xamb5qdZeSQJuBGaWSgqZe4Ejs+33Al4vTApWGzbeGH7yE7j/\n/tStda+9YFJxpaGZ1YSKlhgk7QP8GXiK1dVDE4AtASLiumy7q4FPAG8D/xMRTxbtxyWGGrJyJfz8\n52k4jY99DC65BDbdNO+ozLof39rTqs5bb6Urpm+6KY3UevLJafwlM+scTgxWtebMga99DZ5/Hn74\nw1SKMLPKc2KwqhaR2h9OOw122gl+8APYdtu8ozLr2qqy8dmsgQQHHQTTp8Oee6b7O5x7Lrz9dt6R\nmVkxJwbrVH37pvaGKVNg3jwYNgx++UtfPW1WTVyVZLl69NHUKL3++nDllbDLLnlHZNZ1uCrJatKY\nMWnspUMPhY9+NCWJRYvyjsqse3NisNz17AnHH5/GW1q5MlUvXXcdrFiRd2Rm3ZOrkqzqTJkCp5wC\nS5bAVVfBhz+cd0RmtcndVa1LiYBf/AK+/vU0QN+ll8Lmm+cdlVltcRuDdSkSHHYYzJqVhvkeMSIl\nh3ffzTsys67PicGq2oABabTWSZPgr39NF8f95jd5R2XWtbkqyWrKb3+bhtcYMgQuvzz9NbPSXJVk\n3cIBB6Tbio4dC3vvnUZwXVLq1k9m1mZODFZz+vRJjdLTpsFLL8HQoWmYbxcqzTqGq5Ks5j3+eLow\nrm/f1L115Mi8IzKrDq5Ksm5r771T4/TRR6eqpq9+FV57Le+ozGqXE4N1CT17wle+krq3rrUWDB8O\nV18Ny5fnHZlZ7XFVknVJ06enq6dfey0NzldXl3dEZp3PVz6bFYmAu+6CM86AvfaCyy6DLbfMOyqz\nzuM2BrMiEnz2s6l6adiw1Ch94YXwzjt5R2ZW3ZwYrMvr3x8mTkzDe0+Zktoffv1rd281a4qrkqzb\nefjh1P4waBBccUUqTZh1Ra5KMivTRz4CU6emrq3/9V+pDeKNN/KOyqx6VDQxSLpJ0kJJ05pYXyfp\nDUmTs8c5lYzHrEHv3mnMpRkzUlIYNgxuvjndKMisu6toVZKkMcAS4NaI2LnE+jrg9IgY38J+XJVk\nFfWPf6SrpyPS1dOjRuUdkVn7VWVVUkQ8CixuYbNWB23W0fbYAx57DE44AT79afjyl2HhwryjMstH\n3m0MAYyWNFXSA5KG5xyPdWM9esBRR6XurQMHpns/XH45vP9+3pGZda6K90qStDVwXxNVSesAKyJi\nqaQDgB9GxPYltovzzjtv1XxdXR11vpTVKmz2bDj1VFiwIF09/ZGP5B2RWfPq6+upr69fNX/++edX\n55XPzSV2Dkk/AAAK90lEQVSGEts+B+weEYuKlruNwXIRAffeC6edBrvuCt//PmyzTd5RmZWnKtsY\nWiJpE0nKpkeREtWiFp5m1mkk+NSnYOZM2G03+NCH4LzzYOnSvCMzq5xKd1e9HXgM2EHSAklfknSc\npOOyTT4LTJM0BbgCOKyS8Zi1Vd++cM456crpOXNS99Zf/cpXT1vX5CufzdrgkUdS99aNNkrtDzvt\nlHdEZmuqyaoks1o1diw8+SQcfDDst18aYmNxSx2zzWqEE4NZG/XqBSeemNof3nsvVS9dfz2sWJF3\nZGbt46oksw4yeXKqXnrnnVS9NHp03hFZd+cb9ZhVgQi47Tb4xjdgn31SNdPw4ak0seGGeUdn3Y0T\ng1kVeestuOmmNIrrrFmpuqlv39VJYvjw1Y9NNkndYs06mhODWRWLgH//OyWIhkTR8FixYnWSKEwa\ngwY5YVj7ODGY1ahXXy2dMN56C4YOXTNhbLMN9OyZd9RWC5wYzLqY119fnSwKk8Yrr8CQIWuWMgYP\nhj598o7aqokTg1k3sWRJuvq6OGHMn59KE8UJY4cdoF+/vKO2PDgxmHVz77wDzzyzOlE0JI1582Cz\nzRo3eA8blh7rrJN31FZJTgxmVtL778Ozz66ZMGbPTkN6FLZfNExvsEHeUVtHcGIws1ZZsQJeeKFx\ndVTDdP/+a3arHTbMXWtrjRODmXWICPjXv9ZMGDNmpHXFvaSGDXPX2mrlxGBmFRWRutYWd6udNSt1\nrW1otyhMGO5amy8nBjPLzeLFKUEUlzJeeQW2337NUsbgwdC7d95Rd31ODGZWdZYsSY3cxaWMBQtg\n223XTBjbb++utR3JicHMasY778DTT695Lca8ebDFFmv2kho61F1r28KJwcxq3vvvp+RQnDDmzEld\na4t7SQ0fDgMH5h119XJiMLMuq6FrbXG32lmzYO21S1+L8YEPuKeUE4OZdTsNXWuLE8bMmWl9qYSx\nxRbdJ2E4MZiZZRq61hZ3q505E95+u3TX2q237npda50YzMzK0NC1tjhhvPpqGnCwOGHUctfaqkwM\nkm4CPgm8EhE7N7HNlcABwFLg6IiYXGIbJwYzq6iGrrXFCWPBAthuu9Jda/v2zTvq5lVrYhgDLAFu\nLZUYJI0DToqIcZL2BH4YEXuV2K6mE0N9fT11dXV5h9FmtRx/LccOjj9v9fX17LlnHU8/vWYpY968\nNBRIccIYOhQGDMg78qStiaFHJYJpEBGPAoub2WQ8cEu27SRgfUmbVDKmPNTX1+cdQrvUcvy1HDs4\n/rzV19fTrx+MGAGHHQYXXAB33pnGjXrrLbj3XjjqqJQIHnwQjjkm9Ybaais44AA4/XS44QZ47LFU\nhVUreuV8/M2BBQXzLwJbAAvzCcfMrDy9e69uxP7MZ1YvX7ECnn9+dcniL3+Bn/wkTQ8YUPr+3htv\nXF09pfJODADFp6N264zMrNvr2TO1SWy3HRx00OrlEfDii6sTxpQpcNttaV5KCeLSS2H06Pxib1Dx\nXkmStgbua6KN4VqgPiLuyOZnA2MjYmHRdk4WZmZt0JY2hrxLDPcCJwF3SNoLeL04KUDbXpiZmbVN\nRRODpNuBscBGkhYA5wG9ASLiuoh4QNI4SXOBt4H/qWQ8ZmbWspq4wM3MzDpPRburtpakT0iaLekZ\nSd8osX4jSQ9KmiJpuqSjcwizJEk3SVooaVoz21yZvbapkkZ2ZnwtaSl+SYdncT8l6a+SdunsGJtS\nzrnPtttD0nJJn2luu85W5nunTtLk7H1f34nhtaiM907Vfm4BJA2S9CdJM7L4Tmliu6r8/JYTf6s/\nvxFRFQ+gJzAX2JpU3TQFGFa0zUTgkmx6I+A/QK+8Y8/iGQOMBKY1sX4c8EA2vSfwt7xjbmX8ewPr\nZdOfqKb4W4q94P31R+B+4OC8Y27luV8fmAFskc1vlHfMrYy/aj+3WUybArtm0wOAOSW+e6r281tm\n/K36/FZTiWEUMDcino+I94E7gE8VbfMSsG42vS7wn4hY3okxNilq/GK+luKPiMcj4o1sdhLpepOq\nUMa5BzgZuBN4tfIRtU4Z8X8BuCsiXsy2f61TAitTGfFX7ecWICJejogp2fQSYBawWdFmVfv5LSf+\n1n5+qykxlLrYbfOiba4HdpT0b2AqcGonxdYRmrqYrxZ9GXgg7yDKJWlz0o+Ma7JFtdawNgTYIKsu\neELSF/MOqJVq5nObda8fSfryLFQTn99m4i/U4uc37+6qhcr5sE4ApkREnaTtgN9LGhERb1U4to5S\n8xfzSdoX+BLw4bxjaYUrgG9GREgSa/4fql1vYDdgf6A/8Likv0XEM/mGVbaa+NxKGkAqVZ6a/fJe\nY5Oi+ar6/JYRf9mf32oqMfwLGFQwP4iUlQuNBn4FEBHzgOeAHToluvYrfn1bZMtqRtZgdT0wPiJq\naOQXdiddK/MccDDwY0njc46pNRYAD0XEsoj4D/BnYETOMbVG1X9uJfUG7gL+NyJ+XWKTqv78lhF/\nqz6/1ZQYngCGSNpaUh/gUNIFcIVmAx8ByOr3dgCe7dQo2+5e4EiA5i7mq1aStgTuBo6IiLl5x9Ma\nEbFtRGwTEduQflEdHxHF761qdg+wj6SekvqTGj9n5hxTa1T15zYrRd4IzIyIK5rYrGo/v+XE39rP\nb9VUJUXEckknAb8j9SC5MSJmSTouW38dcDHwU0lTSUntrIhYlFvQBWr9Yr6W4ge+DQwErknvQ96P\niFE5hdtIGbFXtTLeO7MlPQg8BawEro+IqkkMZZz/qv3cZj4MHAE8JanhfjATgC2hJj6/LcZPKz+/\nvsDNzMwaqaaqJDMzqwJODGZm1ogTg5mZNeLEYGZmjTgxmJlZI04MZmbWiBODdSmSVmTDUzc8tsw7\npo4k6WhJV+Udh3VtVXOBm1kHWRoRVTNWvlktconBurxsKInvSZqW3azkpBLbHCPp79nNZO6U1C9b\nfkj2vCmSHsmW7ShpUlYimSppu2wol2kF+ztT0nnZdL2kH0j6h6RZSjcM+j9JT0u6sOA5RxTs91pJ\nPbLl/yNpjqRJpHGHzCrKicG6mn4F1Uh3ZcuOJQ0PMCIiRgA/L/G8uyJiVETsShrP/svZ8nOBj2XL\nD8qWHQf8MCuZ7E7pwdSC1aNvBvBuROxBGvr7HuCrwE7A0ZIGShoGfA4Yne13JXC4pA+SbnQzGtgH\nGE6VjeppXY+rkqyrWVaiKml/4JqIWAnQxMiSO0v6DrAe6S5YD2bL/wrcIumXpEHIAB4HviVpC+Du\niJibjT9TrHBhw6B904HpDQOwSXqWlLTGkJLME9m++gIvk25gVZ+NqoqkXwDbt3gWzNrBJQbrLlq6\nB8PNwAkRsQtwPtAPICKOB84hDbn8T0kbRMTtpNLDMuCBbIz75TT+PPWj8S/7d7O/KwumG+YbfqDd\nEhEjs8ewiLigDa/DrN2cGKw7+D1wnKSeAJIGlthmAPByNq79EQ0LJW0XEX+PiPNItwXdQtI2wPMR\ncRWpWmhn0q/7D0jaQNJawIGtiC+APwCflbRxdtwNsh5Vk4Cx2Xxv4JDWvXSz1nNisK6mVP37DcB8\n0rDEU4DPl9jmXNKX8F9IbQwN+/l/kp7KGpb/GhFPkdoCpmVDHO8I3Jrdw/gC4O/AQzR9v4TCtofV\nCyNmkUomD2XDUz8EbBoRL5PaGB7PYpvRxGs06zAedtvMzBpxicHMzBpxYjAzs0acGMzMrBEnBjMz\na8SJwczMGnFiMDOzRpwYzMysEScGMzNr5P8DAZc/1V8RUsUAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x2d2ff30>"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg544"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# using Michalowski\u2019s solution.\n",
+ "import math\n",
+ "FSs=1.\n",
+ "c=20.\n",
+ "G=18.9\n",
+ "C=24.\n",
+ "Hcr=C/(G*math.tan(c/57.3)*0.17)\n",
+ "print'%s %.1f %s'%('a)Critical height Hc = ',Hcr,' m')\n",
+ "H=10.\n",
+ "k=C/(G*H*math.tan(c/57.3))\n",
+ "Fs=4.*math.tan(c/57.3)\n",
+ "print'%s %.1f %s'%(' b)Fs = ',Fs,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "a)Critical height Hc = 20.5 m\n",
+ " b)Fs = 1.5 \n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8-pg560"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "# Determine the factor ofsafety,Fs . Use Table 15.3.\n",
+ "W=22.4\n",
+ "C=20.\n",
+ "a=70.\n",
+ "s=math.sin(a/57.3)\n",
+ "c=math.cos(a/57.3)\n",
+ "l=2.924\n",
+ "Wn=W*s\n",
+ "Wn1=W*c\n",
+ "##doing this to all values\n",
+ "F1=30.501\n",
+ "F2=776.75\n",
+ "F3=1638.\n",
+ "Fs=(F1*C+F3*math.tan(C/57.3))/F2\n",
+ "print'%s %.2f %s'%('Fs = ',Fs,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Fs = 1.55 \n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9-pg560"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#using Michalowski\u2019s solution\n",
+ "C=20.\n",
+ "G=18.5\n",
+ "r=0.25\n",
+ "H=21.62\n",
+ "C=25.\n",
+ "b= math.atan(0.5)\n",
+ "##from table 15.3 \n",
+ "m=1.624\n",
+ "n=1.338\n",
+ "Fs=m-n*r\n",
+ "print'%s %.1f %s'%(' The value of Fs for D= 1 is',Fs,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The value of Fs for D= 1 is 1.3 \n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10-pg561"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the factor of safety using spencers solution\n",
+ "import math\n",
+ "%matplotlib inline\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
+ "import numpy\n",
+ "from math import tan\n",
+ "import matplotlib\n",
+ "from matplotlib import pyplot\n",
+ "beta=numpy.array([26.57,26.57,26.57,26.57])\n",
+ "Fs=numpy.array([1.1,1.2,1.3,1.4])\n",
+ "phid=25*math.pi/180. #degrees\n",
+ "#calculations\n",
+ "print 'From spencers graphs,'\n",
+ "cd=numpy.array([0.0455,0.0417,0.0385,0.0357])\n",
+ "phia=numpy.array([18.,19.,20.,21.])*math.pi/180.\n",
+ "leng=len(phia)\n",
+ "Fss=numpy.zeros(leng)\n",
+ "for i in range(0,leng):\n",
+ "\tFss[i]= tan(phid)/tan(phia[i])\n",
+ "\n",
+ "#results\n",
+ "print 'From graph, a footing of dimensions Fs=1.3'\n",
+ "pyplot.plot(Fs,Fss)\n",
+ "pyplot.xlabel('Fs assumed')\n",
+ "pyplot.ylabel('Fs calculated')\n",
+ "pyplot.title('Graph of Fs assumed vs Fs calculated')\n",
+ "pyplot.show()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "From spencers graphs,\n",
+ "From graph, a footing of dimensions Fs=1.3\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEZCAYAAACAZ8KHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8lHX5//HXG1BQBMQltzQUBREB0cQt8aSFlJp+3c2y\nvhohP7dvmWamQq65W5aWqGQumGu5K2ZHSRQ3ZBEw19y3RBSXVLh+f3zuo+PhLDPnzJxZzvv5eMyD\nmfueue/rnvtwrvPZFRGYmZnlq0u5AzAzs+rixGFmZgVx4jAzs4I4cZiZWUGcOMzMrCBOHGZmVhAn\nDvuMpAmSLi/SsVaTdJ+kdyWdWYxj1jJJP5Q0tdxxlIqkekkHtfMYdZJeLFZMeZxviaT1Oup81cSJ\no4JJ2lfSdEmLJL0u6UFJ40p4ymIO6vkx8EZE9I6IoxrvlPQnSf+V9F7OY68int8ayX55f9joO9+i\ng04fFPfnq0W1nojLzYmjQkk6EjgPOB1YLSJWAw4GtpG0bDOfae/9VDs/n+srwLwW9gdwekT0ynlc\nW8Tz29ICOKTRdz693EFZ9XHiqECS+gC/AsZFxA0R8T5ARDweEd+LiI+z9/1J0oWSbpO0CKiTtJOk\nGZIWSnpB0vic4/bLit9jJL0s6ZUsQTUIYFlJl2VVTHMkbdZCnFtLeljSO5IekrRVQ1zAAcDR2V+1\n2xd4/T+X9FIWw/zmPt/KtfaQdIWktyQtyOL7Urbvh5KeyY7/rKTvZtu/UFWX8311yV7XSzpJ0v3Z\ndd0kaRVJV2YxPCTpKzmf31DSFEn/ya5jr5x9K2efXyhpOtC/he/jdkmHNNo2U9Ju2fNzsxLpQkmz\nJA0u5Psu5BiSVpI0Kfv5eVvSjdn2vpJukfRGtv1mSWu1cL4xkuZm9+AJSZtk279QPZT9jJ/UzDGO\nkfR0zjEavo9BwIXAVtl9ejvb3l3SWZL+Lem17P9Oj5zjHZX9n3hJ0oGFfoedSkT4UWEPYDTwCdCl\nlff9CXgH2Cp73R3YDhicvR4CvAbsmr3uBywBrgSWAzYG3gB2yPZPAD7Mzi/gVOCBZs69ErAA2J/0\nB8i+wNtA32z/JODEFmKfBJzUxPaBwAvA6tnrdYD1mjlGS9c6FrgJ6JFdy3CgF9ATWAhskL1vNWCj\n7Pl44PKc4zd8X12y1/XAv4B1gd7AE8BTwPZAV+Ay4NLsvT2BF4EfZN/PJsCbwKBs/9XZYzlgMPAS\ncF8z1/l94J85rzfKvvtlgB2BR4DeOd/f6s0c5x/AQU1sL+QYtwKTgT5AN2DbnJ+H/8m+7xWAa4Ab\nG537wOz5Xtn1bpa97g+skz1fknu/c3+OgDrgxZx9e+b8nOwNLCKVzsm+96mNYj8X+CuwYhbjTcCp\nOf/nXsu+2+WBqxrH4sfnD5c4KtMqwFsRsaRhg6Rp2V/OH0j6Ws57/xoRDwBExH8j4t6IeCJ7PZv0\ny2m7Rsf/VUR8GBFzSP8x98vZNzUi7oj0v+kKYFgzMe4EPBkRV0bEkoi4GpgPfCfnPS1VfQn4WXZN\nCyS9kW1fTEqAgyUtExEvRMSzTR2glWv9GFiZlCAiImZExHvZviXAEEnLRcTrETE3j3ghlcgmRcRz\nEfEucDvwr4i4JyIWA9eSEhTAzsBzEXFZ9v08DtwA7CWpK7A7cEJ2H54gJZ3mzv9XYBNJa2ev9weu\nj4hPSH9g9AIGSeoSEU9GxGvNHEfAb3O+80ey7XkdQ9IapF+wB0fEwoj4NCKmAkTE2xFxY0R8FBGL\nSH90NP65a/AjUjXlo9lnn4mIF5p5b0PcS4mI6xrijIhrSEl8i6Y+I0nAGOCnEfFOFuNppD94ICWe\nSyNibkR8QPojwprhxFGZ/gOsopw2i4jYOiL6Zvsatgfpr9rPSNpC0j+yKoN3SH95r9zo+LmfeQFY\nM+f16znPPwB6qOm2kzWzz+b6d6NjtSSAMyOib/b4EkBEPA38H6n087qkydkvrKW0cq2XA3cCV2fV\nKqdL6hap2m8fUnvRK1n1ysA8Y4Yvfj8fkUpsua9XyJ5/Bdgi55f0AuC7pBLOKqS/1hvfhyZlCe9W\nPk/w+5JKjUTEPcDvgN+Tvq8/SurV3KGAw3K+868WeIy1gbcjYmHjHZKWzz73vKSFwL1An+wXdmNf\nBp5p7nrzJekAparKhu93Y5b+WW+wKqkk8WjO+28n3QuANcjzfpgTR6V6APgvsFsbPnsV6S/UL0fE\nisAfWPo+r9Po+cttOM/LpF+Oub5S4LGa+0tyckRsmx0vSB0EmtLstWZ/DZ8YEYOBrUklgAOyfXdF\nxChgdVIpaWJ2vPdJv1warN5K/C31EnoBuDfnl3TfSI3RhwBvAZ+y9H1oyWRgP6V2pB4R8Y/Pgog4\nP0sCGwEDgKV6sbUmz2O8CKyk1AbX2JHZ50ZERB9SaUM0fY9fBNZvJpQP+OI9WIMmvuesLeki4BBg\npeyPqjk552v8mbdI1bAb5dyPFSOid7b/VQq7H52aE0cFioh3SI3jF0jaQ1IvSV2yBsSeOW9t6j/l\nCsCCiPhY0gjSX7mN/xMdJ2m5rAH0h8Bf2hDmbcAASftJ6iZpH2BD4JYWYsvV5H5JAyRtL6k7KXl+\nRKq+akqz16rU539IVi30Hqk6ZrGkL0naVVLPbNv7Ocd/HBgpae3sl+MvWom7pWu8lfT9fE/SMtlj\nc0kbZtVaNwATsvuwEalOvqVEdBspkf6KVCVHdp1fzUpey5B+6bb0fTUZc77HiIhXSX+lXyBpxeya\nts12r0D6xbxQ0kq0XNVzMamaclMl60tq+EX9OLC/pK6SRgMjmzlGT9L39RbQRdL/kkocDV4Hvpxd\nE1m170TgPEmrZte9lqRR2fuvAX4oaZCk5VuJv9Nz4qhQEXEm8FPgaFKj3Wukv6iPJpVIoOm+8f8P\nOFHSu8DxNJ0U7gWeBu4mVRfd3cLxmvxlFhFvk/6KP5L0n/dnwM7Z9uaO1fi4Te3vTqp7fpP0V+Aq\nNP0LHFq+1tVJbQ4Lgbmkhu3LST/zPyGVjP4DbAuMy65pSnaMWcDDwM1NxBiNnje5P6teGkWqVno5\nu5bTgIau1IeSftm+BlyaPZoVqSfdDcAOpJJWg96kv7zfBp4n3YuWBlw29Z0XcozvkxLufNIv5yOy\n7eeRGvrfAqaREkxzPzvXAadk1/Fudl19s91HALuQGv+/C9zYVPxZu9TZpP8Lr5GSxj9z3vd3UueF\n13Laz35O+rl/MKtOm0IqJRERd2TXcA+pA8Tfm4vfQKkNtAQHli4lNaC+ERFDWnjf5qSbv09EXJ9t\ne570A7UY+CQiRpQkyE5GUj/gWaBbbsO7mVkhSlnimETqgdGsrBrhdOCORrsCqIuI4U4aZmaVpWSJ\nI+umt6CVtx0GXEeqlmismKOY7XMufptZu5StjUNpVOmupBGesHTd8d2SHpE0psODq1ER8XxEdHU1\nlZm1R7cynvs84JiIiKyvd24JY5uIeDXr/TBF0vyGgUZmZlZe5Uwcm5EGZ0HqOfMtSZ9ExE1Ztz8i\n4k2luXBGAEslDkmudjEza4OIaHNzQNmqqiJivYhYNyLWJbVzjIuIm7IRqL0Asr72o4DZLRynZh/j\nx48vewy+Nl+fr6/2Hu1VshKHpMmk0aOrKC2+Mp40KRsR8ccWPro6cENWEukGXBkRd5UqTjMzK0zJ\nEkdE7Nf6uz577//mPH+WNJOomZlVII8cr2B1dXXlDqFkavnawNdX7Wr9+tqrZCPHO4KkqOb4zczK\nQRJRjY3jZmZWnZw4zMysIE4cZmZWECcOMzMriBOHmZkVxInDzMwK4sRhZmYFqfrEcdhh8N575Y7C\nzKzzqPrE8f77MGQI3NF4DUEzMyuJmhg5ftddMHYsbLstnHsurLxyuSMzM6tcHjkOjBoFs2enhLHx\nxvCXv0AV50Mzs4pWEyWOXA88AD/6Eay/PlxwAay1VpmCMzOrUC5xNLLVVvDYY7DJJulx0UWwxCts\nm5kVTc2VOHLNng0HHQQ9e8LEiakUYmbW2bnE0YIhQ1LV1S67wJZbwllnwaefljsqM7PqVtMljlzP\nPgtjxsDChXDJJTBsWImDMzOrUC5x5Gm99eDuu2HcOPjmN+H44+G//y13VGZm1afTJA4AKbV5PP44\nzJmTGs/vv7/cUZmZVZdOU1XVWARcfz0cfjjsuSeceiqssEKRAzQzq0CuqmojKSWMOXPSXFcbb+xp\nS8zM8tFpSxyNNUxbMnIknHOOpy0xs9rlEkeRNExb0rdvKn1cc42nLTEza4pLHE1omLZkgw3StCVr\nrln0U5iZlY1LHCXQMG3JsGHpMXGiSx9mZg1c4mhFw7QlK6yQ5r3ytCVmVu1c4iixhmlLdt7Z05aY\nmYFLHAV55hn48Y/h3XfTtCVDh3bYqc3MisYljg7Uv3+atuTgg2GHHTxtiZl1Tk4cBWqYtmTmzDR4\ncPhwmDat3FGZmXUcV1W1g6ctMbNq5KqqMmpq2pI77yx3VGZmpeUSRxHddVdqPN9uO09bYmaVyyWO\nCjJqVCp9rLhiKn1ce60HDppZ7XGJo0QeeCA1og8Y4GlLzKyyVGyJQ9Klkl6XNLuV920u6VNJe+Rs\nGy1pvqSnJP28VDGW0lZbwYwZn09bcvHFLn2YWW0oWYlD0rbAIuDPETGkmfd0BaYAHwCTIuL6bNuT\nwDeAl4GHgf0iYl4Tn6/YEkeuWbPSpImetsTMKkHFljgiYiqwoJW3HQZcB7yZs20E8HREPB8RnwBX\nA7uWJsqOMXToF6ctOftsT1tiZtWrbI3jktYiJYQLs00NRYe1gBdz3vpStq2qde0KP/0pTJ8Ot96a\nqrJmzSp3VGZmhetWxnOfBxwTESFJQEOxqaC6pwkTJnz2vK6ujrq6umLFVxL9+8Pf/w6XXpqmLTn4\nYDjuOOjevdyRmVmtqq+vp76+vmjHK2mvKkn9gJubauOQ9CyfJ4tVSO0cY4A3gAkRMTp73y+AJRFx\nehPHqIo2jua88goccgg8+WRqPN9663JHZGadQcW2cbQmItaLiHUjYl1SO8e4iLgJeATYQFI/ScsC\n+wA3lSvOUlpzTbjhBjjxxDQC/fDDYdGickdlZtayUnbHnQxMAwZKelHSgZLGShrb0uci4lPgUOBO\nYC7wl6Z6VNWK3GlL3n3X05aYWeXzAMAKc+edqd2jYdqSlVYqd0RmVmuqtqrKmrbjjmm52j59YPBg\nT1tiZpXHJY4K1jBtycCB8Pvfe9oSMysOlzhqWMO0JUOGwCabeNoSM6sMLnFUiVmzUumjVy+YODGN\nBzEzawuXODqJhmlLdtoJttjC05aYWfm4xFGFnnkGxoxJYz4uuSRVZZmZ5csljk6oYdqSH/84TVty\nwgnw3/+WOyoz6yycOKqUlKZqf/zx1P4xfHiqyjIzKzVXVdWACLjuujRlyd57wymnpLU/zMya4qoq\nQ4K99krTlixcmNo87rqr3FGZWa1yiaMG3XknjB0LdXWetsTMluYShy1lxx1T6aNPnzRpoqctMbNi\ncomjxk2blgYObrihpy0xs8QlDmvR1lunnleetsTMisUljk6kYdqS3r3hoos8bYlZZ+USh+WtYdqS\nb3/782lLFi8ud1RmVm1c4uikPG2JWeflEoe1Se60Jdtv72lLzCx/ThydmKctMbO2cFWVAV+ctmSf\nfeDkkz1tiVmtclWVFUXutCULFnjaEjNrnksc1qSGaUu+/vXU+8rTlpjVDpc4rCQapi3p3TtNW3Ld\ndR44aGaJSxzWKk9bYlZbXOKwkms8bckll7j0YdaZucRhBfG0JWbVzyUO61AN05Z861tp2pJzzvG0\nJWadjUsc1mZPP52mLfnggzTrrqctMasOLnFY2ay/PtxzTxp9vv32MH68py0x6wycOKxdpFTqePzx\n9Nh0U3jwwXJHZWal5KoqK5qItEztEUd42hKzSlayqipJiyS918zj3bae0GqXBHvv7WlLzGpdqyUO\nSScDrwBXZJv2B9aMiONLHFurXOKobHfcAQcf7GlLzCpNRzSOfyciLoiId7PHhcCubT2hdR6jR8Ps\n2dCrV5q25Prryx2RmRVDPonjfUnfk9Q1e+wPLCp1YFYbevWC3/42zXV13HGw++7w6qvljsrM2iOf\nxPFdYG/g9eyxd7atRZIulfS6pNnN7N9V0kxJMyQ9Kmn7nH3PS5qV7Xsov0uxSrb11jBjBgweDMOG\nwcSJsGRJuaMys7YoWa8qSduSSiZ/joilhoZJ6hkR72fPhwA3RsT62evngM0i4u1WzuE2jio0a1aa\nsn3x4lQa2XLLckdk1rmUvI1D0kBJf5f0RPZ6qKTjWvtcREwFFrSw//2clysAbzU+dWvnsOo0dCjc\nfz8cdhjssQf84AeuvjKrJvlUVU0EjgU+zl7PBvYrxskl7SZpHnA7cHjOrgDulvSIpDHFOJdVli5d\n4Pvfh/nzYY01UtfdM87wyHOzapBP4lg+IqY3vMjqhj4pxskj4q8RMQjYBbg8Z9c2ETEc+BZwSFbt\nZTWoVy/49a/TxIlTp6YEcttt5Y7KzFrSLY/3vClp/YYXkvYEilqxEBFTJXWTtHJE/CciXs22vynp\nRmAEMLWpz06YMOGz53V1ddTV1RUzNOsgG2wAN9+cksb//R9ccAGce27abmbtU19fT319fdGOl88A\nwP7ARcBWwDvAc8D+EfF8qweX+gE3N9M43h94NiJC0qbAtRHRX9LyQNeIeE9ST+Au4FcRsdQYZDeO\n16aPP4bf/AZOPz2t/XHccalkYmbF0REDAJdExA7Al4ANI2Ib8mi4ljQZmAYMlPSipAMljZU0NnvL\nHsBsSTOA3wD7ZttXB6ZKehyYDtzSVNKw2rXssnDUUWnw4OuvpyVr//xnd981qxT5lDhmZO0Nudse\njYjNShpZHlzi6BymT089sLp2Td13N9+83BGZVbf2ljiabeOQNAjYCOgjaXdSKSOA3kCPtp7QrFBb\nbJGmar/sMth117T64KmnwmqrlTsys86ppaqqAaTeTn2yf3fO/t0UcBdZ61BdusD//i/Mmwd9+6a5\nr849Fz4pSv8+MytEPlVVW0fEtA6KpyCuquq85s9Pva/+/e/UkD5qVLkjMqse7a2qyidxLAccRKq2\nWo5UXUVEHNjWkxaLE0fnFgG33AI/+UkqgZxzDqy3XrmjMqt8HdGr6nJgNWA0UA+sjWfHtQogwS67\npIWjttgCRoyAX/4SFvmn06yk8kkc62eLNi2KiMuAbwNblDYss/z16AG/+AXMnJmqrgYNgquuSiUS\nMyu+fBJHwxxVC7NZbFcEVi1dSGZts9ZacMUVcPXVacXBkSPTVO5mVlx5TXIoaSXgOOAmYC5wRkmj\nMmuHbbaBhx6CAw5IXXfHjoU33yx3VGa1o2TrcXQEN45baxYsgF/9Cq68Ek44AcaNg275zNBmVsNK\n1qtK0pFNbA6ygYARcU5bT1osThyWryeegCOOgNdeS6PPt9++9c+Y1aqSjRwHepF1vW18zma2m1Ws\nwYNhyhS48cY0ceJmm8FZZ0G/fuWOzKz6uKrKOp0PP0xJ4ze/gUMOgZ//HJZfvtxRmXWcjhgAOKmJ\nzeEBgFbtXngBjj46LSJ11lmw555pbIhZreuIxLEnn1dNLQf8D/BKRBzW1pMWixOHFcO998Lhh6c5\nsH7727QmulktK3niaOKEXYD7I2Krtp60WJw4rFg+/RQmToTx42GvveDEE2HllcsdlVlpdMSUI40N\nwAMArcZ065a66s6bl14PGgQXXgiLF5c3LrNKlE9V1SI+r6oK4HXgmIi4vsSxtcolDiuVWbNS9dU7\n76Tqq5Ejyx2RWfF0eFVVJXHisFKKgGuvTcvYbrUVnHkmrL12uaMya7+SV1VJ+h9JK+a8XlHSbm09\noVm1kGDvvVP11cCBMHw4nHRS6s5r1pnlU1U1MyKGNdr2eERsUtLI8uASh3Wk55+Hn/0MHn00rf2x\n227uvmvVqSMax5s6eNe2ntCsWvXrB9ddBxdfDMcfD9/8ZprKxKyzySdxPCrpHEn9Ja0v6Vzg0VIH\nZlapdtghTdf+ne9AXV1awvadd8odlVnHySdxHAZ8AvwFuBr4CDiklEGZVbpllkm9rubOTW0eG26Y\nxoG4+651Bu5VZVYEjz2WEsmHH6buu9tsU+6IzJpXymnVb27hcxER32nrSYvFicMqSQRMnpwmTdxu\nOzj99LQqoVmlKWXiqGvpgxFR39aTFosTh1WiRYvgtNPgj3+EI4+En/4Uuncvd1Rmn/MAwCqO32rb\nM8+kxDFnDpx7Luy8s7vvWmXoiNlxBwCnAoOBHtnmiIj12nrSYnHisGpw551p9cF+/eC881JDulk5\ndcQ4jknAH0g9q+qAy4Ar23pCs85mxx3T3FejRsHXvpYGES5cWO6ozNoun8SxXETcTSqd/DsiJgA7\nlTYss9qy7LKpreOJJ2DBglTqmDQJliwpd2RmhcsncXwkqSvwtKRDJe0O9CxxXGY1abXV4JJL4Kab\n4KKLYMstYfr0ckdlVph82jhGAPOAFYGTgN7AGRHxYOnDa5nbOKyaLVkCV1wBv/hFmr7k17+G1Vcv\nd1TWGbhXVRXHbwbw3ntw8smpJHLMMWkg4bLLljsqq2UdMa36lEbTqveVdGdbT2hmX9SrVxosOG0a\n/OMfMGQI3H57uaMya14+VVVLTaHuadXNSufWW+EnP4EBA9L4jw02KHdEVms6ojvuYklfyTlhP8B9\nQcxKZKedYPbstFztVlul6qv33it3VGafyydx/BKYKulySVcA9wHHtvYhSZdKel3S7Gb27ypppqQZ\nkh6VtH3OvtGS5kt6StLP870Ys1rRvTscfXRKIK++mrrvXn65u+9aZcircVzSqsCWQADTI+LNPD6z\nLbAI+HNEDGlif8+IeD97PgS4MSLWz7r+Pgl8A3gZeBjYLyLmNXEMV1VZp/Dgg3DYYWk699/+Fr76\n1XJHZNWsI6qqiIg3I+LmiLgln6SRfWYqsKCF/e/nvFwBeCt7PgJ4OiKej4hPSGuA7JrPOc1qVcN4\njx/9CHbZJf37xhvljso6q7wSR6lI2k3SPOB24PBs81rAizlveynbZtapdekCBx4I8+dDnz4weHCa\n++qTT8odmXU2ZU0cEfHXiBgE7AJcLnnuULPW9OkDZ58N992Xuu0OGwZTppQ7KutMurX2BknrAy9F\nxEeSvg4MIbVbFG2V5YiYKqkbsBKphLF2zu61s21NmjBhwmfP6+rqqKurK1ZYZhVt0CC44440fcnB\nB8PQoSmhrFf2eaut0tTX11NfX1+04+UzjmMmsBnQD7gN+BswOCK+3erBU9fdm5tpHO8PPBsRIWlT\n4NqI6J8lkCeBHYBXgIdw47hZiz76CM45JyWOcePSNCY9PaOcNaMjGseXRMSnwO7A+RFxFLBGHoFN\nBqYBAyW9KOlASWMljc3esgcwW9IM4DfAvgDZuQ4F7gTmAn9pKmmY2ed69IBjj4WZM+G551L33cmT\n03K2ZsWWT4ljOukX+7HALhHxnKQ5EbFxRwTYEpc4zJr2z3+mOa969oTzz4dNyj7Pg1WSjihxHAhs\nBZySJY11gcvbekIzK72vfQ0efhi+//20kNS4cfDWW61/ziwfzZY4JK0TES90cDwFcYnDrHULFsD4\n8XD11XDCCakhvVur3WKslpWyxPG3nJNc39YTmFl59e2bRpvfcw/ceCMMH56em7VVvuM43MHPrMpt\nvDHcfTdMmJAGEu61F/z73+WOyqpRWQcAmlnHkmCPPWDevLTux6abpkTywQfljsyqSUttHIuBhh+n\n5YAPc3ZHRPQucWytchuHWfu88AIcdVSaRPGss2DPPVNysdrmpWOrOH6zSlFfn7rvrrxyag8ZstSQ\nXaslHTI7rpnVtro6eOyxVOLYYYc0hfvbb5c7KqtUThxmBqQuuocckto/Fi9Oc2H94Q/puVkuV1WZ\nWZNmzkzVVwsXpuqrkSPLHZEVi9s4qjh+s0oXAddckxrQt9kGzjgD1l679c9ZZXMbh5mVjAT77JOq\nrzbYIM15dfLJ8OGHrX/WapcTh5m1qmdPOPFEeOQRmDEDBgyASy6BTz8td2RWDq6qMrOCPfggHHMM\nvPYanHIK7L67x39UE7dxVHH8ZtUsAu66Ky0a1a0bnHZa6sprlc+Jo4rjN6sFS5bAtdfCccdBv34p\ngXz1q+WOylrixnEzK6suXVID+ty5aQDhrrumCRSffLLckVmpOHGYWVEsswyMHQtPPQWbbZYWkxoz\nBl56qdyRWbE5cZhZUS2/fGo4/9e/YJVVYNiwNA7kP/8pd2RWLE4cZlYSffum9o7Zs2HRIhg4MPXA\nWrSo3JFZezlxmFlJrbkmXHghPPAAzJmTBhL+/vfw8cfljszayonDzDrEBhvA5Mlw221wyy2w4YZw\n5ZWpV5ZVF3fHNbOyqK9PY0A++ABOPRW+/W0PIuwoHsdRxfGbdXYRcNNNcOyxsNJKqU3ka18rd1S1\nz+M4zKxqSWncx6xZ8KMfwf77w847p9dWuZw4zKzsunaFH/wgdeH95jfT43vfg2efLXdk1hQnDjOr\nGN27wxFHwNNPp8b0zTeHQw9Nkyla5XDiMLOK06sXjB8P8+enEemDB6e5sBYuLHdkBk4cZlbBVl0V\nzj0XHnsMXn45lULOOssLSZWbE4eZVbyvfAUmTYJ//APuvz8tJHXxxV5IqlzcHdfMqk7uQlInnwx7\n7OExIIXwOI4qjt/M2i53IamuXdMYkG98o9xRVQcnjiqO38zar/FCUqeemnpjWfM8ANDMOrXGC0nt\ntlv6d/78ckdWu5w4zKwm5C4kNWIEbLttGo3+4ovljqz2OHGYWU1Zfnk4+ug0Cv1LX4JNNoGf/cwL\nSRVTyRKHpEslvS5pdjP795c0U9IsSfdLGpqz7/ls+wxJD5UqRjOrXX37pvaOOXPSDLwDB6YeWF5I\nqv1KWeKYBIxuYf+zwMiIGAqcBFyUsy+AuogYHhEjShijmdW4NdaACy5IXXjnzk2DCH/3Oy8k1R4l\nSxwRMRVY0ML+ByKiYQKB6cCXG73FvbLNrGjWXx+uuiotJHXbbWkhqSuugMWLyx1Z9amUNo6DgNty\nXgdwt6QaRKkyAAAKgUlEQVRHJI0pU0xmVoOGD0+JY9KkVBIZPjytSOie/fnrVu4AJH0dOBDYJmfz\nNhHxqqRVgSmS5mclmKVMmDDhs+d1dXXU1dWVMFozqxXbbZemL7n55jQK/de/To9aXEiqvr6e+vr6\noh2vpAMAJfUDbo6IIc3sHwrcAIyOiKebec94YFFEnN3EPg8ANLN2W7w4rX9+wgmw8capUX3o0NY/\nV62qdgCgpHVISeN7uUlD0vKSemXPewKjgCZ7ZpmZFUPXrnDAAfDkkzBqVHp4IanmlbI77mRgGjBQ\n0ouSDpQ0VtLY7C0nAH2BCxt1u10dmCrpcVKj+S0RcVep4jQza9C9Oxx+eBpEOGCAF5JqjueqMjNr\nxptvpskTL7sMxo2Do46CPn3KHVX7VW1VlZlZpVt1VTjnHJgxA155xQtJNXDiMDNrxTrrwKWXQn09\nTJvmhaRcVWVmVqDp01MX3ldegVNOqb6FpLweRxXHb2bVKwKmTEkLSUlpDEi1LCTlxFHF8ZtZ9Vuy\nBK67Li0ktfbaqTF9RIXPsOfGcTOzMurSBfbeG554AvbdF3bfPVVdzZtX7shKx4nDzKwIllkGxoxJ\nY0C23BJGjoSDDqrNhaScOMzMimi55dJ4j6eegtVXTwtJHXkkvPVWuSMrHicOM7MSWHHF1ONqzhz4\n6KM0jftJJ9XGQlJOHGZmJbTGGvD736cuvPPmpXVBzj+/uheScuIwM+sA/funhaTuuANuv726F5Jy\nd1wzszK49940BmTRojSN+047ddwgQo/jqOL4zaxzi0gLSR17bGoTOe002Hbb0p/XiaOK4zczg88X\nkho/HjbaKJVAhg0r3fk8ANDMrMo1LCQ1fz6MHg077gj77w/PPFPuyJrmxGFmViG6d4fDDktjQDbc\nELbYAg45pPIWknLiMDOrML16wfHHpxJIjx4weDD88pfwzjvljixx4jAzq1CrrAJnn50WknrttbQO\nyJlnln8hKScOM7MKt846cMklqQvvgw+mlQgnTizfQlLuVWVmVmWmT09jQF5+GU4+Oc3G26WAYoC7\n41Zx/GZmbRUBd9+dViKU0hiQb3wjv0GEThxVHL+ZWXstWQLXX58az/NdSMrjOMzMOrEuXWCvvTp2\nISknDjOzGtB4IanttksLSb3wQvHP5cRhZlZDGhaS+te/0kJSw4cXfyEpJw4zsxpUyoWk3DhuZtYJ\nPPMMnHAC3HcfvPSSe1WVOwwzs6rxyiuw1lpOHOUOw8ysqrg7rpmZdSgnDjMzK4gTh5mZFcSJw8zM\nCuLEYWZmBXHiMDOzgpQscUi6VNLrkmY3s39/STMlzZJ0v6ShOftGS5ov6SlJPy9VjGZmVrhSljgm\nAaNb2P8sMDIihgInARcBSOoK/C777EbAfpIGlTDOilVfX1/uEEqmlq8NfH3Vrtavr71KljgiYiqw\noIX9D0TEwuzldODL2fMRwNMR8XxEfAJcDexaqjgrWS3/8NbytYGvr9rV+vW1V6W0cRwE3JY9Xwt4\nMWffS9k2MzOrAN3KHYCkrwMHAttkmzyHiJlZBSvpXFWS+gE3R8SQZvYPBW4ARkfE09m2LYEJETE6\ne/0LYElEnN7E551kzMzaoD1zVZWtxCFpHVLS+F5D0sg8AmyQJZ1XgH2A/Zo6Rnsu3MzM2qZkiUPS\nZGA7YBVJLwLjgWUAIuKPwAlAX+BCSQCfRMSIiPhU0qHAnUBX4JKIKOHquWZmVoiqnlbdzMw6XqX0\nqvpMHgMHN5T0gKSPJB3ZaF/FDxxs5/U9nw2YnCHpoY6JuDC1PvCznddXC/dv1+z6Zkh6VNL2Oftq\n4f61dH0Vff9au7ac920u6VNJe+RsK+zeRURFPYBtgeHA7Gb2rwp8FTgZODJne1fgaaAfqUrscWBQ\nua+nWNeX7XsOWKnc19DO69sK6JM9Hw08WGP3r8nrq6H71zPn+RDSmKtaun9NXl813L/Wri3nPt0D\n3ALs0dZ7V3Eljmh94OCbEfEI8EmjXVUxcLAd19egojsE5HF9VT3wsx3X16Da79/7OS9XAN7KntfK\n/Wvu+hpU7P1r7doyhwHXAW/mbCv43lVc4miHzjBwMIC7JT0iaUy5gymCWh/4mXt9UCP3T9JukuYB\ntwOHZ5tr5v41c31Q5fdP0lqkhHBhtqmhgbvge1f2AYBF1Bla+beJiFclrQpMkTQ/+yuj6tT6wM8m\nrg9q5P5FxF+Bv0raFrhc0obljqmYGl8fMDDbVe337zzgmIgIpa6sDaWngv/v1VKJ42Vg7ZzXa5My\nZ82IiFezf98EbiQVMatO1mA8EfhORDQUrWvm/jVzfTVz/xpkvzS7ASuR7lVN3L8GDdcnaeXsdbXf\nv82AqyU9B+wBXCDpO7Th/141J47GdY2fDRyUtCxp4OBNHR9W0Xzh+iQtL6lX9rwnMAposfdEJcpn\n4Gc137/mrq+G7l//7K9VJG0KEBH/oXbuX5PXVwv3LyLWi4h1I2JdUjvHuIi4iTbcu4qrqlIrAwcl\nrQ48DPQGlkg6AtgoIhapCgYOtvX6gC8BN2Q/092AKyPirjJcQotauz6qfOBnW68PWJ3auH97AAdI\n+gRYBOyb7auV+9fk9VEF9y+Pa2tSW+6dBwCamVlBqrmqyszMysCJw8zMCuLEYWZmBXHiMDOzgjhx\nmJlZQZw4zMysIE4c1ilIWpxNh93wWKfcMRWTpD/lTpNtVkoVNwDQrEQ+iIjh5Q6ihIIam+/LKpdL\nHNZpSRosaXpWApkpaf0m3nOBpIclzZE0IWf7ryU9kX3ujGzbXpJmS3pcUn227YeSzs/53C2SRmbP\nF0k6Izv2FElbSrpX0jOSdsne01XSmZIeys7142y7JP1OafGdKaSZBSp2ym+rLS5xWGexnKQZ2fNn\nI2IP4GDgNxFxlaRuNP3/4ZcRsUBSV9KU2kOAV4DdImJDAEm9s/ceD4zKZlBt2Na4FJD7enng7xFx\ntKQbgBOB7YHBwGXAzaSp2d+JiBGSugP/lHQXsCkwABhEmg5jLnBJW74Ys0I5cVhn8WETVVXTgF9K\n+jJwQ6NJFxvso7T2QjdgDdIv6rnAR5IuIa2kdkv23vuByyRdQ5rosDUfR8Sd2fPZwEcRsVjSHNJq\nbJAm0xsiac/sdW9gA9Jqb1dFmjPoVUn35HE+s6JwVZV1WhExGdgF+BC4TWkNjc9IWhc4Etg+IoYB\ntwLLRcRi0pTa1wE7A3dkxxsHHEealvpRSSsBn/LF/2c9cp7nrvK4BPg4O84SvvhH3aERMTx79I+I\nKQ0htvnizdrBicM6LUnrRsRzEXE+8DfSGtO5egPvA+9KWg34FhDZtNorRsTtwE+BYdnx+kfEQxEx\nnrQ055eB54FNsjaJtSl8DYc7gf+XVaUhaYCk5YH7SKWhLpLWAL7e0kHMislVVdZZNNXjaG9J3yf9\n5f8qcMoXPhAxM2sXmU9aWvOf2a5ewN8k9SD91f+TbPsZkjbItt0dEbMAlBbOmQvMAx5tIaZo4vnF\npGqrx7J1It4gta/cKGn77LgvkKrdzDqEp1U3M7OCuKrKzMwK4sRhZmYFceIwM7OCOHGYmVlBnDjM\nzKwgThxmZlYQJw4zMyuIE4eZmRXk/wN5SXo27nRWHQAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x5567810>"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11-pg561"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#using Michalowski\u2019s solution\n",
+ "C=20.\n",
+ "G=18.5\n",
+ "H=21.62\n",
+ "c=25.\n",
+ "r=0.25\n",
+ "Fs=3.1*math.tan(c/57.3)\n",
+ "print'%s %.1f %s'%('Fs = ',Fs,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Fs = 1.4 \n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter16.ipynb b/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter16.ipynb new file mode 100755 index 00000000..892e5d4d --- /dev/null +++ b/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter16.ipynb @@ -0,0 +1,355 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:f8ccaea2f8e2185eadf01a8580109480d61ddd5c9965256b8487bceaf5d3f50f"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter16-Soil-Bearing Capacity for Shallow Foundations"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg587"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#determine the gross allowable load per unit area (qall) that the foundation can carry.\n",
+ "import math\n",
+ "c=20.\n",
+ "## from table 16.1\n",
+ "Nc=17.69\n",
+ "Nq=7.44\n",
+ "Ng=3.64\n",
+ "\n",
+ "Df=3.\n",
+ "G=110.\n",
+ "q=G*Df\n",
+ "\n",
+ "C=200.\n",
+ "B=4.\n",
+ "\n",
+ "Qu= C*Nc+q*Nq+G*B*Ng/2.\n",
+ "\n",
+ "Fs=3.\n",
+ "Qall=Qu/Fs\n",
+ "print'%s %.1f %s'%('Qa = ',Qall,' lb/ft^2')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Qa = 2264.7 lb/ft^2\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg588"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#determine the size of the footing\u2014that is, the size of B.\n",
+ "G=18.15\n",
+ "qa=30000.*9.81/1000.\n",
+ "\n",
+ "Nc=57.75\n",
+ "Nq=41.44\n",
+ "Ng=45.41\n",
+ "C=0.\n",
+ "q=G*1.\n",
+ "B=1.\n",
+ "(1.3*C*Nc+q*Nq+0.4*G*B*Ng)*B**2/3. == qa\n",
+ "B= math.sqrt(294.3/(250.7+109.9))\n",
+ "print'%s %.1f %s'%(' B = ',B,' m')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " B = 0.9 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg595"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "# Determine the safe gross load (factor of safety of 3) that the footing can carry\n",
+ "B=1.2\n",
+ "L=1.2\n",
+ "c=32.\n",
+ "C=0.\n",
+ "Df=1.\n",
+ "G=16.\n",
+ "Nq=23.18\n",
+ "Ng=22.02\n",
+ "Nc=1.\n",
+ "Lqs=1.+0.1*B*(math.tan(61./57.3)**2.)/L\n",
+ "Lgs=Lqs\n",
+ "Lqd=1.+0.1*Df*math.tan(61./57.3)/B\n",
+ "Lgd=Lqd\n",
+ "Lcs=1.\n",
+ "Lcd=1.\n",
+ "Gs=19.5\n",
+ "q=0.5*G+0.5*(Gs-9.81)\n",
+ "Qu= C*Lcs*Lcd*Nc+q*Lqs*Lqd*Nq+(Gs-9.81)*Lgs*Lgd*B*Ng/2.\n",
+ "Qa=Qu/3.\n",
+ "Q=Qa*B**2.\n",
+ "print'%s %.1f %s'%('the gross load = ',Q,' kN')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the gross load = 311.6 kN\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg601"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#Determine the magnitude of the gross ultimate load applied eccentrically for bearing capacity failure in soil.\n",
+ "e=0.1\n",
+ "B=1.\n",
+ "X=B-2.*e\n",
+ "Y=1.5\n",
+ "B1=0.8\n",
+ "L1=1.5\n",
+ "c=30.\n",
+ "Df=1.\n",
+ "Nq=18.4\n",
+ "Ng=15.668\n",
+ "q=1.*18.\n",
+ "G=18.\n",
+ "Lqs=1.+e*(B1/L1)*math.tan(60./57.3)**2.\n",
+ "Lgs=Lqs\n",
+ "Lqd=1.+e*(Df/B1)*math.tan(60./57.3)\n",
+ "Lgd=Lqd\n",
+ "qu=q*Lqs*Lqd*Nq+Lgs*Lgd*G*B1*Ng/2.\n",
+ "Qu=qu*B1*L1\n",
+ "print'%s %.1f %s'%('The magnitude of the gross ultimate load =',Qu,' kN')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The magnitude of the gross ultimate load = 751.8 kN\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg601"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#determine the gross ultimate load per unit length that the foundation can carry.\n",
+ "import math\n",
+ "B=1.5\n",
+ "Df=0.75\n",
+ "e=0.1*B\n",
+ "G=17.5\n",
+ "c=30.\n",
+ "C=0.\n",
+ "q=G*Df\n",
+ "Nq=18.4\n",
+ "Ng=15.668\n",
+ "Lqd=1.+0.1*(Df/B)*math.tan(60./57.3)\n",
+ "Lgd=Lqd\n",
+ "Quc=q*Nq*Lqd+Lgd*B*Ng/2.\n",
+ "k=0.8\n",
+ "a=1.754\n",
+ "Qua=Quc*(1.-a*(e/B)**k)\n",
+ "print'%s %.1f %s'%('The gross ultimate load per unit length = ',Qua,' kN')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The gross ultimate load per unit length = 198.7 kN\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg606"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#Estimate the ultimate bearing capacity of a circular footing with a diameter of 1.5 m. The soil is sandy.\n",
+ "Qup=280.\n",
+ "Bp=0.7 ## in m\n",
+ "Bf=1.5\n",
+ "Quf=Qup*Bf/Bp\n",
+ "print'%s %.1f %s'%('The ultimate bearing capacity = ',Quf,' kN/m^2')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The ultimate bearing capacity = 600.0 kN/m^2\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg606"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the value of Cv\n",
+ "import math\n",
+ "#Determine the size of a square column foundation that should carry a load of 2500 kN with a maximum settlement of 25 mm.\n",
+ "a=2500.\n",
+ "##doing for the first values only\n",
+ "Bf=4.\n",
+ "Bp=0.305\n",
+ "q=a/Bf**2.\n",
+ "Sep=4.\n",
+ "Sef=Sep*(2.*Bf/(Bf+Bp))**2\n",
+ "print'%s %.1f %s'%('Sef = ',Sef,' mm')\n",
+ "import math\n",
+ "%matplotlib inline\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
+ "import numpy\n",
+ "from math import tan\n",
+ "import matplotlib\n",
+ "from matplotlib import pyplot\n",
+ "#given\n",
+ "t=numpy.array([.02,.1,.25,.5,1,2.,4.,8.,16.,30.,60.,120.,240.,480.,960.,1440.])\n",
+ "gauge=numpy.array([3975.,4082.,4102.,4128.,4166.,4224.,4298.,4420.,4572.,4737.,4923.,5080.,5207.,5283.,5334.,5364.])\n",
+ "Hdr=2.24\n",
+ "t50=19.\n",
+ "#calculations\n",
+ "Cv=.197*(Hdr/2)**2 /t50/60.\n",
+ "leng=len(t)\n",
+ "logt=numpy.zeros(leng)\n",
+ "for i in range(0,leng):\n",
+ "\tlogt[i]=math.log(t[i])\n",
+ "\n",
+ "#results\n",
+ "print'%s %.4f %s'%('The value of Cv (cm^2/sec) = ',Cv,'')\n",
+ "pyplot.plot(logt,gauge)\n",
+ "pyplot.xlabel('Time(min) - log scale')\n",
+ "pyplot.ylabel('Dial reading (cm)')\n",
+ "pyplot.title('Graph of dial reading vs time')\n",
+ "pyplot.show()\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Sef = 13.8 mm\n",
