diff options
Diffstat (limited to 'Introduction_to_Heat_Transfer_by_S._K._Som')
12 files changed, 128 insertions, 1286 deletions
diff --git a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter1.ipynb b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter1.ipynb index b36f371b..d3b728b1 100644 --- a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter1.ipynb +++ b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter1.ipynb @@ -57,7 +57,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": { "collapsed": false }, @@ -88,7 +88,7 @@ "#The thickness of masonry wall is Lm.\n", "print\"The thickness of masonry wall is Lm in m\"\n", "Lm=(km/kc)*(Lc/(0.8))\n", - "print\"Lm=\",Lm\n" + "print\"Lm=\",Lm" ] }, { @@ -100,7 +100,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 5, "metadata": { "collapsed": false }, @@ -139,7 +139,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 6, "metadata": { "collapsed": false }, @@ -178,7 +178,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 14, "metadata": { "collapsed": false }, @@ -189,9 +189,9 @@ "text": [ "Introduction to heat transfer by S.K.Som, Chapter 1, Example 6\n", "The rate of heat transfer from the plate is given by Q=hbr*A*(Ts-Tinf)\n", - "Q= 16000.0\n", + "Q= 224.0\n", "The rate of heat transfer can also be written in the form of Q=m*cp*|dT/dt| from an energy balance.\n", - "Q= 16000.0\n", + "Q= 224.0\n", "Equating the above two equations we get hbr=(m*cp*|dT/dt|)/(A*(Ts-Tinf)) in W/(m**2°C)\n", "hbr= 11.2\n" ] @@ -220,21 +220,7 @@ "print\"Q=\",Q\n", "print\"Equating the above two equations we get hbr=(m*cp*|dT/dt|)/(A*(Ts-Tinf)) in W/(m**2°C)\"\n", "hbr=(m*cp*10**3*X)/(A*(Ts-Tinf))\n", - "print\"hbr=\",hbr\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"hbr=\",hbr" ] }, { @@ -246,7 +232,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 2, "metadata": { "collapsed": false }, @@ -286,7 +272,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 4, "metadata": { "collapsed": false }, @@ -312,7 +298,7 @@ "print\"The emitted radiant energy per unit surface area is given by Eb/A=sigma*T**4 in W/m**2\"\n", "#Let Eb/A=F\n", "F=sigma*(50+273.15)**4\n", - "print\"F=\",F\n" + "print\"F=\",F" ] }, { @@ -324,7 +310,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 4, "metadata": { "collapsed": false }, @@ -381,7 +367,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 19, "metadata": { "collapsed": false }, @@ -390,9 +376,11 @@ "name": "stdout", "output_type": "stream", "text": [ - " Introduction to heat transfer by S.K.Som, Chapter 1, Example 10\n", + "Introduction to heat transfer by S.K.Som, Chapter 1, Example 10\n", "Heat transfer from the outer surface takes place only by radiation is given by Q/A=F1=emi*sigma*(T2**4-T0**4)in W/m**2 for different values of tempratures in K\n", + "F1= 332.029390022\n", "heat transfer from the outer surface can also be written as Q/A=F2=(Ti-To)/((1/hbri)+(L/k)+(1/hr)) in W/m**2 at different tempratures in K\n", + "F2= 332.132667923\n", "The values of temprature that are considered are <298 K\n", "Satisfactory solutions for Temprature in K is\n", "T2= 292.5\n", @@ -425,7 +413,9 @@ "#Radiation heat transfer coefficient(hr) is defined as Q/A=hr(T2-To)\n", "#so hr=4.536*10**-8*T2**3\n", "print\"Heat transfer from the outer surface takes place only by radiation is given by Q/A=F1=emi*sigma*(T2**4-T0**4)in W/m**2 for different values of tempratures in K\"\n", + "print\"F1=\",F1\n", "print\"heat transfer from the outer surface can also be written as Q/A=F2=(Ti-To)/((1/hbri)+(L/k)+(1/hr)) in W/m**2 at different tempratures in K\"\n", + "print\"F2=\",F2\n", "print\"The values of temprature that are considered are <298 K\"\n", "for i in range(285,292):\n", " T2=i\n", @@ -498,8 +488,7 @@ "print\"The total heat loss by The pipe per unit length is given by Q/L=hbr*A*(T1-T2)+sigma*emi*A*(T1**4-T2**4) in W/m\"\n", "#Let Q/L=F\n", "F=hbr*A*((T1+273.15)-(T2+273.15))+sigma*emi*A*((T1+273.15)**4-(T2+273.15)**4)\n", - "print\"F=\",F\n", - "\n" + "print\"F=\",F" ] } ], diff --git a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter10.ipynb b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter10.ipynb index 95f29d79..9eacc4ed 100644 --- a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter10.ipynb +++ b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter10.ipynb @@ -44,10 +44,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 10, Example 1\"\n", @@ -94,29 +90,7 @@ "print\"LMTD=\",LMTD\n", "print\"Area(A)=Q/(U*LMTD) in m**2\"\n", "A=Q/(U*LMTD)\n", - "print\"A=\",A\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"A=\",A" ] }, { @@ -150,10 +124,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 10, Example 2\"\n", @@ -193,7 +163,7 @@ "#Area(A)=Q/(U*LMTD) in m**2\n", "print\"Area(A)=Q/(U*LMTD) in m**2\"\n", "A=Q/(U*LMTD)\n", - "print\"A=\",A\n" + "print\"A=\",A" ] }, { @@ -233,10 +203,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 10, Example 3\"\n", @@ -284,13 +250,7 @@ "#overall heat transfer coefficient(U)=Q/(A*F*LMTD)\n", "print\"overall heat transfer coefficient(U)=Q/(A*F*LMTD)in W/(m**2*K)\"\n", "U=Q/(A*F*LMTD)\n", - "print\"U=\",U\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"U=\",U" ] }, { @@ -342,10 +302,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 10, Example 5\"\n", @@ -424,33 +380,7 @@ "print\"To provide this surface area ,The length(L) of the tube required is given by L=A/(pi*D) in m\"\n", "L=A/(math.pi*D)\n", "print\"Hence same result is obtained for both methods\"\n", - "print\"L=\",L\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"L=\",L" ] }, { @@ -482,10 +412,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 10, Example 6\"\n", @@ -520,13 +446,7 @@ "#Hence The total heat transfer rate (Q)=eff*Cmin*(Thi-Tci)in kW.