diff options
Diffstat (limited to 'Introduction_to_Heat_Transfer_by_S._K._Som/Chapter1.ipynb')
-rw-r--r-- | Introduction_to_Heat_Transfer_by_S._K._Som/Chapter1.ipynb | 49 |
1 files changed, 19 insertions, 30 deletions
diff --git a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter1.ipynb b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter1.ipynb index b36f371b..d3b728b1 100644 --- a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter1.ipynb +++ b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter1.ipynb @@ -57,7 +57,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": { "collapsed": false }, @@ -88,7 +88,7 @@ "#The thickness of masonry wall is Lm.\n", "print\"The thickness of masonry wall is Lm in m\"\n", "Lm=(km/kc)*(Lc/(0.8))\n", - "print\"Lm=\",Lm\n" + "print\"Lm=\",Lm" ] }, { @@ -100,7 +100,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 5, "metadata": { "collapsed": false }, @@ -139,7 +139,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 6, "metadata": { "collapsed": false }, @@ -178,7 +178,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 14, "metadata": { "collapsed": false }, @@ -189,9 +189,9 @@ "text": [ "Introduction to heat transfer by S.K.Som, Chapter 1, Example 6\n", "The rate of heat transfer from the plate is given by Q=hbr*A*(Ts-Tinf)\n", - "Q= 16000.0\n", + "Q= 224.0\n", "The rate of heat transfer can also be written in the form of Q=m*cp*|dT/dt| from an energy balance.\n", - "Q= 16000.0\n", + "Q= 224.0\n", "Equating the above two equations we get hbr=(m*cp*|dT/dt|)/(A*(Ts-Tinf)) in W/(m**2°C)\n", "hbr= 11.2\n" ] @@ -220,21 +220,7 @@ "print\"Q=\",Q\n", "print\"Equating the above two equations we get hbr=(m*cp*|dT/dt|)/(A*(Ts-Tinf)) in W/(m**2°C)\"\n", "hbr=(m*cp*10**3*X)/(A*(Ts-Tinf))\n", - "print\"hbr=\",hbr\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"hbr=\",hbr" ] }, { @@ -246,7 +232,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 2, "metadata": { "collapsed": false }, @@ -286,7 +272,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 4, "metadata": { "collapsed": false }, @@ -312,7 +298,7 @@ "print\"The emitted radiant energy per unit surface area is given by Eb/A=sigma*T**4 in W/m**2\"\n", "#Let Eb/A=F\n", "F=sigma*(50+273.15)**4\n", - "print\"F=\",F\n" + "print\"F=\",F" ] }, { @@ -324,7 +310,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 4, "metadata": { "collapsed": false }, @@ -381,7 +367,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 19, "metadata": { "collapsed": false }, @@ -390,9 +376,11 @@ "name": "stdout", "output_type": "stream", "text": [ - " Introduction to heat transfer by S.K.Som, Chapter 1, Example 10\n", + "Introduction to heat transfer by S.K.Som, Chapter 1, Example 10\n", "Heat transfer from the outer surface takes place only by radiation is given by Q/A=F1=emi*sigma*(T2**4-T0**4)in W/m**2 for different values of tempratures in K\n", + "F1= 332.029390022\n", "heat transfer from the outer surface can also be written as Q/A=F2=(Ti-To)/((1/hbri)+(L/k)+(1/hr)) in W/m**2 at different tempratures in K\n", + "F2= 332.132667923\n", "The values of temprature that are considered are <298 K\n", "Satisfactory solutions for Temprature in K is\n", "T2= 292.5\n", @@ -425,7 +413,9 @@ "#Radiation heat transfer coefficient(hr) is defined as Q/A=hr(T2-To)\n", "#so hr=4.536*10**-8*T2**3\n", "print\"Heat transfer from the outer surface takes place only by radiation is given by Q/A=F1=emi*sigma*(T2**4-T0**4)in W/m**2 for different values of tempratures in K\"\n", + "print\"F1=\",F1\n", "print\"heat transfer from the outer surface can also be written as Q/A=F2=(Ti-To)/((1/hbri)+(L/k)+(1/hr)) in W/m**2 at different tempratures in K\"\n", + "print\"F2=\",F2\n", "print\"The values of temprature that are considered are <298 K\"\n", "for i in range(285,292):\n", " T2=i\n", @@ -498,8 +488,7 @@ "print\"The total heat loss by The pipe per unit length is given by Q/L=hbr*A*(T1-T2)+sigma*emi*A*(T1**4-T2**4) in W/m\"\n", "#Let Q/L=F\n", "F=hbr*A*((T1+273.15)-(T2+273.15))+sigma*emi*A*((T1+273.15)**4-(T2+273.15)**4)\n", - "print\"F=\",F\n", - "\n" + "print\"F=\",F" ] } ], |