diff options
Diffstat (limited to 'Fluid_Mechanics-Fundamentals_&_Applications')
33 files changed, 0 insertions, 15248 deletions
diff --git a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter01.ipynb b/Fluid_Mechanics-Fundamentals_&_Applications/Chapter01.ipynb deleted file mode 100755 index a3b70a74..00000000 --- a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter01.ipynb +++ /dev/null @@ -1,183 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:c34c39e4fb40d642c3ae82393f4b65b5c615304fa0c4ddc7e577754d641631ec" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 01:Introduction and Basic Concepts" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.1-2 Page Number 19" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Declaration\n", - "UnitCostOfEnergy=0.09 #Unit cost of Energy in $/kWh\n", - "TimeInterval=2200 # Time Interval in hours\n", - "EnergyperUnitTime=30 # Rated Power kW\n", - "\n", - "#Calculation\n", - "TotalEnergy=EnergyperUnitTime*TimeInterval # Total Energy in kWh\n", - " \n", - "#Money Saved\n", - "MoneySaved=TotalEnergy*UnitCostOfEnergy # Money Saved in $\n", - "\n", - "#Calculations in Joules\n", - "Tot=EnergyperUnitTime*TimeInterval*(3600) #Total Energy in kJ\n", - "\n", - "#Result\n", - "print\"The Total Energy Generated is\",round(TotalEnergy),\"kWh\"\n", - "print\"The Total Money Saved is\",round(MoneySaved),\"$\" " - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Total Energy Generated is 66000.0 kWh\n", - "The Total Money Saved is 5940.0 $\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.1-3, Page Number 20" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "rho=850 #density of oil in kg/m^3\n", - "V=2 #Volume of tank in m^3\n", - "\n", - "#Calculations\n", - "#We intend to find m\n", - "m=rho*V #mass in the tank in kg\n", - "\n", - "#Result\n", - "print\"The mass in the tank is\", round(m),\"kg\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The mass in the tank is 1700.0 kg\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.1-4, Page Number 21" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "m=1 #mass in lbm\n", - "g=32.174 #Gravatational Acceleration in ft/s^2\n", - "\n", - "#Calculations\n", - "W=(m*g)*(1/g) #weight in lbf\n", - "\n", - "#Result\n", - "print\"The weight in lbf is \",round(W),\"lbf\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The weight in lbf is 1.0 lbf\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.1-6, Page Number 30" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V=1.1 #Volume of water collected in gal \n", - "delt=45.62 # time required in s\n", - "gal_conv=3.785*10**-3 #Gal conversion constant\n", - "mi=60 #1 minute equals 60 seconds \n", - "\n", - "#Calculations\n", - "V_dot=(V/delt)*(gal_conv/1)*(mi/1) #Volume flow rate in m^3/min\n", - "\n", - "#Result\n", - "print\"The volume flow rate is \",round(V_dot,4), \"m^3/min\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The volume flow rate is 0.0055 m^3/min\n" - ] - } - ], - "prompt_number": 1 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter01_1.ipynb b/Fluid_Mechanics-Fundamentals_&_Applications/Chapter01_1.ipynb deleted file mode 100755 index a3b70a74..00000000 --- a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter01_1.ipynb +++ /dev/null @@ -1,183 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:c34c39e4fb40d642c3ae82393f4b65b5c615304fa0c4ddc7e577754d641631ec" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 01:Introduction and Basic Concepts" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.1-2 Page Number 19" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Declaration\n", - "UnitCostOfEnergy=0.09 #Unit cost of Energy in $/kWh\n", - "TimeInterval=2200 # Time Interval in hours\n", - "EnergyperUnitTime=30 # Rated Power kW\n", - "\n", - "#Calculation\n", - "TotalEnergy=EnergyperUnitTime*TimeInterval # Total Energy in kWh\n", - " \n", - "#Money Saved\n", - "MoneySaved=TotalEnergy*UnitCostOfEnergy # Money Saved in $\n", - "\n", - "#Calculations in Joules\n", - "Tot=EnergyperUnitTime*TimeInterval*(3600) #Total Energy in kJ\n", - "\n", - "#Result\n", - "print\"The Total Energy Generated is\",round(TotalEnergy),\"kWh\"\n", - "print\"The Total Money Saved is\",round(MoneySaved),\"$\" " - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Total Energy Generated is 66000.0 kWh\n", - "The Total Money Saved is 5940.0 $\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.1-3, Page Number 20" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "rho=850 #density of oil in kg/m^3\n", - "V=2 #Volume of tank in m^3\n", - "\n", - "#Calculations\n", - "#We intend to find m\n", - "m=rho*V #mass in the tank in kg\n", - "\n", - "#Result\n", - "print\"The mass in the tank is\", round(m),\"kg\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The mass in the tank is 1700.0 kg\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.1-4, Page Number 21" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "m=1 #mass in lbm\n", - "g=32.174 #Gravatational Acceleration in ft/s^2\n", - "\n", - "#Calculations\n", - "W=(m*g)*(1/g) #weight in lbf\n", - "\n", - "#Result\n", - "print\"The weight in lbf is \",round(W),\"lbf\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The weight in lbf is 1.0 lbf\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.1-6, Page Number 30" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V=1.1 #Volume of water collected in gal \n", - "delt=45.62 # time required in s\n", - "gal_conv=3.785*10**-3 #Gal conversion constant\n", - "mi=60 #1 minute equals 60 seconds \n", - "\n", - "#Calculations\n", - "V_dot=(V/delt)*(gal_conv/1)*(mi/1) #Volume flow rate in m^3/min\n", - "\n", - "#Result\n", - "print\"The volume flow rate is \",round(V_dot,4), \"m^3/min\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The volume flow rate is 0.0055 m^3/min\n" - ] - } - ], - "prompt_number": 1 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter02.ipynb b/Fluid_Mechanics-Fundamentals_&_Applications/Chapter02.ipynb deleted file mode 100755 index 1f521182..00000000 --- a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter02.ipynb +++ /dev/null @@ -1,330 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:e6bfcf139b40c8bb0a720cb8a5d777909d42ae46922a9515532a8aeacdd6716f" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 02:Properties of Fluids" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.2-1, Page Number 41" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - " \n", - "#Variable Decleration\n", - "l=6 #Length in m\n", - "b=4 #Breadth in m\n", - "h=5 #Height in m\n", - "R=0.287 #Gas Constant in kPa.m^3/kg.K\n", - "P=100 # pressure in kPa\n", - "T=25 # Temperature in degree Centigrade\n", - "To=273.15 #Temperature conversion in Kelvin\n", - "rho_H2O=1000 #Density of water\n", - "\n", - "#Calculations\n", - "rho=P/(R*(T+To)) #Density in kg/m^3\n", - "SG=rho/rho_H2O #Specific Gravity of Air\n", - "V=l*b*h #Volume of the room in m^3\n", - "m=rho*V #mass of air in kg\n", - "\n", - "#Results\n", - "print\"The density of Air is\", round(rho,2), \"kg/m^3\"\n", - "print\"The Specific Gravity of Air is\",round(SG,5)\n", - "print\"The mass of air is\",round(m),\"kg\"\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The density of Air is 1.17 kg/m^3\n", - "The Specific Gravity of Air is 0.00117\n", - "The mass of air is 140.0 kg\n" - ] - } - ], - "prompt_number": 15 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.2-2, Page Number 42" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "T=30 #Temperature in the System in Degree Centigrade\n", - "#Value from the table for corresponding Temperature\n", - "P=4.25 #Pressure in kPa\n", - "\n", - "#Calculations\n", - "Pmin=P #Minimum Pressure to avoid Cavitation in kPa\n", - "\n", - "#Result\n", - "print\"The minimum pressure required to avoid cavitation is\",Pmin,\"kPa\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The minimum pressure required to avoid cavitation is 4.25 kPa\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.2-3, Page