+ "The value of Cv (cm^2/sec) = 0.0002 \n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEZCAYAAABmTgnDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmclXX5//HXW1zAwi2NZFGpUEEtERV3xkzEJTE3NMU1\n/SVf06+WpX4zsJLMcsFMW8yEcgk3RAMElXHJBU1UFDcqVFA0txQ3lrl+f3w+A8dxlgNzzpxZ3s/H\n4zy4z33u5boHmOt8dkUEZmZmjVml0gGYmVnr52RhZmZNcrIwM7MmOVmYmVmTnCzMzKxJThZmZtYk\nJwurKEmjJP25RNfqJuleSe9K+mURxx8j6b6C9+9J2qSI8zaRVCOpIv9/8r2/mLevkPSjSsSxsor9\nOVvrsmqlA7DWRdJhwGnAFsD7wL+BsRFxRZluWcqBPicCr0fEWisVSETXEsbSIiLipErH0BhJ1cCf\nI+KPtfva4s/ZXLKwApK+B1wC/ALoFhHdgO8AO0tavYFzmvtvSM08v9DGwDMlvF6zSeroX8g86red\ncLIwACStDZwLnBQRN0fE+wAR8XhEHBkRi/JxV+eqj0mSFgJVkvaVNFPSfyW9JGlkwXVrq2xOkDRf\n0is5KdUKYHVJY3P10VOSBjQS506SHpH0jqQZknasjQs4CvhBrub4Wj3nfk7SxBznw8CX6nxeWL3T\n4DMV8bOcK+kHkp4E3pO0iqQdJD0g6W1Jj0saVHD8sZJm5+f/p6QT61zvjPxzmyfpuDqfXS3pp3m7\nKh9zuqTX8jnH1Hn+2/IzzZD0s8JquDrXnSzpf+rse0LSAXn74nyP/0p6UtIW9VzjPGBX4LL8d3Jp\nPT/nqyVdnv89vSfpPklfkDQm/6yekbR1wTW7S7pJ0uuS/iXpu8X9rVizRYRffgEMARYDqzRx3NXA\nO8CO+f0awCBgi/x+K2ABMDS/3wSoAa4BugBbAq8De+TPRwEf5vsLGA082MC91wPeBo4gfdE5DHgL\nWDd//ifgJ43Efn1+dSFVs80D7i34vAb4Yt4u5pnq/VkBc4HHgB7559MDeAMYkj//en7/ufx+H6B3\n3t6NVP3Xv+DvZQHQD1gTuLZOnMueGajKf4ejgE7A3vlaaxc8/7VAZ6Av8FLh89d5huHA/QXv++Wf\n/WrAXsCjwFr5s82ALzRwnenAcXX2FcZ/NfAfoH/+Wd2Vf35H5n8PPwXuzseuAvwD+BGpCr038E9g\ncKX//3SEl0sWVmt94I2IqKndUfBN+ANJuxQcOyEiHgSIiI8j4p6IeDq/n0X6pTSITzo3Ij6MiKdI\nv+AOL/jsvoiYEuk3wl+ArzYQ477AcxFxTUTURMT1wLPA/gXH1FutJakTcCDw4xzH08DYho4v8pka\nEsClETE/Ij4m/eKbFBFT8vXuJP2y3Te/nxQR/87b9wJTSd/IAQ4FroqI2RHxAVBfCafwGRaTksfS\niJgMLAQ2K3j+kRHxUUQ809jzAxOArSX1yu+PAG6KiMX5Hl2BvpJWiYjnImJBIz+PxqoaA7g5Imbm\nn9UtwPsR8Zf872E8KZEAbAesHxE/i4gl+Wd2JelLg5WZk4XVehNYv7ANIiJ2ioh182e1+wN4ufBE\nSQMlTc9VA+8A/w/4XJ3rF57zEtC94P1rBdsfAJ0baAvpns8t9GKdazVkA9K30bpx1KvIZ2pM4X02\nBg7JifdtSW8DOwNfyPfaW9JDkt7Mn+1TcK8Ni405e7Mw4ZN+np+l/uef19BFIuI94G8sT+qHkUqH\nRMTdwGXAb4DXJP1OUmON1k21W7xesP1Rnfcf5vgh/Ry71/k5ngV8vonrWwk4WVitB4GPgQNW4txr\nSd9Ee0bEOsBv+fS/rY3qbM9fifvMJ/3CKLRxkdf6D7CknjgaUswzNabwF+RLpB5B6xa8ukbEBZLW\nAG4CLgA+n5PzJJZ/G3+1iJiLaUSuff5eBft6NXBsreuAw3O7UOeImL7shhG/johtSdVTmwJnNHCN\nUjZwvwz8u87Pca2I2K+E97AGOFkYABHxDqmB+3JJB0nqmhtmtwY+U3BofVUKnwXejohFkrYHvsWn\nf0n8SFKX3BB6DPDXlQhzErCppMMlrSppGLA5cHsjsdU+31LgZmBUjqMfcHQj9yrmmYr1F+AbkgZL\n6iSpc26M7gGsnl9vADWS9gYGF5w7HjhGUl9Ja/LpaihRRI+yep5/c1K7RGPPNImUjM8lVcOlG0rb\n5pLXaqSSy0fA0gau8Rp1OhLUE3+xZpA6DPwgP0MnSVtK2nYFrmErycnClomIXwKnAz8gNaouIH2j\n/gGp5AHpl0vdXzAjgJ9Iehc4h/oTwT3AHOBO4Je53r6h69X7Cywi3gL2A75H+uX6fWC/vL+haxU6\nmZQEFgBX5Vfh8YXbTT1T0YkjIuYBQ4GzSVUsL+VnUK7uOYWUFN4iVfvcWnDuFFJ35ruB50kNwHVj\nbugZ6joZWJv0/GNJJYdFjcS9iJRg9iCVtGqtBfw+xzuX9HfR0CDIMcDBkt6SdEl9t6kn/nr/PeSE\ntx+wNfAvUmnp9zkeKzOlNqQy3kCaC7xL+uaxOCK2L/jse6R/ZOvX/oeXdBZwXD7+lIiYmvcPIPWc\n6ExqLDy1rIFbSSiN1P0XsGqdunSrMEm/IFV9HVvpWKz1a4mSRQBVEdG/TqLoBexJaqCs3dcPGEaq\nBx1CqhKpLaZeARwfEX2APpKGtEDsZu2GpM0kfUXJ9qQvZbdUOi5rG1qqGqq+esmLSNUbhYYC10XE\n4oiYS6q2GChpQ6BrRMzIx41j5RpirTI8ird16EpqTF9IaoP4VURMrGxI1la0xFQEAdwpaSnwu4j4\ng6ShwLyIeHJ5wQFIXSAfKng/jzSgaTGf7OY3P++3Vi4n/U6VjsMgIh4F+lQ6DmubWiJZ7BwRr0ra\nAJgm6VlS3+jCHh+lnB/IzMxKrOzJIiJezX/+R9ItpFGwvYEncqmiJ/APSQNJJYbCvt89SSWK+Xm7\ncP+n+tZLcnWHmdkKiogmv7CXtc1C0pq1IzslfYZUmpgREd0iondE9CYlg20i4jVgInCYpNUl9SYV\nmWfkqQTezX27ReofPqG+e5ZjTpTW8Bo5cmTFY/Dz+fn8fO3vVaxylyy6AbfkEsSqwDWRu8IWWBZt\nRMyWNB6YTRptOiKWP80IUtfZLhTMs2NmZuVX1mQRaaKvrZs45ot13o8mzTxa97h/kGb/NDPrsCJA\nFWjl9QjuNqKqqqrSIZSVn69t8/OV1wcfwDXXwF57wehPfZVuGWUfwd2SJEV7eh4z67hqauC++2Dc\nOLj5ZthhBzj6aBg6FLp0Kd19JBFFNHB39CUfzcxalTlz4M9/Tknis59NCeLpp6F7MRPxl5GThZlZ\nhf33vzB+PIwdC88/D4cfDjfdBP37V6Z9oj6uhjIzq4AlS2DatFSCmDwZvv51OOoo2HtvWG21louj\n2GooJwszsxb0xBMpQVx7LWy8cUoQhx0G661XmXjcZmFm1kosWJCSw7hx8PbbMHw4VFfDZptVOrLi\nuWRhZlYGH34It96aEsSDD8I3v5lKEbvtBqu0okELLlmYmbWwmhr4+99TgrjpJthuu5QgbrgBPvOZ\nps9vzZwszMyaqba765//nMZAHH00zJoFPdrRQgpOFmZmK+Htt1OJYezYlCwOPxxuvLF1dXctJbdZ\nmJmtgMcfT1Nu3HEHDB6cShF77dWy3V1Lqdg2i1bUzGJm1nq99FJKDEOGwM47w9y5qWSx335tN1Gs\nCCcLM7NGvPMO/PCHqXppo43SCOtTT4V11610ZC3LycLMrB4ffwyXXAKbbgpvvZUarH/6U1hrrUpH\nVhlu4DYzKxCR5mk6+2zo2xfuvhu23LLSUVWek4WZWXbPPXDGGWm8xJVXwu67Vzqi1sPJwsw6vNmz\n4cwzU1XT6NEwbFjrGmXdGvjHYWYd1quvwoknQlVVej37bBov4UTxaWX/kUiaK+lJSTMlzcj7finp\nGUlPSLpZ0toFx58l6QVJz0oaXLB/gKRZ+bMx5Y7bzNqv996DkSNTW8Q668Bzz8Hpp8Maa1Q6star\nJfJnAFUR0T8its/7pgJbRMRXgeeBswAk9QOGAf2AIcDl0rKxkFcAx0dEH6CPpCEtELuZtSOLF8Nv\nf5t6OP3rX/DYY3DBBR2vG+zKaKnC1idGB0bEtIioyW8fBnrm7aHAdRGxOCLmAnOAgZI2BLpGxIx8\n3DjggPKHbWbtQQRMmABbbZWm5Pjb39I8ThtvXOnI2o6WaOAO4E5JS4HfRcQf6nx+HHBd3u4OPFTw\n2TygB7A4b9ean/ebmTXq44/T+hHPPJPGTey1V/ucu6ncWiJZ7BwRr0raAJgm6dmIuA9A0v8BiyLi\n2haIw8w6mPfegwMOSKvQPfqo2ySao+zJIiJezX/+R9ItwPbAfZKOAfYB9ig4fD7Qq+B9T1KJYj7L\nq6pq98+v736jRo1atl1VVUVVVVVzH8HM2qDXX4d99oFtt4Xf/AY6dap0RK1DdXU11dXVK3xeWWed\nlbQm0Cki3pP0GVLD9rmktpILgUER8UbB8f2Aa0kJpQdwJ/DliAhJDwOnADOAvwGXRsSUOvfzrLNm\nxty5qbpp2DA491xXOzWmtayU1w24JXdoWhW4JiKmSnoBWJ1ULQXwYESMiIjZksYDs4ElwIiC3/4j\ngKuBLsCkuonCzAzgqadg773TSOxTTql0NO2H17Mws3bjgQfSWtcXXwzf+lalo2kbWkvJwsysRUye\nnNabGDcurTlhpeVB7WbW5l1zDRx7LEyc6ERRLi5ZmFmbNmYMXHhhmkq8X79KR9N+OVmYWZsUAT/6\nEdx0E9x/f1rFzsrHycLM2pylS+Gkk2DmTLjvPthgg0pH1P45WZhZm/LRR3DEEfDuu6nqqWvXSkfU\nMbiB28zajHffTaOyO3WC2293omhJThZm1ia8/npa5nTzzeG66zzPU0tzsjCzVm/uXNhlF/jGNzzP\nU6U4WZhZqzZrFuy6a5q6Y9Qoz/NUKW7gNrNW6+9/hwMPTGMpDjus0tF0bE4WZtYqTZoExxwDf/kL\nDB5c6WjMEwmaWatzzz1wyCFw220wcGClo2nfip1I0G0WZtaqPP00HHooXH+9E0Vr4mRhZq3GK6+k\ncRQXXQRf+1qlo7FCThZm1irUDrg76aQ0QttaF7dZmFnFLVoE++4LffqkcRTuHttyim2zcLIws4qK\nSL2e3nkHbr7ZA+5amlfKM7M24cc/hueeS5MCOlG0XmVvs5A0V9KTkmZKmpH3rSdpmqTnJU2VtE7B\n8WdJekHSs5IGF+wfIGlW/mxMueM2s/L7/e9Tr6fbboM116x0NNaYlmjgDqAqIvpHxPZ535nAtIjY\nFLgrv0dSP2AY0A8YAlwuLau9vAI4PiL6AH0kefFEszbs9tth5Mi0drbXo2j9Wqo3VN36sP2BsXl7\nLHBA3h4KXBcRiyNiLjAHGChpQ6BrRMzIx40rOMfM2phHHoHjjoMJE+DLX650NFaMlipZ3CnpUUkn\n5H3dIuK1vP0a0C1vdwfmFZw7D+hRz/75eb+ZtTH//CcMHQpXXulBd21JSzRw7xwRr0raAJgm6dnC\nDyMiJJWsC9OoUaOWbVdVVVFVVVWqS5tZM/3nP7D33qlRe//9Kx1Nx1RdXU11dfUKn9eiXWcljQQW\nAieQ2jEW5Cqm6RGxuaQzASLi/Hz8FGAk8GI+pm/efzgwKCK+U+f67jpr1kp98AHssUdawGj06EpH\nY7VaxdxQktaU1DVvfwYYDMwCJgJH58OOBibk7YnAYZJWl9Qb6APMiIgFwLuSBuYG7+EF55hZK7d0\nKXzrW6l94rzzKh2NrYxyV0N1A27JHZpWBa6JiKmSHgXGSzoemAscChARsyWNB2YDS4ARBUWFEcDV\nQBdgUkRMKXPsZlYCEWnhooULYfx4j85uqzyC28zK6oIL0poU990Ha69d6WisLo/gNrOKu/ZauOwy\neOABJ4q2ziULMyuL6dNh2LA0jceWW1Y6GmtIq2jgNrOOadaslCj++lcnivbCycLMSmrevDTd+CWX\npG6y1j44WZhZyfz3v2kBo5NPTl1lrf1wm4WZlcSiRWl0dt++8Otfu4tsW+E2CzNrUWedBZ07w5gx\nThTtkbvOmlmz3XYb3HgjPPaYFzBqr5wszKxZXnoJvv1tuOUW+NznKh2NlUvR1VCSOktao5zBmFnb\nsngxHH44nH467LRTpaOxcmqwgVvSKqQFhg4HdiIlFgFLgQeBa4AJralF2Q3cZi3rzDPhiSfgb3+D\nVdwC2iYV28DdWLK4F7iPNBPs4xHxcd6/BtCftNrdLhGxW8mibiYnC7OWM3kynHACzJzpZVHbslIk\nizVqE0QjN2nymJbkZGHWMubPhwED0iyyu7War4u2MpqdLOpcbF1gI2BZP4eIeKxZEZaBk4VZ+S1Z\nAl/7GgweDD/6UaWjseYq2ayzkn4KHAP8C6gp+MgD+c06oHPPhTXWSOMqrOMopuvsMOBLEbGo3MGY\nWet2551w1VUeT9ERFdN/4Wlg3XIHYmat26uvwlFHwbhx0K1bpaOxltZkm4Wk7YBbgaeA2sbsiIj9\nyxzbCnObhVl5LF0Ke+4Ju+6aqqGs/SjlSnnjgPNJyaK2zcK/kc06kPPOS2tp//jHlY7EKqWYZLEw\nIi5d2RtI6gQ8CsyLiG9I2h64DFgNWAKMiIhH8rFnAceRBv6dEhFT8/4BwNVAZ2BSRJy6svGY2Yqp\nroYrroB//MPtFB1ZMW0W90n6uaQdJW1T+1qBe5wKzGZ5aeQC4JyI6A/8OL9HUj9SY3o/YAhwubRs\n7sorgOMjog/QR9KQFbi/ma2k11+HI4+Eq6+G7t0rHY1VUjEli21Iv+h3qLO/ya6zknoC+wDnAafn\n3a8CtUu3rwPMz9tDgesiYjEwV9IcYKCkF4GuETEjHzeONA3JlCJiN7OVVFMDw4enRu299qp0NFZp\nTSaLiKhqxvUvBs4A1irYdyZwv6RfkUo2O+b93YGHCo6bB/QAFuftWvPzfjMro/PPhw8+gJ/8pNKR\nWGtQzKC80cAFEfFOfr8u8L2IaHTspqT9gNcjYqakqoKP/khqj7hF0iHAVcCeK/sAdY0aNWrZdlVV\nFVVVVQ0ea2b1u+8+uPRSePRRWNULGbQr1dXVVFdXr/B5xXSdfTwitq6zb2Zuc2jsvNHAcFIjdmdS\n6eJmYGhErJWPEfBORKwt6UyAiDg/fzYFGAm8CEyPiL55/+HAoIj4Tj33dNdZs2Z64w3YZpvUqL3v\nvpWOxsqtlMuqriKpc8GFuwCrN3VSRJwdEb0iojdwGHB3RAwH5kgalA/7GvB83p4IHCZpdUm9gT7A\njIhYALwraWBOLsOBCUXEbWYrqKYGjj4ahg1zorBPKqaAeQ1wl6SrSOtZHEtqZF5RtV/5TwR+k6c6\n/zC/JyJmSxpP6jlV26W29pwRpK6zXUhdZ924bVYGF14Ib70Fo0dXOhJrbYqddXZvYI/8dlpE3FHW\nqFaSq6HMVt6DD8IBB8CMGbDxxpWOxlpKKdazaPI3bzHHtKRWFo5Zm/HWW9C/f2rUHjq00tFYSypF\nm0W1pDMkbVrPxTeT9EPgnuYEaWaVFwHHHgsHHuhEYQ1rrM1iMHAEqX1hS+A9UpvFZ0nzRF0DfL3s\nEZpZWY0ZA6+8AjfcUOlIrDUrts2iE7B+fvtGRCwta1QrydVQZivmkUdSr6eHHoIvfrHS0VgllHLW\nWXJyeK3ZUZlZq/HWW3DooWk8hROFNaWokkVb4ZKFWXFqalL7xJe+BJdcUulorJJKWrIws/bll79M\nI7VvuqnSkVhb4WRh1sHcey9cfHFqr1i9ybkYzJImp/uQ9F49r3mSbpHkmk6zNuS11+Bb30rrU/Tq\nVelorC0ppmQxBngZuC6/Pwz4EjCTNGNsVVkiM7OSWro0JYpjj4UhXj7MVlAxs84+GRFfqbPv8YjY\nWtITEfHVska4AtzAbdawc86BBx6AqVO9PKotV8oG7g8kDQNqh+wcDHyUt/2b2awNmDIF/vQnr6Nt\nK6+YksWXSFVRtcuqPgT8L2nFugERcX9ZI1wBLlmYfdrLL8N228H48bDbbpWOxlqbZk8k2BY5WZh9\n0qJFMGhQmk32hz+sdDTWGpUsWUj6PHACsAnLq60iIo5rbpCl5mRh9kmnnQZz5sCtt8IqxSx1Zh1O\nKdssbgXuBaYBNXmffyObtXI33QQTJqR2CicKa66VWoO7tXLJwix54QXYaSeYPBm23bbS0VhrVso1\nuG+X5NV4zdqIDz+Egw+Gc891orDSKaZksRBYE1gELM67IyLWKnNsK8wlCzP49rfh/ffh2mtBTX5f\ntI6uZCWLiPhsRKwSEZ0jomt+FZ0oJHWSNFPSbQX7vivpGUlPSfpFwf6zJL0g6VlJgwv2D5A0K382\npth7m3U0Y8fC/ffD73/vRGGl1WADt6S+EfGMpG3q+zwiHivyHqcCs4Gu+bq7A/sDX4mIxZI2yPv7\nAcOAfkAP4E5JfXJR4Qrg+IiYIWmSpCERMaXI+5t1CLNmwfe/D9OnQ9eulY7G2pvGekOdTuoyexH1\n937avamLS+oJ7AOcl68HcBLw84hYDBAR/8n7hwLX5f1zJc0BBkp6EegaETPyceOAAwAnC7Psvffg\nkEPgwgthyy0rHY21Rw0mi4g4If9Z1YzrXwycARRWW/UBdpM0mjRtyPcj4lGgO2l0eK15pBLG4rxd\na37eb2ZABJxwAuy6Kxx1VKWjsfaqsWqog2hkPEVE3NzYhSXtB7weETMlVdW557oRsYOk7YDxQMmm\nOh81atSy7aqqKqqqqho81qw9uPxyeO65NEmgWVOqq6uprq5e4fMa7A0l6WpSsvg8sBNwd/5od+CB\niNiv0QunksNwYAnQmVS6uBlYHzg/Iu7Jx80hzTv1bYCIOD/vnwKMBF4EpkdE37z/cGBQRHynnnu6\nN5R1KI88AvvumxLFl79c6WisLWp2b6iIOCYijgVWB/pFxEERcRCwRd7XqIg4OyJ6RURv0hoYd0fE\ncGAC8LUc5KbA6hHxBjAROEzS6pJ6k6qrZkTEAuBdSQMliZSAJjR1f7P27q234NBD4be/daKw8itm\nuo9ewIKC968BG63EvWq/8l8FXCVpFmnsxlEAETFb0nhSz6klwIiCYsII4GqgCzDJPaGso6upgaOP\nThMEHnhgpaOxjqCYQXmXAZsC1wIidW99ISK+W/7wVoyroawjiIBTTkldZadO9Tra1jylnHVWwDeB\n3Uilg3sj4paSRFliThbWEfzsZ3DjjXDPPbD22pWOxto6r2dh1g797ndwwQVplPaGG1Y6GmsPSjbd\nh6QdJT0iaaGkxZJqJL1bmjDNrFg33ZQmB7zjDicKa3nFzDp7GfAt4AVSF9jjgcvLGZSZfdL06XDS\nSfC3v7nnk1VGUUuiRMQLQKeIWBoRfwKGlDcsM6s1cyYMGwZ//Sv071/paKyjKqbr7PuS1gCekHQB\nqRut57M0awFz5qRBd1dcAbs3ORubWfkUU7I4Kh93MvAB0BM4qJxBmRksWAB77QUjR8JB/h9nFVZU\nbyhJawK9IuK58oe08twbytqL//4XBg1KSeKccyodjbVnpewNtT8wE7gjv+8vaWLzQzSz+nz0EQwd\nCrvsAj/6UaWjMUuKGZT3GGkup+kR0T/veyoiWt2s+S5ZWFu3ZElal2KNNdKyqKsU1QXFbOUVW7Io\npoF7cUS8o0+u0Viz0pGZWb0iUvfYhQvh+uudKKx1KSZZPC3pCGBVSX2AUwDPnG9WYuecA48/Dnff\nnUoWZq1JMd9dTiZNS/4xcB3wLvC/5QzKrKO59FK44QaYNMnrZ1vr1GibhaRVgWkR0SZ6eLvNwtqi\na6+FH/4Q7rsPNtmk0tFYR1OS3lARsQSokbROySIzs2XuuANOOw0mT3aisNatqBHcwCxJ0/I2QETE\nKeULy6z9e/hhOPJIuOUW2LLV9S00+6RiksXN+VVbv6OCbTNbCc8+m8ZSXHVVGk9h1tp5PQuzFjZv\nHuy8c5pu/JhjKh2NdXQlG8FtZqXz1ltpvqeTT3aisLal7MlCUidJMyXdVmf/9/JCSusV7DtL0guS\nnpU0uGD/AEmz8mdjyh2zWTm8/z7stx/svTeccUalozFbMS1RsjgVmE1BO4ekXsCewIsF+/oBw4B+\npPUyLtfyYeNXAMdHRB+gjySvp2FtyhtvwJ57wuabp2VRzdqaBhu465YE6oiI2L+pi0vqCewDnAec\nXvDRRcAPgFsL9g0FrouIxcBcSXOAgZJeBLpGxIx83DjgAGBKU/c3aw3++c9UmjjoIDjvPE/jYW1T\nY72hLizB9S8GzgDWqt0haSgwLyKerDPfVHfgoYL384AewOK8XWt+3m/W6s2YAQcckKbyOOmkSkdj\ntvIaTBYRUd2cC0vaD3g9ImZKqsr71gTOJlVBLTu0Ofepa9SoUcu2q6qqqKqqKuXlzYp2221w3HHw\nxz/C/k2Ww81aRnV1NdXV1St8XjFTlG8KjCbND9U5746I+GIT540GhgNL8nlrAZOBXUkr7kFadW8+\nMBA4Nl/4/Hz+FGAkqV1jekT0zfsPBwZFxHfquae7zlqrcMUV8JOfwK23wvbbVzoas4aVsuvsn4Df\nkqqDqoCxwDVNnRQRZ0dEr4joDRwG3B0RB0dEt4jonffPA7aJiNeAicBhklaX1BvoA8yIiAXAu5IG\n5gbv4cCEIuI2a3E1NXDWWXDxxXD//U4U1n4UM4K7S0TcqfS1/UVgVF4QaUUXe6zvK/+yfRExW9J4\nUs+pJcCIgmLCCOBqoAswKSLcuG2tzscfp2qnf/8bHngA1l+/0hGZlU4x1VAPkKqObgTuAl4Bfh4R\nm5U/vBXjaiirlHfegQMPhHXWgWuugS5dKh2RWXFKWQ31v8CapEWPtgWOBI5uXnhm7cfLL6f5nbba\nKq1J4URh7ZHnhjJrhieeSKOyTzstvVTSvn1m5dfsNbgljYmIUxsYnFfUoDyz9mzaNDjiCLjsMjj0\n0EpHY1ZejTVwj8t/1jc4z1/frUMbOxZ+8AO46SbYdddKR2NWfkVVQ0naACAi/lP2iJrB1VBWbhHw\ns5+ldSggMJazAAASJ0lEQVQmTYK+fSsdkVnzNLuBW8koSW8AzwPPS3pD0shSBmrWVixeDCeeCBMm\npK6xThTWkTTWG+o0YGdgu4hYNyLWBbYHdpZ0eiPnmbU7CxemKTvmzYN77oENN6x0RGYtq8FqKEmP\nA3vWrXrKVVLTImLrFohvhbgaysphwQLYd1/o3z9N47HaapWOyKx0SjHOYtX62ijyvmJGfpu1ec88\nAzvumGaO/cMfnCis42rsl/7ilfzMrM174w0YPTr1erroIjjaw1Ctg2usZPEVSe/V9wK2aqkAzVrS\nwoWpt9Pmm6e5np56yonCDBpfz6JTSwZiVkmLFqVqpp/9DKqq4KGH4MtfrnRUZq2H2x6sQ6upgeuv\nTyvZ9emTxk7071/pqMxaHycL65AiYMqUtPbEGmvAlVfC7rtXOiqz1svJwjqchx6CM89MXWJHj4Zv\nftMTAJo1pZgpys3ahWeeSYnhkENg+PDUeH3ggU4UZsVwsrB27+WX4fjjYdAg2GkneP759H5Vl6vN\niuZkYe3Wm2/C978PW28N3bqlJHHGGV6cyGxlOFlYu/P++6ktYrPN0vasWen9OutUOjKztqvsyUJS\nJ0kzaxdRkvRLSc9IekLSzZLWLjj2LEkvSHpW0uCC/QMkzcqfjSl3zNY2vfoqnHtu6gL75JPw4INp\nLqfu3SsdmVnb1xIli1OB2SxfMGkqsEVEfJU09flZAJL6AcOAfsAQ4HJpWdPjFcDxEdEH6CNpSAvE\nbW1ABNx7LwwbBv36pR5OU6emsRN9+lQ6OrP2o6zJQlJPYB/gSkAAETEtImryIQ8DPfP2UOC6iFgc\nEXOBOcBASRsCXSNiRj5uHHBAOeO21m/hQvjd7+CrX01rTOy8M8ydm0oSW25Z6ejM2p9y9we5GDgD\nWKuBz48Drsvb3YGHCj6bB/QgTVo4r2D//LzfOqDnnoPLL4e//AV22y1N8rfHHu7+alZuZUsWkvYD\nXo+ImZKq6vn8/4BFEXFtKe87atSoZdtVVVVUVX3q1tbGLFkCt98Ov/lNaov49rdh5kzYaKNKR2bW\n9lRXV1NdXb3C5xW1BvfKkDQaGA4sATqTShc3RcRRko4BTgD2iIiP8vFnAkTE+fn9FGAk8CIwPSL6\n5v2HA4Mi4jv13NOLH7Ujr7+epuH47W+hZ0/4n/+Bgw9O03OYWWmUYvGjZomIsyOiV0T0Bg4D7s6J\nYgipampobaLIJgKHSVpdUm+gDzAjIhYA70oamBu8hwMTyhW3VVZE6sV05JGp6+u//rV8zesjjnCi\nMKuUlhrDKpb3hvo1sDowLXd2ejAiRkTEbEnjST2nlgAjCooJI4CrgS7ApIiY0kJxWwv54IPUg+my\ny+Ddd+Gkk+DSS2G99SodmZlBGauhKsHVUG3Lm2/CXXelrq633goDB6aqpr32glU8XNSsRRRbDeVk\nYS1m8eI04+sdd6QE8eyzqUfT4MHwjW9A796VjtCs43GysIqLgDlzUmKYOhWqq9Pqc3vtlRLEjju6\nDcKs0pwsrCLeeWd51dLUqWm50sGD0+vrX4cNNqh0hGZWyMnCWsSSJTBjxvLkMGsW7LLL8gTRr58H\nzJm1Zk4WVhbvvZcGxs2cCXffDdOnw8YbL08Ou+wCnTtXOkozK5aThTVLBLzyCjz++Cdfr7wCW2yR\n5mTabTfYc0/4whcqHa2ZrSwnCyvakiVpYaDahDBzZvoToH//tHhQ7WvTTb3CnFl74mRh9Vq4MFUj\nFZYWnn4aevT4ZFLYemvYcEO3N5i1d04WHVBEGug2b94nX/Pnpz///e+0QNAWW3wyKWy1FXTtWuno\nzawSnCzamZqaNLFe3URQNymsuWYqJfTs+enXRhulcQ6uRjKzWk4WbcjSpanhuG5JoPD16qtpDen6\nkkDtq0ePlCzMzIrlZNHKLV6cBq/dcEOaF2mNNRpPBN27e7SzmZWek0UrtGjRJxPEZpvBIYfAQQd5\nIR8zqwwni1aiNkGMHw8TJy5PEAcfDL16VTo6M+vonCwqaNEiuPPOVIKYOBE233x5CcIJwsxaEyeL\nFrZoEUybtjxB9Ou3PEH07FmRkMzMmuRk0QI+/nh5grjtNicIM2t7nCzKpDZBjB8Pt9+eBrjVJoge\nPcp6azOzknOyKKGPP07Tb99wQ0oQW265PEF0717y25mZtZhik0XZVzqW1EnSTEm35ffrSZom6XlJ\nUyWtU3DsWZJekPSspMEF+wdImpU/G1PumAE++ii1PQwfnmZV/dWvYPvt4amn4N574bvfdaIws46j\n7MkCOBWYDdR+5T8TmBYRmwJ35fdI6gcMA/oBQ4DLpWXT2F0BHB8RfYA+koaUI9DaBHHkkWkSvQsv\nhIEDYfZsuOceOPlkJwgz65jKmiwk9QT2Aa4Ean/x7w+MzdtjgQPy9lDguohYHBFzgTnAQEkbAl0j\nYkY+blzBOc320UdpgFxtgrjoorQ2dGGC2HDDUt3NzKxtKveUchcDZwBrFezrFhGv5e3XgG55uzvw\nUMFx84AewOK8XWt+3r/SPvoIpkxJbRCTJqWZVw85JFU1eSEfM7NPK1uykLQf8HpEzJRUVd8xERGS\nStoiPWrUqGXbVVVVVFWlW3/44ScTxDbbpARx0UXQrVv91zIza2+qq6uprq5e4fPK1htK0mhgOLAE\n6EwqXdwMbAdURcSCXMU0PSI2l3QmQEScn8+fAowEXszH9M37DwcGRcR36rnnJ3pD1SaI8eNh8uTl\nCeLAA50gzMyglXWdlTQI+H5EfEPSBcCbEfGLnCDWiYgzcwP3tcD2pGqmO4Ev59LHw8ApwAzgb8Cl\nETGlnvvEBx8EkyenEsTkyTBgQEoQ3/ymE4SZWV3FJouWXAanNiudD4yXdDwwFzgUICJmSxpP6jm1\nBBhRUEwYAVwNdAEm1Zcoap1/Pvz97ylBjBkDn/98WZ7FzKxDaXeD8mpqwutGm5kVqdUMymtpThRm\nZqXX7pKFmZmVnpOFmZk1ycnCzMya5GRhZmZNcrIwM7MmOVmYmVmTnCzMzKxJThZmZtYkJwszM2uS\nk4WZmTXJycLMzJrkZGFmZk1ysjAzsyY5WZiZWZOcLMzMrElOFmZm1iQnCzMza1LZkoWkzpIelvS4\npNmSfp73by9phqSZkh6RtF3BOWdJekHSs5IGF+wfIGlW/mxMuWI2M7P6lS1ZRMRHwO4RsTXwFWB3\nSbsAvwDOiYj+wI+BCwAk9QOGAf2AIcDl0rJFUq8Ajo+IPkAfSUPKFXdrVV1dXekQysrP17b5+dq/\nslZDRcQHeXN1oBPwNrAAWDvvXweYn7eHAtdFxOKImAvMAQZK2