summaryrefslogtreecommitdiff
path: root/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter2.ipynb
blob: 57ee4839ec2d1952fb512dc49ab97dab94ceed44 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
{
 "metadata": {
  "name": "",
  "signature": "sha256:5e11f0622a3e8a49d45f7bf47ce2fb320225cef1a5e74b45071c152843296e82"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter2-Origin of Soil and Grain Size"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex1-pg44"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#calculate the values and plot the graph\n",
      "%matplotlib inline\n",
      "import warnings\n",
      "warnings.filterwarnings('ignore')\n",
      "import math\n",
      "\n",
      "from math import log\n",
      "import numpy\n",
      "from math import tan\n",
      "import matplotlib\n",
      "from matplotlib import pyplot\n",
      "#given\n",
      "e=numpy.array([100,94.5,86.3,74.1,54.9,38.1,9.3,1.7,0])\n",
      "p=numpy.array([4.75,2.00,0.850,0.425,0.250,0.180,0.150,0.075,0])\n",
      "\n",
      "#calculations\n",
      "\n",
      "\n",
      "#results\n",
      "\n",
      "pyplot.plot(p,e)\n",
      "pyplot.xlabel('Particle size ')\n",
      "pyplot.ylabel('percent finer ,e')\n",
      "pyplot.title('Graph of particle size vs percent finer')\n",
      "pyplot.show()\n",
      "print('look at the axis reverse in text book')"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEZCAYAAAB1mUk3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYXFW57/HvLwkEkhABkRASSCSIDMooBIFoy2QAjXhV\nEEHBAfXKFVBQAT3aR+9BOZ5zROE6HIMMKpOoiKiYgDQEZCZgJIDKoQkEkkBISEKCSej3/rF2pasr\nXd3V3VW9q7p+n+epp2vXnt7aVb3evddae5UiAjMza27D8g7AzMzy52RgZmZOBmZm5mRgZmY4GZiZ\nGU4GZmaGk0FTk9Qq6adV2tY4SbdLWiHp29XYZj9i+L2kD1ewXLukw6q8779Kels1t2mdSr5f/yHp\nXEk/zjuuoWRE3gFYJ0kfBD4H7AG8DDwJXB4RP6jRLqt5k8kngSURMbaK2yxLUiswJSI2FP4RcXSF\nqwfVfe9ExJuqub1mIukU4OMRMa2HxQb1+9WMfGVQJySdBVwIXACMi4hxwKeBgyVtWmadgX5+GuD6\nxSYBj1Zxe2VJ8klMDqrwfRuIQfl+NfV3KyL8yPkBvAZYBby3l+UuA34A/D5b/lDgGGAu8BKwAPha\n0fKTgQ7gVGAh8CxwVtH8rwHXAJcDK4C/Avv1sP+DgPuA5cC9wFuL4loL/BNYCRxaJvYfArOyfbUB\nOxbN/24W/0vA/cAhRfNageuAn2bzT8v2tTbb39xsuTbSGWZhvVOB+dn+HgH2zl5/shAjKSGeA/wD\neCE7HluVef/bADcCy4ClwO1F89qLtrk8i2tl9jl1FN4r8C7goWwbdwJvLrOvHwDfLnntN8CZ2fMv\nAc9k7+2x7o55hcd9V2B29n4eAz7Qy/dtB+BXwJLseF1UtPzHsuP9InBTyX46gE8Bf8ve+8XZ67sB\na4D12fF6scx7KHy/VgCHZd+Jn5Z8zz8CPAU8D5xXtH7Zz7ho3Y9l67blXR7k9cg9AD8CYDqwDhjW\ny3KXZQVNoRAeCbwd2CObfjOwCHhPNl34ov8c2Bx4U/ZPfFg2vzX7R5ye/cOcD9xVZt9bZ//EJ5Ku\nKD+Y/dMX/qkuBb7eS+wrgEOATUlXQXOK5p8IbJVt+/PAc8CmRXGuBWZk05uREtkVJfu4FfhY9vwD\npMJyv2x6Cp0FcnEyOAP4M7A9sAmp4LyyzHv4JqlwHJ49Di6at2GbJeucTyqAhwP7AIuB/bPj/ZFs\nvU27WW8asKBoeitgNbAd8EZS4twum7cjsFNfjzswGngaODk77nuTCtLdynzfRgEPA/+ZfZ9GFo4B\n8B7g71lsw4AvA3cWxdEB3ACMJSWUJcA7s3knF38XyryPLt+v7PMvTQY/ymLaE3gFeGNvn3HRupcV\n3lPe5UFej9wD8CMATgKeK3ntz6TCdzXZWXL2hb2sl21dCPxX9rzwRd+laP4FwMzseSswq2je7sDq\nMtv9MHB3NzGenD2/FPhGD3FdRlEhmxVE64EJZZZ/keysOYuzrWR+a6EwKHqtOBn8EfhsmW0XJ4P5\nFBXiwHhS4tkoMQP/ClxPaqsou82i147PXn9tNv0DShIm6Wz8bd1sT6Qz1WnZ9KnAzdnznUlJ5TBg\nk16+D+WO+8QsvttLlv8R8NXuvm/AW0mFeHfH5g+FY59NDyO1e+2QTXcABxXNvwb4Uvb8FCpLBt8o\nmt7w+dP5Pd++aP49wHHZ80fLfcZF607uy//sUHy4zaA+LAW2Ka6TjYiDImKrbF7h9SCdyW0gaaqk\nWyUtkbScdCn+2pLtF6+zgHSGVLC46PlqYLMydcPbZ+sWe6pkWz0J0pl6moh4mVTgb5+9j7MlzZe0\nXNIyUtXZNkXrP0PfTASeqGC5ycCvJS3L9jufVFiO62bZb5OqGmZJekLSl8ptVNI+wEXAsRGxNHt5\nEnBWYV/Z/iaSCqcuIpVaVwMnZC99iHSFR0T8AziTVCAulnSVpI22UdgU5Y/7JGBqSTwfKnrvXdYl\nndE/FREd3exnEvDdou0U3vOEomUWFT1fTUpM1VS6/TFFsfX2GXf5v2pGTgb14S5Sfeix/Vj3StLZ\n6sSI2JJ0CVz6ue5Y8nxhP/azkPRPVWxSH7YlUmGSJqQxpKqnZyVNA75Aqq/eMkuCL9G1gTtKttdd\ngVTsadIZdG8WANMjYquix6iIeK50wYhYFRFnR8QUYAbweUnvKF1O0rbAr4HPRMTDJfv6t5J9jYmI\na8rEdhXwfkmTgAOAXxbFclWk3jeTSMfmgjLbKHfcF2bx3FYSzxYRcVrx2y56/jSwo6Th3exnAfDJ\nkm2Njoi7y8RVrPSzrURf1qnkM+5PDEOKk0EdiIjlpCqI70t6n6QtJA2TtDddz5666/0zBlgWEWsl\nHUA6syv9Yn9F0uaS9iBdkpcrfHrye2AXSSdIGiHpeFLj4409xFbqaEmF3lHfILVPLAS2IJ2pvSBp\nU0lfJdUt92QxMFlSuf3OBM6WtK+SnSXt2M1yPwTOL8yT9DpJM7rboKRjsu2IVA//KiVJKeuNch3w\ns4i4rmQTPwY+LemALKbR2TbH0I2IeIjU4DkTuCkiVmT72EXSoZJGkk4iXsliKafccf8d6TM9SdIm\n2WN/SbsW3k7Jdu4hteV8S9IoSZtJOiib90PgPEm7ZzG+RtIHeohJRdtfDEyUtEkvy/c03ZOKP+Nm\n5mRQJyLi26SG0y+SLncXkb7EXyRdOUD3/eM/A3xd0grgX+i+oL+NVL1xM6mHys09bK/bM6SIeJHU\nE+YsUgF1NvCu7PVy2yrd7pWkhr+lpMbUk7J5N2WPv5F65ayha5VUd9v+RfZ3qaT7u4n3OuDfsn2u\nIPWA2aqbuL5LaticlR3Du0hn4d15A6nnzUpSe8n/i4jbSpaZSGqsPVPSyuyxQtLEiHiAVPd/Mamq\n5u+kRuSeXEnqxXNl0WsjSY3Zz5MK522Ac8usX/a4R8RK4EhSZ4CF2ba+SWpoLqy74bhn1UPvJl1x\nLSBdKRyXzbuedHVytaSXgHnAO0viKI2r8NotpN5eiyQt6eF9RC/T5fT2GTf9VQGAsgaV6m9Y+gmp\n2+OSiHhz9trWpMJqEumf/rjsrBhJ55K6d70KnB4Rs2oSWBORNBn4H2BEmXrewYzlUuCZiPiXPONo\nNj7uVqlaXhlcSuqyWOwcYHZE7EI6GzgHILu0PJ7Um2U6qbrEVy1DSzVvcLPK+bhbRWpW4EbEHFLX\nyGIzSDc4kf0tNJi+B7gqItZFRDupSqPcpbr1Tb1cAvdWjWS14eNuFRnsW6/HRUShK+NiOrt2bQ8U\n9zp4hq5d0qwfssTaXc+PQRcRH807hmbk426Vyq0qJutH3VuDo5mZDYLBvjJYLGm7iFiU3SRT6Dmw\nkKK+0KQeGRv1X5fkBGFm1g8R0WP70WAngxtI45BckP29vuj1KyX9F6l66A2kgdA2UqveT42mtbWV\n1tbWvMOoCz4WnXwsOpU7FhGwZg0sW9b3x4svggRbbVX+sfXW5edtvvngHweA8rfjdKpZMpB0FWkQ\ntW0kPQ18FfgWcK2kj5N1LQWIiPmSrqXzNvHPhEt9MyujkgL9ppvgiSe6nwc9F+hTptRfgV5rNUsG\nEXFCmVmHl1n+fNIIj2bWJNasSWfb/TlLh97Pzo84orkK9IFo3h9yaHAtLS15h1A3fCw65XEsalmg\nD+QMva2tBX81KlezO5BrQZJrj8xqoFDl0p9CHfped+4z9MElqdcGZCcDsyHCBbqV42Rg1mCKG0X7\nWqhD/wpzF+hDn5OBWQ6qWaBXWpi7QLeeOBmY9VNpt8W+FOrgAt3qi5OBNbXu+qFXWqhD/wpzF+hW\nj5wMbMh69VV4+GGYMwcefBCWLnWBblaOk4ENGWvWwL33psJ/zhy4+26YOBGmTYP994dtt3WBblaO\nk4E1rGXL4M474Y47UuH/8MOwxx6p8J82DQ4+GLbZJu8ozRqDk4E1jIULO8/658yBJ5+EqVM7C/+p\nU2H06LyjNGtMTgZWlyLg8cc7C/477oCVK+GQQ1LBf8ghsM8+sMkmeUdqNjQ4GVhdWL8e5s7tLPjv\nuANGjeo86582DXbdNQ0NbGbV52RguVi9Gu65p/PM/557YNKkzoL/kENghx16346ZVYeTgQ2KF1/s\nbOidMwfmzYO99uqs9jn44NS108zy4WRgNbFgQWeVz5w5afrAAzvP/A84IFUDmVl9cDKwAYuARx/t\n2tNnzZquVT577w0j/MsYZnXLycD6bN26dEdvoeC/8054zWs6q3ymTYNddnFjr1kjcTKwXq1ale7m\nLVT73Hsv7LRT1zP/CRPyjtLMBsLJwDbywgtdG3vnz0/VPIXC/6CDYMst847SzKrJyaDJRcBTT3Wt\n73/22VTgF6p9DjgANtss70jNrJacDJpMRwc88kjXnj7r1nW9uWvPPWH48LwjNbPB5GQwxK1dCw88\n0LWx97Wv7Vrfv/PObuw1a3ZOBkPMypVw112dhf/996eePcVj+owfn3eUZlZvnAwa3JIlXQdze+wx\n2HffzjP/t741dfs0M+uJk0GDWb8err4a2tpSAliyJDX2Fs76998fRo7MO0ozazROBg1k7Vo44QRY\ntCj9nTYN3vQmN/aa2cBVkgw8iEAdWLMG3ve+1MXzT3/y2b+ZDb5heQfQ7FatgmOOSb/Ze801TgRm\nlg8ngxwtXw5HHglTpsAVV/iXvcwsP04GOXnhBTj00NQo/KMfuW3AzPLlZJCD556DlhaYPh0uvBCG\n+VMws5y5GBpkCxbA296Wegydf77vDjaz+uBkMIj+8Y+UCE47Db785byjMTPr5GQwSObPT1VD550H\nZ56ZdzRmZl35PoNB8NBDcNRR8O1vw0kn5R2NmdnGcrkykHSupEckzZN0paSRkraWNFvS3yTNkjQk\nfmLlnnvgne+Eiy92IjCz+jXoyUDSZOBUYN+IeDMwHPggcA4wOyJ2AW7JphvabbfBu98Nl16a7jA2\nM6tXeVwZrADWAaMkjQBGAc8CM4DLs2UuB47NIbaquekmeP/708BzRx+ddzRmZj0b9GQQES8C/wks\nICWB5RExGxgXEYuzxRYD4wY7tmq5/nr4yEfgN79JN5aZmdW7QW9AljQFOBOYDLwE/EJSl9r0iAhJ\n3Q5P2trauuF5S0sLLS0ttQq1X666Cj73OfjDH2C//fKOxsyaUVtbG21tbX1aZ9CHsJZ0PHBERHwi\nm/4wcCBwKPCOiFgkaTxwa0TsWrJuXQ9hfckl8NWvwh//mIafNjOrB5UMYZ1Hm8FjwIGSNpck4HBg\nPvBb4ORsmZOB63OIrd8uugi+/nW49VYnAjNrPLn8uI2kL5IK/A7gQeATwBbAtcCOQDtwXEQsL1mv\nLq8MvvUt+PGP4ZZbYPLkvKMxM+vKv3RWYxGpWui66+Dmm2HChLwjMjPbmH/prIYi4Kyz0i+T3XYb\nbLtt3hGZmfWfk0E/dHTAZz4Dc+emZLD11nlHZGY2ME4GfbR+PXzsY9DeDrNnw9ixeUdkZjZwTgZ9\nsHYtnHgirFiR7jAeNSrviMzMqsPJoEKvvJKGlxg+HG64wT9cb2ZDi3/PoAKrVsExx8CYMannkBOB\nmQ01Tga9eOmlNAT1pEnw85/DJpvkHZGZWfU5GfRg6VI47DDYZx+YOTNVEZmZDUW+6awHp5ySqoYu\nusg/XG9mjct3IA9ARwdsvz3cdRe8/vWDskszs5qo14HqGsK8ebDFFk4EZtYcnAzKmDULjjwy7yjM\nzAaHk0EZTgZm1kzcZtCN1ath3DhYuNDDTZhZ43ObQT/NmQN77+1EYGbNw8mgG64iMrNm42TQDScD\nM2s2bjMo8eyz6TeMn3/edxyb2dDgNoN+mD07DUHhRGBmzcTJoISriMysGbmaqEhHB2