No:47" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "#The variables repeat hence a different notation has been used to code the following example\n", - "#Variable Decleration\n", - "T1=20 #Temperature of water Initially in Degree Centigrade\n", - "P1=1 #Pressure initially in atm\n", - "T2=50 #Temperature of water after heating in Degree Centigrade\n", - "P2=100 #Pressure after Compression in atm\n", - "rho=998 # density of water at 1 atm in kg/m^3\n", - "alpha=4.8*10**-5 #isothermal compressibility of water in atm^-1\n", - "beta=0.337*10**-3 #Coefficient of volume expansion at avg temp in K^-1\n", - "\n", - "#Calculations\n", - "\n", - "#Part (a)\n", - "deltarho1=-beta*rho*(T2-T1) #Change in density in kg/m^3\n", - "rho2a=deltarho1+rho #density of water at 50 degrees in kg/m^3\n", - "\n", - "#Part(b)\n", - "deltarho2=alpha*rho*(P2-P1) #Change in density in kg/m^3\n", - "rho2b=rho+deltarho2 #density of water at 100atm and 20 degrees in kg/m^3\n", - "\n", - "#Result\n", - "print\"The density changes to\", round(rho2a),\"kg/m^3 when heated to 50 degrees\"\n", - "print\"The density changes to\",round(rho2b,1),\"kg/m^3 when compressed to 100atm isothermally\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The density changes to 988.0 kg/m^3 when heated to 50 degrees\n", - "The density changes to 1002.7 kg/m^3 when compressed to 100atm isothermally\n" - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.2-4, Page No: 50" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V=200 #Speed of air in m/s\n", - "T=30 #Temperature in degree centigrade\n", - "k=1.4 #Specific Heat Ratio\n", - "R=0.287 #Gas Constant in kJ/kg K\n", - "To=273.15 #Temperature conversion factor\n", - "f=1000 #conversion factor in m^2/s^2\n", - "\n", - "#Calculations\n", - "\n", - "#Part(a)\n", - "c=(k*R*(T+To)*(f))**0.5 #Speed of sound in m/s\n", - "\n", - "#Part(b)\n", - "Ma=V/c #Mach Number\n", - "\n", - "#Result\n", - "print\"The speed of sound in air at 30degrees is\",round(c),\"m/s\"\n", - "print\"The mach number is\",round(Ma,3),\" which is subsonic since Ma<1\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The speed of sound in air at 30degrees is 349.0 m/s\n", - "The mach number is 0.573 which is subsonic since Ma<1\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.2-5, Page No:55" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "L=0.4 #Length of viscometer in m\n", - "T=1.8 #Torque measured in N.m\n", - "l=0.0015 #Gap between the two cylinders in m\n", - "R=0.06 #Radius if inner shaft in m\n", - "ndot=300/60 #speed of the shaft\n", - "\n", - "#Calculations\n", - "mu=(T*l)/(4*pi**2*R**3*ndot*L) #Viscosity in s/m^2\n", - "\n", - "#Result\n", - "print\"The viscosity of the liquid is\",round(mu,3),\"s/m^2\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The viscosity of the liquid is 0.158 s/m^2\n" - ] - } - ], - "prompt_number": 18 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.2-6, Page No:59" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "R=0.3*10**-3 #Radius of glass tube in m\n", - "sigma_s=0.073 #Surface Tension in water at 20 degrees in N/m\n", - "phi=0 #Angle made by the water surface in degrees\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "rho=1000 #Density of water in kg/m^3\n", - "\n", - "#Calculations\n", - "h_m=(2*sigma_s*cos(phi))/(rho*g*R) #Capillary rise in m\n", - "h=h_m*100 #Capillary rise in cm\n", - "\n", - "#Result\n", - "print\"The capillary rise is\",round(h),\"cm\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The capillary rise is 5.0 cm\n" - ] - } - ], - "prompt_number": 21 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example No:2.2-7, Page No:60" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "rho_water=1000 #Density of water in kg/m^3\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "h=0.05 #Capillary Rise in m\n", - "\n", - "#Calculations\n", - "deltaP=(rho_water*g*h)/(1000*100) #Pressure difference in atm\n", - "\n", - "#Result\n", - "print\"The pressure difference is\",round(deltaP,3),\"atm\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The pressure difference is 0.005 atm\n" - ] - } - ], - "prompt_number": 23 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter02_1.ipynb b/Fluid_Mechanics-Fundamentals_&_Applications/Chapter02_1.ipynb deleted file mode 100755 index 1f521182..00000000 --- a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter02_1.ipynb +++ /dev/null @@ -1,330 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:e6bfcf139b40c8bb0a720cb8a5d777909d42ae46922a9515532a8aeacdd6716f" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 02:Properties of Fluids" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.2-1, Page Number 41" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - " \n", - "#Variable Decleration\n", - "l=6 #Length in m\n", - "b=4 #Breadth in m\n", - "h=5 #Height in m\n", - "R=0.287 #Gas Constant in kPa.m^3/kg.K\n", - "P=100 # pressure in kPa\n", - "T=25 # Temperature in degree Centigrade\n", - "To=273.15 #Temperature conversion in Kelvin\n", - "rho_H2O=1000 #Density of water\n", - "\n", - "#Calculations\n", - "rho=P/(R*(T+To)) #Density in kg/m^3\n", - "SG=rho/rho_H2O #Specific Gravity of Air\n", - "V=l*b*h #Volume of the room in m^3\n", - "m=rho*V #mass of air in kg\n", - "\n", - "#Results\n", - "print\"The density of Air is\", round(rho,2), \"kg/m^3\"\n", - "print\"The Specific Gravity of Air is\",round(SG,5)\n", - "print\"The mass of air is\",round(m),\"kg\"\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The density of Air is 1.17 kg/m^3\n", - "The Specific Gravity of Air is 0.00117\n", - "The mass of air is 140.0 kg\n" - ] - } - ], - "prompt_number": 15 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.2-2, Page Number 42" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "T=30 #Temperature in the System in Degree Centigrade\n", - "#Value from the table for corresponding Temperature\n", - "P=4.25 #Pressure in kPa\n", - "\n", - "#Calculations\n", - "Pmin=P #Minimum Pressure to avoid Cavitation in kPa\n", - "\n", - "#Result\n", - "print\"The minimum pressure required to avoid cavitation is\",Pmin,\"kPa\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The minimum pressure required to avoid cavitation is 4.25 kPa\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.2-3, Page No:47" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "#The variables repeat hence a different notation has been used to code the following example\n", - "#Variable Decleration\n", - "T1=20 #Temperature of water Initially in Degree Centigrade\n", - "P1=1 #Pressure initially in atm\n", - "T2=50 #Temperature of water after heating in Degree Centigrade\n", - "P2=100 #Pressure after Compression in atm\n", - "rho=998 # density of water at 1 atm in kg/m^3\n", - "alpha=4.8*10**-5 #isothermal compressibility of water in atm^-1\n", - "beta=0.337*10**-3 #Coefficient of volume expansion at avg temp in K^-1\n", - "\n", - "#Calculations\n", - "\n", - "#Part (a)\n", - "deltarho1=-beta*rho*(T2-T1) #Change in density in kg/m^3\n", - "rho2a=deltarho1+rho #density of water at 50 degrees in kg/m^3\n", - "\n", - "#Part(b)\n", - "deltarho2=alpha*rho*(P2-P1) #Change in density in kg/m^3\n", - "rho2b=rho+deltarho2 #density of water at 100atm and 20 degrees in kg/m^3\n", - "\n", - "#Result\n", - "print\"The density changes to\", round(rho2a),\"kg/m^3 when heated to 50 degrees\"\n", - "print\"The density changes to\",round(rho2b,1),\"kg/m^3 when compressed to 100atm isothermally\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The density changes to 988.0 kg/m^3 when heated to 50 degrees\n", - "The density changes to 1002.7 kg/m^3 when compressed to 100atm isothermally\n" - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.2-4, Page No: 50" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V=200 #Speed of air in m/s\n", - "T=30 #Temperature in degree centigrade\n", - "k=1.4 #Specific Heat Ratio\n", - "R=0.287 #Gas Constant in kJ/kg K\n", - "To=273.15 #Temperature conversion factor\n", - "f=1000 #conversion factor in