summaryrefslogtreecommitdiff
path: root/Power_Electronics_Principles_and_Applications_by_Jacob/Chapter8.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Power_Electronics_Principles_and_Applications_by_Jacob/Chapter8.ipynb')
-rw-r--r--Power_Electronics_Principles_and_Applications_by_Jacob/Chapter8.ipynb326
1 files changed, 326 insertions, 0 deletions
diff --git a/Power_Electronics_Principles_and_Applications_by_Jacob/Chapter8.ipynb b/Power_Electronics_Principles_and_Applications_by_Jacob/Chapter8.ipynb
new file mode 100644
index 00000000..7cf6b405
--- /dev/null
+++ b/Power_Electronics_Principles_and_Applications_by_Jacob/Chapter8.ipynb
@@ -0,0 +1,326 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8: Thyristors"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Example 8.3,Page 397"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "inductance is 6.22 microH\n",
+ "load impedence at angle 90 degree is 0.00195 ohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "#finding inductance,load impedence\n",
+ "\n",
+ "#initialisation of variable\n",
+ "from math import pi,tan,sqrt,sin,cos,acos,atan\n",
+ "V=220.0;#line voltage\n",
+ "f=50.0;#hertz\n",
+ "R=80.0;#load resistance\n",
+ "K=50.0;#di/dt\n",
+ "\n",
+ "#calculation\n",
+ "L=V*2**.5/K;\n",
+ "Z=2*pi*f*L;\n",
+ "\n",
+ "#result\n",
+ "print \"inductance is\",round(L,2),\"microH\"\n",
+ "print \"load impedence at angle 90 degree is\",round(Z*1e-6,5), \"ohm\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Example 8.4,Page 400"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "minimum value of capacitor is 0.067 micfoF\n",
+ "\n",
+ "choose C=.1 micoF\n",
+ "capacitor impedence at angle -90degree is 31.83 ohm\n",
+ "Load current in mA at an angle 90 degrees is 6.91\n",
+ "Potential drop in V at an angle 90 degrees is 0.55\n",
+ "Power dissipated is 3 mW\n"
+ ]
+ }
+ ],
+ "source": [
+ "#finding capacitor,current\n",
+ "\n",
+ "#initialisation of variable\n",
+ "from math import pi,tan,sqrt,sin,cos,acos,atan\n",
+ "V=220.0;#line voltage\n",
+ "f=50.0;#hertz\n",
+ "R=80.0;#load resistance\n",
+ "K=75.0;#dv/dt\n",
+ "Vd=400.0;#DRM voltage\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "C=Vd/R/K;\n",
+ "C1=.1;\n",
+ "Z=1/(2*pi*f*C1);\n",
+ "Iload=V/1000/(-Z*cos(180*pi/180)+R*round(cos(90*pi/180)));\n",
+ "Vload=Iload/1000*R;\n",
+ "P=Vload*Iload;\n",
+ "\n",
+ "#result\n",
+ "print \"minimum value of capacitor is\",round(C,3), \"micfoF\"\n",
+ "print('\\nchoose C=.1 micoF')\n",
+ "print \"capacitor impedence at angle -90degree is\",round(Z*1000,2), \"ohm\"\n",
+ "print \"Load current in mA at an angle 90 degrees is\",round(Iload,2)\n",
+ "print \"Potential drop in V at an angle 90 degrees is\",round(Vload,2)\n",
+ "print \"Power dissipated is\",int(P), \"mW\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Example 8.5,Page 402"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "snubbing resistnce is 7.39 ohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "#finding snubbing resistance\n",
+ "\n",
+ "#initialisation of variable\n",
+ "from math import pi,tan,sqrt,sin,cos,acos,atan\n",
+ "V=220;#line voltage\n",
+ "f=50;#hertz\n",
+ "R=80;#load resistance\n",
+ "I=46;#TSM current\n",
+ "\n",
+ "#calculation\n",
+ "Rs=V*2**.5/(I-V*2**.5/R);\n",
