diff options
Diffstat (limited to 'Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter7.ipynb')
-rwxr-xr-x | Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter7.ipynb | 503 |
1 files changed, 503 insertions, 0 deletions
diff --git a/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter7.ipynb b/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter7.ipynb new file mode 100755 index 00000000..2f2c2988 --- /dev/null +++ b/Principles_Of_Geotechnical_Engineering_by_B._M._Das/Chapter7.ipynb @@ -0,0 +1,503 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:386718b63e6b6f21bd32a3120a143f6e224e0278ef555853cf557429a2d7f4f2"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter7- Permeability"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg168"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Calculate the hydraulic conductivity in cm/sec.\n",
+ "import math\n",
+ "##initialisation of variables\n",
+ "L= 30. ##cm\n",
+ "A= 177. ##cm^2\n",
+ "h= 50. ##cm\n",
+ "Q= 350. ##cm^3\n",
+ "t= 300. ##sec\n",
+ "##claculations\n",
+ "k=Q*L/(A*h*t)\n",
+ "##results\n",
+ "print'%s %.4f %s'% ('hydraulic conductivity = ',k,' cm/sec ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "hydraulic conductivity = 0.0040 cm/sec \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg169\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Determine the hydraulic conductivity of the soil in in./sec.\n",
+ "import math\n",
+ "##initialisation of variables\n",
+ "L= 203. ##mm\n",
+ "A= 10.3 ##cm^2\n",
+ "a= 0.39 ##cm^2\n",
+ "h0= 508. ##mm\n",
+ "h180= 305. ##mm\n",
+ "t= 180. ##sec\n",
+ "##calculations\n",
+ "k= 2.303*a*L*math.log10(h0/h180)/(A*t)\n",
+ "##results\n",
+ "print'%s %.2f %s'% ('hydraulic conductivity of sand = ',k,' in/sec ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "hydraulic conductivity of sand = 0.02 in/sec \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg169"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#The hydraulic conductivity of a clayey soil is 3 107 cm/sec. The viscosity of water at 25\u00b0C is 0.0911 104 g # sec/cm2 \n",
+ "#Calculate the absolute permeability of the soil.\n",
+ "import math\n",
+ "##initialisation of varilables\n",
+ "k= 3e-7 ##cm/sec\n",
+ "n= 0.0911e-4 ##g*sec/cm^2\n",
+ "dw= 1. ##g/cc\n",
+ "##calculations\n",
+ "K= k*n/dw\n",
+ "##results\n",
+ "print'%s %.2e %s'% ('absolute premeability = ',K,' cm^2 ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "absolute premeability = 2.73e-12 cm^2 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg170"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#With k 5.3 105 m/sec for the permeable layer, calculate the rate of seepage through it in m3 /hr/m width if H 3 m and a 8\u00b0.\n",