y3Hdx7L0ye\nXLPdmJkNKlcT9dHDD8NWWzkRmFnzcTIo4ioiM2tWTgZFnAzMrFm5zSDz8stpCIrnnkujlZqZDRVV\nazOQNErSG6sTVn26/XbYbz8nAjNrTr0mA0kzgLnAH7PpfSTdUOvABpuriMysmVVyZdAKTAWWAUTE\nXGCnGsaUCycDM2tmlSSDdRGxvOS1jloEk5dnnoFFi2DfffOOxMwsHyMqWOYRSScCIyS9ATgd+HNt\nwxpcs2fD4Yd7CAoza16VXBl8FtgD+CdwFbACOLOWQQ02VxGZWbNr+q6lHR2pS+kDD8COO1Z102Zm\ndaGSrqWVVBOVbvR84CVgZkQs7W9w9WLuXNhmGycCM2tu/bkD+T7gVeDCKseSC1cRmZn148ogIn5d\ni0DyMmsWnH123lGYmeUrlzYDSVsCM0kN0wF8FPg7cA0wCWgHjivt0lrtNoNVq9KQ1YsWwZgxVdus\nmVldqechrL8L/D4idgP2BB4DzgFmR8QuwC3ZdE3ddhvsv78TgZlZj8lA0jBJx1Vzh5JeA0yLiJ8A\nRMT6iHgJmAFcni12OXBsNffbHbcXmJklPSaDiOgAvlTlfb4eeF7SpZIelPRjSaOBcRGxOFtmMTCu\nyvvdiJOBmVlSSTXRbElnS9pB0taFxwD2OQLYF/h+ROwLvExJlVDWMFDTxowFC+CFF2CffWq5FzOz\nxlBJb6IPkgrm00pef30/9/kM8ExE3JdNXwecCyyStF1ELJI0HljS3cqtra0bnre0tNDS0tKvIApD\nUAzzz/uY2RDT1tZGW1tbn9bJqzfR7cAnIuJvklqBUdmspRFxgaRzgC0j4pyS9arWm+j442H6dPjo\nR6uyOTOzulVJb6Jek0FWn/95YMeIODUbrO6NEXHjAALbi9S1dFPgCVLX0uHAtcCO1Lhr6auvwrbb\nwsMPw8SJA96cmVldq9ZwFJcCDwAHZdPPkqp2+p0MIuJhYP9uZh3e3232xYMPpvsLnAjMzJJKasyn\nRMQFwFqAiHi5tiHVnnsRmZl1VUky+KekzQsTkqaQhrNuWE4GZmZdVdJmcCTwZWB3YDZwMHBKRNxa\n+/A2imXAbQYrV8L48bB4MYweXaXAzMzqWFXaDCJilqQHgQOzl06PiBeqEWAe2tpg6lQnAjOzYpWO\nWjoSWJYtv3uWZW6vXVi14yoiM7ON9ZoMJF0AHA/MJ/2OQUHDJoOrr847CjOz+lLJlcF7SfcVNHSj\nMUB7OyxbBnvtlXckZmb1pZLeRE+Qbg5reHffDdOmeQgKM7NSlVwZrAEeknQLnV1KIyJOr11YtdHe\nDlOm5B2FmVn9qSQZ3JA9ig3+gEZV0N4Oe+6ZdxRmZvWnkq6llw1CHIOivR1mzMg7CjOz+lM2GUj6\nRUR8QNK8bmZHRDTcOXZ7O0yenHcUZmb1p+wdyJK2j4hnJU0CNrpzLSLaaxxbdzH1+w7kCBg1Kv2g\njW84M7NmMtA7kG8k/SLZ/42ID1c1shwsXgxbbOFEYGbWnZ6SwUhJJwIHS/pfdL06iIj4VW1Dqy5X\nEZmZlddTMvg0cCLwGuDd3cx3MjAzGyLKJoOImAPMkXR/RMwcxJhqwsnAzKy8Xu/FHQqJAJwMzMx6\n0jQDMzgZmJmV52RgZma9J4NsTKJeX6tnEfDUUzBpUt6RmJnVp57uQN4cGAW8TtLWRbPGAhNqHVg1\n+R4DM7Oe9dS19FPAGcD2wANFr68ELq5lUNXmKiIzs5711LX0QuBCSadHxPcGMaaqczIwM+tZJaOW\nfk/SQcDk4uUj4ooaxlVVTgZmZj2r5DeQfwbsBDxE199