diff options
Diffstat (limited to 'Power_Electronics_Principles_and_Applications_by_Jacob/Chapter8.ipynb')
-rw-r--r-- | Power_Electronics_Principles_and_Applications_by_Jacob/Chapter8.ipynb | 326 |
1 files changed, 326 insertions, 0 deletions
diff --git a/Power_Electronics_Principles_and_Applications_by_Jacob/Chapter8.ipynb b/Power_Electronics_Principles_and_Applications_by_Jacob/Chapter8.ipynb new file mode 100644 index 00000000..7cf6b405 --- /dev/null +++ b/Power_Electronics_Principles_and_Applications_by_Jacob/Chapter8.ipynb @@ -0,0 +1,326 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 8: Thyristors" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 8.3,Page 397" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "inductance is 6.22 microH\n", + "load impedence at angle 90 degree is 0.00195 ohm\n" + ] + } + ], + "source": [ + "#finding inductance,load impedence\n", + "\n", + "#initialisation of variable\n", + "from math import pi,tan,sqrt,sin,cos,acos,atan\n", + "V=220.0;#line voltage\n", + "f=50.0;#hertz\n", + "R=80.0;#load resistance\n", + "K=50.0;#di/dt\n", + "\n", + "#calculation\n", + "L=V*2**.5/K;\n", + "Z=2*pi*f*L;\n", + "\n", + "#result\n", + "print \"inductance is\",round(L,2),\"microH\"\n", + "print \"load impedence at angle 90 degree is\",round(Z*1e-6,5), \"ohm\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 8.4,Page 400" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "minimum value of capacitor is 0.067 micfoF\n", + "\n", + "choose C=.1 micoF\n", + "capacitor impedence at angle -90degree is 31.83 ohm\n", + "Load current in mA at an angle 90 degrees is 6.91\n", + "Potential drop in V at an angle 90 degrees is 0.55\n", + "Power dissipated is 3 mW\n" + ] + } + ], + "source": [ + "#finding capacitor,current\n", + "\n", + "#initialisation of variable\n", + "from math import pi,tan,sqrt,sin,cos,acos,atan\n", + "V=220.0;#line voltage\n", + "f=50.0;#hertz\n", + "R=80.0;#load resistance\n", + "K=75.0;#dv/dt\n", + "Vd=400.0;#DRM voltage\n", + "\n", + "\n", + "#calculation\n", + "C=Vd/R/K;\n", + "C1=.1;\n", + "Z=1/(2*pi*f*C1);\n", + "Iload=V/1000/(-Z*cos(180*pi/180)+R*round(cos(90*pi/180)));\n", + "Vload=Iload/1000*R;\n", + "P=Vload*Iload;\n", + "\n", + "#result\n", + "print \"minimum value of capacitor is\",round(C,3), \"micfoF\"\n", + "print('\\nchoose C=.1 micoF')\n", + "print \"capacitor impedence at angle -90degree is\",round(Z*1000,2), \"ohm\"\n", + "print \"Load current in mA at an angle 90 degrees is\",round(Iload,2)\n", + "print \"Potential drop in V at an angle 90 degrees is\",round(Vload,2)\n", + "print \"Power dissipated is\",int(P), \"mW\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 8.5,Page 402" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "snubbing resistnce is 7.39 ohm\n" + ] + } + ], + "source": [ + "#finding snubbing resistance\n", + "\n", + "#initialisation of variable\n", + "from math import pi,tan,sqrt,sin,cos,acos,atan\n", + "V=220;#line voltage\n", + "f=50;#hertz\n", + "R=80;#load resistance\n", + "I=46;#TSM current\n", + "\n", + "#calculation\n", + "Rs=V*2**.5/(I-V*2**.5/R);\n", + "\n", + "#result\n", + "print \"snubbing resistnce