hDoGhEz8nHjgAPKGXdr1N7/sfr5\n2jY/X/u3ajkvLmkV4DHgS8AVEfG0pDOB+yX9ipSsdsyHdwceKjh9HtADWJy3a83P+83MrIWUu2RR\nk6uhegK7SaoC/gicEhEbAacBV5UzBjMzaz5FRMvcSDoH+BD4cUSslfcJeCci1s4lDiLi/PzZFGAk\n8CIwPSL65v2HA4Mi4jv13KNlHsbMrB2JCDV1TNmqoSStDyyJiHckdQH2BH4CzJE0KCLuAb4GPJ9P\nmQhcK+kiUjVTH2BGRISkdyUNBGYAw4FL67tnMQ9sZmYrrpxtFhsCY3O7xSrAnyPiTkknAr+RtAap\npHEiQETMljQemA0sAUbE8mLPCOBqoAswKSKmlDFuMzOro8WqoczMrO1qlyO4JX1PUo2k9SodSylJ\n+qWkZyQ9IelmSWs3fVbrJ2lIHoj5gqQfVjqeUpLUS9J0SU9LekrSKZWOqdQkdcqDbG+rdCylJmkd\nSTfm/3ezJe1Q6ZhKKQ+EfjoPer421/jUq90lC0m9SO0jL1Y6ljKYCmwREV8ltfWcVeF4mk1SJ+Ay\n0kDMfsDhkvpWNqqSWgycFhFbADsA/9POng/gVFL1cXusphhDqvruSxpc/EyF4ykZSZsAJwDbRMRW\npLFwhzV0fLtLFsBFwA8qHUQ5RMS0iKjJbx8mdUlu67YH5kTE3IhYDFxPGqDZLkTEgoh4PG8vJP2y\n6V7ZqEpHUk9gH+BKoF11MMkl910j4iqAiFgSEf+tcFil9C7py8yaklYF1mT5IOlPaVfJQtJQYF5E\nPFnpWFrAccCkSgdRAj2Alwve1w7GbHfyN7n+pETfXlwMnAHUNHVgG9Qb+I+kP0l6TNIfJK1Z6aBK\nJSLeAi4EXgJeIQ1juLOh49tcspA0Ldev1X3tT6qWGVl4eIXCXGmNPN83Co75P2BRRFxbwVBLpT1W\nXXyKpM8CNwKn5hJGmydpP+D1iJhJG/y/VoRVgW2AyyNiG+B94MzKhlQ6kr4E/C+wCam0+1lJRzR0\nfFmn+yiHiNizvv2StiR9E3gizz/YE/iHpO0j4vUWDLFZGnq+WpKOIRX792iRgMpvPtCr4H0vPjm9\nS5snaTXgJuAvETGh0vGU0E7A/pL2AToDa0kaFxFHVTiuUplHqql4JL+/kXaULIBtgQci4k0ASTeT\n/k6vqe/gNleyaEhEPBUR3SKid0T0Jv1Fb9OWEkVT8my7ZwBD86y+7cGjpJmEN5G0Omnm4YkVjqlk\n8iwFfwRmR8QllY6nlCLi7Ijolf+/HQbc3Y4SBRGxAHhZ0qZ519eBpysYUqk9C+wgqUv+d/p1UkeF\nerW5ksUKaI/VG78mzeA7LZeeHoyIEZUNqXkiYomkk4E7SL0x/hgR7abHCbAzcCTwpKSZed9Z7XRg\naXv8P/dd4Jr8ReafwLEVjqdkIuIJSeNIX9hqSJO+/r6h4z0oz8zMmtRuqqHMzKx8nCzMzKxJThZm\nZtYkJwszM2uSk4WZmTXJycLMzJrkZGGtkqTP5WmvZ0p6VdK8vP2epMtKeJ9f5bXhiz2+u6Qbijju\nLkldVzCWTSTNWpFzyknS3PY2zb+tPI+zsFZP0kjgvYi4qMTX7QrcFRHbl/K6+donAF1XJOY80eBt\nebroipP0b2BAnnDOOjiXLKytEICkqtpFdiSNkjRW0r35W/CBuaTwpKTJedplJA2QVC3pUUlTJH0h\nX3MosGyWzXyN0bkE86ikbSRNlTRH0v/Lxyz79i/pGKVFqCZLel7SLwrinUgjawM0+bBS5zzb6ZN5\nxtOqvH9NSePzgjU3S3pI0oB6zj8/H/OEpF/mfd0k3SLp8fzaIe+/JT/vUznJ1RfPkZIezj+b3yot\nl2wdiP/Cra3rDewO7A/8BZgWEV8hre++b57E79fAQRGxLfAn4Lx87i6kqQ5qBfBiRPQH7iWt+/5N\n0qJF5zZw/68ChwJbAcOU1ncgIl4D1pf0mZV8rv8BluZnOZy0nv0apPXo38yLKZ0DDKDONBuSPgcc\nEBG1C2X9NH90KTA9IrYmzaZaOw/Qcflnsx1wiqR161yvb37GnfLPpgZocHZSa5/a89xQ1v4FMDki\nlkp6ClglIu7In80iTb28KbAFcGeeT6sTae5+gI2AV+tcc2LB+Z+JiPeB9yV9LGmtemK4KyLeA5A0\nG9iY5bPmvkaaRffZlXi2nUm/3ImI5yS9mJ9lZ+CSvP9pSfWt3fIO8JGkPwK35xekpHpkPreGtPgN\nwKmSDsjbvYA+wIz8XqQZjgcAj+afYRdgwUo8k7VhThbW1i2C9MtP0uKC/TWkf98Cno6InRo4v27p\n+uOC8xfVc726Pi7YXkpKRrXEp7/1H8DyNVeOj4jHGoir9vwV2Q9ATp7bk37JHwyczPIp7T9xbq7e\n2gPYISI+kjSdNN14XWMj4uzG7mvtm6uhrC0rZsGd54ANCurnV5PUL3/2IvCFBs5b2cV8Cs/rRp21\nOSJiQkT0z6/GEsV95KqePEX2RqRn+TupSoj8HJ9qDM9VX+tExGTgdFJVGcBdwEn5mE65pLQW8HZO\nFJuTqtw+EXI+72BJG+Rz15O0UeM/BmtvnCysrYiCP+vbhk9PkR15Xe+DgV9IehyYCeyYP7+ftABM\nfec3du2G7r/ss9yI/mauxloRtde7HFglVzNdDxwdEYvy/g0kPU1qi3gaqLsudFfgNklPkJLOaXn/\nqcDu+ZqPAn2BKcCquQrt58CDnwooTRn/I2BqvuZUGk6y1k6566x1WEpLnU6PiO3KcO0TSW0eF5f4\nuqsAq0XEx0rLYk4DNo2IJaW8j1ldbrOwDisiFkqaLmn3iJhe4ssPI3XNLbXPAHfnXl4CTnKisJbg\nkoWZmTXJbRZmZtYkJwszM2uSk4WZmTXJycLMzJrkZGFmZk1ysjAzsyb9f7OvE0+0Y33YAAAAAElF\nTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x54c9290>"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter18.ipynb b/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter18.ipynb new file mode 100755 index 00000000..9672dd94 --- /dev/null +++ b/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter18.ipynb @@ -0,0 +1,124 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:bd1dfbb2f3a2374bd2f13d65956d903f168b0ff4075bd14d19db0d9e2d866f17"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter18-Subsoil Exploration"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg642"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Determine the correctedstandard penetration numbers, (N1)60, at various depths\n",
+ "import math\n",
+ "##solving for z=5 only\n",
+ "To=0.275\n",
+ "Cn=To**(-0.5)\n",
+ "N60=8\n",
+ "N160=Cn*N60\n",
+ "print'%s %.1f %s'%('(N1)60 = ',N160,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(N1)60 = 15.3 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg643"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#estimate the average soil friction angle,f\u0003, from z\u00020 to z\u000225 ft\n",
+ "#import math\n",
+ "z=5.\n",
+ "To=0.275\n",
+ "Cn=2./(1.+To)\n",
+ "N60=8.\n",
+ "N160=Cn*N60\n",
+ "print'%s %.1f %s'%('(N1)60 = ',N160,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(N1)60 = 12.5 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg643"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#estimate the average soil friction angle, f\u0003, from z\u00020 to z\u000225 ft\n",
+ "import math\n",
+ "pa=1. ## 14.7 lb/in**2 = 1ton/ft**2\n",
+ "To=0.275 ## ton/ ft**2\n",
+ "N60=8.\n",
+ "c= math.atan((N60/12.2+20.3*(To/pa))*57.3)**0.34\n",
+ "print'%s %.1f %s'%('The average soil friction angle = ',c,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The average soil friction angle = 1.2 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter2.ipynb b/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter2.ipynb new file mode 100755 index 00000000..57ee4839 --- /dev/null +++ b/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter2.ipynb @@ -0,0 +1,122 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:5e11f0622a3e8a49d45f7bf47ce2fb320225cef1a5e74b45071c152843296e82"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter2-Origin of Soil and Grain Size"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the values and plot the graph\n",
+ "%matplotlib inline\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
+ "import math\n",
+ "\n",
+ "from math import log\n",
+ "import numpy\n",
+ "from math import tan\n",
+ "import matplotlib\n",
+ "from matplotlib import pyplot\n",
+ "#given\n",
+ "e=numpy.array([100,94.5,86.3,74.1,54.9,38.1,9.3,1.7,0])\n",
+ "p=numpy.array([4.75,2.00,0.850,0.425,0.250,0.180,0.150,0.075,0])\n",
+ "\n",
+ "#calculations\n",
+ "\n",
+ "\n",
+ "#results\n",
+ "\n",
+ "pyplot.plot(p,e)\n",
+ "pyplot.xlabel('Particle size ')\n",
+ "pyplot.ylabel('percent finer ,e')\n",
+ "pyplot.title('Graph of particle size vs percent finer')\n",
+ "pyplot.show()\n",
+ "print('look at the axis reverse in text book')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEZCAYAAAB1mUk3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYXFW57/HvLwkEkhABkRASSCSIDMooBIFoy2QAjXhV\nEEHBAfXKFVBQAT3aR+9BOZ5zROE6HIMMKpOoiKiYgDQEZCZgJIDKoQkEkkBISEKCSej3/rF2pasr\nXd3V3VW9q7p+n+epp2vXnt7aVb3evddae5UiAjMza27D8g7AzMzy52RgZmZOBmZm5mRgZmY4GZiZ\nGU4GZmaGk0FTk9Qq6adV2tY4SbdLWiHp29XYZj9i+L2kD1ewXLukw6q8779Kels1t2mdSr5f/yHp\nXEk/zjuuoWRE3gFYJ0kfBD4H7AG8DDwJXB4RP6jRLqt5k8kngSURMbaK2yxLUiswJSI2FP4RcXSF\nqwfVfe9ExJuqub1mIukU4OMRMa2HxQb1+9WMfGVQJySdBVwIXACMi4hxwKeBgyVtWmadgX5+GuD6\nxSYBj1Zxe2VJ8klMDqrwfRuIQfl+NfV3KyL8yPkBvAZYBby3l+UuA34A/D5b/lDgGGAu8BKwAPha\n0fKTgQ7gVGAh8CxwVtH8rwHXAJcDK4C/Avv1sP+DgPuA5cC9wFuL4loL/BNYCRxaJvYfArOyfbUB\nOxbN/24W/0vA/cAhRfNageuAn2bzT8v2tTbb39xsuTbSGWZhvVOB+dn+HgH2zl5/shAjKSGeA/wD\neCE7HluVef/bADcCy4ClwO1F89qLtrk8i2tl9jl1FN4r8C7goWwbdwJvLrOvHwDfLnntN8CZ2fMv\nAc9k7+2x7o55hcd9V2B29n4eAz7Qy/dtB+BXwJLseF1UtPzHsuP9InBTyX46gE8Bf8ve+8XZ67sB\na4D12fF6scx7KHy/VgCHZd+Jn5Z8zz8CPAU8D5xXtH7Zz7ho3Y9l67blXR7k9cg9AD8CYDqwDhjW\ny3KXZQVNoRAeCbwd2CObfjOwCHhPNl34ov8c2Bx4U/ZPfFg2vzX7R5ye/cOcD9xVZt9bZ//EJ5Ku\nKD+Y/dMX/qkuBb7eS+wrgEOATUlXQXOK5p8IbJVt+/PAc8CmRXGuBWZk05uREtkVJfu4FfhY9vwD\npMJyv2x6Cp0FcnEyOAP4M7A9sAmp4LyyzHv4JqlwHJ49Di6at2GbJeucTyqAhwP7AIuB/bPj/ZFs\nvU27WW8asKBoeitgNbAd8EZS4twum7cjsFNfjzswGngaODk77nuTCtLdynzfRgEPA/+ZfZ9GFo4B\n8B7g71lsw4AvA3cWxdEB3ACMJSWUJcA7s3knF38XyryPLt+v7PMvTQY/ymLaE3gFeGNvn3HRupcV\n3lPe5UFej9wD8CMATgKeK3ntz6TCdzXZWXL2hb2sl21dCPxX9rzwRd+laP4FwMzseSswq2je7sDq\nMtv9MHB3NzGenD2/FPhGD3FdRlEhmxVE64EJZZZ/keysOYuzrWR+a6EwKHqtOBn8EfhsmW0XJ4P5\nFBXiwHhS4tkoMQP/ClxPaqsou82i147PXn9tNv0DShIm6Wz8bd1sT6Qz1WnZ9KnAzdnznUlJ5TBg\nk16+D+WO+8QsvttLlv8R8NXuvm/AW0mFeHfH5g+FY59NDyO1e+2QTXcABxXNvwb4Uvb8FCpLBt8o\nmt7w+dP5Pd++aP49wHHZ80fLfcZF607uy//sUHy4zaA+LAW2Ka6TjYiDImKrbF7h9SCdyW0gaaqk\nWyUtkbScdCn+2pLtF6+zgHSGVLC46PlqYLMydcPbZ+sWe6pkWz0J0pl6moh4mVTgb5+9j7MlzZe0\nXNIyUtXZNkXrP0PfTASeqGC5ycCvJS3L9jufVFiO62bZb5OqGmZJekLSl8ptVNI+wEXAsRGxNHt5\nEnBWYV/Z/iaSCqcuIpVaVwMnZC99iHSFR0T8AziTVCAulnSVpI22UdgU5Y/7JGBqSTwfKnrvXdYl\nndE/FREd3exnEvDdou0U3vOEomUWFT1fTUpM1VS6/TFFsfX2GXf5v2pGTgb14S5Sfeix/Vj3StLZ\n6sSI2JJ0CVz6ue5Y8nxhP/azkPRPVWxSH7YlUmGSJqQxpKqnZyVNA75Aqq/eMkuCL9G1gTtKttdd\ngVTsadIZdG8WANMjYquix6iIeK50wYhYFRFnR8QUYAbweUnvKF1O0rbAr4HPRMTDJfv6t5J9jYmI\na8rEdhXwfkmTgAOAXxbFclWk3jeTSMfmgjLbKHfcF2bx3FYSzxYRcVrx2y56/jSwo6Th3exnAfDJ\nkm2Njoi7y8RVrPSzrURf1qnkM+5PDEOKk0EdiIjlpCqI70t6n6QtJA2TtDddz5666/0zBlgWEWsl\nHUA6syv9Yn9F0uaS9iBdkpcrfHrye2AXSSdIGiHpeFLj4409xFbqaEmF3lHfILVPLAS2IJ2pvSBp\nU0lfJdUt92QxMFlSuf3OBM6WtK+SnSXt2M1yPwTOL8yT9DpJM7rboKRjsu2IVA//KiVJKeuNch3w\ns4i4rmQTPwY+LemALKbR2TbH0I2IeIjU4DkTuCkiVmT72EXSoZJGkk4iXsliKafccf8d6TM9SdIm\n2WN/SbsW3k7Jdu4hteV8S9IoSZtJOiib90PgPEm7ZzG+RtIHeohJRdtfDEyUtEkvy/c03ZOKP+Nm\n5mRQJyLi26SG0y+SLncXkb7EXyRdOUD3/eM/A3xd0grgX+i+oL+NVL1xM6mHys09bK/bM6SIeJHU\nE+YsUgF1NvCu7PVy2yrd7pWkhr+lpMbUk7J5N2WPv5F65ayha5VUd9v+RfZ3qaT7u4n3OuDfsn2u\nIPWA2aqbuL5LaticlR3Du0hn4d15A6nnzUpSe8n/i4jbSpaZSGqsPVPSyuyxQtLEiHiAVPd/Mamq\n5u+kRuSeXEnqxXNl0WsjSY3Zz5MK522Ac8usX/a4R8RK4EhSZ4CF2ba+SWpoLqy74bhn1UPvJl1x\nLSBdKRyXzbuedHVytaSXgHnAO0viKI2r8NotpN5eiyQt6eF9RC/T5fT2GTf9VQGAsgaV6m9Y+gmp\n2+OSiHhz9trWpMJqEumf/rjsrBhJ55K6d70KnB4Rs2oSWBORNBn4H2BEmXrewYzlUuCZiPiXPONo\nNj7uVqlaXhlcSuqyWOwcYHZE7EI6GzgHILu0PJ7Um2U6qbrEVy1DSzVvcLPK+bhbRWpW4EbEHFLX\nyGIzSDc4kf0tNJi+B7gqItZFRDupSqPcpbr1Tb1cAvdWjWS14eNuFRnsW6/HRUShK+NiOrt2bQ8U\n9zp4hq5d0qwfssTaXc+PQRcRH807hmbk426Vyq0qJutH3VuDo5mZDYLBvjJYLGm7iFiU3SRT6Dmw\nkKK+0KQeGRv1X5fkBGFm1g8R0WP70WAngxtI45BckP29vuj1KyX9F6l66A2kgdA2UqveT42mtbWV\n1tbWvMOoCz4WnXwsOpU7FhGwZg0sW9b3x4svggRbbVX+sfXW5edtvvngHweA8rfjdKpZMpB0FWkQ\ntW0kPQ18FfgWcK2kj5N1LQWIiPmSrqXzNvHPhEt9MyujkgL9ppvgiSe6nwc9F+hTptRfgV5rNUsG\nEXFCmVmHl1n+fNIIj2bWJNasSWfb/TlLh97Pzo84orkK9IFo3h9yaHAtLS15h1A3fCw65XEsalmg\nD+QMva2tBX81KlezO5BrQZJrj8xqoFDl0p9CHfped+4z9MElqdcGZCcDsyHCBbqV42Rg1mCKG0X7\nWqhD/wpzF+hDn5OBWQ6qWaBXWpi7QLeeOBmY9VNpt8W+FOrgAt3qi5OBNbXu+qFXWqhD/wpzF+hW\nj5wMbMh69VV4+GGYMwcefBCWLnWBblaOk4ENGWvWwL33psJ/zhy4+26YOBGmTYP994dtt3WBblaO\nk4E1rGXL4M474Y47UuH/8MOwxx6p8J82DQ4+GLbZJu8ozRqDk4E1jIULO8/658yBJ5+EqVM7C/+p\nU2H06LyjNGtMTgZWlyLg8cc7C/477oCVK+GQQ1LBf8ghsM8+sMkmeUdqNjQ4GVhdWL8e5s7tLPjv\nuANGjeo86582DXbdNQ0NbGbV52RguVi9Gu65p/PM/557YNKkzoL/kENghx16346ZVYeTgQ2KF1/s\nbOidMwfmzYO99uqs9jn44NS108zy4WRgNbFgQWeVz5w5afrAAzvP/A84IFUDmVl9cDKwAYuARx/t\n2tNnzZquVT577w0j/MsYZnXLycD6bN26dEdvoeC/8054zWs6q3ymTYNddnFjr1kjcTKwXq1ale7m\nLVT73Hsv7LRT1zP/CRPyjtLMBsLJwDbywgtdG3vnz0/VPIXC/6CDYMst847SzKrJyaDJRcBTT3Wt\n73/22VTgF6p9DjgANtss70jNrJacDJpMRwc88kjXnj7r1nW9uWvPPWH48LwjNbPB5GQwxK1dCw88\n0LWx97Wv7Vrfv/PObuw1a3ZOBkPMypVw112dhf/996eePcVj+owfn3eUZlZvnAwa3JIlXQdze+wx\n2HffzjP/t741dfs0M+uJk0GDWb8err4a2tpSAliyJDX2Fs76998fRo7MO0ozazROBg1k7Vo44QRY\ntCj9nTYN3vQmN/aa2cBVkgw8iEAdWLMG3ve+1MXzT3/y2b+ZDb5heQfQ7FatgmOOSb/Ze801TgRm\nlg8ngxwtXw5HHglTpsAVV/iXvcwsP04GOXnhBTj00NQo/KMfuW3AzPLlZJCD556DlhaYPh0uvBCG\n+VMws5y5GBpkCxbA296Wegydf77vDjaz+uBkMIj+8Y+UCE47Db785byjMTPr5GQwSObPT1VD550H\nZ56ZdzRmZl35PoNB8NBDcNRR8O1vw0kn5R2NmdnGcrkykHSupEckzZN0paSRkraWNFvS3yTNkjQk\nfmLlnnvgne+Eiy92IjCz+jXoyUDSZOBUYN+IeDMwHPggcA4wOyJ2AW7JphvabbfBu98Nl16a7jA2\nM6tXeVwZrADWAaMkjQBGAc8CM4DLs2UuB47NIbaquekmeP/708BzRx+ddzRmZj0b9GQQES8C/wks\nICWB5RExGxgXEYuzxRYD4wY7tmq5/nr4yEfgN79JN5aZmdW7QW9AljQFOBOYDLwE/EJSl9r0iAhJ\n3Q5P2trauuF5S0sLLS0ttQq1X666Cj73OfjDH2C//fKOxsyaUVtbG21tbX1aZ9CHsJZ0PHBERHwi\nm/4wcCBwKPCOiFgkaTxwa0TsWrJuXQ9hfckl8NWvwh//mIafNjOrB5UMYZ1Hm8FjwIGSNpck4HBg\nPvBb4ORsmZOB63OIrd8uugi+/nW49VYnAjNrPLn8uI2kL5IK/A7gQeATwBbAtcCOQDtwXEQsL1mv\nLq8MvvUt+PGP4ZZbYPLkvKMxM+vKv3RWYxGpWui66+Dmm2HChLwjMjPbmH/prIYi4Kyz0i+T3XYb\nbLtt3hGZmfWfk0E/dHTAZz4Dc+emZLD11nlHZGY2ME4GfbR+PXzsY9DeDrNnw9ixeUdkZjZwTgZ9\nsHYtnHgirFiR7jAeNSrviMzMqsPJoEKvvJKGlxg+HG64wT9cb2ZDi3/PoAKrVsExx8CYMannkBOB\nmQ01Tga9eOmlNAT1pEnw85/DJpvkHZGZWfU5GfRg6VI47DDYZx+YOTNVEZmZDUW+6awHp5ySqoYu\nusg/XG9mjct3IA9ARwdsvz3cdRe8/vWDskszs5qo14HqGsK8ebDFFk4EZtYcnAzKmDULjjwy7yjM\nzAaHk0EZTgZm1kzcZtCN1ath3DhYuNDDTZhZ43ObQT/NmQN77+1EYGbNw8mgG64iMrNm42TQDScD\nM2s2bjMo8eyz6TeMn3/edxyb2dDgNoN+mD07DUHhRGBmzcTJoISriMysGbmaqEhHB2y3Hdx7L0ye\nXLPdmJkNKlcT9dHDD8NWWzkRmFnzcTIo4ioiM2tWTgZFnAzMrFm5zSDz8stpCIrnnkujlZqZDRVV\nazOQNErSG6sTVn26/XbYbz8nAjNrTr0mA0kzgLnAH7PpfSTdUOvABpuriMysmVVyZdAKTAWWAUTE\nXGCnGsaUCycDM2tmlSSDdRGxvOS1jloEk5dnnoFFi2DfffOOxMwsHyMqWOYRSScCIyS9ATgd+HNt\nwxpcs2fD4Yd7CAoza16VXBl8FtgD+CdwFbACOLOWQQ02VxGZWbNr+q6lHR2pS+kDD8COO1Z102Zm\ndaGSrqWVVBOVbvR84CVgZkQs7W9w9WLuXNhmGycCM2tu/bkD+T7gVeDCKseSC1cRmZn148ogIn5d\ni0DyMmsWnH123lGYmeUrlzYDSVsCM0kN0wF8FPg7cA0wCWgHjivt0lrtNoNVq9KQ1YsWwZgxVdus\nmVldqechrL8L/D4idgP2BB4DzgFmR8QuwC3ZdE3ddhvsv78TgZlZj8lA0jBJx1Vzh5JeA0yLiJ8A\nRMT6iHgJmAFcni12OXBsNffbHbcXmJklPSaDiOgAvlTlfb4eeF7SpZIelPRjSaOBcRGxOFtmMTCu\nyvvdiJOBmVlSSTXRbElnS9pB0taFxwD2OQLYF/h+ROwLvExJlVDWMFDTxowFC+CFF2CffWq5FzOz\nxlBJb6IPkgrm00pef30/9/kM8ExE3JdNXwecCyyStF1ELJI0HljS3cqtra0bnre0tNDS0tKvIApD\nUAzzz/uY2RDT1tZGW1tbn9bJqzfR7cAnIuJvklqBUdmspRFxgaRzgC0j4pyS9arWm+j442H6dPjo\nR6uyOTOzulVJb6Jek0FWn/95YMeIODUbrO6NEXHjAALbi9S1dFPgCVLX0uHAtcCO1Lhr6auvwrbb\nwsMPw8SJA96cmVldq9ZwFJcCDwAHZdPPkqp2+p0MIuJhYP9uZh3e3232xYMPpvsLnAjMzJJKasyn\nRMQFwFqAiHi5tiHVnnsRmZl1VUky+KekzQsTkqaQhrNuWE4GZmZdVdJmcCTwZWB3YDZwMHBKRNxa\n+/A2imXAbQYrV8L48bB4MYweXaXAzMzqWFXaDCJilqQHgQOzl06PiBeqEWAe2tpg6lQnAjOzYpWO\nWjoSWJYtv3uWZW6vXVi14yoiM7ON9ZoMJF0AHA/MJ/2OQUHDJoOrr847CjOz+lLJlcF7SfcVNHSj\nMUB7OyxbBnvtlXckZmb1pZLeRE+Qbg5reHffDdOmeQgKM7NSlVwZrAEeknQLnV1KIyJOr11YtdHe\nDlOm5B2FmVn9qSQZ3JA9ig3+gEZV0N4Oe+6ZdxRmZvWnkq6llw1CHIOivR1mzMg7CjOz+lM2GUj6\nRUR8QNK8bmZHRDTcOXZ7O0yenHcUZmb1p+wdyJK2j4hnJU0CNrpzLSLaaxxbdzH1+w7kCBg1Kv2g\njW84M7NmMtA7kG8k/SLZ/42ID1c1shwsXgxbbOFEYGbWnZ6SwUhJJwIHS/pfdL06iIj4VW1Dqy5X\nEZmZlddTMvg0cCLwGuDd3cx3MjAzGyLKJoOImAPMkXR/RMwcxJhqwsnAzKy8Xu/FHQqJAJwMzMx6\n0jQDMzgZmJmV52RgZma9J4NsTKJeX6tnEfDUUzBpUt6RmJnVp57uQN4cGAW8TtLWRbPGAhNqHVg1\n+R4DM7Oe9dS19FPAGcD2wANFr68ELq5lUNXmKiIzs5711LX0QuBCSadHxPcGMaaqczIwM+tZJaOW\nfk/SQcDk4uUj4ooaxlVVTgZmZj2r5DeQfwbsBDxE199Abqhk4N8xMDMrr5Ift9kP2L3fw4XWAf+O\ngZlZzyq5z+CvwPhaB1JLriYyM+tZJVcGrwPmS7qXrr+B3BDn2r7HwMysd5Ukg9bsb9A5jHXDVBkt\nXgxjx/oeAzOznlTSm6hN0mRg54i4WdKoStarF64iMjPrXSXDUXwS+AXwo+ylicCvaxlUNTkZmJn1\nrpIG5NOAQ4AVABHxN2DbWgZVTU4GZma9qyQZ/DMiCg3HSBpBA7UZOBmYmfWukmRwm6QvA6MkHUGq\nMvptbcOqHicDM7PeVZIMzgGeB+aRBq/7PfCVWgZVTU4GZma9U283FksaDbwSEa9m08OBkRGxekA7\nTtu5H3gmIt6dDZN9DTAJaAeOi4jlJev06UboCBg1CpYuTX/NzJqRJCJCPS1TyZXBn4DNi6ZHATcP\nJLDMGcB8OtsfzgFmR8QuwC3Z9IAU7jFwIjAz61klyWBkRKwqTETESlJC6DdJE4GjgZl03sg2A7g8\ne345cOxA9gGuIjIzq1QlyWC1pP0KE5LeAqwZ4H6/A3wB6Ch6bVxELM6eLwbGDXAfTgZmZhWq5E7i\nM4BrJT2XTY8Hju/vDiW9C1gSEXMltXS3TESEpAF3X3UyMDOrTI/JIGvkPQTYDXhj9vLjEbF2APs8\nCJgh6WhgM2CspJ8CiyVtFxGLJI0HlnS3cmtr64bnLS0ttLS0lN1RezvstdcAIjUza0BtbW20tbX1\naZ1KehPdFxH7DyCunrb9duDsrDfRvwNLI+ICSecAW0bEOSXL96k30fTpcMYZcNRR1Y3bzKyRVNKb\nqJJqojskXUzq9vkyqcE3IuLBKsQInb2JvkWqjvo4WdfSgW7Y1URmZpWp5MqgjW6Gn4iId9Qopp5i\nqfjKoHCPwQsvePhqM2tulVwZ9JoM6klfksHatTBmTPprZtbMqnLTmaTtJF0i6aZsevesKqeuvfIK\nbLZZ3lGYmTWGSu4zuAyYBWyfTf8d+FytAqoWJwMzs8pVkgy2iYhrgFcBImIdsL6mUVWBk4GZWeUq\nSQarJL22MCHpQOCl2oVUHU4GZmaVq6Rr6Vmk3y/YSdKfgdcB769pVFXgZGBmVrlek0FEPCDpbaQ7\nkEW6A3ldzSMbICcDM7PK9ZoMJG0OfIY0LEUAcyT9ICJeqXVwA+FkYGZWuUqqia4AVgDfI10ZfAj4\nKfCBGsY1YE4GZmaVqyQZ7BERuxdN/0nS/FoFVC1OBmZmlaukN9GDkt5amMh6Ez1Qu5Cqw8nAzKxy\nlVwZvAW4U9LTpDaDHYHHJc0jDVi3Zy0D7C8nAzOzylWSDKbXPIoacDIwM6tcJV1L2wchjqpzMjAz\nq1wlbQYNycnAzKxyTgZmZuZkYGZmTgZmZoaTgZmZ4WRgZmY4GZiZGU4GZmaGk4GZmeFkYGZmOBmY\nmRlOBmZmhpOBmZnhZGBmZjgZmJkZTgZmZoaTgZmZMUSTQURKBiNH5h2JmVljGJLJYN06GDEChg/P\nOxIzs8YwJJOBq4jMzPrGycDMzJwMzMwsh2QgaQdJt0p6RNJfJZ2evb61pNmS/iZplqQt+7sPJwMz\ns77J48pgHfC5iNgDOBA4TdJuwDnA7IjYBbglm+4XJwMzs74Z9GQQEYsi4qHs+SrgUWACMAO4PFvs\ncuDY/u7DycDMrG9ybTOQNBnYB7gHGBcRi7NZi4Fx/d2uk4GZWd+MyGvHksYAvwTOiIiVkjbMi4iQ\nFN2t19rauuF5S0sLLS0tGy3jZGBmzaytrY22trY+raOIbsvcmpK0CXAj8IeIuDB77TGgJSIWSRoP\n3BoRu5asF5XEe8MNMHNm+mtm1uwkERHqaZk8ehMJuASYX0gEmRuAk7PnJwPX93cfvjIwM+ubPKqJ\nDgZOAv4iaW722rnAt4BrJX0caAeO6+8OnAzMzPpm0JNBRNxB+SuSw6uxDycDM7O+8R3IZmbmZGBm\nZk4GZmaGk4GZmeFkYGZmOBmYmRlOBmZmhpOBmZnhZGBmZjgZmJkZTgZmZoaTgZmZ4WRgZmY4GZiZ\nGU4GZmaGk4GZmeFkYGZmOBmYmRlDMBlEpGQwcmTekZiZNY4hlwwefRR22AGGD887EjOzxjHkksGN\nN8K73pV3FGZmjcXJwMzMUETkHUPFJEVP8b74IkyeDEuWuAHZzKxAEhGhnpYZUlcGN90ELS1OBGZm\nfTWkksHvfucqIjOz/hgy1UTr18O4cfCXv8CECYMcmJlZHWuqaqK77oJJk5wIzMz6Y8gkgxtvhGOO\nyTsKM7PGNGSSgdsLzMz6b0gkgyefhOefh/33zzsSM7PGNCSSwe9+B0cfDcOGxLsxMxt8Q6L4dHuB\nmdnANHzX0lWrYPx4WLgQxo7NKTAzszrWFF1Lb7kFpk51IjAzG4iGTwYemM7MbODqKhlImi7pMUl/\nl/Sl3pZftcrtBWZm1VA3yUDScOBiYDqwO3CCpN3KLT9vHrzlLfCe98Ab3jBYUdaPtra2vEOoGz4W\nnXwsOvlY9E3dJAPgAOAfEdEeEeuAq4H3dLfgpZfCoYfCeefBD384qDHWDX/RO/lYdPKx6ORj0Tcj\n8g6gyATg6aLpZ4CppQudcgrcey/cdhvsvvtghWZmNrTVUzKoqI9rRwfcdx+MHl3rcMzMmkfd3Gcg\n6UCgNSKmZ9PnAh0RcUHRMvURrJlZg+ntPoN6SgYjgMeBw4BngXuBEyLi0VwDMzNrAnVTTRQR6yX9\nH+CPwHDgEicCM7PBUTdXBmZmlp966lrao77ekDZUSfqJpMWS5uUdS94k7SDpVkmPSPqrpNPzjikv\nkjaTdI+khyTNl/TNvGPKm6ThkuZK+m3eseRJUrukv2TH4t6yyzXClUF2Q9rjwOHAQuA+mrQ9QdI0\nYBVwRUS8Oe948iRpO2C7iHhI0hjgAeDYZvxeAEgaFRGrs/a3O4CzI+KOvOPKi6TPA/sBW0TEjLzj\nyYukJ4H9IuLFnpZrlCuDim9IG+oiYg6wLO846kFELIqIh7Lnq4BHge3zjSo/EbE6e7opqd2tx3/+\noUzSROBoYCbQYy+aJtHrMWiUZNDdDWkTcorF6pCkycA+wD35RpIfScMkPQQsBm6NiPl5x5Sj7wBf\nADryDqQOBHCzpPslnVpuoUZJBvVfl2W5yaqIrgPOyK4QmlJEdETE3sBE4G2SWnIOKReS3gUsiYi5\n+KoA4OCI2Ac4Cjgtq2reSKMkg4XADkXTO5CuDqzJSdoE+CXws4i4Pu946kFEvAT8DnhL3rHk5CBg\nRlZXfhVwqKQrco4pNxHxXPb3eeDXpGr3jTRKMrgfeIOkyZI2BY4Hbsg5JsuZJAGXAPMj4sK848mT\npG0kbZk93xw4Apibb1T5iIjzImKHiHg98EHgTxHxkbzjyoOkUZK2yJ6PBo4Euu2J2BDJICLWA4Ub\n0uYD1zQTqinCAAADIklEQVRxj5GrgD8Du0h6WtJH844pRwcDJwHvyLrNzZU0Pe+gcjIe+FPWZnAP\n8NuIuCXnmOpFM1czjwPmFH0vboyIWd0t2BBdS83MrLYa4srAzMxqy8nAzMycDMzMzMnAzMxwMjAz\nM5wMzMwMJwMboiS9mt13ME/StdmNWJWuu5eko4qm393bsOmSBjwMhqR/lXTYQLdj1h++z8CGJEkr\nI6Jw5+XPgAci4jsVrDeCdCPbfhHx2f7sz6wR1c3PXprV0Bxgz2wAs6+QhnheCpwYEUsktQJTgNcD\nC0h3Nm8u6RDgm8AosuQgaRzww2xZgE9HxN3FO5P0BeADwEjg1xHRWjJ/OGkYjf1Id8deEhHflXQZ\n8FugnTT0MqT/0T0iYpikKcDFwOuA1cCpEfH4wA+PmZOBDXHZmf7RwO+BOyLiwOz1TwBfBM7OFt0V\nOCQi/inpZFLhf3q27MlFm/weaXjo90oaBowp2d+RwM4RcUA2/zeSpmW/Q1GwN7B94ceJJI3NXg8g\nIuIB0nDcSPr3LHaA/wY+FRH/kDQV+D7gaiWrCicDG6o2l1QYqO120pn4bpKuBbYjXR38TzY/gBsi\n4p/ZtCg/9PE7SNVIREQHsKJk/pHAkUX7Hg3sTLo6KXgC2EnS90ijixaPFbNhv5KOB/YFjsiG6X4r\n8Is0Ph9k78GsKpwMbKhak43hvoGki4D/iIgbJb0daC2avbroeW8Nab2Nkf/NiPjvcjMjYrmkPYHp\nwKeB44CPl8T6JuBrwLSIiOwqY3npezKrFvcmsmYyFng2e35K0eulhftKYIsy828B/jds+MH1sXT1\nR+Bj2XDBSJog6XXFC0h6LTAiIn4F/AtZlVAmsqGorwI+HBFLASJiBfCkpPdn21CWUMyqwsnAhqru\nzu5bSdUs9wPPFy0TJcvfCuyedU09rmT+GaQhs/9C+p2N3Yr3FxGzgSuBu7JlrqWkXYH0k623ZlVJ\nPwXOLZk/A9gRmJnF8GD2+onAx7PhiP+aLWdWFe5aamZmvjIwMzMnAzMzw8nAzMxwMjAzM5wMzMwM\nJwMzM8PJwMzMcDIwMzPg/wPeMGYYyyrVSwAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x5464ab0>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "look at the axis reverse in text book\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg45"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate uniformity coefficient and coefficient of gradation\n",
+ "##initialisation of variables\n",
+ "##from graph\n",
+ "d= 0.15 ##mm\n",
+ "w= 0.17 ##mm\n",
+ "a= 0.27 ##mm\n",
+ "##calculations\n",
+ "C= a/d\n",
+ "c= w**2/(a*d)\n",
+ "##results\n",
+ "print'%s %.1f %s'%('uniformity coefficient = ',C,\"\")\n",
+ "print'%s %.2f %s'% ('coefficient of gradation = ',c,' ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "uniformity coefficient = 1.8 \n",
+ "coefficient of gradation = 0.71 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter3.ipynb b/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter3.ipynb new file mode 100755 index 00000000..d0ebca76 --- /dev/null +++ b/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter3.ipynb @@ -0,0 +1,199 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:60c2fa50959c5a4dba9df5cf01a73aa3b32e4e232661901abd9e03f25b058fca"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter3-Weight\u2013Volume Relationships"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg 60"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#evaluvate moist and dry density and void ratio and porosity and degree of saturation and volume of water in soil sample\n",
+ "##initialisation of variables\n",
+ "V= 1.2 ##m**3\n",
+ "M= 2350. ##Kg\n",
+ "w= 0.086\n",
+ "G= 2.71\n",
+ "W= 1000. ##kg/m**3\n",
+ "##calculations\n",
+ "R= M/V\n",
+ "D= M/((1.+w)*V)\n",
+ "e= (G*W/D)-1.\n",
+ "n= e/(e+1.)\n",
+ "S= (w*G/e)*100.\n",
+ "v= (M-(M/(1.+w)))/W\n",
+ "##results\n",
+ "print'%s %.1f %s'% ('moist density = ',R,' kg/m^3 ')\n",
+ "print'%s %.1f %s'% ('dry density = ',D,' kg/m^3 ')\n",
+ "print'%s %.3f %s'% ('void ratio = ',e,' ')\n",
+ "print'%s %.3f %s'% ('porosity = ',n,'')\n",
+ "print'%s %.3f %s'% ('Degree of saturation = ',S,' ')\n",
+ "print'%s %.3f %s'% ('volume of water in soil sample = ',v,' m^3 ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "moist density = 1958.3 kg/m^3 \n",
+ "dry density = 1803.3 kg/m^3 \n",
+ "void ratio = 0.503 \n",
+ "porosity = 0.335 \n",
+ "Degree of saturation = 46.349 \n",
+ "volume of water in soil sample = 0.186 m^3 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg 63"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calcualte mass of water to be added for full saturation\n",
+ "##initialisation of variables\n",
+ "n= 0.4\n",
+ "G= 2.68\n",
+ "w= 0.12\n",
+ "R= 1000. ##kg/m**3\n",
+ "V= 10. ##m**3\n",
+ "##calculations\n",
+ "d= G*R*(1.-n)*(1.+w)\n",
+ "s= ((1.-n)*G+n)*R\n",
+ "M= s-d\n",
+ "m= M*V\n",
+ "##results\n",
+ "print'%s %.1f %s'%('mass of water to be added for full saturation = ',m,' kg ')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "mass of water to be added for full saturation = 2070.4 kg \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg63"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculatesatuarated unit weight and specific gravity and void ratio \n",
+ "##initialisation of variables\n",
+ "d= 16.19 ##kN/m**3\n",
+ "w= 0.23\n",
+ "W= 9.81 ##kN/m**3\n",
+ "##calculations\n",
+ "R= d*(1.+w)\n",
+ "G= d/(W-d*w)\n",
+ "e= w*G\n",
+ "##results\n",
+ "print'%s %.2f %s'%('satuarated unit weight = ',R,' kN/m^3 ')\n",
+ "print '%s %.2f %s'%('specific gravity = ',G,' ')\n",
+ "print'%s %.2f %s'% ('void ratio = ',e,' ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "satuarated unit weight = 19.91 kN/m^3 \n",
+ "specific gravity = 2.66 \n",
+ "void ratio = 0.61 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg66"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate relative density of compaction in percentage\n",
+ "##initialisation of variables\n",
+ "G= 2.68\n",
+ "w= 0.12\n",
+ "d= 1794.4 ##kg/m**3\n",
+ "W= 1000. ##kg/m**3\n",
+ "emax= 0.75\n",
+ "emin= 0.4\n",
+ "##calculation\n",
+ "e= (G*W*(1.+w)/d)-1.\n",
+ "D= ((emax-e)/(emax-emin))*100.\n",
+ "##results\n",
+ "print'%s %.1f %s'% ('relative density of compaction in percentage = ',D,' ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "relative density of compaction in percentage = 22.1 \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter4.ipynb b/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter4.ipynb new file mode 100755 index 00000000..fba0d3fa --- /dev/null +++ b/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter4.ipynb @@ -0,0 +1,61 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:45b6913d14d2cf9c4faefd4baea5e7b623551c1775a96697aceb0fea3463da05"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter4-Plasticity and Structure of Soil"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg83"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate shrinkage limit of the soil \n",
+ "##initialisation of variables\n",
+ "V1= 24.6 ##cm^3\n",
+ "V2= 15.9 ##cm^3\n",
+ "M1= 44 ##g\n",
+ "M2= 30.1 ##g\n",
+ "W= 1 ##g/cm^3\n",
+ "##calculations\n",
+ "SL= (((M1-M2)/M2)*100)-(((V1-V2)/M2)*W*100.)\n",
+ "##results\n",
+ "print'%s %.1f %s'%('shrinkage limit of the soil = ',SL,' ')\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "shrinkage limit of the soil = 17.3 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter6.ipynb b/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter6.ipynb new file mode 100755 index 00000000..965ec97d --- /dev/null +++ b/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter6.ipynb @@ -0,0 +1,188 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:9e373112e48f07ee80b6b4af3f674669c699f5259766125b19738d8e5f5cd0b1"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter6-Soil Compaction"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg127"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate maximum dry density and optimum moisture content\n",
+ "##initialisation of variables\n",
+ "G= 2.6\n",
+ "LL= 20.\n",
+ "P= 20.\n",
+ "##calclations\n",
+ "R= (4804574.*G-195.55*(LL)**2+156971*(P)**0.5-9527830)**0.5\n",
+ "n= (1.195e-4)*((LL)**2)-1.964*G-(6.617e-5)*(P)+7.651\n",
+ "w= math.e**n\n",
+ "##results\n",
+ "print'%s %.1f %s'% ('maximum dry density = ',R,' kg/m^3 ')\n",
+ "print'%s %.2f %s'%('optimum moisture content = ',w,' ')\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "maximum dry density = 1894.2 kg/m^3 \n",
+ "optimum moisture content = 13.34 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg143"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate dry unit weight of compaction in the field and dry unit weight of compaction in the field\n",
+ "##initialisation of variables\n",
+ "do= 1570. ##kg/m^3\n",
+ "mo= 0.545 ##kg\n",
+ "M1= 7.59 ##kg\n",
+ "M2= 4.78 ##kg\n",
+ "M3= 3.007 ##kg\n",
+ "w= 0.102 ##\n",
+ "dmax= 19. ##KN/m^3\n",
+ "##calculations\n",
+ "Ms= M1-M2\n",
+ "Mc= Ms-mo\n",
+ "Vh= Mc/do\n",
+ "Dc= M3/Vh\n",
+ "Du= Dc*9.81/1000.\n",
+ "f= Du/(1.+w)\n",
+ "Rc= f*100./dmax\n",
+ "##results\n",
+ "print'%s %.2f %s'% ('dry unit weight of compaction in the field = ',f,' kN/m^3 ')\n",
+ "print'%s %.1f %s'% ('relative compaction in the field = ',Rc,'')\n",
+ "#calculate the value of gamma and plot the graph\n",
+ "%matplotlib inline\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
+ "import math\n",
+ "from math import log\n",
+ "import numpy\n",
+ "from math import tan\n",
+ "import matplotlib\n",
+ "from matplotlib import pyplot\n",
+ "#given\n",
+ "p=numpy.array([6,8,9,11,12,14])\n",
+ "e=numpy.array([14.80,17.45,18.52,18.9,18.5,16.9])\n",
+ "\n",
+ "#calculations\n",
+ "\n",
+ "\n",
+ "#results\n",
+ "\n",
+ "pyplot.plot(p,e)\n",
+ "pyplot.xlabel('gamma')\n",
+ "pyplot.ylabel('weight ,w')\n",
+ "pyplot.title('Graph of gamma vs w')\n",
+ "pyplot.show()\n",
+ "print('look at the axis reverse in text book')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "dry unit weight of compaction in the field = 18.55 kN/m^3 \n",
+ "relative compaction in the field = 97.7 \n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEZCAYAAACJjGL9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xmc3eP5//HXu4k9QdXW6JIuRG2xRERUDVVNG6WoWn6+\naoudVimNfiuxlKJKLaHfEK2W2LfQklATaRMkhEQIVVtCUAQJIdv1++P+jJxMzqw553zOmXk/H495\n5Cyf5ZpkMte5t+tWRGBmZtaUz+QdgJmZVTcnCjMza5YThZmZNcuJwszMmuVEYWZmzXKiMDOzZjlR\nWIcgaaikv5ToWutJeljSB5IuLMU1zWqZE4WVhaT9JT0qaa6kNyU9IumYMt6ylAuCjgTeiojVI+IX\nJbyuWU1yorCSk3QycAlwPrBeRKwHHA3sIGnFJs5Z3p9FLef5hb4MPFvC65nVNCcKKylJawBnAsdE\nxO0R8SFARDwZEQdFxPzsuD9JulLS3yTNBeokDZQ0WdL7kl6VNKTguj0lLZY0SNJrkl7PElKDAFaU\n9Oesy+hpSds0E2d/SRMlvSfpMUnbN8QFHAycKmmOpF2KnPs5SaOyOB+TdI6kcQXv/yGL/31JkyR9\ns+C9oZJukfSXLM4pkjaUNDhreb0i6TsFx9dLOlvSv7J47pa0tqTrC+7/5dbcu9H3sJ2kWZJU8Npe\nkp7KHvfNzn9f0huSLmriOmMl7Z093iH7N/p+9vzbkiY39W9gtcOJwkpte2Al4K5WHHsAcHZEdAP+\nBcwFDoqINYCBwDGS9mx0Th3wdWA34DRJ385eF7AHMBJYA7gbuLzYTSWtBdxLavWsBfweuFfSZyPi\nEOB64PyI6B4R/yhyiSuAOcB6wE9IiaWw6+sxoDfwWeAG4JZGLandgeuy9ycDY7LXewBnA39sdL/9\ngIOADYCvAROAa7LYnwWGFBzb0r0BiIhHgQ+Bbxe8fGD2vQP8Abg4+7f4KnBzkb8HgHrSvwnATsCL\nwLcKntc3cZ7VECcKK7W1gbcjYnHDC5LGS5ot6aNGn3DvjIgJABHxSUSMjYhp2fOpwI2kXzaFzoyI\neRHxNHAtKdk0GBcR90UqYPZX0i/MYgYCz0XE9RGxOCJuBKaTEs2nYRc7UVIXYG9gSER8HBHPAn8u\nPD677uzs2r8nJc5eBZd5OCLGRMQi4Fbgc8Bvs+c3AT0lrd5wOeDaiHgpIj4A/g48HxH/yI6/Bdiq\nDfcuNLLh709Sd+B72WsA84ENJa0dER9liaWYsSz5N9oROK/g+U7Z+1bjnCis1N4B1i4cc4iI/hHx\n2ey9htcDmFF4YtYd8pCktyS9BxxF+iVaqPCcV0mfwhu8WfD4I2DlJsY+emTnFnql0bWasg7QtVEc\nMwsPkHSKpGeybq3ZpBbO2gWHvFXweB4psUbBc4BuBccUfl8fNzr/48JjW3HvQjcAe2ctjr2BxyOi\n4fs6HNgIeDbr3hrYxDUeATaStC6wJaml9EVJnwO2BR5u4jyrIU4UVmoTgE+AH7bj3BuAO4EvRMSa\nwFUs+zP6pUaPX2vHfV4jDVgX+nIrr/VfYCHwxYLXPn0saUfgF8C+EbFmliDfp3SD7U3O7mrrvbPW\n0CuklsSBpL//hvdeiIgDI2Id0qSEWyWtUuQaHwGPAz8DpkbEAmA8cDLwQkS8275v06qJE4WVVES8\nRxrMHiZpH0ndJX1G0pbAagWHFvvl1Q2YHRHzJfUl/fJq/IvxfyWtImlT4BBSV01b/Y30KfgASV0l\n7QdsDNzTTGwN398i4HZgaBbHxsD/FMTZnZRI3pa0oqQzgNWLX63V1MTjxtpz7xtIv+R3JHVjpZtI\nB0laJ3v6Pun7W7zs6UDqXjqOJd1M9cDxuNupw3CisJKLiAuBnwOnAm9kX1dlzyc0HMaySeBY4CxJ\nHwC/pngSGAu8ADwAXBgRDzRzvaKfvrNPubuTPvW+DZwC7F7w6bfYtQodT+rSeYM0PjGS1KcPcF/2\n9TzwMqkrqbCbqzVxNve8ufNbuncxI0mDzw82+vT/XeBpSXOAi4H9I+KTJq4xlpTkG7qZHiZ9KHC3\nUwehcm1cJGkEadDwrYjYPHutN+kXxmqkH+T/FxFzipw7gDQjpQtwdUScX5YgrWZI6kmaUdO1cKC8\nGkg6H1g3Ig7NOxazcihni+JaYECj164GTo2ILYA7SP2pS8lmlVyenbsJcICkb5QxTrM2kdRL0hZK\n+gKHkX6ezTqksiWKiBgHzG708obZ65C6DvYpcmpf0iDYy9nA2I1A47n01jlVy7693YHbSOs+bgR+\nFxF35xuSWfl0rfD9pknaMyLuAvZl6ZkjDTZg2amH21UiOKteEfEyqSsydxExCdgw7zjMKqXSg9mH\nAcdKmkQa/Jpf5Jhq+dRoZmZUuEUREc+RZlMgaSPSYHdjr7HsHPWZRY5DkpOKmVk7RESr1/ZUtEXR\nMC87Wy37v8CVRQ6bRCod0DNbMbofqW5PURFR9V9DhgzJPYaOEKPjdJzV/lULcQ4ZMqSpX6dNKlui\nkDSStEKzl6QZkg4jzWB