+ "\n",
+ "#result\n",
+ "print \"snubbing resistnce is\",round(Rs,2), \"ohm\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Example 8.6,Page 414"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "line period is 16.67 ms\n",
+ "half-cycle time is 8.333 ms\n",
+ "no. of cycles is 10.0\n",
+ "voltage for t1 is 54.0 V\n",
+ "power for t1 is 291.6 W\n",
+ "voltage for t2 is 100.0 V\n",
+ "voltage for t2 is 1000.0 W\n"
+ ]
+ }
+ ],
+ "source": [
+ "#finding voltage , power and cycles\n",
+ "\n",
+ "#initialisation of variable\n",
+ "from math import pi,tan,sqrt,sin,cos,acos,atan\n",
+ "R=10.0;#load\n",
+ "V=120.0;#rms voltage\n",
+ "f=60.0;#hertz\n",
+ "T=83.3;#ms\n",
+ "t1=15;#ms\n",
+ "t2=55;#ms\n",
+ "\n",
+ "#calculation\n",
+ "Tl=1/f;\n",
+ "Th=Tl/2;\n",
+ "C=round(T/Th/100)*100;\n",
+ "D1=.2;\n",
+ "V1=round(V*D1**.5);\n",
+ "P1=V1**2/R;\n",
+ "D2=.7;\n",
+ "V2=round(V*D2**.5);\n",
+ "P2=V2**2/R;\n",
+ "\n",
+ "#result\n",
+ "print \"line period is\",round(Tl*1000,2), \"ms\"\n",
+ "print \"half-cycle time is\",round(Th*1000,3), \"ms\"\n",
+ "print \"no. of cycles is\",C/1000\n",
+ "print \"voltage for t1 is\",round(V1,3), \"V\"\n",
+ "print \"power for t1 is\",round(P1,3), \"W\"\n",
+ "print \"voltage for t2 is\",round(V2,3), \"V\"\n",
+ "print \"voltage for t2 is\",round(P2,3), \"W\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Example 8.8,Page 427"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "average voltage is 42.0 V\n",
+ "dc voltage is 41.0 V\n",
+ "\n",
+ "the markers indicae Vp=163V Vave=41\n",
+ "full-wave rms voltage is 108.0 V\n",
+ "rms voltage is 108.0 V\n",
+ "\n",
+ "the markers indicate Vp=169V ;Vave=106V\n"
+ ]
+ }
+ ],
+ "source": [
+ "#finding dc volatge,average voltage,rms voltage\n",
+ "\n",
+ "#initialisation of variable\n",
+ "from math import pi,tan,sqrt,sin,cos,acos,atan\n",
+ "V=120.0;#line voltage\n",
+ "A=60.0;#degree\n",
+ "D=0.35;\n",
+ "\n",
+ "#calculation\n",
+ "Va=D*V;\n",
+ "Vd=V*2**.5*(cos(A*pi/180)+1)/2/pi;\n",
+ "Vr=.9*V;\n",
+ "Vrms=V*(2**.5)*(.5*(pi-1.047)+.25*sin(2*A*pi/180))**.5/pi**.5;\n",
+ "\n",
+ "#result\n",
+ "print \"average voltage is\",round(Va,3), \"V\"\n",
+ "print \"dc voltage is\",round(Vd), \"V\"\n",
+ "print('\\nthe markers indicae Vp=163V Vave=41')\n",
+ "print \"full-wave rms voltage is\",round(Vr), \"V\"\n",
+ "print \"rms voltage is\",round(Vrms), \"V\"\n",
+ "print('\\nthe markers indicate Vp=169V ;Vave=106V')\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Example 8.9,Page 430"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "rms voltage is 141.18 V\n",
+ "double checked value of rms voltage is 141.18 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "#finding rms voltage and double checked rms voltage\n",
+ "\n",
+ "#initialisation of variable\n",
+ "from math import pi,tan,sqrt,sin,cos,acos,atan\n",
+ "V=220.0;#line voltage\n",
+ "P=1.3;#kW\n",
+ "R=15.0;#ohm\n",
+ "\n",
+ "#calculation\n",
+ "Vr=round((P*1000*R)**.5);\n",
+ "D=Vr/V;\n",
+ "Vr=V*2**.5*(.5*(pi-1.710)+sin(196*pi/180)/4)**.5/pi**.5;\n",
+ "\n",
+ "#result\n",
+ "print \"rms voltage is\",round(Vr,2), \"V\"\n",
+ "print \"double checked value of rms voltage is\",round(Vr,2), \"V\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}