Abqhk4N8xMDMrr5Ift9kP2L3fw4XWAf+O\ngZlZzyq5z+CvwPhaB1JLriYyM+tZJVcGrwPmS7qXrr+B3BDn2r7HwMysd5Ukg9bsb9A5jHXDVBkt\nXgxjx/oeAzOznlTSm6hN0mRg54i4WdKoStarF64iMjPrXSXDUXwS+AXwo+ylicCvaxlUNTkZmJn1\nrpIG5NOAQ4AVABHxN2DbWgZVTU4GZma9qyQZ/DMiCg3HSBpBA7UZOBmYmfWukmRwm6QvA6MkHUGq\nMvptbcOqHicDM7PeVZIMzgGeB+aRBq/7PfCVWgZVTU4GZma9U283FksaDbwSEa9m08OBkRGxekA7\nTtu5H3gmIt6dDZN9DTAJaAeOi4jlJev06UboCBg1CpYuTX/NzJqRJCJCPS1TyZXBn4DNi6ZHATcP\nJLDMGcB8OtsfzgFmR8QuwC3Z9IAU7jFwIjAz61klyWBkRKwqTETESlJC6DdJE4GjgZl03sg2A7g8\ne345cOxA9gGuIjIzq1QlyWC1pP0KE5LeAqwZ4H6/A3wB6Ch6bVxELM6eLwbGDXAfTgZmZhWq5E7i\nM4BrJT2XTY8Hju/vDiW9C1gSEXMltXS3TESEpAF3X3UyMDOrTI/JIGvkPQTYDXhj9vLjEbF2APs8\nCJgh6WhgM2CspJ8CiyVtFxGLJI0HlnS3cmtr64bnLS0ttLS0lN1RezvstdcAIjUza0BtbW20tbX1\naZ1KehPdFxH7DyCunrb9duDsrDfRvwNLI+ICSecAW0bEOSXL96k30fTpcMYZcNRR1Y3bzKyRVNKb\nqJJqojskXUzq9vkyqcE3IuLBKsQInb2JvkWqjvo4WdfSgW7Y1URmZpWp5MqgjW6Gn4iId9Qopp5i\nqfjKoHCPwQsvePhqM2tulVwZ9JoM6klfksHatTBmTPprZtbMqnLTmaTtJF0i6aZsevesKqeuvfIK\nbLZZ3lGYmTWGSu4zuAyYBWyfTf8d+FytAqoWJwMzs8pVkgy2iYhrgFcBImIdsL6mUVWBk4GZWeUq\nSQarJL22MCHpQOCl2oVUHU4GZmaVq6Rr6Vmk3y/YSdKfgdcB769pVFXgZGBmVrlek0FEPCDpbaQ7\nkEW6A3ldzSMbICcDM7PK9ZoMJG0OfIY0LEUAcyT9ICJeqXVwA+FkYGZWuUqqia4AVgDfI10ZfAj4\nKfCBGsY1YE4GZmaVqyQZ7BERuxdN/0nS/FoFVC1OBmZmlaukN9GDkt5amMh6Ez1Qu5Cqw8nAzKxy\nlVwZvAW4U9LTpDaDHYHHJc0jDVi3Zy0D7C8nAzOzylWSDKbXPIoacDIwM6tcJV1L2wchjqpzMjAz\nq1wlbQYNycnAzKxyTgZmZuZkYGZmTgZmZoaTgZmZ4WRgZmY4GZiZGU4GZmaGk4GZmeFkYGZmOBmY\nmRlOBmZmhpOBmZnhZGBmZjgZmJkZTgZmZoaTgZmZMUSTQURKBiNH5h2JmVljGJLJYN06GDEChg/P\nOxIzs8YwJJOBq4jMzPrGycDMzJwMzMwsh2QgaQdJt0p6RNJfJZ2evb61pNmS/iZplqQt+7sPJwMz\ns77J48pgHfC5iNgDOBA4TdJuwDnA7IjYBbglm+4XJwMzs74Z9GQQEYsi4qHs+SrgUWACMAO4PFvs\ncuDY/u7DycDMrG9ybTOQNBnYB7gHGBcRi7NZi4Fx/d2uk4GZWd+MyGvHksYAvwTOiIiVkjbMi4iQ\nFN2t19rauuF5S0sLLS0tGy3jZGBmzaytrY22trY+raOIbsvcmpK0CXAj8IeIuDB77TGgJSIWSRoP\n3BoRu5asF5XEe8MNMHNm+mtm1uwkERHqaZk8ehMJuASYX0gEmRuAk7PnJwPX93cfvjIwM+ubPKqJ\nDgZOAv4iaW722rnAt4BrJX0caAeO6+8OnAzMzPpm0JNBRNxB+SuSw6uxDycDM7O+8R3IZmbmZGBm\nZk4GZmaGk4GZmeFkYGZmOBmYmRlOBmZmhpOBmZnhZGBmZjgZmJkZTgZmZoaTgZmZ4WRgZmY4GZiZ\nGU4GZmaGk4GZmeFkYGZmOBmYmRlDMBlEpGQwcmTekZiZNY4hlwwefRR22AGGD887EjOzxjHkksGN\nN8K73pV3FGZmjcXJwMzMUETkHUPFJEVP8b74IkyeDEuWuAHZzKxAEhGhnpYZUlcGN90ELS1OBGZm\nfTWkksHvfucqIjOz/hgy1UTr18O4cfCXv8CECYMcmJlZHWuqaqK77oJJk5wIzMz6Y8gkgxtvhGOO\nyTsKM7PGNGSSgdsLzMz6b0gkgyefhOefh/33zzsSM7PGNCSSwe9+B0cfDcOGxLsxMxt8Q6L4dHuB\nmdnANHzX0lWrYPx4WLgQxo7NKTAzszrWFF1Lb7kFpk51IjAzG4iGTwYemM7MbODqKhlImi7pMUl/\nl/Sl3pZftcrtBWZm1VA3yUDScOBiYDqwO3CCpN3KLT9vHrzlLfCe98Ab3jBYUdaPtra2vEOoGz4W\nnXwsOvlY9E3dJAPgAOAfEdEeEeuAq4H3dLfgpZfCoYfCeefBD384qDHWDX/RO/lYdPKx6ORj0Tcj\n8g6gyATg6aLpZ4CppQudcgrcey/cdhvsvvtghWZmNrTVUzKoqI9rRwfcdx+MHl3rcMzMmkfd3Gcg\n6UCgNSKmZ9PnAh0RcUHRMvURrJlZg+ntPoN6SgYjgMeBw4BngXuBEyLi0VwDMzNrAnVTTRQR6yX9\nH+CPwHDgEicCM7PBUTdXBmZmlp966lrao77ekDZUSfqJpMWS5uUdS94k7SDpVkmPSPqrpNPzjikv\nkjaTdI+khyTNl/TNvGPKm6ThkuZK+m3eseRJUrukv2TH4t6yyzXClUF2Q9rjwOHAQuA+mrQ9QdI0\nYBVwRUS8Oe948iRpO2C7iHhI0hjgAeDYZvxeAEgaFRGrs/a3O4CzI+KOvOPKi6TPA/sBW0TEjLzj\nyYukJ4H9IuLFnpZrlCuDim9IG+oiYg6wLO846kFELIqIh7Lnq4BHge3zjSo/EbE6e7opqd2tx3/+\noUzSROBoYCbQYy+aJtHrMWiUZNDdDWkTcorF6pCkycA+wD35RpIfScMkPQQsBm6NiPl5x5Sj7wBf\nADryDqQOBHCzpPslnVpuoUZJBvVfl2W5yaqIrgPOyK4QmlJEdETE3sBE4G2SWnIOKReS3gUsiYi5\n+KoA4OCI2Ac4Cjgtq2reSKMkg4XADkXTO5CuDqzJSdoE+CXws4i4Pu946kFEvAT8DnhL3rHk5CBg\nRlZXfhVwqKQrco4pNxHxXPb3eeDXpGr3jTRKMrgfeIOkyZI2BY4Hbsg5JsuZJAGXAPMj4sK848mT\npG0kbZk93xw4Apibb1T5iIjzImKHiHg98EHgTxHxkbzjyoOkUZK2yJ6PBo4Euu2J2BDJICLWA4Ub\n0uYD1zQTqinCAAADIklEQVRxj5GrgD8Du0h6WtJH844pRwcDJwHvyLrNzZU0Pe+gcjIe+FPWZnAP\n8NuIuCXnmOpFM1czjwPmFH0vboyIWd0t2BBdS83MrLYa4srAzMxqy8nAzMycDMzMzMnAzMxwMjAz\nM5wMzMwMJwMboiS9mt13ME/StdmNWJWuu5eko4qm393bsOmSBjwMhqR/lXTYQLdj1h++z8CGJEkr\nI6Jw5+XPgAci4jsVrDeCdCPbfhHx2f7sz6wR1c3PXprV0Bxgz2wAs6+QhnheCpwYEUsktQJTgNcD\nC0h3Nm8u6RDgm8AosuQgaRzww2xZgE9HxN3FO5P0BeADwEjg1xHRWjJ/OGkYjf1Id8deEhHflXQZ\n8FugnTT0MqT/0T0iYpikKcDFwOuA1cCpEfH4wA+PmZOBDXHZmf7RwO+BOyLiwOz1TwBfBM7OFt0V\nOCQi/inpZFLhf3q27MlFm/weaXjo90oaBowp2d+RwM4RcUA2/zeSpmW/Q1GwN7B94ceJJI3NXg8g\nIuIB0nDcSPr3LHaA/wY+FRH/kDQV+D7gaiWrCicDG6o2l1QYqO120pn4bpKuBbYjXR38TzY/gBsi\n4p/ZtCg/9PE7SNVIREQHsKJk/pHAkUX7Hg3sTLo6KXgC2EnS90ijixaPFbNhv5KOB/YFjsiG6X4r\n8Is0Ph9k78GsKpwMbKhak43hvoGki4D/iIgbJb0daC2avbroeW8Nab2Nkf/NiPjvcjMjYrmkPYHp\nwKeB44CPl8T6JuBrwLSIiOwqY3npezKrFvcmsmYyFng2e35K0eulhftKYIsy828B/jds+MH1sXT1\nR+Bj2XDBSJog6XXFC0h6LTAiIn4F/AtZlVAmsqGorwI+HBFLASJiBfCkpPdn21CWUMyqwsnAhqru\nzu5bSdUs9wPPFy0TJcvfCuyedU09rmT+GaQhs/9C+p2N3Yr3FxGzgSuBu7JlrqWkXYH0k623ZlVJ\nPwXOLZk/A9gRmJnF8GD2+onAx7PhiP+aLWdWFe5aamZmvjIwMzMnAzMzw8nAzMxwMjAzM5wMzMwM\nJwMzM8PJwMzMcDIwMzPg/wPeMGYYyyrVSwAAAABJRU5ErkJggg==\n",
       "text": [
        "<matplotlib.figure.Figure at 0x5464ab0>"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "look at the axis reverse in text book\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex2-pg45"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#calculate uniformity coefficient and coefficient of gradation\n",
      "##initialisation of variables\n",
      "##from graph\n",
      "d= 0.15 ##mm\n",
      "w= 0.17 ##mm\n",
      "a= 0.27 ##mm\n",
      "##calculations\n",
      "C= a/d\n",
      "c= w**2/(a*d)\n",
      "##results\n",
      "print'%s %.1f %s'%('uniformity coefficient = ',C,\"\")\n",
      "print'%s %.2f %s'% ('coefficient of gradation = ',c,' ')\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "uniformity coefficient =  1.8 \n",
        "coefficient of gradation =  0.71  \n"
       ]
      }
     ],
     "prompt_number": 1
    }
   ],
   "metadata": {}
  }
 ]
}