6jlTIbGZE/Ck7toekewEiYiFpnvr9wDPATZFWkJqZWQ7K1vUUEQc08dal\nRY59nYJuqIj4O6n4mZmZ5cwrsyugrq4u7xBaVAsxguNcHosWwZQpcNVV8JOfwEYbwahRdfzjHxBV\nPtpXjX+fxdRCnO2JsWwrsytBUtRy/Gbl9N578MgjMGECjB8Pjz0G668P/fvD9ttDv37wxBPw29/C\nGmvA4MGwxx7wGX987PAkEW0YzHaiMOsAIuD551NCGD8+JYdXXoFttkmJoX//lBjWLlJwfNEiuPNO\nOO88mDcPfvlL2H9/WGGFyn8fVhlOFGadwIcfphZCQ2thwgTo3n1JUth+e9hii7b9so+AMWNSwnjp\nJfjFL+Cww2CVZYqLW61zojDrYCJS66CwtTB9OvTunRJCQ2Lo0Zptl1ppwoSUMCZOhJ/+FI45JnVP\nWcfgRGFW4z7+OI0dNLQWxo9Prxe2FrbeGlZeufyxTJ0K558P990HRx2Vksa665b/vlZeThRmNeb1\n15fuQnrqKdh44yVJoX9/+PKXQaXaI68dXnwRLrwQbroJDjoITjkFvvSlls+z6uREYVbFFixIU1Qb\nksL48TBnztJdSNtuC926tXytPMyaBZdcAldfDT/4AZx2GnzDmwDUHCcKsyry9ttpimpDF9Ljj6fW\nQWFrYaON8m0ttMfs2XDFFXDZZfDNb6aptX365B2VtZYThVlOFi+GZ55ZurXwxhvQt++S8YXttoM1\n18w70tL58MPUuvjd71LLYvBgqKurvcTX2ThRmFXIBx/Ao48uaS08+iiss87Sg86bbgpdqmIXjfKa\nPx+uvz4t3ltrrZQwdt/di/eqlROFWRlEwAsvLN1aePHFtKCtoQupXz/PCFq0CO64A849NyWPwYNh\nv/2ga6W3SLNmOVGYlcBHH8GkSUuvXVhllaVbC717w4or5h1pdYqA0aPTWoxXX02L9w49tDJTeq1l\nThRmbRQBM2Ys3Vp45hnYfPMlSWH77eELX8g70to0fnxKGI8/Dj/7GRx9NKy+et5RdW5OFGYtmD8f\nJk9eurWwcOGSLqT+/dOCNpeuKK0pU9IYxujRaaX3iSemMR2rPCcKs0beeCMlg4bWwpNPwoYbLj1F\n9Stf8UydSvnPf9LivZtvhoMPhpNPhi9+seXzrHSqJlFIGkHajOitiNg8e60vcDmwArAQODYiJhY5\n92XgA2ARsCAi+jZxDycKW8rChfD000u3FmbPXtJ91L9/WtDWvXvekdrrr8PFF8M118APf5gW7/Xq\nlXdUnUM1JYodgbnAdQWJoh44LyLul/Q94NSI2LnIuS8B20TEuy3cw4mik3v33aX3XJg4MY0lFA46\n9+rlaZrV7N134fLL09dOO6WZUltvnXdUHVtbE0U5t0IdJ6lno5dnAQ01KNcEXmvmEu4IsGVMnw7/\n+teS1sLMmUsWtJ1ySpqi+tnP5h2ltcVaa8EZZ8DPfw7Dh6fNkzbbLCWMb33LXYLVoKxjFFmiGFXQ\novgy8E8gSNuwbh8RM4qc9yLwPqnr6Y8RMbyJ67tF0YlccEGqM/Ttby9pMWy2WedY0NaZfPIJ/PWv\nqWrt2mvD6afDwIFOGKVUNS2KJlwDnBgRd0jaFxgBfKfIcTtExCxJ6wBjJE2PiHHFLjh06NBPH9fV\n1dXEnrXWdg88kJLEY495mmpHt9JKcPjhcMghcNttace9225LpUL8oaB96uvrqa+vb/f5lW5RfBAR\nq2ePBbwXEc1uhyJpCDA3Ii4q8p5bFJ3AK6+kGkk33pjqCFnn8uGHsNdeqUbWX//qRY6l0NYWRaWH\n+F6QtFP2eBfg+cYHSFpVUvfs8WrAbsDUyoVo1WTePNh7bzj1VCeJzmq11WDUqFSifa+90s+EVVY5\nZz2NBHYC1gbeBM4g/cK/AlgJmEeaHjtZUg9geEQMlPRV4PbsMl2B6yPivCbu4RZFBxaR9myeNw9G\njnQfdWe3YEEqA/Laa3D33Z7ivDyqZnpsJThRdGxXXZX2PHjkkfSp0mzxYjj22LSy/u9/TzOmrO2c\nKKxDmDAB9twzTYXdcMO8o7FqEpGKDI4Zk8qBrLde3hHVnmofozBr0RtvwI9/DCNGOEnYsqRUAmSf\nfdI6ixnLTLC3UnOVeKsqCxakJHH44WnjG7NipLRIr3v3lCzGjIGvfz3vqDouJwqrKqeemv7zn3FG\n3pFYLTjpJOjWLc2Iu+++tADTSs+JwqrGDTekaZATJ7o2k7XeoEEpWey6K9xzD/Tpk3dEHY8Hs60q\nTJmSSnM8+CBssUXe0VgtuvtuOOKItIp7xx3zjqa6eTDbas7s2WlR3R/+4CRh7bfHHqlVus8+aTaU\nlY5bFJarxYvToHWvXmlvArPlNX58WsF91VXpT1tWtRcFNFvKmWemWj4XXJB3JNZR9O+fFuMNHJh+\ntg46KO+Iap8TheVm1Ki0VmLSJFhhhbyjsY5k663TeNd3vwtz58LRR+cdUW1zorBc/Pvfaa3E3Xd7\nZa2VxyabwNixaTbUnDlpNbe1jxOFVdzcuWnw+qyz0o50ZuXy1a/CuHFLksWZZ7q4ZHt4MNsqKgIO\nOABWXRWuucb/aa0y3nordUPV1cHvf++fO0+Ptap28cXwwgupKmxn/89qlbPuuvDQQ/Doo3DkkbBo\nUd4R1Ra3KKxiHnootSYefRS+/OW8o7HOaO7cVJV43XXhuus67yQKtyisKs2YAQcemLaydJKwvHTr\nBvfem6bN7rMPfPxx3hHVhrIlCkkjJL0paWrBa30lPSZpsqSJkrZt4twBkqZL+rek08oVo1XGJ5/A\nj34EP/tZGlQ0y9PKK6cyH6uumhZ7zp2bd0TVr5xboe4IzAWui4jNs9fqgfMi4n5J3wNOjYidG53X\nBXgO2BV4DZgIHBARzxa5h7ueasBRR8E778Att3hcwqrHokXpZ/OZZ+Bvf4M118w7osqpmq6niBgH\nzG708ixgjezxmqRE0Fhf4IWIeDkiFgA3AnuWK04rr6uvhocfhmuvdZKw6tKlCwwfDtttBzvvDP/9\nb94RVa9Kj1H8ErhI0qvAhcDgIsdsABTuWTUze81qzGOPwemnwx13pD0mzKqNlKbL/uAHaQOk14p9\ndLWKL7i7BjgxIu6QtC8wAvhOo2Pa1Jc0dOjQTx/X1dVRV1e3nCFaKbz1Fuy7L/zxj7DxxnlHY9Y0\nKS3+7N49lSd/4IG0UK8jqa+vp76+vt3nl3V6rKSewKiCMYoPImL17LGA9yJijUbn9AOGRsSA7Plg\nYHFEnF/k+h6jqEILF8Juu8H228NvfpN3NGatd9VV6Wd29Gj4xjfyjqZ8qmaMogkvSNope7wL8HyR\nYyYBG0rqKWlFYD/g7koFaMtv8OA0P/2ss/KOxKxtjj4azjsPdtkFJk/OO5rqUbauJ0kjgZ2AtSXN\nAM4AjgSukLQSMC97jqQewPCIGBgRCyUdD9wPdAGuKTbjyarTLbfArbemirBduuQdjVnbHXQQrLYa\nDBiQxtf69887ovx5ZbaVzLRpqZbO/fenMs9mtez+++F//iftmtfR1v9Ue9eTdVDvv592E/vd75wk\nrGP47nfTwrwDD0zl8DsztyhsuS1enJLEF78Il1+edzRmpTVpUlrBffHFqVZZR+CtUK3izj0X3n47\njU+YdTR9+qQpswMGpBpRRxyRd0SV50Rhy+Xvf4crr4SJE2HFFfOOxqw8NtsM6uvhO99JGyCddFLe\nEVWWE4W124svwiGHpH7cHj3yjsasvL7+9VSOpmG3vF//uvOUpfEYhbXLRx+laYOHHw4nnJB3NGaV\n8+abqWXx3e/CBRfUZrJo6xiFE4W1WUSaNiilzV9q8T+K2fJ491343vdgq61g2DD4TI3NH/X0WCu7\nyy+Hp59OdZycJKwzWmutNMD93HNw8MGpbE1H5haFtcm4cWkTogkTOl7hNLO2mjcv7ZS30kpw443p\nz1rgFoWVzeuvw/77w5//7CRhBrDKKnDnndC1aypV/uGHeUdUHk4U1irz56eWxLHHpvnkZpasuCKM\nHJlm/g0YkKoUdDTuerJWOf54mDkTbr+99gbuzCph8WI48UR45BG47z5Ye+28I2qau56s5P78Zxgz\nJv3pJGFW3Gc+A5ddlqbO7rQTzJqVd0Sl4wV31qwnnoBTTkmrUtdYo8XDzTo1Ke1nsfrqS3bL69kz\n76iWnxOFNemdd9KMjmHDYNNN847GrHYMHgzduqV9uMeMgV698o5o+ThRWFGLFqVKmfvum77MrG1O\nOCEli513TjXRevfOO6L2K+cOdyOAgcBbBXtm3wg05NY1SXtmb1Xk3JeBD4BFwIKI6FuuOK24X/86\nJYtzz807ErPadeihKVnsthvcdRf065d3RO1TzhbFtcBlwHUNL0TE/g2PJf0OeK+JcwOoi4h3yxif\nNeGOO+D661Md/q5uc5otl333TVur7rEH3HRTamHUmrLNYYmIccDsYu9JEvBjYGQzl3BxiBxMnw5H\nHZUqwq6zTt7RmHUM3/8+3Hwz7Lcf3Htv3tG0XV6THXcE3oyI/zTxfgAPSJokaVAF4+rU5sxJO9Wd\nd17arMXMSqeuDkaNgsMOq71NvvLqWDgAuKGZ93eIiFmS1gHGSJqetVCWMXTo0E8f19XVUVdXV8o4\nO42ItLfEt76VSoebWeltt12aBTVgAMydm8YwKqG+vp76+vp2n1/WldmSegKjGgazs9e6AjOBrSPi\n9VZcYwgwNyIuKvKeV2aXyPnnp1XXDz9cO4XNzGrVc8+lhXm/+EU++7nUwp7ZuwLPNpUkJK0KdImI\nOZJWA3YDzqxkgJ3NI4+kjeMnTXKSMKuEXr2W3i3v9NPzjqh5ZRujkDQSGA9sJGmGpIZG1n40GsSW\n1ENSwxDP+sA4SU8CjwL3RMTocsXZ2c2fnzaLv+QS+MIX8o7GrPPo2TOV7b/hhrRAr5o7R1wUsJM7\n55y0t8Q993gTIrM8vP12GrPo1w8uvbQy9dS8Faq12nPPwQ47pHpOX/pS3tGYdV7vvw+77w5f+xpc\nfXX51y+5eqy1yuLFcOSRaQW2k4RZvtZYI5UmnzUrbQ42f37eES3NiaKTuuYa+PjjtM+EmeVvtdXg\n7rvTh7g994SPPso7oiXc9dQJzZoFW2wBDz6Y/jSz6rFwYVpf8eqraYHe6quX/h7uerIWnXgiDBrk\nJGFWjbp2TZuEbbJJmj77bhVUvHOi6GTuvhuefDKNTZhZdfrMZ9I+MDvtlL7eeCPfeFwbtBP54AM4\n7ji47jpYZZW8ozGz5khwwQWp6+lb30q75eU18cRjFJ3I8cfDvHlpINvMascll6SvMWNgww2X/3q1\nUMLDcjBhQqrl9PTTeUdiZm31s5+lDZDq6tI02s03b/GUknKi6ATmz0+D1xdfDGutlXc0ZtYeRxyR\nksV3vpNmQ227beXu3eJgtqS/ShokaeNKBGSld/75qa7Mj3+cdyRmtjz23x+GD4eBA1NRwUppcYxC\n0i6kjYa+CXwdeAIYFxGXlD+85nmMomXTp8M3v+kyHWYdyYMPpqTxl7+kOlFtVZZaT9keEn2AXYCj\ngXkR0avt4ZWWE0XzFi9OfZo/+lFaO2FmHcf48WlHymHDYJ992nZuyQezJT0IrAZMAP4J9ImIt9oW\nluXh6qvT+MRxx+UdiZmVWv/+aWD7+9+HDz+Egw8u371aM5g9hdSa2Az4AJgtaUJEzCtfWLa8Zs2C\nX/0K/vEP6NIl72jMrBy22ir9H99tt7S16rHHluc+rV5HIak7cAhwCrB+RDS7F5qkEcBA4K2GrVAl\n3Qg0dFmtCbwXEVsVOXcAcAnQBbg6Is5v4h7uemrCj36UdtH6zW/yjsTMyu3FF1O5j6OPhlNPbfn4\ncnQ9nUAazN4GeAkYAYxrxbWvBS4Drmt4ISL2L7ju74D3ityvC3A5acvU14CJku6OiGdbcU8D7roL\npkyBv/4170jMrBK++tW0W96uu6YKDGefXdqNyFrT9bQycBHwREQsaO2FI2KcpJ7F3pMk4MfAzkXe\n7gu8EBEvZ8feCOwJOFG0wgcfpBXYf/kLrLxy3tGYWaVssEGaMrvbbmkf7osvLt1ueS1eJiIujIhH\n25IkWmFH4M2I+E+R9zYAZhQ8n5m9Zq0weDB897tptpOZdS7rrAMPPQQTJ6ZFtosWlea6bc43kqZn\nX8uz5c0BwA1NvOdBh3YaPx7uuAMuvDDvSMwsL2uuCaNHwyuvwIEHlma3vDaX8IiIjSWtDWzXnhtm\nazL2ArZu4pDXgC8WPP8iqVVR1NChQz99XFdXR10n/Sj9ySfpE8Qf/gCf/Wze0ZhZnrp1g3vuSdUY\n9t4bTjihngkT6tt9vbJWj83GKEY1zHrKXhsAnBYRxcYnGhLJc8C3gdeBx4ADig1me9bTEmedBZMm\npYHsUg5imVntWrAgra948820F023bun1qtnhTtJIYDywkaQZkg7N3toPGNno2B6S7gWIiIXA8cD9\nwDPATZ7x1Lxnn4XLLoMrrnCSMLMlVlghzX782tdSMcHZs9t3He9HUeMWL047YO23X5rtZGbWWASc\nfHJanDd6NKy3XolbFJJ+2prXLB/Dh6fN2I85Ju9IzKxaSXDRRbDnnmm3vDaf34rqsZMbr56W9GRE\nbNn225VWZ29RvP469O6dpsNttlne0ZhZLZgwAfr3L1H1WEkHAAeS1jwUrsTuDiyKiG8vT7Cl0NkT\nxT77wCabpFWYZmatVcoSHuOBWcA6wO+AhovOAZ5qd4RWEnfcAdOmwfXX5x2JmXV0HsyuQe+/D5tu\nCjfc0L7+RjPr3Eq+cZGkfYDfAuuxpFUREbF6u6Mskc6aKI45Ji3N/7//yzsSM6tF5UgU/wF2r8a1\nDJ0xUfzzn2kq7LRpaam+mVlblWPB3RvVmCQ6o8IyHU4SZlYpzc16atiF9VvA+sCdQEN5qYiI28sf\nXvM6W4ti6FCYPBnuvNMrsM2s/UrW9STpTyyp5CoaVXWNiEMbn1NpnSlRPPNMGrh+8kn4whfyjsbM\nalnJxyiqWWdJFIsXw447ppLBxx2XdzRmVuvKsRXqZaTWxKcznoD3gUkRcVe7orQ2+eMfU60Wl+kw\nszy0ZtbTcKAXcAspWexD2jt7LeDFiPhZuYNsJrYO36J47TXYckuor09rJ8zMllc5psc+CuyQlf9u\n2C/in8A3gakR8Y3liHe5dIZEsddesPnmab8JM7NSKHnXE7Am0A14L3veDVgrIhZK+rgdMVor3X57\n2mti5MiWjzUzK5fWJIoLgMmSxmbPdwLOlbQa8EDZIuvk3nsPTjwxJYmVV847GjPrzFo160lSD6Av\naSB7YkS83opzRgADgbcabYV6AnAssAi4NyJOK3Luy8AH2TELIqJvE/fosF1PRx+dBrD/+Me8IzGz\njqZkXU+SvhERz0rahpQgZmRvrS9p/Yh4ooVrXwtcBlxXcM2dgT2ALSJigaR1mjg3gLqIeLe130hH\nMm4cjBqVynSYmeWtua6nnwODgItotNgus3NzF46IcZJ6Nnr5GOC8iFiQHfPfZi7RKdcef/IJHHkk\nXHqpy3SYWXUo64K7LFGMauh6kjQZuAsYAHwMnBIRk4qc9yJprcYi4I8RMbyJ63e4rqchQ+Cpp9J+\nEy7TYWblUI4Fd6uRWhdfiohBkjYEekXEPe2Iryvw2YjoJ2lb4Gbgq0WO2yEiZmVdU2MkTY+IcUWO\n61CmTYNhw1KZDicJM6sWrZn1dC3wONA/e/46cCvQnkQxE7gdICImSlos6XMR8U7hQRExK/vzv5Lu\nIA2kF00UQ4cO/fRxXV0ddXV17Qgrf4sXpy6nM8+EDTbIOxoz60jq6+upr69v9/mtWXD3eERsI2ly\nRGyVvfZURPRu8eLLdj0dBfSIiCGSNgIeiIgvNTpnVaBLRMzJWjOjgTMjYnSR63eYrqdhw9K2puPG\nwWdaU/zdzKydyrHg7hNJqxTc4GvAJ60IZCRpzcXnJM0AzgBGACMkTSWVLD84O7YHMDwiBpJKmt+u\n1PfSFbi+WJLoSGbOTGMTY8c6SZhZ9WlNi2I34FfAJsAYYAfgkIh4qPzhNa8jtCgiUpmO3r1Tt5OZ\nWbmVpcy4pLWBftnTR1uY1loxHSFR3HYb/O//pgHslVbKOxoz6wzKURTwr8BYYFxETF/O+Eqq1hPF\ne++lirA33QTf/Gbe0ZhZZ1GORLELsCOpWuzXgSdISeOS5Qm0FGo9URx1VJoGe9VVeUdiZp1Jubqe\nugJ9gF2Ao4F5EdGr3VGWSC0niocfTjvWTZsGa6yRdzRm1pmUY8Hdg8BqwATSPhR9IuKt9odoH3+8\npEyHk4SZVbvWTMacAiwANgO2ADYrnC5rbXfuufCNb8Dee+cdiZlZy1pd60lSd+AQ4BRg/YjIfY5O\nLXY9TZsGdXVplpNXYJtZHsrR9XQCaTB7G9Je2SNoopyGNW/xYhg0KG1r6iRhZrWiNSuzVyaVGn+i\noTy4tc+VV6aV10cdlXckZmatV9Yy4+VWS11PM2fCllum2U6bbJJ3NGbWmbW168mVhSogAo47Do4/\n3knCzGpxGeA1AAAO4ElEQVRPa7qebDnddhv8+99w8815R2Jm1nbueiqz2bNhs81cpsPMqkdZVmZX\nq1pIFEceCV26pIFsM7NqUI79KKydxo6Fv/0trZ0wM6tVHswuk4YyHZdd5jIdZlbbypYoJI2Q9Ga2\nm13h6ydIelbS05LOb+LcAZKmS/q3pNPKFWM5/eY3qYT4XnvlHYmZ2fIp2xiFpB2BucB1BXtm7wyc\nDnw/IhZIWqfxJkiSugDPAbsCrwETgQMi4tki96jKMYqnn4add4annoIePfKOxsxsaVWzjiIixgGz\nG718DHBewwrvJnbK6wu8EBEvZ8fdCOxZrjhLbdGiVKbj7LOdJMysY6j0GMWGwLckPSKpXlKfIsds\nAMwoeD4ze60mXHkldO2axifMzDqCSs966gp8NiL6SdoWuBn4aqNj2tSXNHTo0E8f19XVUVdXt5wh\ntt+MGXDmmTBuXKrpZGZWDerr66mvr2/3+WVdRyGpJzCqYIzi78BvI2Js9vwFYLuIeKfgnH7A0IgY\nkD0fDCyOiGUGvqtpjCIC9twT+vSBM87IOxozs6ZVzRhFE+4kbaeKpI2AFQuTRGYSsKGknpJWBPYD\n7q5smG13663wn//AL3+ZdyRmZqVVzumxI4HxwEaSZkg6lLSXxVezKbMjgYOzY3tIuhcgIhYCxwP3\nA88ANxWb8VRNZs+Gn/4Uhg+HFVfMOxozs9JyCY8SGDQoJYgrrsg7EjOzlrmER4WNHQv33ecyHWbW\ncXluznJoKNNx+eWw+up5R2NmVh5OFMvhnHNg883TbCczs47KYxTtNHUqfPvbqUzH5z+fSwhmZu1S\n7dNjO4SGMh3nnOMkYWYdnxNFOwwblmY5HXFE3pGYmZWfu57aaMYM2Gor+Oc/YeONK3prM7OScNdT\nGUXAscemxXVOEmbWWXgdRRvccgu89BLcdlvekZiZVY67nlpp9uy0Y91tt8H221fklmZmZdHWricn\nilY64ghYeeW0uM7MrJa5hEcZ1NfD6NFpi1Mzs87Gg9ktmDfPZTrMrHNzomjBOedA796wxx55R2Jm\nlg93PTVjypS0x8RTT+UdiZlZftyiaEJDmY7f/MZlOsyscyvnDncjJL2Z7WbX8NpQSTMlTc6+BjRx\n7suSpmTHPFauGJtzxRVpltPhh+dxdzOz6lG26bGSdgTmAtdFxObZa0OAORHx+xbOfQnYJiLebeG4\nskyPffVV2GabVKajV6+SX97MLFdVU8IjIsYBs4u81drgWv1NlFJhmQ4nCTOzfMYoTpD0lKRrJK3Z\nxDEBPCBpkqRBlQzu5pvhlVfg1FMreVczs+pV6VlPVwJnZY/PBi4Cio0C7BARsyStA4yRND1roSxj\n6NChnz6uq6ujrq6u3cG9+y6cdBLcfnsqI25m1hHU19dTX1/f7vPLWsJDUk9gVMMYRWvfa3TcEGBu\nRFxU5L2SjlEcfjisuipcdlnJLmlmVnWquoSHpM9HxKzs6V7A1CLHrAp0iYg5klYDdgPOLHdsDz0E\nY8bAtGnlvpOZWW0pW6KQNBLYCVhb0gxgCFAnaUvSGMRLwFHZsT2A4RExEFgfuF1SQ3zXR8TocsUJ\nS8p0XHEFdO9ezjuZmdUeV48FTj8dXnghDWSbmXV0Vd31VI2mTIGrr05/mpnZsjp1CY9Fi9I+E+ee\nC+uvn3c0ZmbVqVMnissvT7OcXKbDzKxpnXaM4pVXUpmO8eNho41KHJiZWRWrmhIe1ayhTMdJJzlJ\nmJm1pFMOZt94Yyr8d8cdeUdiZlb9Ol3X0zvvwGabwZ13wnbblSkwM7Mq1taup06XKA49NC2qu/TS\nMgVlZlblvI6iGQ8+mL5cpsPMrPU6zWD2vHlw1FEwbJjLdJiZtUWn6Xr65S/hpZfgppvKHJSZWZVz\n11MRTz4JI0a4TIeZWXt0+K6nRYtg0CA47zyX6TAza48OnyguvRS6dYPDDss7EjOz2tShxyhefhn6\n9IEJE2DDDSsXl5lZNXMJj0wEHHMM/PznThJmZsujbIlC0ghJb0qaWvDaUEkzJU3OvgY0ce4ASdMl\n/VvSae25/8iR8Npr8ItftPc7MDMzKGPXk6QdgbnAdRGxefbaEGBORPy+mfO6AM8BuwKvAROBAyLi\n2SLHFu16eucd2HRTuOsul+kwM2usarqeImIcMLvIWy0F1xd4ISJejogFwI3Anm2598knw/77O0mY\nmZVCHusoTpB0MDAJODki3mv0/gbAjILnM4FW/8p/4AGor4enn17uOM3MjMoniiuBs7LHZwMXAY33\nl2tTX9jQoUM/fdyvXx3HHVfHsGFpSqyZmUF9fT319fXtPr+s02Ml9QRGNYxRtOY9Sf2AoRExIHs+\nGFgcEecXucZSYxSnnZb2mRg5soTfhJlZB1PVJTwkfT4iZmVP9wKmFjlsErBhlkheB/YDDmjp2pMn\nw5/+5DIdZmalVrZEIWkksBOwtqQZwBCgTtKWpO6ll4CjsmN7AMMjYmBELJR0PHA/0AW4ptiMp0IL\nF6YyHb/9Lay3Xrm+IzOzzqlDrMz+/e/h3nvTQLZa3ZgyM+ucOt0Ody++GGy7LTzyCHz963lHZGZW\n/apmHUWlHHMMnHKKk4SZWbnUfIuid+9g4kRYYYW8ozEzqw2drkUxfLiThJlZOdV8i6KW4zczy0On\na1GYmVl5OVGYmVmznCjMzKxZThRmZtYsJwozM2uWE4WZmTXLicLMzJrlRGFmZs1yojAzs2Y5UZiZ\nWbPKligkjZD0pqRldrGTdLKkxZLWauLclyVNkTRZ0mPlitHMzFpWzhbFtcCAxi9K+iLwHeCVZs4N\noC4itoqIvmWKr2KWZ1PzSqmFGMFxlprjLK1aiLM9MZYtUUTEOGB2kbd+D5zaikt0mL3qOuoPTx4c\nZ2k5ztKqhTirKlEUI2lPYGZETGnh0AAekDRJ0qAKhGZmZk3oWqkbSVoVOJ3U7fTpy00cvkNEzJK0\nDjBG0vSshWJmZhVW1v0oJPUERkXE5pI2Bx4APsre/gLwGtA3It5q5hpDgLkRcVGR97wZhZlZO7Rl\nP4qKtSgiYiqwXsNzSS8B20TEu4XHZS2PLhExR9JqwG7AmU1cs8OMY5iZVatyTo8dCYwHNpI0Q9Kh\njQ6JgmN7SLo3e7o+ME7Sk8CjwD0RMbpccZqZWfNqeitUMzMrv5pcmS1pTUm3SnpW0jOS+uUdU2OS\nemULBhu+3pd0Yt5xFSNpsKRpkqZKukHSSnnHVIykn2YxPi3pp3nH06DY4lJJa0kaI+l5SaMlrZln\njFlMxeLcN/u3XyRp6zzjy+IpFuOF2f/1pyTdLmmNPGPMYioW59lZjE9KejBbM5ar5Vn4XKgmEwXw\nB+BvEfENYAvg2ZzjWUZEPJctGNwK2IY0iH9HzmEtI5twMAjYOiI2B7oA++cZUzGSNgOOALYFegO7\nS/pavlF9qtji0l8CYyJiI+DB7HneisU5FdgLeLjy4RRVLMbRwKYR0Rt4Hhhc8aiWVSzOCyKid0Rs\nCdwJDKl8WMtYnoXPn6q5RJF9mtgxIkYARMTCiHg/57Basivwn4iYkXcgRXwALABWldQVWJU0G63a\nbAw8GhEfR8QiYCywd84xAU0uLt0D+HP2+M/ADysaVBHF4oyI6RHxfE4hLaOJGMdExOLs6aOkGZO5\naiLOOQVPuwFvVzSoIkqw8BmowUQBfAX4r6RrJT0haXg2U6qa7Q/ckHcQxWSzzi4CXgVeB96LiAfy\njaqop4Edsy6dVYGBVMEvjGasFxFvZo/fpGDGny2Xw4C/5R1EUyT9RtKrwE+A3+YdTzFtWPj8qVpM\nFF2BrYFhEbE18CHV0awvStKKwA+AW/KOpZis++ZnQE+gB9BN0v/LNagiImI6cD6pG+LvwGRgcbMn\nVYlIM0Y8a2Q5SfoVMD8iqvJDF0BE/CoivgT8Cbg453CWUbDwubBbrMVlBrWYKGaSsuHE7PmtpMRR\nrb4HPB4R/807kCb0AcZHxDsRsRC4Heifc0xFRcSIiOgTETsB7wHP5R1TM96UtD6ApM8DTS4qtZZJ\nOgT4PlB1H2KacANpPK3afI30ofCpbC3bF4DHJa3b3Ek1lygi4g1ghqSNspd2BablGFJLDgBG5h1E\nM6YD/SStIkmkv89nco6pqIYfZklfIg3AVu0nS+BuUvcD2Z935hhLa1XlAlZJA4BfAHtGxMd5x9MU\nSRsWPN2T1OqtKhExNSLWi4ivRMRXSB+8t26uOkbDiTX3RZr1MhF4ivQJeI28Y2oiztVIA1rd846l\nhThPJSXbqaSB1xXyjqmJOB/O4nwS2DnveAriGkka35kPzAAOBdYilax5ntRdtmYVxnkYaZB9BjAP\neAP4exXG+G/S7JzJ2dewKv27vDX7P/QkcBuwbhXF+UnDz2aj918E1mrpOl5wZ2Zmzaq5riczM6ss\nJwozM2uWE4WZmTXLicLMzJrlRGFmZs1yojAzs2Y5UZiZWbOcKMzMrFlOFGaNSPq1pOmSxmUbOZ0s\n6QhJj2Wb0twqaZXs2D9JGiZpgqT/SKqT9OdsQ61rC645V9IF2aZLYyT1kzQ2O+cH2TE9JT0s6fHs\na/u8/g7MCjlRmBWQtC1pn4stSAUd+5Aqv94eEX0jbUrzLHB4dkqQynNsD5xEqvF0AbApsLmkLbLj\nVgUejIjNgDnAWcAupJpVZ2XHvAl8JyK2IZWmv7Sc36tZa3XNOwCzKrMDcGdEzAfmSxpFKpa3uaRz\ngDVIm9LcV3DOqOzPp4E3ImIagKRppEqdU0jlse/PjpsKfBwRiyQ9nR0DsCJwuaTewCKgofClWa7c\nojBbWlC8iuq1wLERsQVwJrBKwXvzsz8Xk4qvUfC84cPYgkavzweItHNbwzEnAbOye/QhJQ6z3DlR\nmC3tX8APJK0kqRuwe/Z6d+ANSSsAB1GejYhWJ1VwBTiYtH+5We6cKMwKRMQk0jjDFNKWm1OB94Ff\nk/Zr/idpjGKp05p43NQxTZ0zDPiJpCeBXsDctsZvVg4uM27WiKTVIuLDbNvIscCgiHgy77jM8uLB\nbLNl/Z+kTYCVgT85SVhn5xaFmZk1y2MUZmbWLCcKMzNrlhOFmZk1y4nCzMya5URhZmbNcqIwM7Nm\n/X/kMsqaulAsNgAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x566c2f0>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "look at the axis reverse in text book\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg155"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate sustainabilty number\n",
+ "##initialisation of variables\n",
+ "D1= 0.36 ##mm\n",
+ "D2= 0.52 ##mm\n",
+ "D5= 1.42 ##mm\n",
+ "##calculations\n",
+ "Sn= 1.7*(math.sqrt((3./(D5)**2)+(1./(D2)**2)+(1./(D1)**2)))\n",
+ "##results\n",