m^2/s^2\n", - "\n", - "#Calculations\n", - "\n", - "#Part(a)\n", - "c=(k*R*(T+To)*(f))**0.5 #Speed of sound in m/s\n", - "\n", - "#Part(b)\n", - "Ma=V/c #Mach Number\n", - "\n", - "#Result\n", - "print\"The speed of sound in air at 30degrees is\",round(c),\"m/s\"\n", - "print\"The mach number is\",round(Ma,3),\" which is subsonic since Ma<1\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The speed of sound in air at 30degrees is 349.0 m/s\n", - "The mach number is 0.573 which is subsonic since Ma<1\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.2-5, Page No:55" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "L=0.4 #Length of viscometer in m\n", - "T=1.8 #Torque measured in N.m\n", - "l=0.0015 #Gap between the two cylinders in m\n", - "R=0.06 #Radius if inner shaft in m\n", - "ndot=300/60 #speed of the shaft\n", - "\n", - "#Calculations\n", - "mu=(T*l)/(4*pi**2*R**3*ndot*L) #Viscosity in s/m^2\n", - "\n", - "#Result\n", - "print\"The viscosity of the liquid is\",round(mu,3),\"s/m^2\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The viscosity of the liquid is 0.158 s/m^2\n" - ] - } - ], - "prompt_number": 18 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.2-6, Page No:59" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "R=0.3*10**-3 #Radius of glass tube in m\n", - "sigma_s=0.073 #Surface Tension in water at 20 degrees in N/m\n", - "phi=0 #Angle made by the water surface in degrees\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "rho=1000 #Density of water in kg/m^3\n", - "\n", - "#Calculations\n", - "h_m=(2*sigma_s*cos(phi))/(rho*g*R) #Capillary rise in m\n", - "h=h_m*100 #Capillary rise in cm\n", - "\n", - "#Result\n", - "print\"The capillary rise is\",round(h),\"cm\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The capillary rise is 5.0 cm\n" - ] - } - ], - "prompt_number": 21 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example No:2.2-7, Page No:60" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "rho_water=1000 #Density of water in kg/m^3\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "h=0.05 #Capillary Rise in m\n", - "\n", - "#Calculations\n", - "deltaP=(rho_water*g*h)/(1000*100) #Pressure difference in atm\n", - "\n", - "#Result\n", - "print\"The pressure difference is\",round(deltaP,3),\"atm\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The pressure difference is 0.005 atm\n" - ] - } - ], - "prompt_number": 23 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter03.ipynb b/Fluid_Mechanics-Fundamentals_&_Applications/Chapter03.ipynb deleted file mode 100755 index 452bb164..00000000 --- a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter03.ipynb +++ /dev/null @@ -1,611 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:25701a9cfe4b4cc9d1ac8cc6f44b8c627a0c35030270fb7b840fda02e1793c63" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 03:Pressure and Fluid Statics" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.3-1, Page No:75" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "Pvac=40 #Vaccum Gauge Reading in kPa\n", - "Patm=100 #Atmospheric Pressure in kPa\n", - "\n", - "\n", - "#Calculations\n", - "Pabs=Patm-Pvac #Absolute Pressure reading in kPa\n", - "\n", - "\n", - "#Result\n", - "print\"The absolute Pressure is\",Pabs,\"kPa\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The absolute Pressure is 60 kPa\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.3-2, Page No:80" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "h=0.74 #Barmoetric Pressure in m\n", - "g=9.805 #Acceleration due to gravity in m/s^2\n", - "rho=13570 #Density of mercury in kg/m^3\n", - "c=1000 #Conversion factor in N/m^2\n", - "\n", - "\n", - "#Calculations\n", - "Patm=(rho*g*h)/c #Atmospheric Pressure in kPa\n", - "\n", - "\n", - "#Result\n", - "print\"The Atmospheric Pressure is\",round(Patm,1),\"kPa\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Atmospheric Pressure is 98.5 kPa\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.3-3, Page No:80" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "h_arm_bottle=1.2 #Height of bottle above armlevel in m\n", - "rho=1020 #Density of IV fluid in kg/m^3\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "P_gauge=20 #Gauge pressure in part b calculations in kPa\n", - "c=1000 #Conversion factor in kg.m/s^2\n", - "\n", - "\n", - "#Calculations\n", - "\n", - "#Part(a)\n", - "Pgaugearm=rho*g*h_arm_bottle/c #Gauge Pressure in kPa\n", - "\n", - "#Part(b)\n", - "h_arm_bottle=(P_gauge*c)/(rho*g) # Height of the surface of the IV Fluid in m\n", - "\n", - "#Result\n", - "print\"The gaguge pressure at 1.2m is\",round(Pgaugearm),\"kPa\"\n", - "print\"The height of the surface of the IV Fluid at 20kPa is\",round(h_arm_bottle),\"m\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The gaguge pressure at 1.2m is 12.0 kPa\n", - "The height of the surface of the IV Fluid at 20kPa is 2.0 m\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.3-4, Page No:81" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "H=4 #Thickness of gradient zone in m\n", - "rho_o=1040 #Density at the water surface in kg/m^3\n", - "s=4 #Depth in m\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "h1=0.8 #Surface zone thickness in m\n", - "c=1000 #Conversion Factor in kg.m/s^2\n", - "pi=3.14\n", - "\n", - "\n", - "#Calculations\n", - "P1=(rho_o*g*h1)/c # Gauge Pressure at bottom of surface zone in kPa\n", - "\n", - "\n", - "#After carrying out the integral\n", - "\n", - "\n", - "#The next three steps are for mere mathametical simplicity\n", - "theta=(pi*s)/(4*H) #Angle Conversion into degrees\n", - "x=round(tan(theta)) #Tangent calculation\n", - "y=arcsinh(x) #Sine Inverse Hyperbolic calculation\n", - "P2=P1+((y*rho_o*g*4*H)/(pi*c)) #Gauge Pressure at the bottom in kPa \n", - "\n", - "\n", - "\n", - "#Result\n", - "print\"The gauge pressure at the bottom is\",round(P2),\"kPa\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The gauge pressure at the bottom is 54.0 kPa\n" - ] - } - ], - "prompt_number": 36 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.3-5, Page No:83" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "SG=0.85 #Specific Gravity of the Fluid \n", - "h=0.55 #Manometer column height in m\n", - "rho_H2O=1000 #Density of water in kg/m^3\n", - "Patm=96 #Local Atmospheric Pressure in kPa\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "c=1000 #Conversion Factor in N/m^2\n", - "\n", - "\n", - "#Calculations\n", - "rho=rho_H2O*SG #Density of the fluid in kg/m^3\n", - "P=Patm+((rho*g*h)/c) #Absolute Pressure in the tank in kPa\n", - "\n", - "\n", - "\n", - "#Result\n", - "print\"The absolute pressure in the tank is\",round(P,1),\"kPa\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The absolute pressure in the tank is 100.6 kPa\n" - ] - } - ], - "prompt_number": 39 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.3-6, Page No:84" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "H=1400 #Altitude of tank in m\n", - "Patm=85.6 #Atmospheric Pressure at H altitude in kPa\n", - "h1=0.1 #m\n", - "h2=0.2 #m\n", - "h3=0.35 #m\n", - "rho_water=1000 #Density of water in kg/m^3\n", - "rho_oil=850 #Density of oil in kg/m^3\n", - "rho_mercury=13600 #Density of mercury in kg/m^3\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "c=1000 #Conversion Factor in N/m^2\n", - "\n", - "\n", - "\n", - "#Calculations\n", - "\n", - "#For Simplicity we do the following\n", - "X=g*(rho_mercury*h3-rho_water*h1-rho_oil*h2)\n", - "P1=Patm+((X/c)) #Pressure at point 1 in kPa\n", - "\n", - "#Result\n", - "print\"The pressure at point1 is\",round(P1),\"kPa\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The pressure at point1 is 130.0 kPa\n" - ] - } - ], - "prompt_number": 53 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.3-8,Page No:92\n" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "s=8 #Distance of top of the edge of the door in m\n", - "b=1.2 #Height of the door in m\n", - "w=1 #width of the door\n", - "rho=1000 #Density of water in kg/m^3\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "c=1000 #Conversion Factor in kg.m/s^2\n", - "\n", - "#Calculations\n", - "Pavg=(rho*g*(s+(b/2)))/c #Average Pressure in kN/m^2\n", - "\n", - "#Hydrostatic Force\n", - "Fr=Pavg*(b*w) #Hydrostatic Force in kN\n", - "yp=s+(b/2)+(b**2/(12*(s+(b/2)))) #Center of pressure in m\n", - "\n", - "#Result\n", - "print\"The Average Pressure is\",round(Pavg,1),\"kN/m^2\"\n", - "print\"The resultant Hydrostatic Force is\",round(Fr,1),\"kN\"\n", - "print\"The center of pressure is at\",round(yp,2),\"m\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Average Pressure is 84.4 kN/m^2\n", - "The resultant Hydrostatic Force is 101.2 kN\n", - "The center of pressure is at 8.61 m\n" - ] - } - ], - "prompt_number": 56 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.3-9,Page No:95\n" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "R=0.8 #Radius in m\n", - "s=4.2 #m\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "rho=1000 #Density of water in kg/m^3\n", - "b=1 #m\n", - "h_bottom=5 #Depth in m\n", - "c=1000 #Conversion Factor in kg m/s^2\n", - "\n", - "#Calculations\n", - "\n", - "#Part(a)\n", - "\n", - "#Horizontal Force \n", - "Fh=(rho*g*(s+(R/2))*(R*b))/c #Horizontal Force in kN\n", - "\n", - "#Verticla Force\n", - "Fy=(rho*g*h_bottom*R*b)/c #Vertical Force in kN\n", - "\n", - "#Weight of fluid block\n", - "W=(rho*g*(R**2-((pi*R**2)/4))*b)/c #Weight of fluid block in kN\n", - "Fv=Fy-W #Net upward Force in kN\n", - "Fr=(Fh**2+Fv**2)**0.5 #Resultant Force in kN\n", - "thet=arctan(Fv/Fh) #Theta in radians\n", - "theta=(180/pi)*thet #Thetain degrees\n", - "\n", - "#Part(b)\n", - "\n", - "#Weight of the cylinder per m length\n", - "Wcyl=Fr*sin(thet) #Weight of the cylinder in kN\n", - "\n", - "#Result\n", - "print\"The magnitude of hydrostatic force is\",round(Fr,1),\"kN\"\n", - "print\"The direction of the hydrostatic force is\",round(theta,1),\"degrees\"\n", - "print\"The weight of the cylinder per m length is\",round(Wcyl,1),\"kN\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The magnitude of hydrostatic force is 52.3 kN\n", - "The direction of the hydrostatic force is 46.4 degrees\n", - "The weight of the cylinder per m length is 37.9 kN\n" - ] - } - ], - "prompt_number": 68 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.3-10,Page No:98" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "rho_w=1000 #Density of water in kg/m^3\n", - "h_sub=0.1 #m\n", - "R=0.005 #Radius in m\n", - "\n", - "#Calculations\n", - "\n", - "#Part(a) is theoretical hence not coded here\n", - "\n", - "#Part(b)\n", - "V=pi*R**2*h_sub #Volume in m^3\n", - "m=rho_w*V # Mass in kg\n", - "\n", - "#Result\n", - "print\"The mass is\",m,\"kg\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The mass is 0.00785 kg\n" - ] - } - ], - "prompt_number": 70 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.3-11,Page No:99" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "rho_f=1025 #Density of sea-water in kg/m^3\n", - "rho_concrete=2300 #Density of concrete in kg/m^3\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "l=0.4 #length of block in m\n", - "b=0.4 #breadth of block in m\n", - "h=3 #height of block in m\n", - "c=1000 #Conversion factor in kg.m/s^2\n", - "\n", - "#Calculations\n", - "\n", - "#Part(a)\n", - "V=l*b*h #Volume in m^3\n", - "Ft_air=(rho_concrete*g*V)/c #Tension in the rope in kN\n", - "W=Ft_air #kN\n", - "\n", - "#Part(b)\n", - "Fb=(rho_f*g*V)/c #Force of Buoyancy in kN\n", - "\n", - "Ft_Water=W-Fb #Tension in the rope under water in kN\n", - "\n", - "#Result\n", - "print\"The tension in the string under water is\",round(Ft_Water),\"kN\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The tension in the string under water is 6.0 kN\n" - ] - } - ], - "prompt_number": 72 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.3-12, Page No:106" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable decleration\n", - "vo=0 #Initial Velocity in km/h\n", - "vf=90 #Final Velocity in km/h\n", - "t=10 #Acceleration time in s\n", - "h=0.8 #Height of the tank in m\n", - "b1=2 #Breadth of the tank in m\n", - "b2=0.6 #Width of the tank in m\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "c=3.6 #Conversion factor in km/h\n", - "az=0 #Acceleration in the z direction in m/s^2\n", - "d=100 #Conversion from m to cm\n", - "\n", - "#Calculations\n", - "ax=((vf-vo)/t)/c #Acceleration in x direction in m/s^2\n", - "thet=arctan(ax/(g+az)) #Theta in radians\n", - "\n", - "#CASE 1\n", - "delta_zs1=d*(b1/2)*tan(thet) #cm\n", - "\n", - "#CASE 2\n", - "delta_zs2=d*(b2/2)*tan(thet) #cm\n", - "\n", - "#Result\n", - "print\"Assuming the tipping is not a problem,The tank should be definitely be placed in such a\"\n", - "print\"way that the short side is parallel to the direction of motion\"\n", - "print\"As\",round(delta_zs2,1),\"cm <\",round(delta_zs1,1),\"cm\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Assuming the tipping is not a problem,The tank should be definitely be placed in such a\n", - "way that the short side is parallel to the direction of motion\n", - "As 7.6 cm < 25.5 cm\n" - ] - } - ], - "prompt_number": 78 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.3-13,Page No:109" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "H=0.6 #Height of vertical cylinder container in m\n", - "ho=0.5 #Height of partially filled container in m\n", - "rho=850 #Density of liquid in kg/m^3\n", - "R=0.1 #Radius in m\n", - "c=60 #Conversion factor in s\n", - "\n", - "#Calculations\n", - "w=((4*g*(H-ho))/R**2)**0.5 #Max rotational Speer in rad/s\n", - "n_dot=(w/(2*pi))*c #RPM\n", - "\n", - "#Result\n", - "print\"The Rotational speed at which the liquid just starts to spill is\",round(n_dot),\"RPM\"\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Rotational speed at which the liquid just starts to spill is 189.0 RPM\n" - ] - } - ], - "prompt_number": 81 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter03_1.ipynb b/Fluid_Mechanics-Fundamentals_&_Applications/Chapter03_1.ipynb deleted file mode 100755 index 452bb164..00000000 --- a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter03_1.ipynb +++ /dev/null @@ -1,611 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:25701a9cfe4b4cc9d1ac8cc6f44b8c627a0c35030270fb7b840fda02e1793c63" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 03:Pressure and Fluid Statics" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.3-1, Page No:75" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "Pvac=40 #Vaccum Gauge Reading in kPa\n", - "Patm=100 #Atmospheric Pressure in kPa\n", - "\n", - "\n", - "#Calculations\n", - "Pabs=Patm-Pvac #Absolute Pressure reading in kPa\n", - "\n", - "\n", - "#Result\n", - "print\"The absolute Pressure is\",Pabs,\"kPa\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The absolute Pressure is 60 kPa\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.3-2, Page No:80" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "h=0.74 #Barmoetric Pressure in m\n", - "g=9.805 #Acceleration due to gravity in m/s^2\n", - "rho=13570 #Density of mercury in kg/m^3\n", - "c=1000 #Conversion factor in N/m^2\n", - "\n", - "\n", - "#Calculations\n", - "Patm=(rho*g*h)/c #Atmospheric Pressure in kPa\n", - "\n", - "\n", - "#Result\n", - "print\"The Atmospheric Pressure is\",round(Patm,1),\"kPa\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Atmospheric Pressure is 98.5 kPa\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.3-3, Page No:80" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "h_arm_bottle=1.2 #Height of bottle above armlevel in m\n", - "rho=1020 #Density of IV fluid in kg/m^3\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "P_gauge=20 #Gauge pressure in part b calculations in kPa\n", - "c=1000 #Conversion factor in kg.m/s^2\n", - "\n", - "\n", - "#Calculations\n", - "\n", - "#Part(a)\n", - "Pgaugearm=rho*g*h_arm_bottle/c #Gauge Pressure in kPa\n", - "\n", - "#Part(b)\n", - "h_arm_bottle=(P_gauge*c)/(rho*g) # Height of the surface of the IV Fluid in m\n", - "\n", - "#Result\n", - "print\"The gaguge pressure at 1.2m