\n", "print\"The total heat transfer rate (Q)=eff*Cmin*(Thi-Tci) in kW\" \n", "Q=eff*Cmin*(Thi-Tci)\n", - "print\"Q=\",Q\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"Q=\",Q" ] }, { @@ -560,10 +480,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 10, Example 7\"\n", @@ -603,22 +519,7 @@ "#The exit temprature(Tho) of air is given by Thi-(Q/(mdota*cpa))\n", "print\"The exit temprature of air in °C \"\n", "Tho=Thi-(Q/(mdota*1000*cpa))#NOTE:-The answer slightly varies from the answer in book(i.e Tho=26°C) because the value of Q taken in book is approximated to 1*10**6W.\n", - "print\"Tho=\",Tho\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"Tho=\",Tho" ] }, { @@ -656,10 +557,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 10, Example 8\"\n", @@ -702,28 +599,7 @@ "Tho=Tci;\n", "print\"Effectiveness of heat exchanger is \"\n", "eff=(mdoth*ch*(Thi-Tho))/(mdoth*ch*(Thi-Tci))\n", - "print\"eff=\",eff\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"eff=\",eff" ] } ], diff --git a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter11.ipynb b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter11.ipynb index a46cced0..c44923f7 100644 --- a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter11.ipynb +++ b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter11.ipynb @@ -35,10 +35,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 11, Example 3\"\n", @@ -57,7 +53,7 @@ "A1=2;\n", "A3=2.5;\n", "F31=(A1/A3)*F13\n", - "print\"F31=\",F31\n" + "print\"F31=\",F31" ] }, { @@ -87,10 +83,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 11, Example 4\"\n", @@ -116,11 +108,7 @@ "#This implies F14=((F1,2-4*(A1+A2)))-A2*F24)/A2\n", "print\"The view factor F14=((F1,2-4*(A1+A2)))-A2*F24)/A2\"\n", "F14=((F124*(A1+A2))-(A2*F24))/A2\n", - "print\"F14=\",F14\n", - "\n", - "\n", - "\n", - " \n" + "print\"F14=\",F14" ] }, { @@ -149,10 +137,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 11, Example 5\"\n", @@ -171,7 +155,7 @@ "#Let A1/A2=A\n", "A=1/4;\n", "F31=(A)*F13\n", - "print\"F31=\",F31\n" + "print\"F31=\",F31" ] }, { @@ -206,10 +190,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 11, Example 6\"\n", @@ -252,27 +232,7 @@ "#Therefore we can write Q1=A1*sigma*(T1**4-F12*T2**4-F1s*Ts**4)\n", "print\"The net rate of energy loss from the surface at 127°C if the surrounding other than the two surfaces act as black body at 300K in W \"\n", "Q1=A1*sigma*(T1**4-F12*T2**4-F1s*Ts**4)\n", - "print\"Q1=\",Q1\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"Q1=\",Q1" ] }, { @@ -302,10 +262,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 11, Example 7\"\n", @@ -327,17 +283,7 @@ "#So,The net rate of heat transfer when the two surfaces are black is Q/A=sigma*(T1**4-T2**4)\n", "print\"The net rate of heat transfer when the two surfaces are black is Q/A=sigma*(T1**4-T2**4) in W\"\n", "H=sigma*(T1**4-T2**4)\n", - "print\"H=\",H\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"H=\",H" ] }, { @@ -371,10 +317,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 11, Example 8\"\n", @@ -411,20 +353,7 @@ "print\"Q2=\",Q2\n", "print\"Error(E) is given By ((Q2-Q1)/Q1)*100 in percentage\"\n", "E=((Q2-Q1)/Q1)*100\n", - "print\"E=\",E\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"E=\",E" ] }, { @@ -455,10 +384,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 11, Example 10\"\n", @@ -503,19 +428,7 @@ "#So Q/A=(sigma*(T1**4-T2**4))/(R)\n", "#Let Q/A=H\n", "H=(sigma*(T1**4-T2**4))/(R)\n", - "print\"H=\",H\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"H=\",H" ] } ], diff --git a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter2.ipynb b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter2.ipynb index ba64d857..cda3a92c 100644 --- a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter2.ipynb +++ b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter2.ipynb @@ -18,7 +18,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": { "collapsed": false }, @@ -119,31 +119,7 @@ "print\"Check for Ti(in °C)\"\n", "Ti=T4-(Q*Ri)\n", "print\"The value is same as given in the problem\"\n", - "print\"Ti=\",Ti\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"Ti=\",Ti" ] }, { @@ -171,10 +147,6 @@ } ], "source": [ - " \n", - "\n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 2, Example 2\"\n", @@ -194,7 +166,7 @@ "#Q=(Ti-To)/((Lb/kb)+(L/ki)) so L=ki*(((Ti-To)/Q)-(Lb/kb))\n", "print\"The thickness of insulating material L=ki*(((Ti-To)/Q)-(Lb/kb)) in m\"\n", "L=ki*(((Ti-To)/Q)-(Lb/kb))\n", - "print\"L=\",L\n" + "print\"L=\",L" ] }, { @@ -206,7 +178,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 3, "metadata": { "collapsed": false }, @@ -235,7 +207,6 @@ } ], "source": [ - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 2, Example 4\"\n", @@ -281,17 +252,7 @@ "print\"q2=\",q2\n", "print\"Heat flux qo=q1+q2 in W/m**2 \"\n", "qo=q1+q2\n", - "print\"qo=\",qo\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"qo=\",qo" ] }, { @@ -329,7 +290,6 @@ } ], "source": [ - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 2, Example 6\"\n", @@ -372,9 +332,7 @@ "X=(2*10**3)-(4*10**5*x);\n", "Q=-k*X/10**6\n", "#A check for the above results can be made from an energy balance of the plate as |(q/A)|@x=0+|(q/A)|@x=0.02=qG*0.02\n", - "print\"Q=\",Q\n", - "\n", - "\n" + "print\"Q=\",Q" ] }, { @@ -386,7 +344,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 16, "metadata": { "collapsed": false }, @@ -410,7 +368,6 @@ } ], "source": [ - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 2, Example 9\"\n", @@ -458,16 +415,7 @@ "Q=(T1-Tinf)/(((X)/(2*math.pi*L*k))+(1/(h*2*math.pi*r2*L)))\n", "#It is important to note that Q increases by 5.2% when the insulation thickness increases from 0.002m to critical thickness. \n", "#Addition of insulation beyond the critical thickness decreases the value of Q (The heat loss).\n", - "print\"Q=\",Q\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"Q=\",Q" ] }, { @@ -479,7 +427,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 8, "metadata": { "collapsed": false }, @@ -495,7 +443,6 @@ } ], "source": [ - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 2, Example 10\"\n", @@ -525,22 +472,7 @@ "#Therefore the thickness of insulation is given by t=r3-Do\n", "print\"the thickness of insulation in metre is\"\n", "t=r3-Do\n", - "print\"t=\",t\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"t=\",t" ] }, { @@ -552,7 +484,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 9, "metadata": { "collapsed": false }, @@ -570,7 +502,6 @@ } ], "source": [ - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 2, Example 11\"\n", @@ -591,21 +522,7 @@ "print\"The temprature of wire at the centre in K is \"\n", "To=Tw+((qG*ro**2)/(4*k))\n", "#Note:The answer in the book is incorrect(value of D has been put instead of ro)\n", - "print\"To=\",To\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"To=\",To" ] }, { @@ -655,10 +572,6 @@ } ], "source": [ - "\n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 2, Example 12\"\n", @@ -730,12 +643,7 @@ "#the amount of ice in kG which melts during a 24 hour period is (mice)\n", "print\"Therefore,the amount of ice(mice)in kG which melts during a 24 hour period is\"\n", "mice=Qt/deltahf\n", - "print\"mice=\",mice\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"mice=\",mice" ] }, { @@ -747,7 +655,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 13, "metadata": { "collapsed": false }, @@ -782,7 +690,6 @@ } ], "source": [ - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 2, Example 13\"\n", @@ -846,15 +753,7 @@ "Qinf=(h*P*k*A)**0.5*thetab\n", "print\"We see that since k is large there is significant difference between the finite length and the infinte length cases\"\n", "print\"However when the length of the rod approaches 1m,the result become almost same.\" \n", - "print\"Qinf=\",Qinf\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"Qinf=\",Qinf" ] }, { @@ -866,7 +765,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 14, "metadata": { "collapsed": false }, @@ -882,7 +781,6 @@ } ], "source": [ - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 2, Example 14\"\n", @@ -899,41 +797,7 @@ "#The thermal conductivity of Rod B iskB\n", "print\"The thermal conductivity of Rod B kB in W/(m*K) is \"\n", "kB=kA*(xB/xA)**2\n", - "print\"kB=\",kB\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"kB=\",kB" ] }, { @@ -945,7 +809,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 15, "metadata": { "collapsed": false }, @@ -971,7 +835,6 @@ } ], "source": [ - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 2, Example 15\"\n", @@ -1013,17 +876,7 @@ "#Heat loss from the plate is Qb\n", "print\"Heat loss from the plate at 400K in W is\"\n", "Qb=(N*(h*P*kal*A)**0.5*thetab*((math.cosh(m*L)-(thetaL/thetab))/(math.sinh(m*L))))+(((l*b)-(N*A))*h*thetab)+(l*b*h*thetab)\n", - "print\"Qb=\",Qb\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"Qb=\",Qb" ] } ], diff --git a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter3.ipynb b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter3.ipynb index 55a11dc9..6b51de29 100644 --- a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter3.ipynb +++ b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter3.ipynb @@ -34,9 +34,6 @@ } ], "source": [ - "\n", - "\n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 3, Example 