+ "\n",
+ "import math\n",
+ "##initialisation of variables\n",
+ "k= 5.3e-5 ##m/sec\n",
+ "H= 3 ##m\n",
+ "a= 0.139 ##radians\n",
+ "##calculations\n",
+ "A= H*math.cos(a)\n",
+ "i= math.sin(a)\n",
+ "q= k*i*A*3600\n",
+ "##results\n",
+ "print'%s %.4f %s'% ('rate of seepage = ',q,' m^3/hr/m ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "rate of seepage = 0.0785 m^3/hr/m \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg171"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate flow rate\n",
+ "##initialisation of variables\n",
+ "L= 50. ##m\n",
+ "k= 0.08e-2##m/sec\n",
+ "h= 4. ##m\n",
+ "H1= 3. ##m\n",
+ "H= 8. ##m\n",
+ "a= 0.139 ##radians\n",
+ "##calculations\n",
+ "i= h*math.cos(a)/L\n",
+ "A= H1*math.cos(a)\n",
+ "q= k*i*A\n",
+ "##results\n",
+ "print'%s %.5f %s'% ('flow rate = ',q,' m^3/sec/m ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "flow rate = 0.00019 m^3/sec/m \n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg174"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate hydraulic conductivity at void ratio of 0.65\n",
+ "##initialisation of variables\n",
+ "k1= 0.02 ##cm/sec\n",
+ "e1= 0.5 \n",
+ "e2= 0.65\n",
+ "##calculations\n",
+ "k2= k1*(e2**3/(1.+e2))/(e1**3/(1.+e1))\n",
+ "##results\n",
+ "print'%s %.2f %s'% ('hydraulic conductivity at void ratio of 0.65 =',k2,'cm/sec ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "hydraulic conductivity at void ratio of 0.65 = 0.04 cm/sec \n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg176"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the value of grain size and plot the graph\n",
+ "import math\n",
+ "%matplotlib inline\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
+ "from math import log\n",
+ "import numpy\n",
+ "from math import tan\n",
+ "import matplotlib\n",
+ "from matplotlib import pyplot\n",
+ "#given\n",
+ "e=numpy.array([100,96,84,50,0])\n",
+ "p=numpy.array([0.06,0.0425,0.02,0.015,0.0075])\n",
+ "\n",
+ "#calculations\n",
+ "\n",
+ "\n",
+ "#results\n",
+ "\n",
+ "pyplot.plot(p,e)\n",
+ "pyplot.xlabel('Percent passing')\n",
+ "pyplot.ylabel('grain size,mm')\n",
+ "pyplot.title('Graph of percent passinge vs grain size')\n",
+ "pyplot.show()\n",
+ "print('look at the axis reverse in text book')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEZCAYAAACEkhK6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcXFWd9/HPl52wBQgkhLCJsgQCBDRhWFtABgRBGWUR\nFFwYHfVhRETgGZcecUZRRx11dBQVCLLIJrI6BB4aGISwhS3shC2BJJAQIEa25Pf8cU6T6kov1V3L\nrar+vl+venXVXX+nqvr+6pxzz72KCMzMzAayQtEBmJlZa3DCMDOzijhhmJlZRZwwzMysIk4YZmZW\nEScMMzOriBPGMCCpU9K5NdrWaEk3S3pV0g9qsU0DSQ9K2qvoOJqBpNMknVnjbe4p6ZFabnM4Wqno\nAIYjSUcCJwLbAX8FngLOiYhf1mmXtRxs84/AvIhYu4bbbChJxwGfiYg9i46