is\",round(Pgaugearm),\"kPa\"\n", - "print\"The height of the surface of the IV Fluid at 20kPa is\",round(h_arm_bottle),\"m\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The gaguge pressure at 1.2m is 12.0 kPa\n", - "The height of the surface of the IV Fluid at 20kPa is 2.0 m\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.3-4, Page No:81" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "H=4 #Thickness of gradient zone in m\n", - "rho_o=1040 #Density at the water surface in kg/m^3\n", - "s=4 #Depth in m\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "h1=0.8 #Surface zone thickness in m\n", - "c=1000 #Conversion Factor in kg.m/s^2\n", - "pi=3.14\n", - "\n", - "\n", - "#Calculations\n", - "P1=(rho_o*g*h1)/c # Gauge Pressure at bottom of surface zone in kPa\n", - "\n", - "\n", - "#After carrying out the integral\n", - "\n", - "\n", - "#The next three steps are for mere mathametical simplicity\n", - "theta=(pi*s)/(4*H) #Angle Conversion into degrees\n", - "x=round(tan(theta)) #Tangent calculation\n", - "y=arcsinh(x) #Sine Inverse Hyperbolic calculation\n", - "P2=P1+((y*rho_o*g*4*H)/(pi*c)) #Gauge Pressure at the bottom in kPa \n", - "\n", - "\n", - "\n", - "#Result\n", - "print\"The gauge pressure at the bottom is\",round(P2),\"kPa\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The gauge pressure at the bottom is 54.0 kPa\n" - ] - } - ], - "prompt_number": 36 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.3-5, Page No:83" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "SG=0.85 #Specific Gravity of the Fluid \n", - "h=0.55 #Manometer column height in m\n", - "rho_H2O=1000 #Density of water in kg/m^3\n", - "Patm=96 #Local Atmospheric Pressure in kPa\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "c=1000 #Conversion Factor in N/m^2\n", - "\n", - "\n", - "#Calculations\n", - "rho=rho_H2O*SG #Density of the fluid in kg/m^3\n", - "P=Patm+((rho*g*h)/c) #Absolute Pressure in the tank in kPa\n", - "\n", - "\n", - "\n", - "#Result\n", - "print\"The absolute pressure in the tank is\",round(P,1),\"kPa\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The absolute pressure in the tank is 100.6 kPa\n" - ] - } - ], - "prompt_number": 39 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.3-6, Page No:84" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "H=1400 #Altitude of tank in m\n", - "Patm=85.6 #Atmospheric Pressure at H altitude in kPa\n", - "h1=0.1 #m\n", - "h2=0.2 #m\n", - "h3=0.35 #m\n", - "rho_water=1000 #Density of water in kg/m^3\n", - "rho_oil=850 #Density of oil in kg/m^3\n", - "rho_mercury=13600 #Density of mercury in kg/m^3\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "c=1000 #Conversion Factor in N/m^2\n", - "\n", - "\n", - "\n", - "#Calculations\n", - "\n", - "#For Simplicity we do the following\n", - "X=g*(rho_mercury*h3-rho_water*h1-rho_oil*h2)\n", - "P1=Patm+((X/c)) #Pressure at point 1 in kPa\n", - "\n", - "#Result\n", - "print\"The pressure at point1 is\",round(P1),\"kPa\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The pressure at point1 is 130.0 kPa\n" - ] - } - ], - "prompt_number": 53 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.3-8,Page No:92\n" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "s=8 #Distance of top of the edge of the door in m\n", - "b=1.2 #Height of the door in m\n", - "w=1 #width of the door\n", - "rho=1000 #Density of water in kg/m^3\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "c=1000 #Conversion Factor in kg.m/s^2\n", - "\n", - "#Calculations\n", - "Pavg=(rho*g*(s+(b/2)))/c #Average Pressure in kN/m^2\n", - "\n", - "#Hydrostatic Force\n", - "Fr=Pavg*(b*w) #Hydrostatic Force in kN\n", - "yp=s+(b/2)+(b**2/(12*(s+(b/2)))) #Center of pressure in m\n", - "\n", - "#Result\n", - "print\"The Average Pressure is\",round(Pavg,1),\"kN/m^2\"\n", - "print\"The resultant Hydrostatic Force is\",round(Fr,1),\"kN\"\n", - "print\"The center of pressure is at\",round(yp,2),\"m\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Average Pressure is 84.4 kN/m^2\n", - "The resultant Hydrostatic Force is 101.2 kN\n", - "The center of pressure is at 8.61 m\n" - ] - } - ], - "prompt_number": 56 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.3-9,Page No:95\n" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "R=0.8 #Radius in m\n", - "s=4.2 #m\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "rho=1000 #Density of water in kg/m^3\n", - "b=1 #m\n", - "h_bottom=5 #Depth in m\n", - "c=1000 #Conversion Factor in kg m/s^2\n", - "\n", - "#Calculations\n", - "\n", - "#Part(a)\n", - "\n", - "#Horizontal Force \n", - "Fh=(rho*g*(s+(R/2))*(R*b))/c #Horizontal Force in kN\n", - "\n", - "#Verticla Force\n", - "Fy=(rho*g*h_bottom*R*b)/c #Vertical Force in kN\n", - "\n", - "#Weight of fluid block\n", - "W=(rho*g*(R**2-((pi*R**2)/4))*b)/c #Weight of fluid block in kN\n", - "Fv=Fy-W #Net upward Force in kN\n", - "Fr=(Fh**2+Fv**2)**0.5 #Resultant Force in kN\n", - "thet=arctan(Fv/Fh) #Theta in radians\n", - "theta=(180/pi)*thet #Thetain degrees\n", - "\n", - "#Part(b)\n", - "\n", - "#Weight of the cylinder per m length\n", - "Wcyl=Fr*sin(thet) #Weight of the cylinder in kN\n", - "\n", - "#Result\n", - "print\"The magnitude of hydrostatic force is\",round(Fr,1),\"kN\"\n", - "print\"The direction of the hydrostatic force is\",round(theta,1),\"degrees\"\n", - "print\"The weight of the cylinder per m length is\",round(Wcyl,1),\"kN\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The magnitude of hydrostatic force is 52.3 kN\n", - "The direction of the hydrostatic force is 46.4 degrees\n", - "The weight of the cylinder per m length is 37.9 kN\n" - ] - } - ], - "prompt_number": 68 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.3-10,Page No:98" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "rho_w=1000 #Density of water in kg/m^3\n", - "h_sub=0.1 #m\n", - "R=0.005 #Radius in m\n", - "\n", - "#Calculations\n", - "\n", - "#Part(a) is theoretical hence not coded here\n", - "\n", - "#Part(b)\n", - "V=pi*R**2*h_sub #Volume in m^3\n", - "m=rho_w*V # Mass in kg\n", - "\n", - "#Result\n", - "print\"The mass is\",m,\"kg\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The mass is 0.00785 kg\n" - ] - } - ], - "prompt_number": 70 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.3-11,Page No:99" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "rho_f=1025 #Density of sea-water in kg/m^3\n", - "rho_concrete=2300 #Density of concrete in kg/m^3\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "l=0.4 #length of block in m\n", - "b=0.4 #breadth of block in m\n", - "h=3 #height of block in m\n", - "c=1000 #Conversion factor in kg.m/s^2\n", - "\n", - "#Calculations\n", - "\n", - "#Part(a)\n", - "V=l*b*h #Volume in m^3\n", - "Ft_air=(rho_concrete*g*V)/c #Tension in the rope in kN\n", - "W=Ft_air #kN\n", - "\n", - "#Part(b)\n", - "Fb=(rho_f*g*V)/c #Force of Buoyancy in kN\n", - "\n", - "Ft_Water=W-Fb #Tension in the rope under water in kN\n", - "\n", - "#Result\n", - "print\"The tension in the string under water is\",round(Ft_Water),\"kN\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The tension in the string under water is 6.0 kN\n" - ] - } - ], - "prompt_number": 72 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.3-12, Page No:106" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable decleration\n", - "vo=0 #Initial Velocity in km/h\n", - "vf=90 #Final Velocity in km/h\n", - "t=10 #Acceleration time in s\n", - "h=0.8 #Height of the tank in m\n", - "b1=2 #Breadth of the tank in m\n", - "b2=0.6 #Width of the tank in m\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "c=3.6 #Conversion factor in km/h\n", - "az=0 #Acceleration in the z direction in m/s^2\n", - "d=100 #Conversion from m to cm\n", - "\n", - "#Calculations\n", - "ax=((vf-vo)/t)/c #Acceleration in x direction in m/s^2\n", - "thet=arctan(ax/(g+az)) #Theta in radians\n", - "\n", - "#CASE 1\n", - "delta_zs1=d*(b1/2)*tan(thet) #cm\n", - "\n", - "#CASE 2\n", - "delta_zs2=d*(b2/2)*tan(thet) #cm\n", - "\n", - "#Result\n", - "print\"Assuming the