1\"\n", @@ -59,7 +56,7 @@ "#Temperature in degree celcius\n", "print\"Temperature at the centre in Degree C is\"\n", "T = theta*100+100\n", - "print\"T=\",T\n" + "print\"T=\",T" ] }, { @@ -90,9 +87,6 @@ } ], "source": [ - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 3, Example 2\"\n", @@ -117,7 +111,7 @@ "print\"theta=\",theta\n", "print\"Temperature in K at centre point\"\n", "T = theta*100+300\n", - "print\"T=\",T\n" + "print\"T=\",T" ] }, { @@ -166,7 +160,6 @@ } ], "source": [ - " \n", "import math\n", "import numpy\n", " \n", @@ -213,7 +206,7 @@ "print T7\n", "print\"T8 in degree K\"\n", "T8 = T[7]\n", - "print T8\n" + "print T8" ] }, { @@ -255,7 +248,6 @@ } ], "source": [ - " \n", "import math\n", "import numpy\n", " \n", @@ -300,7 +292,7 @@ "print T5\n", "print\"T6 in degree C\"\n", "T6 = T[4]\n", - "print T6\n" + "print T6" ] }, { @@ -354,7 +346,6 @@ } ], "source": [ - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 3, Example 6\"\n", @@ -412,7 +403,7 @@ "print T8\n", "print\"T9 in degree C\"\n", "T9 = T[8]\n", - "print T9\n" + "print T9" ] } ], diff --git a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter4.ipynb b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter4.ipynb index c6207f4b..6c85f1a7 100644 --- a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter4.ipynb +++ b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter4.ipynb @@ -35,10 +35,6 @@ } ], "source": [ - " \n", - "\n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 4, Example 1\"\n", @@ -59,8 +55,7 @@ "if Bi<0.1:\n", " print\"Problem is suitable for lumped parameter analysis\"\n", "else:\n", - " print\"Problem is not suitable for lumped parameter analysis\"\n", - "\n" + " print\"Problem is not suitable for lumped parameter analysis\"" ] }, { @@ -90,10 +85,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 4, Example 2\"\n", @@ -118,7 +109,7 @@ "#Required time in sec\n", "t = (-8)*math.log(0.01);\n", "print\"Time required in seconds\"\n", - "print\"t=\",t\n" + "print\"t=\",t" ] }, { @@ -130,7 +121,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 4, "metadata": { "collapsed": false }, @@ -146,10 +137,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 4, Example 3\"\n", @@ -163,7 +150,7 @@ "#Maximum dimension in metre\n", "a = ((6*k)*Bi)/h;\n", "print\"Maximum dimension in metre for lumped parameter analysis\"\n", - "print\"a=\",a\n" + "print\"a=\",a" ] }, { @@ -192,7 +179,6 @@ } ], "source": [ - " \n", "from scipy.integrate import quad\n", "import math\n", "print\"Introduction to heat transfer by S.K.Som, Chapter 4, Example 4\"\n", @@ -228,7 +214,7 @@ "E = (((h*math.pi)*d)*H)*quad(lambda t:(80.0-25.0)*math.e*(-t/472.5),0,60.0*t)[0];\n", "print\"Energy required for cooling in KJ\"\n", "E = E/1000.0\n", - "print \"E=\",E\n" + "print \"E=\",E" ] }, { @@ -258,10 +244,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 4, Example 5\"\n", @@ -297,7 +279,7 @@ "Q = ((((0.69*k)*2)*L)*(Tinfinity-Ti))/alpha;\n", "print\"Heat transfer rate in MJ\"\n", "Q = Q/(10**6)\n", - "print\"Q=\",Q\n" + "print\"Q=\",Q" ] }, { @@ -327,10 +309,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 4, Example 6\"\n", @@ -368,7 +346,7 @@ "Q = (((0.4*k)*L)*(Ti-Tinfinity))/alpha;\n", "print\"Heat transfer rate in MJ\"\n", "Q = Q/(10**6)\n", - "print\"Q=\",Q\n" + "print\"Q=\",Q" ] }, { @@ -398,10 +376,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 4, Example 7\"\n", @@ -439,7 +413,7 @@ "Q = (((((0.4*k)*math.pi)*ro)*ro)*(Ti-Tinfinity))/alpha;\n", "print\"Heat transfer rate per unit length in MJ/m\"\n", "Q = Q/(10**6)\n", - "print\"Q=\",Q\n" + "print\"Q=\",Q" ] }, { @@ -467,10 +441,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", "\n", "print\"Introduction to heat transfer by S.K.Som, Chapter 4, Example 8\"\n", @@ -499,7 +469,7 @@ "t = ((Fo*ro)*ro)/alpha;\n", "print\"Time required in minutes\"\n", "t = t/60\n", - "print\"t=\",t\n" + "print\"t=\",t" ] }, { @@ -527,10 +497,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 4, Example 9\"\n", @@ -573,7 +539,7 @@ "#Temperature in °C\n", "T = Tinfinity+z*(Ti-Tinfinity);\n", "print\"Tempearture of bar in °C\"\n", - "print\"T=\",T\n" + "print\"T=\",T" ] }, { @@ -610,10 +576,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 4, Example 10\"\n", @@ -683,17 +645,7 @@ "#Therefore ((To-Tinf)/(Ti-Tinf))plate1*((To-Tinf)/(Ti-Tinf))plate2=A*B\n", "T=A*B\n", "print\"The calculated value is very close to the required value of 0.6.Hence the time required for the centre of the beam to reach 310°C is nearly 1200s or 20 minutes.