lW0RsX3QMzSIivluH\nbd4CbFPr7Q43rmE0mKSTgJ8AZwCjI2I08Hlgd0mr9LFOtZ+Tqly/1GbAwzXcXp9qUG5rMpL8I7WV\nRYQfDXoA6wCLgI8MsNzZwC+Ba/Ly+wAHAdOBV4BngW+VLL85sBQ4HpgNPA+cVDL/W8AfgHOAV4EH\ngV362f9uwJ3AQuAO4O9K4noTeAN4Ddinj9j/G7gu76sL2LRk/jbAVGA+8AjwsQHKvQlwGTAPeAn4\nWcnynwYeAhYAfy7bz1Lgc8BjwMvAz/P0bYG/AW/nMizo4z3oAr4LTMvv+eXAuiXzLwZeyO/RTcD4\nknkfBGbk8s/q/iyAUcBVOZ75wM0l6zzd/X4CncBFfX1ewM75u/BqXu4PwOkl8w8G7s37uRWY0EcZ\nfwn8oGzan4Av5+en5PhfzZ/Vcp93Xm594Mr8Pt0BfAe4peyz+ALwOPBknvafpO/xK8BdwB4ly3cC\n55Z9tz8JPAO8CPzffr67fb33HcBz+fkR+bPvfrwB3JjnrQr8MO9rTn6PViv62NEsj8IDGE4P4ADg\nLWCFAZY7Ox+Iug/UqwJ7A9vl1xPyl/nQ/Lr7n+o8YHVge9IBdt88v5N0kDyAVNv4d+C2Pva9Xj7Q\nHE2qgR5JOiCvm+efBXx7gNhfBfYAViHVpm7J89YAngOOzdveKR8Atu2j3COA+4D/yOVaFdg9zzs0\nH4C2ztv6F+DWkjiWAlcAa5OSzjzg7/O8Yyk5oPVRjq58wBmf47iEfBDL84/L5VkZ+DEwvWTeCyVx\nrgNMzM+/mw9AK+bH7iXrPEXPhNHr55Xf02eA/5O38RHSAe/bef5EYC7wvrzuJ/O2V+mljHsCz5a8\nXhdYDIzJ7+uzwJg8b1PgXX28VxcC5wOrkRLys/RMhkuB/wFGAqvmaUfn/a0AfCW/Z6vked9i+YTx\nq/z57wC8DmzTRyx9vfcd5IRRtvxapB8dx+fXPyb9OBgJrJm/Q/9e9LGjWR6FBzCcHsAxwAtl0/5C\nOkAvJv/KIh04zx5gWz8BfpSfd/9TbVUy/wzgN/l5J3BdybzxwOI+tvsJ4PZeYjw2Pz+Lkl+zvax/\nNnB+yes1SL/mx5F+2d1ctvyvgG/2Vm7g70gH+uUSLHAt8OmS1yuQ+oM2ya+XAruVzP8DcEp+fhwD\nJ4wbSw8UpAPhG4B6WXZk3t9a+fUzpL6etcuW+9d8MNqyl22UJ4xePy9gL2BW2bq3sCxh/JKyhE6q\nHezVyz6VY90zvz4euD4/fzcp8ewLrNzP+7Qiqdb5npJpp7N8DaNjgPd7AbkmRO81jLEly04Djuhj\nO3299x2UJYz8nbkK+K+S92MRJYkxfwdn9hf7cHq4jbix5gOjStvmI2K3iFg3z+ueHqRf4u+QNFnS\njZLmSVpIam5Zv2z7pes8C4wteT235PliYLU++gjG5nVLPVO2rf4E6Zd5ehHxV9LBYCyp/2OypJe7\nH8DHgdG9rUuqGTwTEUt72c9mwH+WbGd+nr5xyTJzSp4vJiWvwSh/P1cmfX4rSvqepCckvUI62Aep\nyQngH0hNI09L6pK0a57+A+AJ4DpJT0o6pZ999/V5jSU1O/YV52bASWXv8Thgo/IdRDoiXggclSd9\nnFRLJSKeAL5MOnjPlXSBpOW2AWxAOnmmNIZZvSxX/n3+qqSHJC3MMa7DsvevN5V+ln299735t7yd\nE/LrDUi1ybtL3rtrB4hrWHHCaKzbSL9SPzyEdc8n/TodFxEjSf0E5Z/fpmXPyw8slZhNOuiU2mwQ\n2xLpQJ9eSGuSmrlmkw66N0XEuiWPtSLiiyXrR8nz54BNJa3Yy36eBf6xbFtrRMTtFcQYAy8CLP9+\nvkXqR/k4cAipyW8dYAtSuQUQEXdFxIdJB6DLSf0MRMSiiPhqRGyZ1/+KpPdXGEu3F+iZFMvjfBb4\nt7L3Zc2I+EMf27sA+KikzYBJwKXdMyLigkhnkm1Ges/O6GX9F0k1yE1Kpm3Sy3LvvOeS9gROJvVf\njcw/mF6hBidn9PXel8tnKh4BfDQiluTJL5GaAseXvHcjo4XPCKw1J4wGioiFpGaJX0j6B0lrSVpB\n0k70/MXU2z/OmsDLEfGmpEmkg1b5ge/rklaXtB2p2aWvg0R/rgG2knSUpJUkHUHqqL6qn9jKfVBS\n91lfp5Pa32cDV+dtHyNp5fx4n6Tu0x3Ltz2NdID8nqQRklaTtFue99/A/5U0HkDSOpI+1k9M7xzQ\nSb/ex0laeYDlj5G0raQRwLeBi/Ov8jVJiX+BpDVIfQzkOFaWdLSkdfKB6DVgSZ53sKR3SxKpn2cJ\nqbllMG4Dlkj6Uv58DiX1V3Q7E/i8pElK1pB0UE7cy4mIe0kHyt8Af46IV3OsW0naR9Kquayvd5ej\nbP0lpJMSOvN3bxtSs2Z/SXktUpJ5SdIqkr5J6msajOW+h/2992XLTQR+Rjr5pLtmSq7Jngn8RNIG\nedmNJe0/yNjalhNGg0XED0idfF8jVbPnkA5+XyMdDCD9s5X/w30B+LakV4Fv0HsyuInU5HE96eyX\n6/vZXq//0BGxgHSWzUmkA8lXgYPz9L62Vb7d80kdl/NJnbDH5G2/BuxP6kifTUoG3yV15C637fwP\n/CFSe/qzpBrH4Xne5aRfvBfmZqEHgL/vp3yl276BdCbNHEnz+inHuaR+lRdyjN1NF1NIzXSzSWcw\n3Va2v2OAp3Jc/0jq4CWXYyrpQPYXUtv5TX3su9fPKyLeBA4DPsOykxOuIvUjEBF3k/oifk5qCnyc\n1PHdn/NJZ6SdXzJtVdJn82Iu/yjgtD7W/xKpSWkO6cyuC7rjKY29xJ/z4zHS2WF/o2czaHn5e/u+\n9fUd7Ou9L13nUFK/0/9Kei0/rs7zTiH9D92etzEV2KqPfQ07Sj+Y6rBh6XekU0HnRcSEPG090oFu\nM9IX5fD8qxtJp5FOk1wCnBAR19UlsDYkaXNgJrBSH+39jYzlLFKn7DeKjKNakm4kdbz+ruhYBiJp\nGvCLiDin6FgAJJ0BbBgRnyo6FqutetYwziKdFljqVGBqRGxF+pV3KkBuVjiCdDbIAaQmG9d+WlMt\nBwkWrSnLImkvSWNyk9SxpNOo/1xgPFtL2iE3gU0i/fD7Y1HxWP3U7aAcaSj+y2WTDyFVWcl/uzt/\nDwUuiIi3IuJpUpVwUr1ia1P1qSoO3kBNVq2kWcuxNcsG5p1I6rid2/8qdbUWqbN8Eemsqx9GxBUF\nxmN10uhh+qNLvthzWXY65Vig9OyWWSx/Joj1ISfZ3s4karh2aYaIiMGevdQwEXEmqXO2KUTEXcB7\nio7D6q+wZp98tslAnadmZtYkGl3DmCtpTETMyYOAus9QmU3Pc7fH0ct5/5KcRMzMhiAiqu6Ta3TC\nuIJ0HZ8z8t/LS6afL+lHpKao95AuYracep3V1Qw6Ozvp7OwsOoy6cflaWzuXr95lW7IEXnwR5s6F\nOXN6/i2ftnAhrL8+jB4NY8akv6XPS6etvz6sWEFjdBr6U726JQxJF5AumDdK0nPAN4HvARdJ+gz5\ntFqAiHhI0kWki4C9DXwh2jkzmFnLW7IE5s9fPgH0lggWLIB1113+oD9mDOy0U89po0ZVlgSKULeE\nERFH9TFrvz6W/3dKRsyamTXa0qUpCVRSE5g/H0aO7L0mMGFCz6QwahSs1AZ3AmmDIrSPjo6OokOo\nK5evtbVq+ZYuhZdf7r8m8PjjHfz616nZaO21e2/+GT++57QNNoCV+7u4TBuq20jvepDkliozIyIl\ngUpqAi++CGuu2Xc/QOm0DTaAVXq972Vrk1STTm8nDDNrChHwyiuV9QnMnQsjRvTeJ1CeCDbcEFZd\ntejSFcsJw8yaXgS8+mplNYF589KBvZKawIYbwmqrFV261uGEYWZNJQJmzYI77oBp09Lfu+8Gqf9T\nQ0ufr7560aVoT04YZlaoV1+Fu+5KyaE7Qbz9NkyeDJMmpb/ve186ndSK5YRhZg3z1lvw4IPLEsO0\nafDMM2kMQXdymDwZNtss1SisuThhmFldRKRkUJoc7r03JYPS5LD99sPvtNJW5YRhZjWxcCHceWfP\npqUVVliWGCZPhl12gXXWKTpSGyonDDMbtDffhPvv75kcZs+GnXdelhwmTYJx49y01E6cMMysXxEw\nc2bP5HD//bDllj07psePb4/LVljfnDDMrIf583ue0nrHHek01dLksMsuadSzDS9OGGbD2Ouvp47o\n7gQxbVq6BMZ737ssOUyaBGPHFh2pNQMnDLNhYulSePzxnsnhoYdg6617nrW09dbNe1lsK5YThlmb\nmjevZ3K48850Ge3SmsPOO6drKZlVwgnDrA0sXgzTp/cc87BwYRoh3Z0cJk1Kl80wGyonDLMWs3Qp\nPPJIz+Tw6KPpLKXSjun3vCeNgzCrFScMsyb3wgs9k8Ndd6X7LZQmh5128lVXrf6cMMyayKJF6cqs\npX0PixcvfyG+UaOKjtSGIycMs4IsWQIzZvQc8/DEE7DDDj07prfc0qOlrTk4YZg1QF/3eBg7tuel\nNHbcsT1v7WntwQnDrA5K7/HQnSS67/HQnRx8jwdrNU4YZlXq7x4PpX0PvseDtTonDLNB8D0ebDhz\nwjDrh+/xYLaME4ZZ1tc9HnbZpedZS77Hgw1XThg2LA10j4fu5OB7PJgt44Rhw0J/93joTg6+x4NZ\n/5wwrO30d4+H0gvx+R4PZoPjhGEtrb97PJSe0up7PJhVzwnDWsrrr8P11y9rWrrzznSGUukprRMn\n+h4PZvXghGEt5eST4YYb4KCDll2Iz/d4MGsMJwxrGW+/nU5pvflm2GqroqMxG35qlTB8mxaru+uu\ngy22cLIwa3VOGFZ3U6bAJz9ZdBRmVi03SVldLVyYrtf01FOw3npFR2M2PLV0k5Sk0yTNkPSApPMl\nrSppPUlTJT0m6TpJI4uIzWrrkktgv/2cLMzaQcMThqTNgeOBnSNiArAicCRwKjA1IrYCbsivrcW5\nOcqsfRRRw3gVeAsYIWklYATwPHAIcE5e5hzgwwXEZjU0cyY88ggceGDRkZhZLTQ8YUTEAuA/gGdJ\niWJhREwFRkfE3LzYXMBn6be43/8ejjzSty41axcNv56npC2BLwObA68AF0s6pnSZiAhJvfZud3Z2\nvvO8o6ODjo6OeoVqVYhIzVEXXlh0JGbDT1dXF11dXTXfbsPPkpJ0BPCBiPhsfv0JYFdgH+D9ETFH\n0kbAjRGxTdm6PkuqRdx6Kxx/PMyY4XtQmBWtlc+SegTYVdLqkgTsBzwEXAkcm5c5Fri8gNisRro7\nu50szNpHIeMwJH2NlBSWAvcAnwXWAi4CNgWeBg6PiIVl67mG0QJefx023jhdqnyTTYqOxsx8LSlr\nWhdfDL/6Vbo6rZkVr5WbpKzNeeyFWXtyDcNqat68dNOj557zbVPNmoVrGNaULrgADjnEycKsHTlh\nWE2dc46bo8zalROG1cwDD8CLL4LHUpq1JycMq5lzz4VjjoEVVyw6EjOrB3d6W00sWZLGXFx/PYwf\nX3Q0ZlbKnd7WVG64IQ3Wc7Iwa19OGFYTHnth1v7cJGVVe+211Bz1xBMwalTR0ZhZOTdJWdO49NJ0\nZpSThVl7c8Kwqnnshdnw4CYpq8ozz8Auu8Ds2bDqqkVHY2a9cZOUNYXf/x4OP9zJwmw4cMKwIeu+\nDaubo8yGBycMG7I77khJY/LkoiMxs0ZwwrAh821YzYYXd3rbkLzxRhrZfffdsNlmRUdjZv1xp7cV\n6pprYMIEJwuz4cQJw4bEYy/Mhh83SdmgvfQSvPvd8OyzsPbaRUdjZgNxk5QV5sIL4aCDnCzMhhsn\nDBs0j70wG56cMGxQHn4YZs2CffctOhIzazQnDBuUc8+Fo4+GlVYqOhIzazR3elvFli5Np9Feey1s\nv33R0ZhZpdzpbQ3X1QUbbOBkYTZcOWFYxTz2wmx4c5OUVWTRIhg3Dh59FEaPLjoaMxuMhjVJSfqQ\npOmSXpb0Wn68Wu2OrbX88Y+wxx5OFmbDWSXnuvwE+AjwYEQsrXM81qSmTIHjjy86CjMr0oBNUpJu\nAvaJiCWNCanfWNwkVYBZs2CHHdJtWFdfvehozGywatUkVUkN4xTgWkk3Am/maRERP6p259YazjsP\nPvpRJwuz4a6ShHE68BqwGrBKfcOxZtN9G9Zf/7roSMysaJUkjI0i4gN1j8Sa0j33wOuvw267FR2J\nmRWtknEY10j6+1ruVNJISZdIeljSQ5ImS1pP0lRJj0m6TtLIWu7ThqZ77IVvw2pmlXR6LwJGkPov\n3sqTIyKGfHFrSecAN0XE7yStBKwB/AvwUkR8X9IpwLoRcWrZeu70bqA330xjL26/Hd71rqKjMbOh\nqlWnd8MH7klaB5geEe8qm/4IsHdEzJU0BuiKiG3KlnHCaKArroAf/ABuuaXoSMysGo08SwpJOwCb\nly4fEZcNcZ9bAC9KOgvYEbgb+DIwOiLm5mXmAh4iVjDf98LMSlXSJHUWMAGYAbwzcC8iPjWkHUrv\nBW4DdouIOyX9hHQW1pciYt2S5RZExHpl67qG0SALFsAWW8Azz8BI9yaZtbRG1jAmA9vV8Eg9C5gV\nEXfm15cApwFzJI2JiDmSNgLm9bZyZ2fnO887Ojro6OioUVhW6qKL4IADnCzMWlFXVxddXV01324l\nNYxzgO9HxIya7VS6GfhsRDwmqZPUqQ4wPyLOkHQqMNKd3sXZbTf4+tfhgx8sOhIzq1bDOr0ldQBX\nAHOAN/LkiIgdhrxTaUfgN6SBgE8CnwJWBC4CNgWeBg6PiIVl6zlhNMBjj8Fee6VLgvjOematr5EJ\n40ngROBBevZhPF3tzgfLCaMxvvEN+Otf4Ue++ItZW2hkH8a8iLii2h1Za1i6NN23+/LLi47EzJpN\nJQljuqTzgSvpefHBoZ5Wa03slltg7bVhxx2LjsTMmk0lCWMEqe9i/7LpThhtqHvshS8FYmblfItW\ne8fixbDxxjBjBowdW3Q0ZlYrDbtFay87/qKkI/I1oKyN/OlPMHmyk4WZ9W7QCQMQsCfwxxrHYgWb\nMgWOPbboKMysWblJygB4/nnYbrt0G9YRIwZe3sxaR8OapCSNkfRbSX/Or8dL+ky1O7bmcv75cNhh\nThZm1rdKmqTOBq4Dulu2HycN5LM2EbHsRklmZn2pJGGMiog/AEsAIuIt4O26RmUNdd998NprsOee\nRUdiZs2skoSxSNL63S8k7Qq8Ur+QrNGmTIFPfAJWGMopEGY2bFRyLaldgJ8B25HuibEB8NGIuK/+\n4S0Xizu9a+ztt9NtWG++GbbaquhozKweGnYtqYi4W9JewDakU2ofjYg3B1jNWsR116UbJTlZmNlA\nKjlLaiZwfEQ8GBEPRMSbkq5qQGzWAB57YWaVqqRJ6lHgXmAx8PmIeEPS9IiY2IgAy2Jxk1QNLVwI\nm28OM2fCeusNuLiZtahGXhpkcUQcATwM3Cxps2p3as3h4othv/2cLMysMhVfDyoivi/pHtKYDB9i\n2sCUKXDyyUVHYWatopKE8c3uJxFxvaT9Abd6t7gnn4RHH4UDDig6EjNrFX0mDEnbRsTDwPOSdi6b\nfXV9w7J6O/dcOPJIWGWVoiMxs1bRZ6e3pDMj4nhJXcByC0XE++scW28xudO7BpYuhS23hEsvhZ3L\nfwqYWdup+ziMiDg+/+2odifWXG6+GdZaCyY2/Dw3M2tllYzD+JiktfPzb0i6rJcmKmshZ58Nxx3n\n27Ca2eBUMg7jgYiYIGkP4DvAD4FvRsSkRgRYFoubpKq0aFG6FMijj8Lo0UVHY2aN0MhxGEvy34OB\nMyPiKmDlandsxbjkEthrLycLMxu8ShLGbEm/Bo4Arpa0WoXrWRPqbo4yMxusSpqk1gAOAO6PiMcl\nbQRMiIjrGhFgWSxukqrCzJkweXK6DatPpzUbPhp5tdq/ApeWvH4BeKHaHVvjTZkCRx3lZGFmQzNg\nDaOZuIYxdB57YTZ8NbLT29qAx16YWbWcMIYJj70ws2pV0un9D8D3gNGkO+4BRESsXefYeovFTVJD\n4LEXZsNbwzq9ge8DB+cLEVoL8tgLM6uFSpqk5jhZtDaPvTCzWqikSeo/gTHA5cCbeXJExGV1jq23\nWNwkNUgee2FmjWySWgf4G7B/2fSGJwwbPI+9MLNa8TiMNuaxF2YGDahhSDolIs6Q9LNeZkdEnFDN\njiWtCNwFzIqID0laD/gDsBnwNHB4RCysZh/DncdemFkt9dfp/VD+ezfpwH532aNa/5z30V1lOBWY\nGhFbATfk11YFj70ws1oqpElK0jjgbODfgK/kGsYjwN4RMVfSGKArIrYpW89NUhXy2Asz69awTm9J\nGwJfA8YDq+fJERH7VLHfHwMnA6WD/0ZHxNz8fC5poKANkcdemFmtVTIO4zzgEeBdQCepf+Guoe5Q\n0sHAvIiYzrKR4z3kaoSrElXw2Aszq7VKTqtdPyJ+I+mEiLgJuEnSkBMGsBtwiKQPAqsBa0s6F5gr\naUxEzMn33JjX28qdnZ3vPO/o6KCjo6OKUNrTzJkwYwYcfHDRkZhZEbq6uujq6qr5disZuHd7ROwq\n6Trgp8DzwMURsWXVO5f2Br6a+zC+D8zPZ2adCoyMiFPLlncfRgU6O2HBAvjpT4uOxMyaQSMH7n1H\n0kjgJOBnpH6HE6vdcYnuDPA94CJJnyGfVlvDfQwbS5fCOeeksRdmZrXUb8LIYyW2ioirgIVARy13\n3t3ElZ8vAPar5faHI4+9MLN66bfTOyKWAEc1KBarAY+9MLN6qaQP48fAyqRR2H8lndkUEXFP/cNb\nLhb3YfTDYy/MrDeN7MOYSOpn+HbZ9PdXu3OrLY+9MLN6GjBhRERHA+KwGjj7bDihqit8mZn1rZIm\nqZNYfhDdK8DdEXFvvQLrIxY3SfXB970ws77UqkmqkpHeuwCfBzYGxgGfAw4EzpR0SrUBWG34vhdm\nVm+V1DBuAQ6MiEX59ZrANcABpFrGtnWPclksrmH0wve9MLP+NLKGsQHLbs0K8BbpQoGLgderDcCq\n57EXZtYIlZwldR4wTdLlpFNqPwScL2kNlt0zwwrksRdm1ggV3Q9D0vuA3Umd37dGRDUXHxwyN0kt\nz2MvzGwgjRyHQUTcCdxZ7c6s9jz2wswapZI+DGtivu+FmTVKIbdoHSo3SfXksRdmVolGniVlTcpj\nL8yskVzDaFEee2FmlXINY5jz2AszazQnjBblsRdm1mhukmpBHnthZoPhJqlhzGMvzKwIThgtyGMv\nzKwIbpJqMR57YWaD5SapYcpjL8ysKK5htBCPvTCzoXANYxjy2AszK5ITRgvx2AszK5KbpFqEx16Y\n2VC5SWqY8dgLMyuaE0aL8NgLMyuam6RagMdemFk13CQ1jHjshZk1A9cwmpzHXphZtVzDGCY89sLM\nmoUTRpPz2AszaxZukmpiHnthZrXgJqlhwGMvzKyZOGE0MY+9MLNm0vCEIWkTSTdKmiHpQUkn5Onr\nSZoq6TFJ10ka2ejYmsnMmTBjBhx8cNGRmJklRdQw3gJOjIjtgF2BL0raFjgVmBoRWwE35NfDlsde\nmFmzKbzTW9LlwM/zY++ImCtpDNAVEduULTssOr099sLMaqktOr0lbQ5MBKYBoyNibp41Fxi2Xb0e\ne2FmzWilonYsaU3gUuCfI+I1lQw0iIiQ1GtVorOz853nHR0ddHR01DfQAnjshZlVo6uri66urppv\nt5AmKUkrA1cB10bET/K0R4COiJgjaSPgxuHYJOWxF2ZWay3bJKVUlfgt8FB3ssiuAI7Nz48FLm90\nbM3AYy/MrFk1vIYhaQ/gZuB+oHvnpwF3ABcBmwJPA4dHxMKyddu+htHRASecAIcdVnQkZtYualXD\nKPwsqcFo94Th+16YWT20bJOU9c1jL8ysmbmG0SQ89sLM6sU1jDbjsRdm1uycMJqEx16YWbNzk1QT\n8NgLM6snN0m1EY+9MLNW4ITRBHzfCzNrBW6SKpjHXphZvblJqk147IWZtQrXMArksRdm1giuYbQB\nj70ws1bihFEgj70ws1biJqmCeOyFmTWKm6RanMdemFmrccIoiMdemFmrcZNUATz2wswayU1SLcxj\nL8ysFbmG0WAee2FmjeYaRovy2Asza1VOGA3msRdm1qrcJNVAHnthZkVwk1QL8tgLM2tlThgN5LEX\nZtbK3CTVIB57YWZFcZNUi/HYCzNrda5hNIDHXphZkVzDaCEee2Fm7cAJowE89sLM2oGbpOrMYy/M\nrGhukmoRHnthZu3CCaPOPPbCzNqFm6TqyGMvzKwZuEmqBXjshZm1E9cw6sRjL8ysWbiG0eQ89sLM\n2k1TJQxJB0h6RNLjkk4pOp5qeOyFmbWbpkkYklYEfg4cAIwHjpK0bbFRDc2iRXD55XD00YNbr6ur\nqy7xNAuXr7W1c/nauWy11DQJA5gEPBERT0fEW8CFwKEFxzQkQx170e5fWpevtbVz+dq5bLXUTAlj\nY+C5ktez8rSW47EXZtaOmilhtMbpTwN46imYMQMOPrjoSMzMaqtpTquVtCvQGREH5NenAUsj4oyS\nZZojWDOzFlOL02qbKWGsBDwK7As8D9wBHBURDxcamJmZAbBS0QF0i4i3JX0J+B9gReC3ThZmZs2j\naWoYZmZFPdGCAAAHC0lEQVTW3Jqm07uSQXuSfprn3ydp4mDWLVqV5fudpLmSHmhcxIMz1PJJ2kTS\njZJmSHpQ0gmNjXxgVZRtNUnTJN0r6SFJ321s5JWp5ruZ560oabqkKxsT8eBU+b/3tKT7c/nuaFzU\nlauyfCMlXSLp4fwd3bXfnUVE4Q9SE9QTwObAysC9wLZly3wQuCY/nwzcXum6RT+qKV9+vScwEXig\n6LLU4fMbA+yUn69J6sdqms+vBp/diPx3JeB2YI+iy1TL8uVpXwHOA64oujx1+PyeAtYruhx1LN85\nwKfz85WAdfrbX7PUMCoZtHcIqXBExDRgpKQxFa5btGrKR0TcArzcwHgHa6jlGx0RcyLi3jx9EfAw\nMLZxoQ9oyGXLrxfnZVYh/XMvaEjUlauqfJLGkQ5IvwGa8UI4VZUva8ZydRty+SStA+wZEb/L896O\niFf621mzJIxKBu31tczYCtYtWjXlawVDLd+40gUkbU6qSU2reYRDV1XZcnPNvcBc4MaIeKiOsQ5F\ntd/NHwMnA0vrFWCVqi1fANdLukvS8XWLcuiq+X5uAbwo6SxJ90g6U9KI/nbWLAmj0p73Zs70/Rlq\n+VrljISqyydpTeAS4J9zTaNZVFW2iFgSETuR/kH3ktRRw9hqYajlk6SDgXkRMb2X+c2i2mPLHhEx\nETgQ+KKkPWsTVs1U8/1cCdgZ+EVE7Az8FTi1v400S8KYDWxS8noTUhbsb5lxeZlK1i3aUMs3u85x\n1UpV5ZO0MnAp8PuIuLyOcQ5FTT67XNW/GnhvHWKsRjXl2w04RNJTwAXAPpKm1DHWoajq84uI5/Pf\nF4E/kpqAmkk15ZsFzIqIO/P0S0gJpG9Fd9qUdLY8Seq4WYWBO252ZVmn6YDrFv2opnwl8zeneTu9\nq/n8BEwBflx0OepQtlHAyPx8deBmYN+iy1Tr72aevjdwZdHlqfHnNwJYKz9fA7gV2L/oMtXy88vf\nya3y807gjH73V3SBSwI/kHSGzBPAaXna54DPlSzz8zz/PmDn/tZttkeV5buANPr9DVJb5KeKLk+t\nygfsQWr/vheYnh8HFF2eGpVtAnBPLtv9wMlFl6XW382S+XvThGdJVfn5vSt/dvcCD7bpsWVH4M48\n/TIGOEvKA/fMzKwizdKHYWZmTc4Jw8zMKuKEYWZmFXHCMDOzijhhmJlZRZwwzMysIk4Y1nIkLcmX\nm35A0kWSVi8ghr0l/V0B+/2cpE80er9m4IRhrWlxREyMiAnAm8DnK1kp3wa4Vt5PujRGQ0XEryLi\n3Ebv1wycMKz1/S/wbkkj8o2mpuUrbx4CIOk4SVdIugGYKmmNfHXO+/PNZA7Ly+0v6S+S7s61ljXy\n9Kcldebp90vaOl9V93PAibmms0dpQHn5c/P2HpP02Tx9TUnXl2yrO8Y1JF2db7T0gKSP5enfU7qx\n1H2Svl+y7ZPy8668zDRJj3bHkd+Li/K6l0m6XdIu9f4grP01zT29zQYr1xgOAK4Fvg7cEBGfljQS\nmCbp+rzoRGBCRCyUdAbwckTskLcxUtIo4F9I13n6W75r2VeA00lX9XwxInaR9E/AVyPieEn/DbwW\nET/qI7ztSdftWROYLulqYB7wkYh4Le/zNuCKXIbZEXFQjmltSesDH46Ibbqn5e0Gy65QGsCKETFZ\n0oHAt4APAF8A5kfEdpK2I13awpd0sKq5hmGtaHVJ00nXwHkG+B2wP3Bqnn4jsCqwKelAOTUiFuZ1\n9wX+q3tDefquwHjgL3n9T+Z1u12W/95Dushbt74uiR3AnyLijYiYn+OZlJf/rqT7gKnAWEkbkq4z\n9YFcW9gjIl4FXgFel/RbSR8B/tbHvnqLbXfSjXSIiBl5+2ZVcw3DWtHfIt2j4B2SAA6LiMfLpk8m\nXee/x+Retjk1Ij7ex/7eyH+XMPT/mQCOIV3BdueIWJIvC75aRDye77N8EPAdSTdExOmSJpES3EeB\nL+XnlcbWrPensBbmGoa1i/8BTuh+oWU3ui8/cE4Fvliy3EjSvbZ3l7RlnraGpPcMsL/XgLX6mCfg\nUEmr5qalDuAOYG3SDYeWSHo/sFne30bA6xFxHvBDYOfchzIyIq4lNY/tWLLtgZLBrcDhedvjSVfN\nNauaE4a1ot7a408HVs6dyQ8C/1qybOny3wHWzZ3L9wIdEfEScBxwQW4u+guwdR/77d7WlcBHcqf3\n7r0sdz+pKeo24NsRMQc4D3ivpPuBT5DuXw7pgD4tN4d9M5dlLeDKHM8twIl9lKe39+UXwAaSZuRt\nzSA1cZlVxZc3N6sxSd8CFkXEfxS0/xWAlSPijVxrmkq6Sc7bRcRj7cN9GGb1UeQvsTWA/5dvfSvg\nn5wsrBZcwzAzs4q4D8PMzCrihGFmZhVxwjAzs4o4YZiZWUWcMMzMrCJOGGZmVpH/DwmMbeQUgeRM\nAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x542d930>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "look at the axis reverse in text book\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8-pg177"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate hydraulic conductivity\n",