tipping is not a problem,The tank should be definitely be placed in such a\"\n", - "print\"way that the short side is parallel to the direction of motion\"\n", - "print\"As\",round(delta_zs2,1),\"cm <\",round(delta_zs1,1),\"cm\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Assuming the tipping is not a problem,The tank should be definitely be placed in such a\n", - "way that the short side is parallel to the direction of motion\n", - "As 7.6 cm < 25.5 cm\n" - ] - } - ], - "prompt_number": 78 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.3-13,Page No:109" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "H=0.6 #Height of vertical cylinder container in m\n", - "ho=0.5 #Height of partially filled container in m\n", - "rho=850 #Density of liquid in kg/m^3\n", - "R=0.1 #Radius in m\n", - "c=60 #Conversion factor in s\n", - "\n", - "#Calculations\n", - "w=((4*g*(H-ho))/R**2)**0.5 #Max rotational Speer in rad/s\n", - "n_dot=(w/(2*pi))*c #RPM\n", - "\n", - "#Result\n", - "print\"The Rotational speed at which the liquid just starts to spill is\",round(n_dot),\"RPM\"\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Rotational speed at which the liquid just starts to spill is 189.0 RPM\n" - ] - } - ], - "prompt_number": 81 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter04.ipynb b/Fluid_Mechanics-Fundamentals_&_Applications/Chapter04.ipynb deleted file mode 100755 index d747961e..00000000 --- a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter04.ipynb +++ /dev/null @@ -1,195 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:a9d9c8590586ec3e8a7506eeddb2c5a00fb67f0aefc6c82bd4f6542b3faf29e6" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 04: Fluid Kinematics" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.4-1, Page No:133" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "%matplotlib inline\n", - "\n", - "#Variable Decleration\n", - "#Defining u and v in comments\n", - "#u=0.5+0.8x\n", - "#v=1.5-0.8y\n", - "a=0.5 #Velocity component\n", - "b=0.8 #Velocity component\n", - "c=1.5 #Velocity component\n", - "\n", - "#Calculations\n", - "#Part(a)\n", - "x=-a/b #x-component of stagnation point\n", - "y=c/b #y-component of stagnation point\n", - "\n", - "#Result\n", - "print \"There is a stagnation point at x=\",round(x,3),\"m\",\"and y=\",round(y,3),\"m\"\n", - "\n", - "#Part (b)\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "\n", - "Y, X = np.mgrid[-1:5:100j, -3:3:100j]\n", - "U = 0.5+0.8*X \n", - "V = 1.5-0.8*Y\n", - "speed = np.sqrt(U*U + V*V)\n", - "\n", - "plt.streamplot(X, Y, U, V, color=U, linewidth=1, cmap=plt.cm.autumn)\n", - "plt.colorbar()\n", - "plt.ylabel('y')\n", - "plt.xlabel('x')\n", - "plt.show()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "There is a stagnation point at x= -0.625 m and y= 1.875 m\n" - ] - }, - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEPCAYAAABbbZ8rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4VNXzuN+7SQhpQAKht5BQRaoUAWkiVRBBFPyAgAXE\nAgJSBFGRoqIiIlKUKgIiRQQEpEjvvUMoIYQSSnrPlvn9cYmGZHfvvZso8P3lfZ77sMmdOWeyCbPn\nzpkzo4gIeeSRRx55PHqYHrQBeeSRRx55uEaeA88jjzzyeETJc+B55JFHHo8oeQ48jzzyyOMRJc+B\n55FHHnk8ouQ58DzyyCOPRxT3Bzm5oihXgHjACphFpP6DtCePPPLI41HigTpwQIDmIhL9gO3II488\n8njkeBhCKMqDNiCPPPLI41HkQTtwATYrinJIUZQ3HrAteeSRRx6PFA86hNJYRG4qihIIbFIU5ZyI\n7HzANuWRRx55PBI8UAcuIjfv/XtHUZTfgPrA3w5cUZS8Qi155JGHbkTE5ZCsK/4mJ/PlBg8shKIo\nireiKH73XvsArYGTWeVExPXr7h2kZjnk92XGdT8bgfR7HrHZDOl9PGI40rQIcvF0zmzPeq36HhnX\nw/49czrStSASHZn9nsWMvOSDJMTYt/fjjx3P+fNgZO2X9u8dWIrM6PbP11YL0h9979fG8ciakdpy\nVgvyaQEk6a62zUd/RFa+pD2mzYrMq4hc360te2EJ8ltD7Z/JkoKsqohErDb+Hjv82c3I/pbI+dHa\nsreWIHtLIylhdmxLQk63QC72UX92nfN/PPJ/yNlAJGGDfptt6UhUf+RGdcRsx5a0LcjtYkjiV4b/\nX+m5cgOx6b8eBh5kDLwYsFNRlGPAfmCtiGzMtdEtFhjxLjzfHTq9YEz3yD5YPh8mzATF4Afs4R3Q\nqisEVzOmp8VfS6BlD/v3zu6FkiHgXyz7vfDTUKMV+BYyPmfCHSgQaP+ezQKmTA9wJjf1slm0xw0o\nDzFXtOVMblCqHkTs05YN6QiXN4AlzbmcYoLH+8PJWdpjVugG5gSI2OBczi0/1J8OB98FS5L2uHow\nuUPNJXDjJ7j9h3PZot2hzHA40QbS72SxzRsqr4HUyxD2pn7P4xkCZVfBtVcg7hd9OooH+M8An9fg\nViNI23v//XwtIWA/pC6GhDdBEvWN+18iBq6HgAfmwEUkTERq3buqi8hnuTrBB4MhNQ0+nGBMLyUZ\n3u8Nn06DIkWN6V69COePwVtjjelpcesqhJ+Bem3s3z+0Huq2tX/v/F7wccF5A8TfAT8HDhwTFCpx\n/7fc8oElXXvcgPIQfUWfDWUbwdU92nK+xSC4HVzdoS1btTfEXYKUu87lTG5Q92M4Mg60VnglWkFg\nEzjxqfb8evEsCrV/g9N9ICHbw+n9lHoXArvBqfZgSbj/npsPVFkLyafhyjvaP0sG3o2g/CaIHAqx\n8/TpKAoUeA8CfoQ7nSBpcRZbykHALjD5Qlx9sJzRN+5/RZ4DfwiYPR12bIHv54GbmzHdL0dD9brQ\n3uCqHeDbD2je7WUobGclnBO2/gJNuoBHPvv3D66HJ9rZvxe6Dyo/6XDo5s2bO57X2Qo8PQmSY+//\nnrtOB+5f3oADfxKu3r+Sc2hzyXpwVsdq0bsI+FeGUz9qywZ1hXw+cOU3bdm6X8OleRBzv7N1+h5r\nUbAuVJkCx56DdI0PnPLjwLc2nO4C1ixPIm5+UGU9JB2Bq8M0nfjfNuevAUG7IOZzuDNS/wreqwMU\n/QtiR0HchPv1FC/w/RryD4P4ZpC2SP1++hwwr9M3/r+FzcD1MJDbcahcjmmJbr7+XKRdS5F1q0Uq\nFhO5fFG/bgZ7t4nULykSE2Vc98A2kbc7iSQnGdfV4o1aIoe32L93O0Lk9aoi5nT799+sJBJ23LV5\nB5URuR1m/962mSIL+t3/vfcDReIitce1WkU+ryaSlqwtmxwt8kVJEYtZWzY2XOSbwiIWB+9FZm4f\nFZldWp/s1fUiv1YSseqw4cIckV09RKwWbVkjhI4UOdBMxJrmXM5mFrk4UOTs8+rrrJhjRC4+JxL+\nlojNqn9+y12R8EYiN3qIWFMN6EWKRHcTie4gYo22Y89xkeiKIgldRRI8RRKKiNhS9I+fiXv+Imf+\nJk3/ldP5cuP6v7MCnz8Hdu+A7s/Dd3MgKNiYfkI8DOsLE2dBoQBjuhYLTHwXOvYEL29julpcPQcx\nt6BmM/v3D6yFkDrg7pH9XnwUxEZCmceMzyviPIRiNYNbliQmvSEUkwlsZoi9qi3r5Q9eARB5TFu2\nYFnwD4Hwv7RlA2tBwQpwScfKunQb8CkNoXO1ZYP7QOoNCJ2qLWuEkAngXgDOvet89ay4Q9AksKXC\nhVdArPffdy8E5RdAyjG42u+f+1aNeLRbYSi9GSQdrrcBa4w+u92KQaFF4FYJouqC+Yj6/bQVYL0A\n7jWgwC6QDSBpQBKkf6Nv7H+DvBDKA+DmDYi4qjpSFBg+GO5qPG5mRgQ+GADP9oCnnzU+/9KZ4B8I\nrV0Iu2ixdy20f91xKGjfaniyk/17ofsgpJ7xMBJAaiJUagL5fezft1rALcuHRpna+hw4QOEKEHVJ\nn2z5pyBc5/GAKt3g3DJ9sjUHwjEdjlZRoN7ncGQsmDU2KRUT1J8NpydAwkV9duhBMcHjiyB2D0R8\n71zW5AmVV4D5Flx6I3vYw60ghPwJaZcgvA9EzYKzRbWdsskLSiwFz9oQ0RjM4Tpt94ACk8HvC4hu\nA4ljIPklSOqj3rd8BkravTPZKWD+FB5UdY08B/4AWPs7WMzqay8viIyE0HP69Rf9AOdOwsDRxueO\nug0zxsKoqcYzVrSwWmH5t9DUwQdDSiKc3gV1HWxuntsLVRzHv50SfwvuXHZim/n+LBSAOxe1s0Ay\nKFwBopyMn5lyT8EVHZuTAFVegNBVqn1aBD8HiRFw67C2bGA9KNYETn+rLesXAo+Nhv2vaceMTw2F\n2xpZLhm4+0Gt1XB5PNzVSNhy84Iqv0NKKIQNzL5qd/OFkD8g9QzceBuwQbSOjUrFDYp+AwX7wdVG\nkKLjvcsgfzcI2AjpnwNWsB4D8xZQQsDUCJSSgBuQCklVwHZL/9i5RZ4D/49JT4fRw9U/0Kdbw9xF\ncC0KGjVxrrdxDezYDCePwKQPYdYy18If346Cjr0gxIUwhRYHNkCRkhBcw/79I5ugcgPwKWj/fvRN\nqNLItbljI6Fgccf3bXZW4O6e+h14gEEHHr5LX/ZEwXJQKBjCt2rLmtyhxttwXGe444kJcHIypOp4\nuqs0EMQMF2c6lyvRGY70hqQwfTZ4B0HNFXDhTUjQcJ5uvlD1D0jYD+HDs79/aRfBch6wquGLu1/r\nz1Dxfw+KToWYwZD0qz4dgPRp6tMEAMmQ9AZ4DADv7eBzHXxSIf9+oCgk1wWrzg/u3CLPgf+HiEDn\ntmqI4PRlWP0ntO8IHnbiwVkZ/wF0bwfdW8P4aRBc2fj8Jw7AjnXw1sfGdfWw9kfoYKdEzI/D4NXK\n8MtEeNxBbNycBrt/dd2Bx2k4cJM75Pe9/3tGHLiRFXjB0uDpB3fO6pOv2g3C/tQnW/11SL4BCRE6\n7AiB4O5wUkeM1uQGDebCiY8g8YpjucJPQaVRcLALWJL12ezfGEImw4lnIfm8c1n3glDtT4jdCNcn\n3u+g435RHbfJT/3aEgnxa/XZAODXFQpPgZgRED0c5N4ZAEuYkw8CCyhFUFfa+UDCILE92O49qSju\n4F4ffE9B/hmQ+hKkjbgXH/8PyHPg/xEiMGoYJCVBaASUK69fNykJLoeqcdyYONi7Uw1XGMFqhc/f\ng8Gfg5+DFXBOiLoJx7dDy+7Z75nc4VoonD8EP4+DQY0gLeV+mfP7oVQVx6tzLbQceGqC+v5lxqgD\nj9bpwAHKN9UfB6/aHU7NA7MOh5g/AAJrw5FJ+sau/TFcnA3RGnnZAAWqQNX34dBbzkMpQQPBrxqc\nGKB/BRzYGSpMhGOtIVXjw8cjAKptgsRNcO39f+YoPhGq3oLSC6DQq6Dkg6tdIOWUPhsAPOtAiYOQ\nfhRutYPUv+B2RUhZYl/eZwEUug6FUqHAKfAcA5adkNQZbFH3y7p3BO8TYAuFlPpg1fGe55RHLI3w\n0XXgX06ELRvht/Xg52dM99AedYUEYLPC3O9hy3pjYyycCkVKqZkn/wbr50HzbuDtm/1eyRDwyK++\ndnOHAoXBw/N+mRN/QY2Wrs8fGwmFnDhwqzmHIZQgdQWu12EZiYMXKA0lGkCojgwTgNpDIXQRJN7Q\nlvUKhNpjYa/OU41V3ld/N6FOVu2KAjV/gLijcGWGPpsBSvSF0gPheGvtHPF8RSFkJSTugSuv/bNa\ndg+Ags9DmTlQLQn8noUrrSHVgLN0KwLF1oNHdYhqDVghfqgaQnKE4g5uFcH7UygUBW4hEF8TzJuy\nyAVC/pXg8R6ktATL9OyZNblJ3gr8P2DmNPh5PqzeCAEGU/4AZn8HaamQLx+07wLr9sEzHfTrXz4P\nMybA+5+rKXG5jc0Gf8yGZx1U2C1e/p8Y9BNt4ZPfsttxcis83sJ1G7RW4PYcuIcBB+5VEMrWgwSd\nG1VBLVQHq9fh13gVTupI+wPwLgZV+sBRnavwyv3U9/+Cjk0/kzvU+gbOT4IoJyUB3H2g3ko4/wlE\n6zh5mkHZoVDkeTjRLvsJzGxzBEClzWC+BpdeAluW35XJBOV/gxJfweWnIXGzfjsUd1Bu/xPftsVA\n8hyduvnBezL4zIekVyF5MEhqpvsKePQFrwMgy8HSBERnOM0oeQ78X+aXxfDNJFizCYo7cTCOWP+7\nuoHZ7jk4EgFzl0PdBvozSKxWGNkbBo6Fsg5yzSMMhAbscXQrlAyGyk/Yv1+4pBq+qNUSPvw1ez52\nWjJcOgzVNDZynRF707gD9wnMHlZxhtUMdzRiuBn4B0FcONw+rU8+pBPcPgFxV/TJ1xkG536CpEht\nWcUEjWbC4VH6NjR9ykPdWbCvO6Q7SdXzDYHa8+DSZ5CiI0c+gwoTwK8OnOqqHUd384GQNerf+4Vn\n7ed/F3oZyi2HiP9BzHx9NljvQuqvahgGHyAN4gaBRcfeQgYeraDAcbBdg/h6YDmexfYgcN8MplfA