\" \n", - "print\"T=\",T\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n" + "print\"T=\",T" ] }, { @@ -721,10 +673,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 4, Example 11\"\n", @@ -746,22 +694,7 @@ "#Therefore 10/t**0.5=0.38...this implies t=(10/0.38)**2\n", "print\"The time required for the temprature to reach 255°C at a depth of 80mm, in minutes is\"\n", "t=(10/0.38)**2/60\n", - "print\"T=\",T\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"T=\",T" ] }, { @@ -791,7 +724,6 @@ } ], "source": [ - " \n", "import math\n", "import scipy \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 4, Example 12\"\n", @@ -815,18 +747,7 @@ "print\"The temprature at a depth(x) of 100mm after a time(t) of 100 seconds,in °C is\"\n", "T=Ti+((2*qo*(alpha*t/math.pi)**0.5)/(k))*math.e**((-x**2.0)/(4*alpha*t))-((qo*x)/(k))*scipy.special.erf(x/(2*(alpha*t)**0.5))\n", "print\"T=\",T\n", - "#NOTE:The answer in the book is incorrect(Calculation mistake)\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "#NOTE:The answer in the book is incorrect(Calculation mistake)" ] }, { @@ -838,7 +759,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 2, "metadata": { "collapsed": false }, @@ -849,7 +770,7 @@ "text": [ "Introduction to heat transfer by S.K.Som, Chapter 4, Example 14\n", "Temperature distribution after 25 mins in °C\n", - "[[ 2.29192547e+02 2.91925466e+00 1.11801242e+00 4.34782609e-01\n", + "T= [[ 2.29192547e+02 2.91925466e+00 1.11801242e+00 4.34782609e-01\n", " 1.86335404e-01 6.21118012e-02]\n", " [ 8.75776398e+01 8.75776398e+00 3.35403727e+00 1.30434783e+00\n", " 5.59006211e-01 1.86335404e-01]\n", @@ -865,7 +786,6 @@ } ], "source": [ - " \n", "import math\n", "import numpy\n", " \n", @@ -891,10 +811,8 @@ "#From Eq. 4.126\n", "#Temperature distribution after one time step\n", "T = numpy.linalg.inv(A)*B;\n", - "\n", - " \n", "print\"Temperature distribution after 25 mins in °C\"\n", - "print T\n" + "print\"T=\",T" ] } ], diff --git a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter5.ipynb b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter5.ipynb index d3fc7380..5b3d46e7 100644 --- a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter5.ipynb +++ b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter5.ipynb @@ -38,7 +38,6 @@ } ], "source": [ - " \n", "import math \n", "from scipy.integrate import quad\n", " \n", @@ -74,23 +73,7 @@ "#Q is the rate of heat transfer\n", "print\"The rate of heat transfer in W/m of width is\"\n", "Q=hbarL*L*(T2-T1)\n", - "print\"Q=\",Q\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"Q=\",Q" ] }, { @@ -102,7 +85,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 27, "metadata": { "collapsed": false }, @@ -119,7 +102,6 @@ } ], "source": [ - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 5, Example 4\"\n", @@ -144,18 +126,7 @@ "#from an enrgy balance we can write as E=27.063*U**0.85*L*B*(Ts-Tinf)\n", "print\"The minimum flow velocity in m/s is\"\n", "U=(E/(27.063*L*B*(Ts-Tinf)))**(1/0.85)\n", - "print\"U=\",U\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"U=\",U" ] }, { @@ -167,7 +138,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 1, "metadata": { "collapsed": false }, @@ -190,10 +161,8 @@ } ], "source": [ - " \n", "import math\n", " \n", - " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 5, Example 6\"\n", "#Air at 1atm pressure and temprature(Tin)=30°C enters a tube of 25mm diameter(D) with a velocity(U) of 10m/s\n", "D=0.025;#in metre\n", @@ -231,25 +200,7 @@ "k=0.0285;\n", "print\"Overall Nusselt number is \"\n", "NuL=hx*D/k\n", - "print\"NuL=\",NuL\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"NuL=\",NuL" ] }, { @@ -261,7 +212,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "metadata": { "collapsed": false }, @@ -285,7 +236,6 @@ } ], "source": [ - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 5, Example 7\"\n", @@ -324,21 +274,7 @@ "#Q is the heat loss from the plate\n", "print\"The heat loss from the plate in W is\"\n", "Q=hbar*A*(Ts-Tinf)\n", - "print\"Q=\",Q\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"Q=\",Q" ] }, { @@ -370,11 +306,7 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", - " import math\n", + "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 5, Example 8\"\n", "#Eletric current passes through a L=0.5m long horizontal wire of D=0.1mm diameter.\n", @@ -401,28 +333,7 @@ "#I is the current flow.\n", "print\"The current in Ampere is\"\n", "I=(Q/(R*L))**0.5\n", - "print\"I=\",I\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"I=\",I" ] } ], diff --git a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter6.ipynb b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter6.ipynb index a4433df7..5a31da63 100644 --- a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter6.ipynb +++ b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter6.ipynb @@ -18,7 +18,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 10, "metadata": { "collapsed": false }, @@ -45,7 +45,6 @@ } ], "source": [ - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 6, Example 1\"\n", @@ -55,7 +54,7 @@ "mu=0.1;\n", "b=0.005; #in metre\n", " #Umax is maximum velocity\n", - " Umax=(3.0/2)*Uav\n", + " Umax=(3/2)*Uav\n", "print\"Umax in m/s is\"\n", "Umax=(3/2)*Uav\n", "print\"Umax=\",Umax\n", @@ -82,31 +81,7 @@ " #Since pressure drop is considered at a distance of 2m so L=2m\n", "L=2;\n", "deltaP=(-X)*L\n", - "print\"deltaP=\",deltaP\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"deltaP=\",deltaP" ] }, { @@ -118,7 +93,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 14, "metadata": { "collapsed": false }, @@ -138,7 +113,6 @@ } ], "source": [ - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 6, Example 3\"\n", @@ -159,28 +133,7 @@ " #The viscosity of oil is mu=(pi*D**4*X)/(128*Q*dz)\n", "print\"The viscosity of oil(mu)in kg/(m*s)\"\n", "mu=(math.pi*D**4*X)/(128*Q)\n", - "print\"mu=\",mu\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"mu=\",mu" ] }, { @@ -212,10 +165,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 6, Example 7\"\n", @@ -239,26 +188,7 @@ " #Fd is drag force\n", "print\"Drag force on one side of plate in N is\"\n", "Fd=cfL*(rhoair*Uinf**2/2)*B*L\n", - "print\"Fd=\",Fd\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"Fd=\",Fd" ] }, { @@ -294,10 +224,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 6, Example 10\"\n", @@ -326,21 +252,7 @@ " #The turbulent boundary layer thickness at the trailing edge is given by delta=L*(0.379/ReL**(1/5))\n", "print\"The turbulent boundary layer thickness at the trailing edge in metre is \"\n", "delta=L*(0.379/ReL**(1/5))\n", - "print\"delta=\",delta\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"delta=\",delta" ] } ], diff --git a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb index 85b7eec5..bffd25f6 100644 --- a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb +++ b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb @@ -42,7 +42,6 @@ } ], "source": [ - " \n", "import math \n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 1\"\n", @@ -115,11 +114,7 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", - " import math\n", + "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 2\"\n", "#Atmospheric air at temprature,Tinf=300K and with a free stream Velocity Uinf=30m/s flows over a flat plate parallel to a side of length(L)=2m.\n", @@ -161,24 +156,7 @@ "A=L*B;\n", "print\"The rate of heat transfer per unit width in W is\"\n", "Q=hbarL*A*(Tw-Tinf)\n", - "print\"Q=\",Q\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"Q=\",Q" ] }, { @@ -218,11 +196,7 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", - " import math\n", + "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 3\"\n", "#Air at a pressure of 101kPa and temprature,Tinf=20°C flows with a velocity(Uinf) of 5m/s over a flat plate whose temprature is kept constant at Tw=140°C.\n", @@ -272,33 +246,7 @@ "#Q is the rate of heat transfer\n", "print\"The rate of heat transfer per unit width in W is\"\n", "Q=h*A*(Tw-Tinf)\n", - "print\"Q=\",Q\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"Q=\",Q" ] }, { @@ -340,11 +288,7 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", - " import math\n", + "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 4\"\n", "#Castor oil at temprature,Tinf=36°C flows over a heated plate of length,L=6m and breadth,B=1m at velocity,Uinf=0.06m/s\n", @@ -392,29 +336,7 @@ "A=L*B;\n", "print\"(c)The rate of heat transfer in W is\"\n", "Q=hbarL*A*(Tw-Tinf)\n", - "print\"Q=\",Q\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"Q=\",Q" ] }, { @@ -447,11 +369,7 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", - " import math\n", + "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 5\"\n", "#A flat plate of width B=1m is maintained at a uniform surface temprtaure(Tw)=225°C\n", @@ -487,24 +405,7 @@ "#If qm be the power generation in W/m**2 within the module ,we can write from energy balance qm*(t/0.1000)*(l/0.1000)*(B)=hbarL*(t/0.1000)*(B)*(Tw-Tinf)\n", "print\"The required power generation in W/m**3 is\"\n", "qm=(hL*(l/0.1000)*(B)*(Tw-Tinf))/((t/0.1000)*(l/0.1000)*(B))\n", - "print\"qm=\",qm\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"qm=\",qm" ] }, { @@ -540,11 +441,7 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", - " import math\n", + "import math\n", "\n", "print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 6\"\n", "#An aircraft is moving at a velocity of Uinf=150m/s in air at an altitude where the pressure is 0.7bar and the temprature is Tinf=-5°C.\n", @@ -579,21 +476,7 @@ "#Therefore we can write Surface temprature of wing, Tw=Tinf+(Qr/(2*hbarL))\n", "print\"Surface temprature of wing in kelvin is\"\n", "Tw=(273+Tinf)+(Qr/(2*hbarL))\n", - "print\"Tw=\",Tw\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"Tw=\",Tw" ] }, { @@ -633,11 +516,7 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", - " import math\n", + "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 7\"\n", "#A fine wire having a diameter(D)=0.04mm is placed in an air stream at temprature,Tinf=25°C having a flow velocity of Uinf=60m/s perpendicular to wire.\n", @@ -679,32 +558,7 @@ "#Heat transfer per unit length(qL) is given by pi*D*hbar*(Tw-Tinf)\n", "print\"Heat transfer per unit length in W/m is\"\n", "qL=math.pi*(D*10**-3)*hbar*(Tw-Tinf)\n", - "print\"qL=\",qL\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"qL=\",qL" ] }, { @@ -742,11 +596,7 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", - " import math\n", + "import math\n", "\n", "print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 8\"\n", "#Mercury and a light oil flowing at Uinf=4mm/s in a smooth tube having diameter(D)=25mm at a bulk temprature of 80°C.