+ "print'%s %.1f %s'% ('sustainabilty number = ',Sn,' ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "sustainabilty number = 6.1 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter7.ipynb b/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter7.ipynb new file mode 100755 index 00000000..2f2c2988 --- /dev/null +++ b/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter7.ipynb @@ -0,0 +1,503 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:386718b63e6b6f21bd32a3120a143f6e224e0278ef555853cf557429a2d7f4f2"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter7- Permeability"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg168"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Calculate the hydraulic conductivity in cm/sec.\n",
+ "import math\n",
+ "##initialisation of variables\n",
+ "L= 30. ##cm\n",
+ "A= 177. ##cm^2\n",
+ "h= 50. ##cm\n",
+ "Q= 350. ##cm^3\n",
+ "t= 300. ##sec\n",
+ "##claculations\n",
+ "k=Q*L/(A*h*t)\n",
+ "##results\n",
+ "print'%s %.4f %s'% ('hydraulic conductivity = ',k,' cm/sec ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "hydraulic conductivity = 0.0040 cm/sec \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg169\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Determine the hydraulic conductivity of the soil in in./sec.\n",
+ "import math\n",
+ "##initialisation of variables\n",
+ "L= 203. ##mm\n",
+ "A= 10.3 ##cm^2\n",
+ "a= 0.39 ##cm^2\n",
+ "h0= 508. ##mm\n",
+ "h180= 305. ##mm\n",
+ "t= 180. ##sec\n",
+ "##calculations\n",
+ "k= 2.303*a*L*math.log10(h0/h180)/(A*t)\n",
+ "##results\n",
+ "print'%s %.2f %s'% ('hydraulic conductivity of sand = ',k,' in/sec ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "hydraulic conductivity of sand = 0.02 in/sec \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg169"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#The hydraulic conductivity of a clayey soil is 3 107 cm/sec. The viscosity of water at 25\u00b0C is 0.0911 104 g # sec/cm2 \n",
+ "#Calculate the absolute permeability of the soil.\n",
+ "import math\n",
+ "##initialisation of varilables\n",
+ "k= 3e-7 ##cm/sec\n",
+ "n= 0.0911e-4 ##g*sec/cm^2\n",
+ "dw= 1. ##g/cc\n",
+ "##calculations\n",
+ "K= k*n/dw\n",
+ "##results\n",
+ "print'%s %.2e %s'% ('absolute premeability = ',K,' cm^2 ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "absolute premeability = 2.73e-12 cm^2 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg170"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#With k 5.3 105 m/sec for the permeable layer, calculate the rate of seepage through it in m3 /hr/m width if H 3 m and a 8\u00b0.\n",
+ "\n",
+ "import math\n",
+ "##initialisation of variables\n",
+ "k= 5.3e-5 ##m/sec\n",
+ "H= 3 ##m\n",
+ "a= 0.139 ##radians\n",
+ "##calculations\n",
+ "A= H*math.cos(a)\n",
+ "i= math.sin(a)\n",
+ "q= k*i*A*3600\n",
+ "##results\n",
+ "print'%s %.4f %s'% ('rate of seepage = ',q,' m^3/hr/m ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "rate of seepage = 0.0785 m^3/hr/m \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg171"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate flow rate\n",
+ "##initialisation of variables\n",
+ "L= 50. ##m\n",
+ "k= 0.08e-2##m/sec\n",
+ "h= 4. ##m\n",
+ "H1= 3. ##m\n",
+ "H= 8. ##m\n",
+ "a= 0.139 ##radians\n",
+ "##calculations\n",
+ "i= h*math.cos(a)/L\n",
+ "A= H1*math.cos(a)\n",
+ "q= k*i*A\n",
+ "##results\n",
+ "print'%s %.5f %s'% ('flow rate = ',q,' m^3/sec/m ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "flow rate = 0.00019 m^3/sec/m \n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg174"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate hydraulic conductivity at void ratio of 0.65\n",
+ "##initialisation of variables\n",
+ "k1= 0.02 ##cm/sec\n",
+ "e1= 0.5 \n",
+ "e2= 0.65\n",
+ "##calculations\n",
+ "k2= k1*(e2**3/(1.+e2))/(e1**3/(1.+e1))\n",
+ "##results\n",
+ "print'%s %.2f %s'% ('hydraulic conductivity at void ratio of 0.65 =',k2,'cm/sec ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "hydraulic conductivity at void ratio of 0.65 = 0.04 cm/sec \n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg176"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the value of grain size and plot the graph\n",
+ "import math\n",
+ "%matplotlib inline\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
+ "from math import log\n",
+ "import numpy\n",
+ "from math import tan\n",
+ "import matplotlib\n",
+ "from matplotlib import pyplot\n",
+ "#given\n",
+ "e=numpy.array([100,96,84,50,0])\n",
+ "p=numpy.array([0.06,0.0425,0.02,0.015,0.0075])\n",
+ "\n",
+ "#calculations\n",
+ "\n",
+ "\n",
+ "#results\n",
+ "\n",
+ "pyplot.plot(p,e)\n",
+ "pyplot.xlabel('Percent passing')\n",
+ "pyplot.ylabel('grain size,mm')\n",
+ "pyplot.title('Graph of percent passinge vs grain size')\n",
+ "pyplot.show()\n",
+ "print('look at the axis reverse in text book')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEZCAYAAACEkhK6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcXFWd9/HPl52wBQgkhLCJsgQCBDRhWFtABgRBGWUR\nFFwYHfVhRETgGZcecUZRRx11dBQVCLLIJrI6BB4aGISwhS3shC2BJJAQIEa25Pf8cU6T6kov1V3L\nrar+vl+venXVXX+nqvr+6pxzz72KCMzMzAayQtEBmJlZa3DCMDOzijhhmJlZRZwwzMysIk4YZmZW\nEScMMzOriBPGMCCpU9K5NdrWaEk3S3pV0g9qsU0DSQ9K2qvoOJqBpNMknVnjbe4p6ZFabnM4Wqno\nAIYjSUcCJwLbAX8FngLOiYhf1mmXtRxs84/AvIhYu4bbbChJxwGfiYg9i46lW0RsX3QMzSIivluH\nbd4CbFPr7Q43rmE0mKSTgJ8AZwCjI2I08Hlgd0mr9LFOtZ+Tqly/1GbAwzXcXp9qUG5rMpL8I7WV\nRYQfDXoA6wCLgI8MsNzZwC+Ba/Ly+wAHAdOBV4BngW+VLL85sBQ4HpgNPA+cVDL/W8AfgHOAV4EH\ngV362f9uwJ3AQuAO4O9K4noTeAN4Ddinj9j/G7gu76sL2LRk/jbAVGA+8AjwsQHKvQlwGTAPeAn4\nWcnynwYeAhYAfy7bz1Lgc8BjwMvAz/P0bYG/AW/nMizo4z3oAr4LTMvv+eXAuiXzLwZeyO/RTcD4\nknkfBGbk8s/q/iyAUcBVOZ75wM0l6zzd/X4CncBFfX1ewM75u/BqXu4PwOkl8w8G7s37uRWY0EcZ\nfwn8oGzan4Av5+en5PhfzZ/Vcp93Xm594Mr8Pt0BfAe4peyz+ALwOPBknvafpO/xK8BdwB4ly3cC\n55Z9tz8JPAO8CPzffr67fb33HcBz+fkR+bPvfrwB3JjnrQr8MO9rTn6PViv62NEsj8IDGE4P4ADg\nLWCFAZY7Ox+Iug/UqwJ7A9vl1xPyl/nQ/Lr7n+o8YHVge9IBdt88v5N0kDyAVNv4d+C2Pva9Xj7Q\nHE2qgR5JOiCvm+efBXx7gNhfBfYAViHVpm7J89YAngOOzdveKR8Atu2j3COA+4D/yOVaFdg9zzs0\nH4C2ztv6F+DWkjiWAlcAa5OSzjzg7/O8Yyk5oPVRjq58wBmf47iEfBDL84/L5VkZ+DEwvWTeCyVx\nrgNMzM+/mw9AK+bH7iXrPEXPhNHr55Xf02eA/5O38RHSAe/bef5EYC7wvrzuJ/O2V+mljHsCz5a8\nXhdYDIzJ7+uzwJg8b1PgXX28VxcC5wOrkRLys/RMhkuB/wFGAqvmaUfn/a0AfCW/Z6vked9i+YTx\nq/z57wC8DmzTRyx9vfcd5IRRtvxapB8dx+fXPyb9OBgJrJm/Q/9e9LGjWR6FBzCcHsAxwAtl0/5C\nOkAvJv/KIh04zx5gWz8BfpSfd/9TbVUy/wzgN/l5J3BdybzxwOI+tvsJ4PZeYjw2Pz+Lkl+zvax/\nNnB+yes1SL/mx5F+2d1ctvyvgG/2Vm7g70gH+uUSLHAt8OmS1yuQ+oM2ya+XAruVzP8DcEp+fhwD\nJ4wbSw8UpAPhG4B6WXZk3t9a+fUzpL6etcuW+9d8MNqyl22UJ4xePy9gL2BW2bq3sCxh/JKyhE6q\nHezVyz6VY90zvz4euD4/fzcp8ewLrNzP+7Qiqdb5npJpp7N8DaNjgPd7AbkmRO81jLEly04Djuhj\nO3299x2UJYz8nbkK+K+S92MRJYkxfwdn9hf7cHq4jbix5gOjStvmI2K3iFg3z+ueHqRf4u+QNFnS\njZLmSVpIam5Zv2z7pes8C4wteT235PliYLU++gjG5nVLPVO2rf4E6Zd5ehHxV9LBYCyp/2OypJe7\nH8DHgdG9rUuqGTwTEUt72c9mwH+WbGd+nr5xyTJzSp4vJiWvwSh/P1cmfX4rSvqepCckvUI62Aep\nyQngH0hNI09L6pK0a57+A+AJ4DpJT0o6pZ999/V5jSU1O/YV52bASWXv8Thgo/IdRDoiXggclSd9\nnFRLJSKeAL5MOnjPlXSBpOW2AWxAOnmmNIZZvSxX/n3+qqSHJC3MMa7DsvevN5V+ln299735t7yd\nE/LrDUi1ybtL3rtrB4hrWHHCaKzbSL9SPzyEdc8n/TodFxEjSf0E5Z/fpmXPyw8slZhNOuiU2mwQ\n2xLpQJ9eSGuSmrlmkw66N0XEuiWPtSLiiyXrR8nz54BNJa3Yy36eBf6xbFtrRMTtFcQYAy8CLP9+\nvkXqR/k4cAipyW8dYAtSuQUQEXdFxIdJB6DLSf0MRMSiiPhqRGyZ1/+KpPdXGEu3F+iZFMvjfBb4\nt7L3Zc2I+EMf27sA+KikzYBJwKXdMyLigkhnkm1Ges/O6GX9F0k1yE1Kpm3Sy3LvvOeS9gROJvVf\njcw/mF6hBidn9PXel8tnKh4BfDQiluTJL5GaAseXvHcjo4XPCKw1J4wGioiFpGaJX0j6B0lrSVpB\n0k70/MXU2z/OmsDLEfGmpEmkg1b5ge/rklaXtB2p2aWvg0R/rgG2knSUpJUkHUHqqL6qn9jKfVBS\n91lfp5Pa32cDV+dtHyNp5fx4n6Tu0x3Ltz2NdID8nqQRklaTtFue99/A/5U0HkDSOpI+1k9M7xzQ\nSb/ex0laeYDlj5G0raQRwLeBi/Ov8jVJiX+BpDVIfQzkOFaWdLSkdfKB6DVgSZ53sKR3SxKpn2cJ\nqbllMG4Dlkj6Uv58DiX1V3Q7E/i8pElK1pB0UE7cy4mIe0kHyt8Af46IV3OsW0naR9Kquayvd5ej\nbP0lpJMSOvN3bxtSs2Z/SXktUpJ5SdIqkr5J6msajOW+h/2992XLTQR+Rjr5pLtmSq7Jngn8RNIG\nedmNJe0/yNjalhNGg0XED0idfF8jVbPnkA5+XyMdDCD9s5X/w30B+LakV4Fv0HsyuInU5HE96eyX\n6/vZXq//0BGxgHSWzUmkA8lXgYPz9L62Vb7d80kdl/NJnbDH5G2/BuxP6kifTUoG3yV15C637fwP\n/CFSe/qzpBrH4Xne5aRfvBfmZqEHgL/vp3yl276BdCbNHEnz+inHuaR+lRdyjN1NF1NIzXSzSWcw\n3Va2v2OAp3Jc/0jq4CWXYyrpQPYXUtv5TX3su9fPKyLeBA4DPsOykxOuIvUjEBF3k/oifk5qCnyc\n1PHdn/NJZ6SdXzJtVdJn82Iu/yjgtD7W/xKpSWkO6cyuC7rjKY29xJ/z4zHS2WF/o2czaHn5e/u+\n9fUd7Ou9L13nUFK/0/9Kei0/rs7zTiH9D92etzEV2KqPfQ07Sj+Y6rBh6XekU0HnRcSEPG090oFu\nM9IX5fD8qxtJp5FOk1wCnBAR19UlsDYkaXNgJrBSH+39jYzlLFKn7DeKjKNakm4kdbz+ruhYBiJp\nGvCLiDin6FgAJJ0BbBgRnyo6FqutetYwziKdFljqVGBqRGxF+pV3KkBuVjiCdDbIAaQmG9d+WlMt\nBwkWrSnLImkvSWNyk9SxpNOo/1xgPFtL2iE3gU0i/fD7Y1HxWP3U7aAcaSj+y2WTDyFVWcl/uzt/\nDwUuiIi3IuJpUpVwUr1ia1P1qSoO3kBNVq2kWcuxNcsG5p1I6rid2/8qdbUWqbN8Eemsqx9GxBUF\nxmN10uhh+qNLvthzWXY65Vig9OyWWSx/Joj1ISfZ3s4karh2aYaIiMGevdQwEXEmqXO2KUTEXcB7\nio7D6q+wZp98tslAnadmZtYkGl3DmCtpTETMyYOAus9QmU3Pc7fH0ct5/5KcRMzMhiAiqu6Ta3TC\nuIJ0HZ8z8t/LS6afL+lHpKao95AuYracep3V1Qw6Ozvp7OwsOoy6cflaWzuXr95lW7IEXnwR5s6F\nOXN6/i2ftnAhrL8+jB4NY8akv6XPS6etvz6sWEFjdBr6U726JQxJF5AumDdK0nPAN4HvARdJ+gz5\ntFqAiHhI0kWki4C9DXwh2jkzmFnLW7IE5s9fPgH0lggWLIB1113+oD9mDOy0U89po0ZVlgSKULeE\nERFH9TFrvz6W/3dKRsyamTXa0qUpCVRSE5g/H0aO7L0mMGFCz6QwahSs1AZ3AmmDIrSPjo6OokOo\nK5evtbVq+ZYuhZdf7r8m8PjjHfz616nZaO21e2/+GT++57QNNoCV+7u4TBuq20jvepDkliozIyIl\ngUpqAi++CGuu2Xc/QOm0DTaAVXq972Vrk1STTm8nDDNrChHwyiuV9QnMnQsjRvTeJ1CeCDbcEFZd\ntejSFcsJw8yaXgS8+mplNYF589KBvZKawIYbwmqrFV261uGEYWZNJQJmzYI77oBp09Lfu+8Gqf9T\nQ0ufr7560aVoT04YZlaoV1+Fu+5KyaE7Qbz9NkyeDJMmpb/ve186ndSK5YRhZg3z1lvw4IPLEsO0\nafDMM2kMQXdymDwZNtss1SisuThhmFldRKRkUJoc7r03JYPS5LD99sPvtNJW5YRhZjWxcCHceWfP\npqUVVliWGCZPhl12gXXWKTpSGyonDDMbtDffhPvv75kcZs+GnXdelhwmTYJx49y01E6cMMysXxEw\nc2bP5HD//bDllj07psePb4/LVljfnDDMrIf583ue0nrHHek01dLksMsuadSzDS9OGGbD2Ouvp47o\n7gQxbVq6BMZ737ssOUyaBGPHFh2pNQMnDLNhYulSePzxnsnhoYdg6617nrW09dbNe1lsK5YThlmb\nmjevZ3K48850Ge3SmsPOO6drKZlVwgnDrA0sXgzTp/cc87BwYRoh3Z0cJk1Kl80wGyonDLMWs3Qp\nPPJIz+Tw6KPpLKXSjun3vCeNgzCrFScMsyb3wgs9k8Ndd6X7LZQmh5128lVXrf6cMMyayKJF6cqs\npX0PixcvfyG+UaOKjtSGIycMs4IsWQIzZvQc8/DEE7DDDj07prfc0qOlrTk4YZg1QF/3eBg7tuel\nNHbcsT1v7WntwQnDrA5K7/HQnSS67/HQnRx8jwdrNU4YZlXq7x4PpX0PvseDtTonDLNB8D0ebDhz\nwjDrh+/xYLaME4ZZ1tc9HnbZpedZS77Hgw1XThg2LA10j4fu5OB7PJgt44Rhw0J/93joTg6+x4NZ\n/5wwrO30d4+H0gvx+R4PZoPjhGEtrb97PJSe0up7PJhVzwnDWsrrr8P11y9rWrrzznSGUukprRMn\n+h4PZvXghGEt5eST4YYb4KCDll2Iz/d4MGsMJwxrGW+/nU5pvflm2GqroqMxG35qlTB8mxaru+uu\ngy22cLIwa3VOGFZ3U6bAJz9ZdBRmVi03SVldLVyYrtf01FOw3npFR2M2PLV0k5Sk0yTNkPSApPMl\nrSppPUlTJT0m6TpJI4uIzWrrkktgv/2cLMzaQcMThqTNgeOBnSNiArAicCRwKjA1IrYCbsivrcW5\nOcqsfRRRw3gVeAsYIWklYATwPHAIcE5e5hzgwwXEZjU0cyY88ggceGDRkZhZLTQ8YUTEAuA/gGdJ\niWJhREwFRkfE3LzYXMBn6be43/8ejjzSty41axcNv56npC2BLwObA68AF0s6pnSZiAhJvfZud3Z2\nvvO8o6ODjo6OeoVqVYhIzVEXXlh0JGbDT1dXF11dXTXfbsPPkpJ0BPCBiPhsfv0JYFdgH+D9ETFH\n0kbAjRGxTdm6PkuqRdx6Kxx/PMyY4XtQmBWtlc+SegTYVdLqkgTsBzwEXAkcm5c5Fri8gNisRro7\nu50szNpHIeMwJH2NlBSWAvcAnwXWAi4CNgWeBg6PiIVl67mG0QJefx023jhdqnyTTYqOxsx8LSlr\nWhdfDL/6Vbo6rZkVr5WbpKzNeeyFWXtyDcNqat68dNOj557zbVPNmoVrGNaULrgADjnEycKsHTlh\nWE2dc46bo8zalROG1cwDD8CLL4LHUpq1JycMq5lzz4VjjoEVVyw6EjOrB3d6W00sWZLGXFx/PYwf\nX3Q0ZlbKnd7WVG64IQ3Wc7Iwa19OGFYTHnth1v7cJGVVe+211Bz1xBMwalTR0ZhZOTdJWdO49NJ0\nZpSThVl7c8Kwqnnshdnw4CYpq8ozz8Auu8Ds2bDqqkVHY2a9cZOUNYXf/x4OP9zJwmw4cMKwIeu+\nDaubo8yGBycMG7I77khJY/LkoiMxs0ZwwrAh821YzYYXd3rbkLzxRhrZfffdsNlmRUdjZv1xp7cV\n6pprYMIEJwuz4cQJw4bEYy/Mhh83SdmgvfQSvPvd8OyzsPbaRUdjZgNxk5QV5sIL4aCDnCzMhhsn\nDBs0j70wG56cMGxQHn4YZs2CffctOhIzazQnDBuUc8+Fo4+GlVYqOhIzazR3elvFli5Np9Feey1s\nv33R0ZhZpdzpbQ3X1QUbbOBkYTZcOWFYxTz2wmx4c5OUVWTRIhg3Dh59FEaPLjoaMxuMhjVJSfqQ\npOmSXpb0Wn68Wu2OrbX88Y+wxx5OFmbDWSXnuvwE+AjwYEQsrXM81qSmTIHjjy86CjMr0oBNUpJu\nAvaJiCWNCanfWNwkVYBZs2CHHdJtWFdfvehozGywatUkVUkN4xTgWkk3Am/maRERP6p259YazjsP\nPvpRJwuz4a6ShHE68BqwGrBKfcOxZtN9G9Zf/7roSMysaJUkjI0i4gN1j8Sa0j33wOuvw267FR2J\nmRWtknEY10j6+1ruVNJISZdIeljSQ5ImS1pP0lRJj0m6TtLIWu7ThqZ77IVvw2pmlXR6LwJGkPov\n3sqTIyKGfHFrSecAN0XE7yStBKwB/AvwUkR8X9IpwLoRcWrZeu70bqA330xjL26/Hd71rqKjMbOh\nqlWnd8MH7klaB5geEe8qm/4IsHdEzJU0BuiKiG3KlnHCaKArroAf/ABuuaXoSMysGo08SwpJOwCb\nly4fEZcNcZ9bAC9KOgvYEbgb+DIwOiLm5mXmAh4iVjDf98LMSlXSJHUWMAGYAbwzcC8iPjWkHUrv\nBW4DdouIOyX9hHQW1pciYt2S5RZExHpl67qG0SALFsAWW8Azz8BI9yaZtbRG1jAmA9vV8Eg9C5gV\nEXfm15cApwFzJI2JiDmSNgLm9bZyZ2fnO887Ojro6OioUVhW6qKL4IADnCzMWlFXVxddXV01324l\nNYxzgO9HxIya7VS6GfhsRDwmqZPUqQ4wPyLOkHQqMNKd3sXZbTf4+tfhgx8sOhIzq1bDOr0ldQBX\nAHOAN/LkiIgdhrxTaUfgN6SBgE8CnwJWBC4CNgWeBg6PiIVl6zlhNMBjj8Fee6VLgvjOematr5EJ\n40ngROBBevZhPF3tzgfLCaMxvvEN+Otf4Ue++ItZW2hkH8a8iLii2h1Za1i6NN23+/LLi47EzJpN\nJQljuqTzgSvpefHBoZ5Wa03slltg7bVhxx2LjsTMmk0lCWMEqe9i/7LpThhtqHvshS8FYmblfItW\ne8fixbDxxjBjBowdW3Q0ZlYrDbtFay87/qKkI/I1oKyN/OlPMHmyk4WZ9W7QCQMQsCfwxxrHYgWb\nMgWOPbboKMysWblJygB4/nnYbrt0G9YRIwZe3sxaR8OapCSNkfRbSX/Or8dL+ky1O7bmcv75cNhh\nThZm1rdKmqTOBq4Dulu2HycN5LM2EbHsRklmZn2pJGGMiog/AEsAIuIt4O26RmUNdd998NprsOee\nRUdiZs2skoSxSNL63S8k7Qq8Ur+QrNGmTIFPfAJWGMopEGY2bFRyLaldgJ8B25HuibEB8NGIuK/+\n4S0Xizu9a+ztt9NtWG++GbbaquhozKweGnYtqYi4W9JewDakU2ofjYg3B1jNWsR116UbJTlZmNlA\nKjlLaiZwfEQ8GBEPRMSbkq5qQGzWAB57YWaVqqRJ6lHgXmAx8PmIeEPS9IiY2IgAy2Jxk1QNLVwI\nm28OM2fCeusNuLiZtahGXhpkcUQcATwM3Cxps2p3as3h4othv/2cLMysMhVfDyoivi/pHtKYDB9i\n2sCUKXDyyUVHYWatopKE8c3uJxFxvaT9Abd6t7gnn4RHH4UDDig6EjNrFX0mDEnbRsTDwPOSdi6b\nfXV9w7J6O/dcOPJIWGWVoiMxs1bRZ6e3pDMj4nhJXcByC0XE++scW28xudO7BpYuhS23hEsvhZ3L\nfwqYWdup+ziMiDg+/+2odifWXG6+GdZaCyY2/Dw3M2tllYzD+JiktfPzb0i6rJcmKmshZ58Nxx3n\n27Ca2eBUMg7jgYiYIGkP4DvAD4FvRsSkRgRYFoubpKq0aFG6FMijj8Lo0UVHY2aN0MhxGEvy34OB\nMyPiKmDlandsxbjkEthrLycLMxu8ShLGbEm/Bo4Arpa0WoXrWRPqbo4yMxusSpqk1gAOAO6PiMcl\nbQRMiIjrGhFgWSxukqrCzJkweXK6DatPpzUbPhp5tdq/ApeWvH4BeKHaHVvjTZkCRx3lZGFmQzNg\nDaOZuIYxdB57YTZ8NbLT29qAx16YWbWcMIYJj70ws2pV0un9D8D3gNGkO+4BRESsXefYeovFTVJD\n4LEXZsNbwzq9ge8DB+cLEVoL8tgLM6uFSpqk5jhZtDaPvTCzWqikSeo/gTHA5cCbeXJExGV1jq23\nWNwkNUgee2FmjWySWgf4G7B/2fSGJwwbPI+9MLNa8TiMNuaxF2YGDahhSDolIs6Q9LNeZkdEnFDN\njiWtCNwFzIqID0laD/gDsBnwNHB4RCysZh/DncdemFkt9dfp/VD+ezfpwH532aNa/5z30V1lOBWY\nGhFbATfk11YFj70ws1oqpElK0jjgbODfgK/kGsYjwN4RMVfSGKArIrYpW89NUhXy2Asz69awTm9J\nGwJfA8YDq+fJERH7VLHfHwMnA6WD/0ZHxNz8fC5poKANkcdemFmtVTIO4zzgEeBdQCepf+Guoe5Q\n0sHAvIiYzrKR4z3kaoSrElXw2Aszq7VKTqtdPyJ+I+mEiLgJuEnSkBMGsBtwiKQPAqsBa0s6F5gr\naUxEzMn33JjX28qdnZ3vPO/o6KCjo6OKUNrTzJkwYwYcfHDRkZhZEbq6uujq6qr5disZuHd7ROwq\n6Trgp8DzwMURsWXVO5f2Br6a+zC+D8zPZ2adCoyMiFPLlncfRgU6O2HBAvjpT4uOxMyaQSMH7n1H\n0kjgJOBnpH6HE6vdcYnuDPA94CJJnyGfVlvDfQwbS5fCOeeksRdmZrXUb8LIYyW2ioirgIVARy13\n3t3ElZ8vAPar5faHI4+9MLN66bfTOyKWAEc1KBarAY+9MLN6qaQP48fAyqRR2H8lndkUEXFP/cNb\nLhb3YfTDYy/MrDeN7MOYSOpn+HbZ9PdXu3OrLY+9MLN6GjBhRERHA+KwGjj7bDihqit8mZn1rZIm\nqZNYfhDdK8DdEXFvvQLrIxY3SfXB970ws77UqkmqkpHeuwCfBzYGxgGfAw4EzpR0SrUBWG34vhdm\nVm+V1DBuAQ6MiEX59ZrANcABpFrGtnWPclksrmH0wve9MLP+NLKGsQHLbs0K8BbpQoGLgderDcCq\n57EXZtYIlZwldR4wTdLlpFNqPwScL2kNlt0zwwrksRdm1ggV3Q9D0vuA3Umd37dGRDUXHxwyN0kt\nz2MvzGwgjRyHQUTcCdxZ7c6s9jz2wswapZI+DGtivu+FmTVKIbdoHSo3SfXksRdmVolGniVlTcpj\nL8yskVzDaFEee2FmlXINY5jz2AszazQnjBblsRdm1mhukmpBHnthZoPhJqlhzGMvzKwIThgtyGMv\nzKwIbpJqMR57YWaD5SapYcpjL8ysKK5htBCPvTCzoXANYxjy2AszK5ITRgvx2AszK5KbpFqEx16Y\n2VC5SWqY8dgLMyuaE0aL8NgLMyuam6RagMdemFk13CQ1jHjshZk1A9cwmpzHXphZtVzDGCY89sLM\nmoUTRpPz2AszaxZukmpiHnthZrXgJqlhwGMvzKyZOGE0MY+9MLNm0vCEIWkTSTdKmiHpQUkn5Onr\nSZoq6TFJ10ka2ejYmsnMmTBjBhx8cNGRmJklRdQw3gJOjIjtgF2BL0raFjgVmBoRWwE35NfDlsde\nmFmzKbzTW9LlwM/zY++ImCtpDNAVEduULTssOr099sLMaqktOr0lbQ5MBKYBoyNibp41Fxi2Xb0e\ne2FmzWilonYsaU3gUuCfI+I1lQw0iIiQ1GtVorOz853nHR0ddHR01DfQAnjshZlVo6uri66urppv\nt5AmKUkrA1cB10bET/K0R4COiJgjaSPgxuHYJOWxF2ZWay3bJKVUlfgt8FB3ssiuAI7Nz48FLm90\nbM3AYy/MrFk1vIYhaQ/gZuB+oHvnpwF3ABcBmwJPA4dHxMKyddu+htHRASecAIcdVnQkZtYualXD\nKPwsqcFo94Th+16YWT20bJOU9c1jL8ysmbmG0SQ89sLM6sU1jDbjsRdm1uycMJqEx16YWbNzk1QT\n8NgLM6snN0m1EY+9MLNW4ITRBHzfCzNrBW6SKpjHXphZvblJqk147IWZtQrXMArksRdm1giuYbQB\nj70ws1bihFEgj70ws1biJqmCeOyFmTWKm6RanMdemFmrccIoiMdemFmrcZNUATz2wswayU1SLcxj\nL8ysFbmG0WAee2FmjeYaRovy2Asza1VOGA3msRdm1qrcJNVAHnthZkVwk1QL8tgLM2tlThgN5LEX\nZtbK3CTVIB57YWZFcZNUi/HYCzNrda5hNIDHXphZkVzDaCEee2Fm7cAJowE89sLM2oGbpOrMYy/M\nrGhukmoRHnthZu3CCaPOPPbCzNqFm6TqyGMvzKwZuEmqBXjshZm1E9cw6sRjL8ysWbiG0eQ89sLM\n2k1TJQxJB0h6RNLjkk4pOp5qeOyFmbWbpkkYklYEfg4cAIwHjpK0bbFRDc2iRXD55XD00YNbr6ur\nqy7xNAuXr7W1c/nauWy11DQJA5gEPBERT0fEW8CFwKEFxzQkQx170e5fWpevtbVz+dq5bLXUTAlj\nY+C5ktez8rSW47EXZtaOmilhtMbpTwN46imYMQMOPrjoSMzMaqtpTquVtCvQGREH5NenAUsj4oyS\nZZojWDOzFlOL02qbKWGsBDwK7As8D9wBHBURDxcamJmZAbBS0QF0i4i3JX0J+B9gReC3ThZmZs2j\naWoYZmZFPdGCAAAHC0lEQVTW3Jqm07uSQXuSfprn3ydp4mDWLVqV5fudpLmSHmhcxIMz1PJJ2kTS\njZJmSHpQ0gmNjXxgVZRtNUnTJN0r6SFJ321s5JWp5ruZ560oabqkKxsT8eBU+b/3tKT7c/nuaFzU\nlauyfCMlXSLp4fwd3bXfnUVE4Q9SE9QTwObAysC9wLZly3wQuCY/nwzcXum6RT+qKV9+vScwEXig\n6LLU4fMbA+yUn69J6sdqms+vBp/diPx3JeB2YI+iy1TL8uVpXwHOA64oujx1+PyeAtYruhx1LN85\nwKfz85WAdfrbX7PUMCoZtHcIqXBExDRgpKQxFa5btGrKR0TcArzcwHgHa6jlGx0RcyLi3jx9EfAw\nMLZxoQ9oyGXLrxfnZVYh/XMvaEjUlauqfJLGkQ5IvwGa8UI4VZUva8ZydRty+SStA+wZEb/L896O\niFf621mzJIxKBu31tczYCtYtWjXlawVDLd+40gUkbU6qSU2reYRDV1XZcnPNvcBc4MaIeKiOsQ5F\ntd/NHwMnA0vrFWCVqi1fANdLukvS8XWLcuiq+X5uAbwo6SxJ90g6U9KI/nbWLAmj0p73Zs70/Rlq\n+VrljISqyydpTeAS4J9zTaNZVFW2iFgSETuR/kH3ktRRw9hqYajlk6SDgXkRMb2X+c2i2mPLHhEx\nETgQ+KKkPWsTVs1U8/1cCdgZ+EVE7Az8FTi1v400S8KYDWxS8noTUhbsb5lxeZlK1i3aUMs3u85x\n1UpV5ZO0MnAp8PuIuLyOcQ5FTT67XNW/GnhvHWKsRjXl2w04RNJTwAXAPpKm1DHWoajq84uI5/Pf\nF4E/kpqAmkk15ZsFzIqIO/P0S0gJpG9Fd9qUdLY8Seq4WYWBO252ZVmn6YDrFv2opnwl8zeneTu9\nq/n8BEwBflx0OepQtlHAyPx8deBmYN+iy1Tr72aevjdwZdHlqfHnNwJYKz9fA7gV2L/oMtXy88vf\nya3y807gjH73V3SBSwI/kHSGzBPAaXna54DPlSzz8zz/PmDn/tZttkeV5buANPr9DVJb5KeKLk+t\nygfsQWr/vheYnh8HFF2eGpVtAnBPLtv9wMlFl6XW382S+XvThGdJVfn5vSt/dvcCD7bpsWVH4M48\n/TIGOEvKA/fMzKwizdKHYWZmTc4Jw8zMKuKEYWZmFXHCMDOzijhhmJlZRZwwzMysIk4Y1nIkLcmX\nm35A0kWSVi8ghr0l/V0B+/2cpE80er9m4IRhrWlxREyMiAnAm8DnK1kp3wa4Vt5PujRGQ0XEryLi\n3Ebv1wycMKz1/S/wbkkj8o2mpuUrbx4CIOk4SVdIugGYKmmNfHXO+/PNZA7Ly+0v6S+S7s61ljXy\n9Kcldebp90vaOl9V93PAibmms0dpQHn5c/P2HpP02Tx9TUnXl2yrO8Y1JF2db7T0gKSP5enfU7qx\n1H2Svl+y7ZPy8668zDRJj3bHkd+Li/K6l0m6XdIu9f4grP01zT29zQYr1xgOAK4Fvg7cEBGfljQS\nmCbp+rzoRGBCRCyUdAbwckTskLcxUtIo4F9I13n6W75r2VeA00lX9XwxInaR9E/AVyPieEn/DbwW\nET/qI7ztSdftWROYLulqYB7wkYh4Le/zNuCKXIbZEXFQjmltSesDH46Ibbqn5e0Gy65QGsCKETFZ\n0oHAt4APAF8A5kfEdpK2I13awpd0sKq5hmGtaHVJ00nXwHkG+B2wP3Bqnn4jsCqwKelAOTUiFuZ1\n9wX+q3tDefquwHjgL3n9T+Z1u12W/95Dushbt74uiR3AnyLijYiYn+OZlJf/rqT7gKnAWEkbkq4z\n9YFcW9gjIl4FXgFel/RbSR8B/tbHvnqLbXfSjXSIiBl5+2ZVcw3DWtHfIt2j4B2SAA6LiMfLpk8m\nXee/x+Retjk1Ij7ex/7eyH+XMPT/mQCOIV3BdueIWJIvC75aRDye77N8EPAdSTdExOmSJpES3EeB\nL+XnlcbWrPensBbmGoa1i/8BTuh+oWU3ui8/cE4Fvliy3EjSvbZ3l7RlnraGpPcMsL/XgLX6mCfg\nUEmr5qalDuAOYG3SDYeWSHo/sFne30bA6xFxHvBDYOfchzIyIq4lNY/tWLLtgZLBrcDhedvjSVfN\nNauaE4a1ot7a408HVs6dyQ8C/1qybOny3wHWzZ3L9wIdEfEScBxwQW4u+guwdR/77d7WlcBHcqf3\n7r0sdz+pKeo24NsRMQc4D3ivpPuBT5DuXw7pgD4tN4d9M5dlLeDKHM8twIl9lKe39+UXwAaSZuRt\nzSA1cZlVxZc3N6sxSd8CFkXEfxS0/xWAlSPijVxrmkq6Sc7bRcRj7cN9GGb1UeQvsTWA/5dvfSvg\nn5wsrBZcwzAzs4q4D8PMzCrihGFmZhVxwjAzs4o4YZiZWUWcMMzMrCJOGGZmVpH/DwmMbeQUgeRM\nAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x542d930>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "look at the axis reverse in text book\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8-pg177"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate hydraulic conductivity\n",
+ "##initialisation of variables\n",
+ "e= 0.6\n",
+ "D10= 0.09 ##mm\n",
+ "##calculations\n",
+ "k= 2.4622*(D10**2*(e**3/(1+e)))**0.7825\n",
+ "##results\n",
+ "print'%s %.4f %s'% ('hydraulic conductivity = ',k,' cm/sec ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "hydraulic conductivity = 0.0119 cm/sec \n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9-pg177"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate hydraulic conductivity\n",
+ "##initialisation of variables\n",
+ "e= 0.6\n",
+ "D10= 0.09 ##mm\n",
+ "D60= 0.16 ##mm\n",
+ "##calculations\n",
+ "Cu=D60/D10\n",
+ "k= 35*(e**3/(1+e))*(Cu**0.6)*(D10**2.32)\n",
+ "##results\n",
+ "print'%s %.3f %s'% ('hydraulic conductivity =',k,'cm/sec ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "hydraulic conductivity = 0.025 cm/sec \n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10-pg179"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate hydraulic conductivity\n",
+ "##initialisation of variables\n",
+ "k1= 0.302e-7 ##cm/sec\n",
+ "k2= 0.12e-7 ##cm/sec\n",
+ "e1= 1.1\n",
+ "e2= 0.9\n",
+ "e= 0.75\n",
+ "##calcualtions\n",
+ "n= (math.log10((k1/k2)*((1+e1)/(1+e2))))/math.log10(e1/e2)\n",
+ "C= k1/(e1**n/(1+e1))\n",
+ "k= C*(e**n/(1+e))\n",
+ "##results\n",
+ "print'%s %.e %s'% ('hydraulic conductivity =',k,'cm/sec')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "hydraulic conductivity = 5e-09 cm/sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11-pg185"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate ration of equivalent hydraulic conductivity\n",
+ "##initialisation of variables\n",
+ "H1= 2. ##m\n",
+ "H2= 3. ##m\n",
+ "H3= 4. ##m\n",
+ "k1= 1e-4 ##cm/sec\n",
+ "k2= 3.2e-2 ##cm/sec\n",
+ "k3= 4.1e-5 ##cm/sec\n",
+ "##calculations\n",
+ "H= H1+H2+H3\n",
+ "Kh= (1./H)*((k1*H1)+(k2*H2)+(k3*H3))\n",
+ "Kv= H/((H1/k1)+(H2/k2)+(H3/k3))\n",
+ "P= Kh/Kv\n",
+ "##results\n",
+ "print'%s %.2f %s'% ('ration of equivalent hydraulic conductivity =',P,' ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "ration of equivalent hydraulic conductivity = 139.97 \n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12-pg186"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate rate of water supply\n",
+ "##initialisation of variables\n",
+ "H= 450. ##mm\n",
+ "h= 150. ##mm\n",
+ "k1= 1e-2 ##cm/sec\n",
+ "k2= 3e-3 ##cm/sec\n",
+ "k3= 4.9e-4 ##cm/sec\n",
+ "h1= 300. ##mm\n",
+ "##calculations\n",
+ "Kv= H/(h*(1./k1+1./k2+1./k3))\n",
+ "i= h1/H\n",
+ "q= Kv*i*100.*3600.\n",
+ "##results\n",
+ "print'%s %.2f %s'% ('rate of water supply =',q,' cm/hr ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "rate of water supply = 291.01 cm/hr \n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter8.ipynb b/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter8.ipynb new file mode 100755 index 00000000..29871da0 --- /dev/null +++ b/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter8.ipynb @@ -0,0 +1,241 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:61bb09563c68b30d1e4461dec41e802a02b539da836a09cb7d1de16a382cc82d"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter8-Seepage"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg203"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate rate of water flow\n",
+ "##initialisation of variables\n",
+ "H1= 12. ##in\n",
+ "H2= 20. ##in\n",
+ "z= 8. ##in\n",
+ "h1= 24. ##in\n",
+ "h= 20. ##in\n",
+ "k1= 0.026 ##in/sec\n",
+ "D= 3. ##in\n",
+ "##calculations\n",
+ "k2= H2*k1/((z/(1.-h/h1))-H1)\n",
+ "i= h1/(H1+H2)\n",
+ "A= math.pi/4.*D**2\n",
+ "keq= (H1+H2)/((H1/k1)+(H2/k2))\n",
+ "q= keq*A*i*3600.\n",
+ "##results\n",
+ "print'%s %.2f %s'% ('rate of water flow = ',q,' in^3/hr ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "rate of water flow = 330.81 in^3/hr \n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg208"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate a)How high (above the ground surface) the water will rise if piezometers are placed at points aandb.\n",
+ "#b.The total rate of seepage through the permeable layer per unit length\n",
+ "#c. The approximate average hydraulic gradient at c.\n",
+ "##initialisation of variables\n",
+ "Nd= 6.\n",
+ "H1= 5.6 ##m\n",
+ "H2= 2.2 ##m\n",
+ "k= 5e-5 ##cm/sec\n",
+ "dL= 4.1 ##m\n",
+ "##calculations\n",
+ "H= (H1-H2)/Nd\n",
+ "h1= 5.61-H\n",
+ "h2= 5.61-5.*H\n",
+ "q= 2.38*(H1-H2)*k/Nd\n",
+ "i= H/dL\n",
+ "##results\n",
+ "print'%s %.3f %s'% ('at point a,water will rise to height of = ',h1,' m ')\n",
+ "print'%s %.3f %s'% ('at point b,water will rise to height of =',h2,' m ')\n",
+ "print'%s %.e %s'% ('total rate of seepage per unit lenghth = ',q,' m^3/sec/m ')\n",
+ "print'%s %.3f %s'% ('average hydraulic gradient at c = ',i,' ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "at point a,water will rise to height of = 5.043 m \n",
+ "at point b,water will rise to height of = 2.777 m \n",
+ "total rate of seepage per unit lenghth = 7e-05 m^3/sec/m \n",
+ "average hydraulic gradient at c = 0.138 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg210"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate average rate of flow\n",
+ "##initialisation of variables\n",
+ "k1= 5.67 ##ft/day\n",
+ "k2= 11.34 ##ft/day\n",
+ "##from graph\n",
+ "Nd= 8\n",
+ "Nf= 2.5\n",
+ "H= 20\n",
+ "##calculations\n",
+ "q= math.sqrt(k1*k2)*H*Nf/Nd\n",
+ "##results\n",
+ "print'%s %.2f %s'% ('average rate of flow = ',q,' ft^3/day/ft ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "average rate of flow = 50.12 ft^3/day/ft \n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg 212"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate seepage under the dam \n",
+ "##initialisation of variables\n",
+ "B= 6. ##m\n",
+ "L= 120. ##m\n",
+ "s= 3. ##m\n",
+ "T= 6. ##m\n",
+ "x= 2.4 ##m\n",
+ "H= 5. ##m\n",
+ "k= 0.008 ##cm/sec\n",
+ "##calculations\n",
+ "b=B/2.\n",
+ "a1= b/T\n",
+ "a2= s/T\n",
+ "a3= x/b\n",
+ "Q= 0.378*k*H*L*36*24\n",
+ "##results\n",
+ "print'%s %.2f %s'% ('seepage under the dam = ',Q,' m^3/day ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "seepage under the dam = 1567.64 m^3/day \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg217"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate seepage rate\n",
+ "##initialisation of variables\n",
+ "b= math.pi/4. ##degrees\n",
+ "a= math.pi/6.##degrees\n",
+ "B= 10. ##ft\n",
+ "H= 20. ##ft\n",
+ "h= 25. ##ft\n",
+ "k= 2e-4 ##ft/min\n",
+ "##calculations\n",
+ "r= H/math.tan(b)\n",
+ "d= 0.3*r+(h-H)/math.tan(b)+B+h/math.tan(a)\n",
+ "L= d/math.cos(a)-math.sqrt((d/math.cos(a))**2-(H/math.sin(a))**2)\n",
+ "q= k*L*math.tan(a)*math.sin(a)*24.*60\n",
+ "##results\n",
+ "print'%s %.4f %s'% ('seepage rate = ',q,' ft^3/day/ft ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "seepage rate = 0.9724 ft^3/day/ft \n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter9.ipynb b/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter9.ipynb new file mode 100755 index 00000000..005e638c --- /dev/null +++ b/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter9.ipynb @@ -0,0 +1,205 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:c82d7ef2a69a4d72efc2edfc8621bdf4ff77be194f7e8e01b4cf1b42672764ab"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter9-In Situ Stresses"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg230"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate total pressure and pore water pressure and effective stress at point\n",
+ "##initialisation of variables\n",
+ "Ds= 16.5 ##kN/m**3\n",
+ "S= 19.25 ##kN/m**3\n",
+ "g= 9.8 ##kN/m**3\n",
+ "h1= 6. ##m\n",
+ "h2= 13. ##m\n",
+ "##at point A\n",
+ "Sa= 0.\n",
+ "Ua= 0.\n",
+ "Sa1= 0.\n",
+ "##at point B\n",
+ "Sb= h1*Ds\n",
+ "Ub= 0.\n",
+ "Sb1= Sb-Ub\n",
+ "##at point C\n",
+ "Sc= h1*Ds+h2*S\n",
+ "Uc= h2*g\n",
+ "Sc1= Sc-Uc\n",
+ "##results\n",
+ "print'%s %.2f %s'% ('total pressure at C= ',Sc,' kN/m^3 ')\n",
+ "print'%s %.2f %s'% ('pore water pressure at C = ',Uc,' kN/m^3 ')\n",
+ "print'%s %.2f %s'% ('effective stress at point C=',Sc1,' kN/m^3 ')\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "total pressure at C= 349.25 kN/m^3 \n",
+ "pore water pressure at C = 127.40 kN/m^3 \n",
+ "effective stress at point C= 221.85 kN/m^3 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg233"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate maximu depth that can be made in clay\n",
+ "##initialisation of variables\n",
+ "h= 20. ##ft\n",
+ "g= 120. ##kg/ft**3\n",
+ "h1= 12. ##ft\n",
+ "w= 62.4 ##kg/ft**3\n",
+ "##calculations\n",
+ "H= h-(h1*w/g)\n",
+ "##results\n",
+ "print'%s %.2f %s'% ('maximu depth that can be made in clay = ',H,' ft ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "maximu depth that can be made in clay = 13.76 ft \n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg236"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate effective stress at point a and b and see page force per unit voume\n",
+ "##initialisation of variables\n",
+ "G= 2.68\n",
+ "e= 0.52\n",
+ "g= 9.81 ##kN/m^3\n",
+ "h1= 0.7 ##m\n",
+ "h2= 1 ##m\n",
+ "h3= 1.5 ##m\n",
+ "h4= 2 ##m\n",
+ "##calculations\n",
+ "##for soil A\n",
+ "sa= (G+e)*g/(1.+e)\n",
+ "##point a\n",
+ "Sa= h1*g+h2*sa\n",
+ "u= (h2+h1+h3/2.)*g\n",
+ "Es= Sa-u\n",
+ "##point b\n",
+ "sb= h1*g+h4*sa\n",
+ "ub= (h4+h1+h3)*g\n",
+ "Eb= sb-ub\n",
+ "i= h3/2.\n",
+ "s= i*g\n",
+ "##results\n",
+ "print'%s %.2f %s'% ('effective stress at point a=',Es,' kN/m^2 ')\n",
+ "print'%s %.2f %s'% ('effective stress at point b= ',Eb,'kN/m^2 ')\n",
+ "print'%s %.2f %s'% ('seepage force per unit voume = ',s,' kN/m^3 ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "effective stress at point a= 3.49 kN/m^2 \n",
+ "effective stress at point b= 6.97 kN/m^2 \n",
+ "seepage force per unit voume = 7.36 kN/m^3 \n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg239"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate safety factor\n",
+ "##initialisation of variables\n",
+ "C0= 0.357\n",
+ "H1= 30.5 ##ft\n",
+ "H2= 5. ##ft\n",
+ "w= 62.4 ## lb/ft^3\n",
+ "D= 20.\n",
+ "g= 112. ## lb/ft^3\n",
+ "##calculations\n",
+ "G= g-w\n",
+ "FS= D*G/(C0*w*(H1-H2))\n",
+ "##results\n",
+ "print'%s %.1f %s'% ('safety factor =',FS,' ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "safety factor = 1.7 \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file |