\n3BSsX/zzJJFb5MCBK4pSRlGUrYqinFYU5ZSiKAPtyDRXFCVOUZSj964Pc2Luo+XAZ/8AY0bD2s3G\nYt4Z3L0DowfCS31g/ioINFjrBGDOV+DlAz0G2L9/+hC80hiSc1DUaPGX0PJlxx8qN8PU8M2EdfZz\nvM/ugfI1wMtO+EUvcbez1zrJjD0HbkvXF3fOoGhluK0z3VNRILgNXNS5OenuCdV6wMn5+uR9SkDl\nnnD0K33yhWtDUHc4NEKffKnO6nWwr/OniGIdoEgLONQOzDoPyygKVJoOftXhbEewavztmTyhwi/g\nWRZCW4HFTs61T1MI2g63PoXIj7WffNyKQIlEKLIX/OeCzzBQPOF2JTAfd657n20B4PMreI2BtGcg\nfRRIpv0dxQRuA8DjINg2gqUR2HR+qOshZytwMzBYRB4DGgJvK4pS1Y7cdhGpfe8anxNzHx0HPmUy\nTPoMNmyGipWM66emQp/O8EJPmKrj0dceF07D3K9gwhz7oROLBcb2g8FfgLeDAzBaXDwBl07AMy87\nltm2BF4a6Th8c3JbzsInAFHhEFDa8X27IZT8YE61L2+PwMr6V+AAIa3hkk4HDvB4X9WB663fUWc4\nnJ0Lybd1yo+D6xvg1m598jUmQcp1uKiRthg0BIq0hsOdwZoKqdcg+YJzHcUNKnypOuXTbcASryHv\nDuVmg28TiBgA6Veyy+SvAsF7wXoZbnQBa5zGmJ7g8Th4vQgFJ0GxWCjwBUS1gsSp+sNfigL5XgSv\nE2C7CCk1wbo9i0z5e6vx18HSHKy5VAsvBw5cRCJF5Ni914nAWaCknVly7cDIw+/ARWDcWPhxFmzZ\nAcEGj8iDGlMe2AdKloGR41yzw2yGEb1h8AQoXd6+zKKpUMBfzQt3laVfQ9d3IZ+n/fupybB/LTTt\n5niMIxuhtoPqhHpIT4WkWCjg5AnF7iamQQdetArcNuDAg1pCxF5I17nKL1YbPAvpywkH8C0Ntd6D\nY1/qk89XAOp/A+e+VR2tFqZ80HApnJ0A0Qedy1b5GjyLwdEusK8mnNKxWa64QcU54F0DTrUCs8Zp\nRkWB0l+CbyO48CQk7sou41EMSswG9xIQXh/SDKx2TSbwHQhF9kHKIoh+Fqw6PxwBTMUh/6+Q70tI\n6wlp/UAyFVBTFHDrBx6HAIOJDI7IpRi4oijlgdqopbKzztBIUZTjiqKsUxQlR3WnH34HPnIYrFoJ\nf+2AMmVcG+OLj+BGBEyd7/qm49xv1Jj3iw42Fm+Ew+yJMMaFGuIZ3L4Gu9dA5zcdy+xfC5Xq2a/9\nDerhnZsXoUpD12wAiL0B/iWdv1fe/uCZ5SnDI7/+TUy4twI3cGI2f0EoXgvCDRzuqDcQjk3TL199\nAJyfDzE6P1jKdwMEjo7SJ+9bAerMgHOfQKqTDVzFBBU/gdhNaogj4Xj2Wt+O9IK/hwJPwamWYNbQ\nURQIHARl5kF4F4heANZoCG8J5nvxa5MnFJsOhUdBRHOIX6rvZ83APRiK7AKPWnCnFqQaeIoCcH8O\nvE4B7pDyGFhWZvkZyoHbO8bGdISTtMFtO+GTz/+5HKEoii+wHBh0byWemSNAGRGpCXwHrMqJuQ+/\nA9+1EzZthWIulmj96UfYu0ONeefP79oYO/6EBd/CqCn2nbMITHwHer4H5Sq6NgfAiu+g7Svg5+9Y\n5vgOaNXb8f1D66B2a/vFrfQSfc15+AQg5lr27xkNoRSuAHHXjemEGIiDA1R+Ca7vgliddVe8AqHW\ncNg7TJ+8okDDmRD+K9zcok+ndFfwrwv7O4M1xb5MehQcbgZkpMzZ4NYK/TYFfQUBHeFEM0i/qa1T\noC0Eb4NbY+FyHUjeAXeyHFAr2BtKb4S7H8DtIc7TBLPZ5AEFJoD/Ykj5DhIHgE0jzHOffkHwnA6e\nSyH9Q7C8DmJgo1cvTlbczRvBJ8P+ueyaqSgewArgZxHJ5pxFJEFEku+9Xg94KIriQiqdysPvwDds\ndi1VEGDxfJj0KXw7D4o4akzggPg41THfuArDesM3i6Gog029zSsh4hK8Otw1OwGS4mHtbOj2nmOZ\nO9fgr8XQ+DnHMgfWQn0XCnJlJvq6tgO3mtX635nxyA8WA87YzQNCWkCUgaJPIe0g3kBmQz4fePw1\nOGKgOmCNgRBzGq7pdMieheHJebCnD6TpLMJUZSx4l4Mjr9qPDZs8odhL6iEck4/qLMOdLPuyoihQ\nbhwU7alWJUzV8R7nrwZFet/LHLFC/JJ/VuF/y9SGcocg/SxEtFJPbxrBszkU/Fn9eWKrQ7rB8xdu\nTSD/UTCVA2sdsE0y9kGiRc6yUBRgDnBGRKbYG15RlGL35FAUpT6giLheuevhd+BGD+lksHwxTBgN\nv212XFo23UnlvNY14M1u8PYL8OoQaNDMvlzMXVi1AD6a5bjhgh42LoJGHaFEeccy6+dAix6Os0vM\naeoBnjo5iH+DvhW4JV0tH5sZozFwUB1spIGTfyVrw/V9+o/VA9R+B84shDSNTbgM3Dyh4STYM0Q9\n6KXLrmegbFfYr/M0paJAnXmQfEUNp2TF3ReqTIOmd6DuFijeE1LD4ayD7CdHlBmlduo52wQSNDZb\n0y/A3XH8fcxQUiFycHY5twAotRZ8WoPNhWwrUyHwmw2+cyHxLUh4JfspTKf6nmAaA277QbaCtRZI\nLtVMyVkMvDHQE2iRKU2wnaIo/RVF6X9P5gXg5L1WklMAO0et9fPwO3BXWL0CxgyF5RuhooMaJwt/\ngP4v2b93NQyi78DGVXDpIvTob19OBD58DcpXhrpPuW5vUgLM/gS6D3UsY7XAHz/Csw5sATi5HcpV\nh4JFXLcF1Dzy4lWcy1jTs6/AfQLAw2BBsBI14OYJ/fKKCap2gbMrtWUz8CsN5dvCSZ0HSwAqdIF8\nheCczsNAALU/g9jTELZIn7ybFzRYBRE/QYQDHUWBgg2g+kKotQ5uLYUbBrOoivaDoPlw4XmIcnDE\nHcC9NBSfAYVeB88agAckroBIO6mSihsUHg35XEgqyCBfK/A/CUoAxD4OacuN6SvBYFoHpk/BNtt1\nOzKTsyyUXSJiErVNZEaa4HoRmSUis+7JfC9qC8laItJIRHQ0fHXM/z0HvmENDHsLfl0PVR1UCFy9\nDL4eCx85yDbYtVnNXLFaITEROtS1n9e9ZAZEXoNBBvtuZuWXyVDvGQh+3LHMvj+gaFnHlQkBDq6F\nehrhEz2rw7BDUEDjQ8Bix4GLQKyd2LgzStSAGwbyhAGqdoWzOuPBGdR9Tw2j6Gm6DKrjbDwZDoyB\ntFhteQB3L2iyCA4NgQSdh7nyF4OGa+DkYIjSWCEXaQf19sKlMXDdwAcLQKG2UGULRIyE6+MdhG28\nwP8NKPEjVDgOVdKg2AyImw2R72Y/uZkbKL7gOwX8lkPyhxDfDazXDegrYOoKbj/ljj25lIXyX/F/\ny4Fv3gCDXodf/oDHa91/7+NhMHUSbNsIo96BResgKMT+OCt/hvQ0yO8F7u7wROPsGRmhp2Dax/DV\nEvVIvqvE3oVlU+F1jUbIa2ZCRyfZKTab2vi4gYPmDhmMqAeRGs7lzhUoUt65jNVOCCWfF5gdbMo5\nwugKHKBsE4i/BjEGTryWqA++peCCgU3/wLpqA+RDBurEB9SEOp/B7hf0VxcsUB3q/gQXJkKCRpNf\nn8pQZwtc/giuG3iiAPB+HKrtg5hVENZXPXjlDEWBgDch5BJYbkB4Y0jXuRlsFI9GUOgY5Guo5n2n\nTQLR2RwkN3nEHPgD73up2aNOL2t/F+naXmT/nuz3kpNFSnmJFPcUKesjsm+n43FOHhEpg0jtoiI/\nTRdJiM8uk5Is0rG6yIq5+u1zxLdDRCYNcC5z47JI58IiqU56SJ7aJfLmY87Hib4p0quQiMVJv0ab\nTaSvj0hSrPOxvmkjEnbo/u8dWSEyo7NzvaxYrSKj/USSDPYhXf2GyO6vjOlcXi/ycx1jvSBTY0QW\nlRK5sU2/js0msud/InteVl/rJWKhyOZSIomh2rKJ50V2lBa59qP+8TOwJIqEdhY53Uwk/bY+HZtN\nJGqqyPlAkbhfjc9pBOsFkaQOIgmVRMzrdavd8xc58zdX9V85nS83rv8bK/D5s2FQf/jgE6hvpwPN\nhtVq7DQ9DdLNcNnBKiIxAXq3h8Yt4XAk9BoAvnY2Ub8aDsHV4Pk+ObP7VgT8MQ/6jnEu99cval1w\nTy/HMtuXQFON/ZBzu6BKY+ct1hLuqqERb40ytNER2Ssg5vM2vgI3maD443DTYKlQV8Io5dsAClww\nED/3LASNp8OO1/SvqBUF6v0I8efg/Nf65yrdU8393t8KksOcy/pUgrp/QfRaiPhK/ylHuFcPZTkE\ntIXQepB0QFtHUSDgXSizHm6PhNsfgM1A2QQjmELAey3knwyp70BKZ7DlsL6QXh6xFfij7cBF1LKy\nX02A9duhbj37ct9/9U8MWzHBkP6QksXRmM3w5gvwTCdYvNnxYZytf8DWNTB2Vs5bqM39FJ7rB0Wc\n1BxJjINfv4L2Dg4QgbrBuWsZNNNw4Gd2QlWNzdY7YRAY5FwG1IwX9ywO3MNL/ynJzLgSRglqAUm3\nIM5ASqGiQOPxsPdj/dklAOU6QWADOKTxQZsZdy9o8huc+xpuarQ/y0zZ16HCMNj3NKRo7Cd4V4RK\n0+DWArg4EENlVhU3KD4SSk2GsGfhzjT1/5P5BsSvcaznVReCjoCSANdqQqqd05u5hXsH8DkFpvqQ\nXB/SPgL5lz40Mshz4P8RNhsMHwQrfoFNux3XR/ntVzh6SK3Y91RLmDQNjoervTMzEIGR/dTDL+O/\nd+yYL5yBkX3hm2VQoFDO7L90GsJDoadG7vjv06F+OyhZwbHM8a0QWFatE+6Mszoc+G2dDtyant2B\nuxIDByjbAG4ZLEjklg8qtIRTi43plWujrqrP/2JMr9G3cHEx3DKQNOBTFhothX29IMFA7Lj8O1Du\nLdjfElI1DuF4loZauyD5LJzuClaDDq5QF6i4B6LnwJXuEPEcXOsC6U4aFrsVhMBpUPhLuPUiRA0F\nmwu/dz0o+cFzFHgfBdslMDcD6yJ017cxSp4D/w9IS4NXX4YTx2DDDihhr14McPwIDOillo4Nj4dV\nW6Dna1A0y6nOb8bC+VMwfam6aWmP6LvQvyOM/ApqOFjp60UEvnwbWnaDAk4OKaUmw4pv4eWRzsfb\nvgSa9XAukxQHN0Mh2EGJ2gyirkKRcs5lwPEKPJ8LfUVL1oQrOrvtZKbWq3BsrrHwQcYqfN8n+hof\nZ5C/CDz5Lex4FawGsjGKNoXqH8OuzmC2U7rVEcHvQ6leajglTeM4vHtBeHwduBeA4y0g3UC9EQDP\nENWJWyMg9TAgEDlIW8+nM5Q+oW5wXq8FqXuNzWsEUxnwWgTu34BtClieBJvOImJGyHPg/zJxcdCn\nu+rEV/0JhRyshPfvhhfbwo9L4OdV96+4M7NsAaxcCPPWZq8gmJIMnRvCsQPw7gvQ9gV4/hV9djpz\nKusWQnIidNU4lLF+LlRtAEHVHcuY02DvKmjqIKc9g/N7ILie9mGjm6FQTGMlD2rNk2wxcB+IduF4\nc/HqEBMOqQaOVgOUaqg65GsGHUeZFuBXBs4aTD2r0E0tI3vKQFwbIGQAlOoEB3poZ37cp/chlHgR\nTvaCVI3UOlM+qLwA/FvD0UaQHGrMRvM1MB9B9UxWSFwPyVnrMNnBrQgUWwL+E+FWF4ga9u+txgFM\nTcB9P5jeBUsPsLwIkovx8TwH/i9y7hw0aQCVq8PPyx075a2boFdnmLEQOnZxPN6SuTDpY1i4AQLt\n1FrZsRHOHIUXmoDFCkMn6rMzMgJ6Pql2/clKXDR8NxxGznS+mWgxw9Iv4X8fOJ/r0AZo+JxaH9wZ\nl4/BEx21bb95HkrqaPBssbMC9/SBNBdO5rl5QMlacO2QMT1FgZp91VW4UZ4cB4e+Nnb0X1Gg0RQ4\nNwMiDDT5yqufAAAgAElEQVT/VRSoPlaNOx98RX+sWlGg4kdQ+Gk40BiSNAp/KQoEjYOyI+BkO4jb\npt/GtNPg5g+4qWELzBDeAtJ0FvXy7XpvNR4Od/8HaVv1z20UxQRuPcHjHCg1wFwPLDnqi/APj1hP\nzIchVdANOAqssZvWk8Hvq0RKBYrM10jdW/ubSKVAkb1OUgVFRBb+IFKntMjF845l3nxBpBzqVcVH\n5IDGmCIi6ekivRqJzPnc/v2J/UQmvaM9zvr5IoNbast98IzIlp+15d6rKXJml7Zc/6IiUdecy9hs\nIq8ragpgZlISRAZ6a89hj9WDRbZMNK4Xf0NkUiGRtETjuutfFtk/zrhe5C6RxUVF4sOM6VlSRLa3\nEDnc31h6oYjItfkiW4uJxOzTJx+zReRgMZHrXxqby2YWSQsTiVsncqGKyNkCIvG/G7M1eZXIzXIi\nUT1ELNeN6bqC7YaI5ZfcSSMM1X/ldL7cuB4GBz4EWASstvuGWq0iYz8SCS4jcmC/81/kwrkidSqI\nHD3kXG7+DJE6ZUQuOcm3NZtFKnqqzjvIpL7u1cb5uCIiU0aK9G+T3bmJiBzfLdK+pEiCRo61iMiM\nYSKHNjuXuRYq8mKgSFqqc7mo6yI9/UUsZudyiTEifX21/8Ob00U+a5L9+1aryAA7jl0PR38RmW8w\nhzyDJR1Ejs03rhd3RWRWYZG4MOO6J78WWf2EiEXjvc9KerzIlnoiJz8wPufttSJ/BYrcXqdPPvWK\nyPF6Iue6iJh1/M3ZI2mnSGiwyLXeIpYY/XrWJJG40SI3CovEfy1iS3dtfgPkigM/r//6/96BA6WB\nzUALhyvw5zuKtHxKJDLS8W/ObBYZMVikZkWRC05W1CIic6eJ1C0rEnbRudzEYfdW3t4iI/uJHN6r\n7dh2bRB5upTI3Vt2bEwX6fG4yJ9LnI9hhB+Gisweri23aY7Ily9qy13YJzKqrrZcSrzI23727w30\nFkl1YTUcFSbyaQnjK1MRkTMrRBa2Mq4nInJggsjqTsb1bDaRzc+L7HnbuG7qHZE/q4qcm2RcN2av\nuhK/vkCfvDVV5NIAkSMVRZJOGp9PRMSaKHLjLZHzZUQS/jSmm35e5E5rkcjHRFK3uTa/TnLFgZ/T\nf+U5cFiG2rWimUMHPugdkbQ0x7+1mBiRzm1EOrYSiY52LCciMnuqSL3yIuGXncsd2SdSXlEdt1lj\n1ZrBresiLYqLHHTwRzprrMjEN11zUPZITRZ5sYjIjUvasl+8ILJlnrbc9vki372sLRd3S+S9QPv3\n3g9U7xvFZhOZ004kOsy4rjlNZEYlkchjLuimiiyoJHJ5jXHd1BiRZcEil1z4UE6KEFlXXuTSD8Z1\nE86IbC8rEv6t/r+n2z+JHCgicltHuM3hvBtVJx453Nhq3GYTSV4hcrOsSFQvEfNV121wQq448LP6\nr4fBgT+wTUxFUZ4FbovIUZz1iJvyneNaIxcvQMuGEFIJVq4HfweNEERg1hSY9z2s2AplneQ5nzkO\nb3SC6cvgs1mO0wozY7XCyJfhxQHwRLPs94/uguXT4fUxOT/8k8GOX9XOPCWc5IeDesjnxGZ9LdZu\n6NzANKeqtb/t4ekD6S5sZCoKePrC5e3asllxzwc1X4X9BrNDQN2IbT4Ntg8Ei8HsCc9C0GI57H1H\nrR9uBO/S8NQmiPwVwmYY0/WtCvV2w92lcKaHdhNjgMBeUO0vuDYWrrp4itL3GQg+CW4KRFSDhIX6\nUjgVBby6QNEzapXDuFqQNBJsOouE/ZfkZaHophHQSVGUMGAJ0FJRlGx5XZ988snf17Zt2/65sXUz\ntG4C7wyBL6c6drRmMwx9E5bMh2VboEx5xxZdOAO928Kn30O7rvp/kh8/U/O538hU9CjqNlw+C/Ex\nMKYnfDgbAh3kq7vCHzOgg47