\n", @@ -783,24 +633,7 @@ "#Ltoil is the thermal entry length for oil\n", "print\"The thermal entry length for oil in m is\"\n", "Ltoil=0.05*Reoil*Proil*D\n", - "print\"Ltoil=\",Ltoil\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"Ltoil=\",Ltoil" ] }, { @@ -840,11 +673,7 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", - " import math\n", + "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 9\"\n", "#Air at one atmospheric pressure and temprature(Tbi=75°C) enters a tube of internal diameter(D)=4.0mm with average velocity(U)=2m/s\n", @@ -895,21 +724,7 @@ "#Let Twe be the surface temprature at the exit plane.Then we can write hL*(Twe-Tbo)=qw\n", "print\"The tube surface temprature at the exit plane in °C is \"\n", "Twe=Tbo+(qw/hL)\n", - "print\"Twe=\",Twe\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"Twe=\",Twe" ] }, { @@ -952,11 +767,7 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", - " import math\n", + "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 10\"\n", "#Air at one atmospheric pressure and temprature(Tbi=75°C) enters a tube of internal diameter(D)=4.0mm with average velocity(U)=2m/s\n", @@ -1011,18 +822,7 @@ "#Let Twe be the surface temprature at the exit plane.Then we can write hL*(Twe-Tbo)=qw\n", "print\"The tube surface temprature at the exit plane in °C is \"\n", "Twe=Tbo+(qw/hL)\n", - "print\"Twe=\",Twe\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"Twe=\",Twe" ] }, { @@ -1067,11 +867,7 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", - " import math\n", + "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 7, Example 11\"\n", "#Liquid sulphur di oxide in a saturated state flows inside a L=5m long tube and D=25mm internal diameter with a mass flow rate(mdot) of 0.15 kg/s.\n", diff --git a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter8.ipynb b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter8.ipynb index a6c237e4..882c8bf9 100644 --- a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter8.ipynb +++ b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter8.ipynb @@ -79,20 +79,7 @@ "#The rate of heat transfer is given by q=hbarL*A*(Tw-Tinf)\n", "print\"The rate of heat transfer in W is\"\n", "q=hbarL*A*(Tw-Tinf)\n", - "print\"q=\",q\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"q=\",q" ] }, { @@ -128,7 +115,6 @@ } ], "source": [ - " \n", "import math \n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 8, Example 2\"\n", @@ -165,24 +151,7 @@ "#spac is the minimum spacing \n", "print\"The minimum spacing in metre is\"\n", "spac=2*delta\n", - "print\"spac=\",spac\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"spac=\",spac" ] }, { @@ -219,7 +188,6 @@ } ], "source": [ - "\n", "from scipy.integrate import quad\n", "print \"Introduction to heat transfer by S.K.Som, Chapter 8, Example 3\"\n", "#Considering question 5.7\n", @@ -275,14 +243,7 @@ "print \"Mass flow rate at x=0.8m,in kG is\"\n", "I=quad(lambda y:465.9*(y-116*y*2+3341*y*3),0,delta)\n", "mdot=rho*B*I[0]\n", - "print\"mdot=\",mdot\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"mdot=\",mdot" ] }, { @@ -314,7 +275,6 @@ } ], "source": [ - " \n", "import math \n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 8, Example 4\"\n", @@ -352,33 +312,7 @@ "hL=(2*k)/delta;\n", "hbarL=(4.0/3)*(hL)#NOTE:The answer in the book is incorrect(calculation mistake)\n", "print\"hL=\",hL\n", - "print\"hbarL=\",hbarL\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"hbarL=\",hbarL" ] }, { @@ -432,7 +366,6 @@ } ], "source": [ - " \n", "import math \n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 8, Example 5\"\n", @@ -509,51 +442,7 @@ "print hbarL\n", "print\"The rate of heat transfer in W is \"\n", "Q=hbarL*A*(Tw-Tinf)\n", - "print Q\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print Q" ] }, { @@ -599,10 +488,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math \n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 8, Example 6\"\n", @@ -663,16 +548,7 @@ "#The current flowing in the wire I=(q/(R*L)**(1/2.0)\n", "print\"The current flowing in the wire in Ampere is\"\n", "I=(q/(R*L))**(1/2.0)\n", - "print\"I=\",I\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"I=\",I" ] }, { @@ -709,7 +585,6 @@ } ], "source": [ - " \n", "import math \n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 8, Example 7\"\n", @@ -750,26 +625,7 @@ "#The heat loss per meter length is given by q=hbar*A*(Tw-Tinf)\n", "print\"The heat loss per meter length in W is\"\n", "q=hbar*A*(Tw-Tinf)\n", - "print\"q=\",q\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"q=\",q" ] }, { @@ -808,7 +664,6 @@ } ], "source": [ - " \n", "import math \n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 8, Example 8\"\n", @@ -854,18 +709,7 @@ "print\"Hence,steady state Surface temprature in °C is\"\n", "Tw=Tinf+(P/(hbarD*math.pi*D*L))\n", "print\"Hence we see that our