1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 8: Thyristors"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example 8.3,Page 397"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"inductance is 6.22 microH\n",
"load impedence at angle 90 degree is 0.00195 ohm\n"
]
}
],
"source": [
"#finding inductance,load impedence\n",
"\n",
"#initialisation of variable\n",
"from math import pi,tan,sqrt,sin,cos,acos,atan\n",
"V=220.0;#line voltage\n",
"f=50.0;#hertz\n",
"R=80.0;#load resistance\n",
"K=50.0;#di/dt\n",
"\n",
"#calculation\n",
"L=V*2**.5/K;\n",
"Z=2*pi*f*L;\n",
"\n",
"#result\n",
"print \"inductance is\",round(L,2),\"microH\"\n",
"print \"load impedence at angle 90 degree is\",round(Z*1e-6,5), \"ohm\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example 8.4,Page 400"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"minimum value of capacitor is 0.067 micfoF\n",
"\n",
"choose C=.1 micoF\n",
"capacitor impedence at angle -90degree is 31.83 ohm\n",
"Load current in mA at an angle 90 degrees is 6.91\n",
"Potential drop in V at an angle 90 degrees is 0.55\n",
"Power dissipated is 3 mW\n"
]
}
],
"source": [
"#finding capacitor,current\n",
"\n",
"#initialisation of variable\n",
"from math import pi,tan,sqrt,sin,cos,acos,atan\n",
"V=220.0;#line voltage\n",
"f=50.0;#hertz\n",
"R=80.0;#load resistance\n",
"K=75.0;#dv/dt\n",
"Vd=400.0;#DRM voltage\n",
"\n",
"\n",
"#calculation\n",
"C=Vd/R/K;\n",
"C1=.1;\n",
"Z=1/(2*pi*f*C1);\n",
"Iload=V/1000/(-Z*cos(180*pi/180)+R*round(cos(90*pi/180)));\n",
"Vload=Iload/1000*R;\n",
"P=Vload*Iload;\n",
"\n",
"#result\n",
"print \"minimum value of capacitor is\",round(C,3), \"micfoF\"\n",
"print('\\nchoose C=.1 micoF')\n",
"print \"capacitor impedence at angle -90degree is\",round(Z*1000,2), \"ohm\"\n",
"print \"Load current in mA at an angle 90 degrees is\",round(Iload,2)\n",
"print \"Potential drop in V at an angle 90 degrees is\",round(Vload,2)\n",
"print \"Power dissipated is\",int(P), \"mW\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example 8.5,Page 402"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"snubbing resistnce is 7.39 ohm\n"
]
}
],
"source": [
"#finding snubbing resistance\n",
"\n",
"#initialisation of variable\n",
"from math import pi,tan,sqrt,sin,cos,acos,atan\n",
"V=220;#line voltage\n",
"f=50;#hertz\n",
"R=80;#load resistance\n",
"I=46;#TSM current\n",
"\n",
"#calculation\n",
"Rs=V*2**.5/(I-V*2**.5/R);\n",
"\n",
"#result\n",
"print \"snubbing resistnce is\",round(Rs,2), \"ohm\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example 8.6,Page 414"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"line period is 16.67 ms\n",
"half-cycle time is 8.333 ms\n",
"no. of cycles is 10.0\n",
"voltage for t1 is 54.0 V\n",
"power for t1 is 291.6 W\n",
"voltage for t2 is 100.0 V\n",
"voltage for t2 is 1000.0 W\n"
]
}
],
"source": [
"#finding voltage , power and cycles\n",
"\n",
"#initialisation of variable\n",
"from math import pi,tan,sqrt,sin,cos,acos,atan\n",
"R=10.0;#load\n",
"V=120.0;#rms voltage\n",
"f=60.0;#hertz\n",
"T=83.3;#ms\n",
"t1=15;#ms\n",
"t2=55;#ms\n",
"\n",
"#calculation\n",
"Tl=1/f;\n",
"Th=Tl/2;\n",
"C=round(T/Th/100)*100;\n",
"D1=.2;\n",
"V1=round(V*D1**.5);\n",
"P1=V1**2/R;\n",
"D2=.7;\n",
"V2=round(V*D2**.5);\n",
"P2=V2**2/R;\n",
"\n",
"#result\n",
"print \"line period is\",round(Tl*1000,2), \"ms\"\n",
"print \"half-cycle time is\",round(Th*1000,3), \"ms\"\n",
"print \"no. of cycles is\",C/1000\n",
"print \"voltage for t1 is\",round(V1,3), \"V\"\n",
"print \"power for t1 is\",round(P1,3), \"W\"\n",
"print \"voltage for t2 is\",round(V2,3), \"V\"\n",
"print \"voltage for t2 is\",round(P2,3), \"W\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example 8.8,Page 427"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"average voltage is 42.0 V\n",
"dc voltage is 41.0 V\n",
"\n",
"the markers indicae Vp=163V Vave=41\n",
"full-wave rms voltage is 108.0 V\n",
"rms voltage is 108.0 V\n",
"\n",
"the markers indicate Vp=169V ;Vave=106V\n"
]
}
],
"source": [
"#finding dc volatge,average voltage,rms voltage\n",
"\n",
"#initialisation of variable\n",
"from math import pi,tan,sqrt,sin,cos,acos,atan\n",
"V=120.0;#line voltage\n",
"A=60.0;#degree\n",
"D=0.35;\n",
"\n",
"#calculation\n",
"Va=D*V;\n",
"Vd=V*2**.5*(cos(A*pi/180)+1)/2/pi;\n",
"Vr=.9*V;\n",
"Vrms=V*(2**.5)*(.5*(pi-1.047)+.25*sin(2*A*pi/180))**.5/pi**.5;\n",
"\n",
"#result\n",
"print \"average voltage is\",round(Va,3), \"V\"\n",
"print \"dc voltage is\",round(Vd), \"V\"\n",
"print('\\nthe markers indicae Vp=163V Vave=41')\n",
"print \"full-wave rms voltage is\",round(Vr), \"V\"\n",
"print \"rms voltage is\",round(Vrms), \"V\"\n",
"print('\\nthe markers indicate Vp=169V ;Vave=106V')\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example 8.9,Page 430"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"rms voltage is 141.18 V\n",
"double checked value of rms voltage is 141.18 V\n"
]
}
],
"source": [
"#finding rms voltage and double checked rms voltage\n",
"\n",
"#initialisation of variable\n",
"from math import pi,tan,sqrt,sin,cos,acos,atan\n",
"V=220.0;#line voltage\n",
"P=1.3;#kW\n",
"R=15.0;#ohm\n",
"\n",
"#calculation\n",
"Vr=round((P*1000*R)**.5);\n",
"D=Vr/V;\n",
"Vr=V*2**.5*(.5*(pi-1.710)+sin(196*pi/180)/4)**.5/pi**.5;\n",
"\n",
"#result\n",
"print \"rms voltage is\",round(Vr,2), \"V\"\n",
"print \"double checked value of rms voltage is\",round(Vr,2), \"V\""
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|