+ "##initialisation of variables\n",
+ "e= 0.6\n",
+ "D10= 0.09 ##mm\n",
+ "##calculations\n",
+ "k= 2.4622*(D10**2*(e**3/(1+e)))**0.7825\n",
+ "##results\n",
+ "print'%s %.4f %s'% ('hydraulic conductivity = ',k,' cm/sec ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "hydraulic conductivity = 0.0119 cm/sec \n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9-pg177"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate hydraulic conductivity\n",
+ "##initialisation of variables\n",
+ "e= 0.6\n",
+ "D10= 0.09 ##mm\n",
+ "D60= 0.16 ##mm\n",
+ "##calculations\n",
+ "Cu=D60/D10\n",
+ "k= 35*(e**3/(1+e))*(Cu**0.6)*(D10**2.32)\n",
+ "##results\n",
+ "print'%s %.3f %s'% ('hydraulic conductivity =',k,'cm/sec ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "hydraulic conductivity = 0.025 cm/sec \n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10-pg179"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate hydraulic conductivity\n",
+ "##initialisation of variables\n",
+ "k1= 0.302e-7 ##cm/sec\n",
+ "k2= 0.12e-7 ##cm/sec\n",
+ "e1= 1.1\n",
+ "e2= 0.9\n",
+ "e= 0.75\n",
+ "##calcualtions\n",
+ "n= (math.log10((k1/k2)*((1+e1)/(1+e2))))/math.log10(e1/e2)\n",
+ "C= k1/(e1**n/(1+e1))\n",
+ "k= C*(e**n/(1+e))\n",
+ "##results\n",
+ "print'%s %.e %s'% ('hydraulic conductivity =',k,'cm/sec')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "hydraulic conductivity = 5e-09 cm/sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11-pg185"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate ration of equivalent hydraulic conductivity\n",
+ "##initialisation of variables\n",
+ "H1= 2. ##m\n",
+ "H2= 3. ##m\n",
+ "H3= 4. ##m\n",
+ "k1= 1e-4 ##cm/sec\n",
+ "k2= 3.2e-2 ##cm/sec\n",
+ "k3= 4.1e-5 ##cm/sec\n",
+ "##calculations\n",
+ "H= H1+H2+H3\n",
+ "Kh= (1./H)*((k1*H1)+(k2*H2)+(k3*H3))\n",
+ "Kv= H/((H1/k1)+(H2/k2)+(H3/k3))\n",
+ "P= Kh/Kv\n",
+ "##results\n",
+ "print'%s %.2f %s'% ('ration of equivalent hydraulic conductivity =',P,' ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "ration of equivalent hydraulic conductivity = 139.97 \n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12-pg186"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate rate of water supply\n",
+ "##initialisation of variables\n",
+ "H= 450. ##mm\n",
+ "h= 150. ##mm\n",
+ "k1= 1e-2 ##cm/sec\n",
+ "k2= 3e-3 ##cm/sec\n",
+ "k3= 4.9e-4 ##cm/sec\n",
+ "h1= 300. ##mm\n",
+ "##calculations\n",
+ "Kv= H/(h*(1./k1+1./k2+1./k3))\n",
+ "i= h1/H\n",
+ "q= Kv*i*100.*3600.\n",
+ "##results\n",
+ "print'%s %.2f %s'% ('rate of water supply =',q,' cm/hr ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "rate of water supply = 291.01 cm/hr \n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file |