is\",round(Rs,2), \"ohm\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 8.6,Page 414" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "line period is 16.67 ms\n", + "half-cycle time is 8.333 ms\n", + "no. of cycles is 10.0\n", + "voltage for t1 is 54.0 V\n", + "power for t1 is 291.6 W\n", + "voltage for t2 is 100.0 V\n", + "voltage for t2 is 1000.0 W\n" + ] + } + ], + "source": [ + "#finding voltage , power and cycles\n", + "\n", + "#initialisation of variable\n", + "from math import pi,tan,sqrt,sin,cos,acos,atan\n", + "R=10.0;#load\n", + "V=120.0;#rms voltage\n", + "f=60.0;#hertz\n", + "T=83.3;#ms\n", + "t1=15;#ms\n", + "t2=55;#ms\n", + "\n", + "#calculation\n", + "Tl=1/f;\n", + "Th=Tl/2;\n", + "C=round(T/Th/100)*100;\n", + "D1=.2;\n", + "V1=round(V*D1**.5);\n", + "P1=V1**2/R;\n", + "D2=.7;\n", + "V2=round(V*D2**.5);\n", + "P2=V2**2/R;\n", + "\n", + "#result\n", + "print \"line period is\",round(Tl*1000,2), \"ms\"\n", + "print \"half-cycle time is\",round(Th*1000,3), \"ms\"\n", + "print \"no. of cycles is\",C/1000\n", + "print \"voltage for t1 is\",round(V1,3), \"V\"\n", + "print \"power for t1 is\",round(P1,3), \"W\"\n", + "print \"voltage for t2 is\",round(V2,3), \"V\"\n", + "print \"voltage for t2 is\",round(P2,3), \"W\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 8.8,Page 427" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "average voltage is 42.0 V\n", + "dc voltage is 41.0 V\n", + "\n", + "the markers indicae Vp=163V Vave=41\n", + "full-wave rms voltage is 108.0 V\n", + "rms voltage is 108.0 V\n", + "\n", + "the markers indicate Vp=169V ;Vave=106V\n" + ] + } + ], + "source": [ + "#finding dc volatge,average voltage,rms voltage\n", + "\n", + "#initialisation of variable\n", + "from math import pi,tan,sqrt,sin,cos,acos,atan\n", + "V=120.0;#line voltage\n", + "A=60.0;#degree\n", + "D=0.35;\n", + "\n", + "#calculation\n", + "Va=D*V;\n", + "Vd=V*2**.5*(cos(A*pi/180)+1)/2/pi;\n", + "Vr=.9*V;\n", + "Vrms=V*(2**.5)*(.5*(pi-1.047)+.25*sin(2*A*pi/180))**.5/pi**.5;\n", + "\n", + "#result\n", + "print \"average voltage is\",round(Va,3), \"V\"\n", + "print \"dc voltage is\",round(Vd), \"V\"\n", + "print('\\nthe markers indicae Vp=163V Vave=41')\n", + "print \"full-wave rms voltage is\",round(Vr), \"V\"\n", + "print \"rms voltage is\",round(Vrms), \"V\"\n", + "print('\\nthe markers indicate Vp=169V ;Vave=106V')\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 8.9,Page 430" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "rms voltage is 141.18 V\n", + "double checked value of rms voltage is 141.18 V\n" + ] + } + ], + "source": [ + "#finding rms voltage and double checked rms voltage\n", + "\n", + "#initialisation of variable\n", + "from math import pi,tan,sqrt,sin,cos,acos,atan\n", + "V=220.0;#line voltage\n", + "P=1.3;#kW\n", + "R=15.0;#ohm\n", + "\n", + "#calculation\n", + "Vr=round((P*1000*R)**.5);\n", + "D=Vr/V;\n", + "Vr=V*2**.5*(.5*(pi-1.710)+sin(196*pi/180)/4)**.5/pi**.5;\n", + "\n", + "#result\n", + "print \"rms voltage is\",round(Vr,2), \"V\"\n", + "print \"double checked value of rms voltage is\",round(Vr,2), \"V\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |