summaryrefslogtreecommitdiff
path: root/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter1.ipynb
diff options
context:
space:
mode:
authorTrupti Kini2017-03-17 23:30:25 +0600
committerTrupti Kini2017-03-17 23:30:25 +0600
commit2a5f1f9f2af82c46fbdba902c9dfdaba56c136b0 (patch)
tree7ce76ec82cb74706a939781d9bf0c7c9afab53e5 /Introduction_to_Heat_Transfer_by_S._K._Som/Chapter1.ipynb
parentd93e64cd264d30ae87de69ab9ab7f377d6047361 (diff)
downloadPython-Textbook-Companions-2a5f1f9f2af82c46fbdba902c9dfdaba56c136b0.tar.gz
Python-Textbook-Companions-2a5f1f9f2af82c46fbdba902c9dfdaba56c136b0.tar.bz2
Python-Textbook-Companions-2a5f1f9f2af82c46fbdba902c9dfdaba56c136b0.zip
Added(A)/Deleted(D) following books
M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter1.ipynb M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter10.ipynb M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter11.ipynb M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter2.ipynb M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter3.ipynb M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter4.ipynb M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter5.ipynb M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter6.ipynb M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter8.ipynb M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter9.ipynb M Introduction_to_Heat_Transfer_by_S._K._Som/chapter12.ipynb
Diffstat (limited to 'Introduction_to_Heat_Transfer_by_S._K._Som/Chapter1.ipynb')
-rw-r--r--Introduction_to_Heat_Transfer_by_S._K._Som/Chapter1.ipynb49
1 files changed, 19 insertions, 30 deletions
diff --git a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter1.ipynb b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter1.ipynb
index b36f371b..d3b728b1 100644
--- a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter1.ipynb
+++ b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter1.ipynb
@@ -57,7 +57,7 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 3,
"metadata": {
"collapsed": false
},
@@ -88,7 +88,7 @@
"#The thickness of masonry wall is Lm.\n",
"print\"The thickness of masonry wall is Lm in m\"\n",
"Lm=(km/kc)*(Lc/(0.8))\n",
- "print\"Lm=\",Lm\n"
+ "print\"Lm=\",Lm"
]
},
{
@@ -100,7 +100,7 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 5,
"metadata": {
"collapsed": false
},
@@ -139,7 +139,7 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 6,
"metadata": {
"collapsed": false
},
@@ -178,7 +178,7 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 14,
"metadata": {
"collapsed": false
},
@@ -189,9 +189,9 @@
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 1, Example 6\n",
"The rate of heat transfer from the plate is given by Q=hbr*A*(Ts-Tinf)\n",
- "Q= 16000.0\n",
+ "Q= 224.0\n",
"The rate of heat transfer can also be written in the form of Q=m*cp*|dT/dt| from an energy balance.\n",
- "Q= 16000.0\n",
+ "Q= 224.0\n",
"Equating the above two equations we get hbr=(m*cp*|dT/dt|)/(A*(Ts-Tinf)) in W/(m**2°C)\n",
"hbr= 11.2\n"
]
@@ -220,21 +220,7 @@
"print\"Q=\",Q\n",
"print\"Equating the above two equations we get hbr=(m*cp*|dT/dt|)/(A*(Ts-Tinf)) in W/(m**2°C)\"\n",
"hbr=(m*cp*10**3*X)/(A*(Ts-Tinf))\n",
- "print\"hbr=\",hbr\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n"
+ "print\"hbr=\",hbr"
]
},
{
@@ -246,7 +232,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 2,
"metadata": {
"collapsed": false
},
@@ -286,7 +272,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 4,
"metadata": {
"collapsed": false
},
@@ -312,7 +298,7 @@
"print\"The emitted radiant energy per unit surface area is given by Eb/A=sigma*T**4 in W/m**2\"\n",
"#Let Eb/A=F\n",
"F=sigma*(50+273.15)**4\n",
- "print\"F=\",F\n"
+ "print\"F=\",F"
]
},
{
@@ -324,7 +310,7 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 4,
"metadata": {
"collapsed": false
},
@@ -381,7 +367,7 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 19,
"metadata": {
"collapsed": false
},
@@ -390,9 +376,11 @@
"name": "stdout",
"output_type": "stream",
"text": [
- " Introduction to heat transfer by S.K.Som, Chapter 1, Example 10\n",
+ "Introduction to heat transfer by S.K.Som, Chapter 1, Example 10\n",
"Heat transfer from the outer surface takes place only by radiation is given by Q/A=F1=emi*sigma*(T2**4-T0**4)in W/m**2 for different values of tempratures in K\n",
+ "F1= 332.029390022\n",
"heat transfer from the outer surface can also be written as Q/A=F2=(Ti-To)/((1/hbri)+(L/k)+(1/hr)) in W/m**2 at different tempratures in K\n",
+ "F2= 332.132667923\n",
"The values of temprature that are considered are <298 K\n",
"Satisfactory solutions for Temprature in K is\n",
"T2= 292.5\n",
@@ -425,7 +413,9 @@
"#Radiation heat transfer coefficient(hr) is defined as Q/A=hr(T2-To)\n",
"#so hr=4.536*10**-8*T2**3\n",
"print\"Heat transfer from the outer surface takes place only by radiation is given by Q/A=F1=emi*sigma*(T2**4-T0**4)in W/m**2 for different values of tempratures in K\"\n",
+ "print\"F1=\",F1\n",
"print\"heat transfer from the outer surface can also be written as Q/A=F2=(Ti-To)/((1/hbri)+(L/k)+(1/hr)) in W/m**2 at different tempratures in K\"\n",
+ "print\"F2=\",F2\n",
"print\"The values of temprature that are considered are <298 K\"\n",
"for i in range(285,292):\n",
" T2=i\n",
@@ -498,8 +488,7 @@
"print\"The total heat loss by The pipe per unit length is given by Q/L=hbr*A*(T1-T2)+sigma*emi*A*(T1**4-T2**4) in W/m\"\n",
"#Let Q/L=F\n",
"F=hbr*A*((T1+273.15)-(T2+273.15))+sigma*emi*A*((T1+273.15)**4-(T2+273.15)**4)\n",
- "print\"F=\",F\n",
- "\n"
+ "print\"F=\",F"
]
}
],