guess is in excellent agreement with the calculated value\"\n", - "print\"Tw=\",Tw\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"Tw=\",Tw" ] } ], diff --git a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter9.ipynb b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter9.ipynb index 7d76afa3..2944362a 100644 --- a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter9.ipynb +++ b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter9.ipynb @@ -46,10 +46,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 9, Example 1\"\n", @@ -90,18 +86,7 @@ "print\"Reynolds no. is\"\n", "ReL=(4*mdotc)/(mu)\n", "print\"Therefore the flow is laminar and hence the use of the equation is justified\"\n", - "print\"ReL=\",ReL\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"ReL=\",ReL" ] }, { @@ -137,10 +122,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 9, Example 2\"\n", @@ -178,19 +159,7 @@ "#Re is reynolds number\n", "print\"Reynolds number is\"\n", "Re=(4*mdotc)/(mu*P)\n", - "print\"Re=\",Re\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"Re=\",Re" ] }, { @@ -228,10 +197,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 9, Example 3\"\n", @@ -278,29 +243,7 @@ "#v is the average flow velocity\n", "print\"Hence the average flow velocity at the trailing edge in m/s is\"\n", "v=(mdotc)/(rho*delta*B)\n", - "print\"v=\",v\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"v=\",v" ] }, { @@ -334,10 +277,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 9, Example 4\"\n", @@ -373,29 +312,7 @@ "#The rate of condensation is given by mdotc=(hbar*(pi*D*L)*(Tg-Tw))/hfg\n", "print\"The total rate of condensation in kg/hr\"\n", "mdotc=((hbar*(math.pi*D*L)*(Tg-Tw))/hfg)*3600\n", - "print\"mdotc=\",mdotc\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"mdotc=\",mdotc" ] }, { @@ -423,10 +340,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 9, Example 5\"\n", @@ -445,15 +358,7 @@ "#h is heat transfer coefficient\n", "print\"Heat transfer coefficient in W/m**2 is\"\n", "h=(E*I)/(A*(T1-T2))\n", - "print\"h=\",h\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"h=\",h" ] }, { @@ -483,10 +388,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 9, Example 6\"\n", @@ -513,23 +414,7 @@ "#E is the burn out voltage\n", "print\"The burn out voltage in Volts is \"\n", "E=(qc*A)/I\n", - "print\"E=\",E\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"E=\",E" ] }, { @@ -558,10 +443,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 9, Example 7\"\n", @@ -587,20 +468,7 @@ "print\"Heat flux q in W/m**2 is\"\n", "q=(mul*hfg)*(((rhol-rhov)*g)/sigma)**(1/2)*((cpl*(T1-T2))/(csf*hfg*Prl**n))**3 \n", "print\"The peak heat flux for water at one atmospheric pressure is qc=1.24*10**6(found in example 9.6).Since q<qc,The regime of boiling is nucleate.\"\n", - "print\"q=\",q\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"q=\",q" ] }, { @@ -612,7 +480,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 21, "metadata": { "collapsed": false }, @@ -627,15 +495,11 @@ "The surface temprature in °C is\n", "Tw= 120.0\n", "The value of the coefficient csf is \n", - "csf= 0.0151329179422\n" + "csf= 0.0214423761571\n" ] } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 9, Example 8\"\n", @@ -676,30 +540,8 @@ "#Now we use following equation to determine csf,q=(mul*hfg)*(((rhol-rhov)*g)/sigma1)**(1/2)*((cpl*(Tw-T))/(csf*hfg*Prl**n))**3 \n", "#Manipulating above equation to find csf we get csf=((cpl*(Tw-T))/(((q/((mul*hfg)*(((rhol-rhov)*g)/sigma1)**(1/2))**(1/3))*hfg*Prl**n))\n", "print\"The value of the coefficient csf is \"\n", - "csf=((cpl*(Tw-T))/(((q/((mul*hfg)*(((rhol-rhov)*g)/sigma1)**(1.0/2)))**(1.0/3))*hfg*Prl**n))#[NOTE:The answer in the book is incorrect.(Calcultion mistake)]\n", - "print\"csf=\",csf\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "csf=((cpl*(Tw-T))/(((q/((mul*hfg)*(((rhol-rhov)*g)/sigma1)**(1/2)))**(1/3))*hfg*Prl**n))#[NOTE:The answer in the book is incorrect.(Calcultion mistake)]\n", + "print\"csf=\",csf" ] } ], diff --git a/Introduction_to_Heat_Transfer_by_S._K._Som/chapter12.ipynb b/Introduction_to_Heat_Transfer_by_S._K._Som/chapter12.ipynb index 6fafa3fd..859ba636 100644 --- a/Introduction_to_Heat_Transfer_by_S._K._Som/chapter12.ipynb +++ b/Introduction_to_Heat_Transfer_by_S._K._Som/chapter12.ipynb @@ -39,7 +39,6 @@ } ], "source": [ - "\n", "import math\n", "\n", "print \"Introduction to heat transfer by S.K.Som, Chapter 12, Example 1\"\n", @@ -78,7 +77,7 @@ "#mass flow rate of air is mair\n", "print \"mass flow rate of air is given by m=Mair*Nair in kg/sec \"\n", "mair=Mair*Nair\n", - "print round(mair,11)\n" + "print round(mair,11)" ] }, { @@ -112,7 +111,6 @@ } ], "source": [ - "\n", "import math\n", "print \"Introduction to heat transfer by S.K.Som, Chapter 12, Example 2\"\n", "#The temprature of atmospheric air (T)=40°C which flows over a wet bulb thermometer.\n", @@ -193,7 +191,6 @@ } ], "source": [ - "\n", "import math\n", "\n", "print \"Introduction to heat transfer by S.K.Som, Chapter 12, Example 3\"\n", |