a0Of3QrEg8C+uLZuSAGVrasuZUxw78HL1IM1AvnNmglvAJRezF2r3\nh4tr1SJXRin7DBR9Ag4ZaJiQQeFa0HgGbO8IyTo632TGNwRqzoJLX0HoRGP57F6loeZmtSTtkYaQ\nfFFNUYwYCzYHmTU+j8PjB0Fi4GxtSNKRJpgVt4JQ5HMovgpip8CN5pCms567yQd83odCJ8B2F2Iq\nQcpkEIM15O+xbdu2+/xDrpADB64oShlFUbYqinJaUZRTiqIMtDeFoihTFUW5cK8vZu2c2fuAHwHu\nPbo4DqFkxWYTmTNLpEIxkR1bHT9PiYjExYp0fUbkpfYi8XaKUmXmcqhIg1IiKxc6l8vK0lkibUJE\norIUBfr8PZFa7iI9G4h88a6xMbU4d0BkRCvnRakyWD5R5Jex+sYdWEHk2lltuavHRD6uYf/epCdF\nLu7WN19Wbp8TmVjG9TDTxvdEtgxzTTc+QmRZY5GoU67pnxgnsraWSFqccd2U6yJ/VRc5NdT4z26z\niVybLrKrqMiZriK7FZEIBxlQmYn+VeR4UZHro0WsTkKUTue2iMR+L3I5UOTO+yLWBGP65tMicZ1E\nosqKpCxQx8sB5EYI5aT+K+t8QHGg1r3XvsB5oGoWmfbAunuvGwD7cmLzw5QHrr38iI6GF7vAkiWw\neQ881dyxbEQ4tG8MIZXh59+dd/a5cgl6PgPvfQLP6+j+ncGO9fDdRzBzHQRkadm2e/298MUBtba2\nkdWVFosnQMNOzvPIQZ1z01yo20F7zOR4iIuEEjp6ejoNofgZP5CTQZFKao50tIsHM+oNguNzIM2F\n+f1KQ7XesOl/xk5aZlB9NBRpCDu6qmUGjJC/JDTeDtG74fjr+muWgxqeKDUAKoyDmBWAwLVx2h3p\n/btB1eOQfBzON4AUg8XEQM1rL/gWlDmpdpu/WhUSl6llLvTgXg0K/A5+iyB1JsTWgfQNuft/xSg5\nWIGLSKSIHLv3OhE4C2R97O4ELLgnsx8opCiKiw1/H5KDPCKyXUScF7LesR3q14LyQbB2AwQ5if0e\nOQDtGsEr/eDz75zHsU8dha5NYcg46P66fqPPHIUPXoGpK6F8FqeXGK/2yAT1j3H6J7DIQE9GZ1w8\nBucPQjsdtl46os4fXEdbNuIklH4MTBofCgDpqVDAQUjGqwCkJmiPYQ9FgQot4NJfrukXKg9BreHY\nj67pV30dClSAfRqHp+yhKFBvGrj7wN5XjdfqyBcAT26ClAg4/JKxDxFrMlz75J+vbSkQbqeLTlY8\nikPwagh8Fy60hMjP9R8yyox7MSi2AIothqTFcLc5pBmoGePRBAruBu+xYPkWkhuAZfWDceS5FANX\nFKU8aoJG1jhVKSBzBbZrqNl4LvFQOHCnWCww9iN4pQd8/wN8ORk8PR3Lr10JPTrAlzOgn90Q1D/s\n2AQvt4Hx06BrL/023bgKb3eEj2ZA7UbZ7+/dqFa7y+cJ3n7Qewi0y1Hru39YNA5eHOa8tGwGO3+B\np7rr2zgNP64v/g1gTlY78tgjJytwgOCWrjtwgAbvw8Hv1JOiRlEUaPEjXFwGV/80rm9ygyZLICkM\njmrUr7GHuy/UXwMocOINMMfo07MlgfdjkK8UKO6q/u3ZEPGptq6iQJFXofIhiP8T7nxn3O4MvJ6C\nosvBpw9Ed4OormDWeZJTUcCzM3j9AflGQNrHkFwbzMuMfxjmBCcOe9sB+GT6P5cjFEXxBZYDg+6t\nxLOJ2JnVRXsfghi405hUs0YiHdo4zwMXUVMNhw8SaVJb+yCPiMjyhSI1iors13G6MjPxsSKdqovM\nddBMIC1NpGEBkfreIqvmiaSmGBvfGZdPiLxYXCQlSVvWahV5tYzIFZ25vz+8IfLnNH2yB5eLTOti\n/97SQSKbJ+sbxx5Rl0W+fixn6Za/9xA5rPNnsce1v0TmlRBJciEdUkQk9a7I75VFzrlog80icm64\nyPYQkXiDMXmbRSQlTOTiAJE93iKXB4lYnDQCuU/X6no8PNtYySLxX4hcLyIS3V/EcsOgvk3EvEYk\nsb5IYlWR9J/VU6JOIDdi4Ef1X/bmAzyAP4H3HMwxE+ie6etzQDFXbX74V+DPdYHV66CYkzBR2GV4\npjGEh8Hvm6FWXceyIjB9EnwxGpZthfpN9NuSnASfD4V6zaDPEPsyn70D3r6w9Q481wc8HcSKXWHR\neHhhKOTXUfHv/F7wLqA2OdaDkRV4erLjqoP5/VwPoQAEBAFWuH7Y9TEajoA941yLhQOUagFV+sBf\nfV17jPcsDC3/hLCZcH6ycX3FDSp/AcEfwoHmcGuVugq9MAxSNYqFKW6QvzwET4cnIiA9Ek7UhUQd\n76diUoti5QaKF/gNh+LnQfGDW9UhbgzYdP5OFAXcnwXvfeA5BcwzIakqWH4G+Rd6c2aQsywUBZgD\nnBGRKQ5mWA28ck++IRArIrdcNffhd+CDh2bvR5mZ31fA0w3hxf/BklUQ4KQ8q9UKHw1Se17+vgcq\nVdNvR2ICvN5eLWr1wbf2wxKLv1Nzvn87Dd4ulFV1RvgZOL4NnnXSFzMzGeETPVgtkBQLZZ00TM5M\nehJ4Ovj5vP0dh1f0Uu05OGOgd2VWitaEoLaw30HTaj3UGwupd+DkNNf0fctB03VwaRac/tS1D4JS\nveGJdXB2IBxtBxGT4cJg/foeAVD5Fyg9Bs60g4jxIAY2SHMDUwAU+hKKHlHL1cZ1g6Tx+nPAFQXc\nW4P3TvCcDbIEzBXA+iVIXO7bm7MYeGOgJ9BCUZSj9652iqL0VxSlP4CIrAMuK4pyEZgFvJUzex+C\nUInTRxpHpKSIDHlb5PEgkUMHHMtlEBMt8kZ3kVc7i8TqPEW2b7tI2AU1bNLtSZHRbziu87FtjUjL\nEiIRGqc8XWXquyLLv9EnazaLvFpW5LqO3ooiIleOiQyurN+WDV+LLHnP/r2ds0QWvqZ/LHuE7xOZ\nXC1nY8RdFZkSIBKvUZjLGbEXRZZWErm2xfUxUiJF1lcXOTbM9bBQ9E6RLSaRLYhszS8Sf8T4GKkR\nIqdaiZx6WiT5tGt25AbmsyJxvUTuBIgkjhax3jE+hvWoiPllkbQAEfMItZiV5FII5aD+K6fz5cb1\n8K/A7RF6Hp5pBLcjYccRx63UMjh+BFrVVUvGzlgKBXV007FYoH8X6NoEeraAx+rApzPtPw2cPQof\n9YXJK6G0jm42547AUgObRYc3w5410KGfPvmDa9V0wJI6UgJBrRVeyc5mrCOchVC8/SElhyfsSteD\nlBi4Y7CmdWYKlIGab8Cuj10fo2AwNJkJW3tArEYpV0fkLwYttsGtrXDkHeMbcmKD82/wd/1SWyqc\n6WN8Re9ZGqr9CUV7QWgzuDYCrC4euMoJ7lWgwE/gfwBstyG6EiS+D1YDh6BMtcB9EXgcBpLB/BhY\nhuaOfXknMf9FLBb4ahK0fAr6vQs/LXPc0AHUP/KffoCX2sCYL2DCFMfH8rOybrlaz/vuLbh+Az6Y\nbN95XwuDMa/C6BlQs6H2uDF3YEQXKKzjZCSAOR2mvgtvT9EX+wb4Yxq0elWfLEDoHqjUWL+8Mwfu\nVQiSdWZPOMJkUsMoZ3/P2TgNR8LFNXBH50lBe5RsAfW/gA0dIEWjM44jPAtD880QewIOvGosz1ts\nUKgZ+NUBd39AgaQTcPQZ4x8GigkCe0O1k2rvyzOPQczKB5Ou5xYMfj+A/3EgHWKqQcI7YL2ifwyl\nPLhPBY9QMOkoFaGHPAf+L3H8mNrMYcsm2LkfevV1nh6XnAzv9IYfp8LaXfBcN/1zicDkj/5phBwb\nA2Pezi539RL0bgHdBkDrF7THtVhg1EvQuge00mnP8ilQIggaO0+T/5uIsxB+ChrrsCeD0N1Q2cAK\n3N0TChS1f8/bP+cOHKBa55zFwQHyF4InR8H+L3LmpCr1geAesPE5Yw0gMpOvIDTbAMnX4fh7YNG5\n+jW5Q5WZUO8wNI2GZolQZS4knoCjrSHVhdIBHsUhaCGUXwA3xsDFDpBmoGdnbuJWBnynQsBZwAdS\nWkLKi2Ddo/93phQB0zO5Y0+eA89lUlPho9HQoTUMeAfWbYQgjTDFpVBo20B9vWG/ehrTCHOmQNgF\nNY/b3QNKlIGiWTrHh4VC7+bQ7wN4SWdo47vhakuzN8c7l4uKhIQYuHMNfpkE707VXwTrj++hTT/t\n1mkZxNxUNzBLGHiPosLV1Zw9vP0hOReKFFVoAbfOQLzB+iJZqT0Aok7C2UU5G+eJT8G3LGzv43pe\nsrsPNP1Dzdve3ljNFzeKmzeU7AtNboB/MzhYB24tdc0ev+ZQ9aj679kGcOMTsP6L7dCcYSoOfl+A\nzzFwawIpr6id6M2LQHK4KW6ER8yBP/CNSs1NheqVRV7sInJDRx6pzSayYLbIc0+LzJ/p2qbRml9F\nyiLyXEORnZtEEuzUULl0VqRZKZFls/WPu26hyPPBIrFR2rIjO4m09xcZ1EJkzof650iKE+nuL3LX\nwMbd/hUin7fXLy8iMr2byIGl9u8lRokMKWRsPEf8MURkl86NW2fcPCQyLVAkwWAuclbMKSKrnhQ5\nMCpn49hsIhe/FfmjmMjtLSIJ50UOdBSxutD0IO6gyN7KIqdeFknXKKfsjLRwkbBXRM5XEomel+O6\nJDnGZhExrxZJelokoYRI6jgR622nKuTGJuYe/VdO58uN6+FfgX86AZaugBIlnMtFXIXn28Ls6TB+\nMvTub6x0qwjM+grGDoJ5f8CqvdCkFfhmqaESegr6tIT3JsILr+kb+9wR+GYwTPoNCjpJc8zg4jF1\nBX5kG6SkqKEXPfz1E9RsBYU1+mNmxugGJqh53p6+9u95FVRPYuqth+GMqp3gyJycx2iL14Wab8Km\n/jkbyz0/tP4d4k7A8Qmuj6MoEDwQ6i1WGx3vbQ531kO4k+N9jijwBNQ7Ah6F4VADiDLQqzMz+cqq\nIZVScyFmDlysAfG/P5j4OKj57O4dwXszeP0JEg5JlcAyGGwH/715H7EV+MPvwJ/XKOsqAnNnQdO6\n0KQZbNkH1XXmM2eQlgbv94VVi2DVPmjZ3r7cuePw2jMw/CvorLM7/e3rMHUEDJ8OIY9ry5vT4e6N\ne18I/DoZFn2mrWe1wrrp8Ow7+uzK4NpZqNrcmE5qgnpgxx4mN6jcKnfCKOWbqjHnawdyPtaTH0J8\nOJxZmLNxvAKh0Q9weREc/ThnDi6wJZR7ST1sIxY4PwbMLuQ2u3lDpalQdTaEDYEzz0GqC+EZAJ/G\nELQDik+CW2PgcmNI2uHaWLmF2+OQ/0fwuQAUB8tLaiNj6zwQF+qaO+MRa2r88DtwZ1wJg06tYOFc\nWLcN3h8FHh7GxrgdCd1bQFIirNgFpcral9u7Fb4eBaOnwrMv6xv7biT0fxoatNG/aRl+Tq2jYnID\nL194bRy86ODUZ2Z2r4Ai5eGxp/TNAxB7C87vhpD6+nXAuQMHiLoMSXeNjWkPRYE6r8Gh2Tkfyy0f\ntJ0P296HxBua4k7xLgFtt8HV3+DwB6478YQzEP49fy/nrIlw9n3X7SrUFOqcBL/6cOwJuDrOcW1w\nZygK+HWAkKMQMACu9YYrHSDluOu25QamIuA+AjwugNtYsK0Ec1mwDAHJQcppZvJW4P8BNhv88D00\nrwdPt4FNu6HqY8bH2bcThvSFpq1h+q/g7WNf7ufpMKi7eny+rU5HHHMX3mwFbV+G3gb+Uy6coDqE\n7u/DyuvwymjwcmBXBlYLLBwDnd8zFjY6/idUf1rdqDWCsxAKgG8gJLqYcpeVOr3h9HJI0zieH3sF\n1vVz7kyL1YZab8FGDTk9eBWFNlvh5iY4OMS18Tz8IXg4BLYH7xA1bBAxG06967p9Jk8oMxpqHYbE\nI3CkOkSvd20sxQ38e0HFc+DXBu6OhhvPQ2ouPBHlBMUNTO3BYw14HAI8wfpR7oz9iDnwB75Rqbmp\nkJWdO0Qa1hHp10fkvI7mA/ZISxMZP0KkZgmRTWudy334pkibaiJXNJogZyYuWqR7bZGpHxjbSL18\nSqR9gMjZg/p1REQ2zBYZ0dz4pu03L4lsMbARm8GY6iIxNx3fn9FJ5OhK4+M64ufnRA5q2Gk1i8yu\nJXJSoyGHJU1kbXeRI1Nyx7bUGJE19UX2vqUWg8oJNpvI1Z9ENpcWOfi8SKrzTTtdRP0hcjBY5HRn\nkeQcnhK2JonEfCdyuZxIRAuRxD9zr8drLkBubGJu03/ldL7cuB6dFXhYGPzvRejbEwYPg5lzoVIV\n4+OcPw0dGsCFs7D5GLRy0Owg6g70aQ2R12DZXigXrG/8xHh4uy3UbQ7vTNC/Ik5Nhk9egre/gipP\n6NMBtTb34rHQ5zNjq2+rBU5sgloGD0CIwK1Q8HFygCo3V+AAdV+HwxphFJM7tJsFW4ZBipNmBm75\noMlEtX1a+Mac2+ZZCFpvgujjcHg42Myuj6UoUKYXNL8IPiGwsybcWpMz+wLaQ51T4FsXLrSBq++B\n+bZrY5m8odA7UP4CFOgLdwdDxBOQsAyX6og/jDxiK/CH34EnJMCYUdD4CXjscTh+Fl7UWeM6MzYb\n/PgtdGkOfd6GeaugiIPDKOdOQJf6UKcRzFwFfgX0zZGcCO+2h6p1YejXxmz87j0Irgnt+ujXAbU3\nZnBtqKLjFGhmLh6AwqUhwEDGCqjdeFAcd+QB8CsKCbnowCu2BZ8iEKHRw7FkfajyAmzVaGZQMAja\nL4U/e0KMznrVzshXAJ7ZoDZj2NIKUl10kBm4eULVSVBnKZweBCdeB0sOKjya8kPZD6HqTvUD+GRV\nuPYhWFzcaFY8oEAvKHsSAj6G2MkQXhXiF7jWLPlhIs+B5zI1KsON63DwBIwa41qVv5vXoUdb+P0X\nWLsX/ve6Y+e6+hfo2xaGToT3J2q3LcsgNgrG9oegajBymjHnvWEhXDwB7880ppecAMs+h1dcSGk7\nuh5qtTOulxQDPv7OZXJ7Be7mDpXawTYdDQqajYdL6yFil3O5Uk2h0URY3QlSc+HkqIev2swh8ClY\nXw+ij6hH5s9Ncq1FG0DAU9D03sbh0Rfgjospgn/bWAzKfQuPHQHzTThZEW5+rq+rvT0UE/h2gtJ7\noOiPYN4NN8tCzFAwX8yZrQ+KPAeeyyz7HeYsgFIGV4qgptbNmQ6D+0GDJrBqJwSF2JeNiYa3usM3\nY2HOeujUQ/88YeehR0MoWho+dFDwyhG7/4DvhsHIuWr3HiOs/g5qt4byOmt+Z+bmBajb0bheSix4\naxQDK1AM0lx0Co6o8xrcOgHXNXKA8xeEVlNg/ZvavSmrvw7l28H67sbqkzhCMUGt8VD3a/irDezt\nDqdGwIVvXB/T3Q9qzIag9+HCUDjaAZIv5MxOz3IQNAeq7IKko6ojj5zq+ilMRQHvZlD4Byh2UO0K\ndLsR3GkLKWserfBKXhphLvOERqVBR+zbDS2fgFW/wkefw5CPHPfG3LoBWtdQj8uvOwLVdDY2ANi/\nFXo3hddHwtAvjDnvE3tgfB/4YpW6cjfCldOwYgr01ZEjnk33xL0DPE8a102OVQtWOcOvGNy1swK7\newl2uNiyy90TnhoJW3Wswqt0hYLl4IAOx/nUV4DAzhyk72Wl7AvQYCbcXKl+fXY8pOXwiaTIM9Dw\nJPg3h4NPwsUP9NdTcYRXZQhZChX/gPQzEFoBbk8Ai0ZDZGe4B0GhL6DkVfB+GeInwM1giP8crLn4\nVPZvkYMVuKIocxVFuaUoit0O0YqiNFcUJS5TrfAPc2ruw+/AjXIrEt7qDa+9BANHwOqtUM3BAZqk\nRPhgAHzQH6b8BJ98A146ek1msHIuDOsOX/4CXXWeyszg0ikY+Tx8tBCqG4xfW8zwZW/oMx6KuNAP\ndfsCaNrL2IdNBnpCKP6lIdZOkSWTO2wa73qKXJ3XIPIo3NDoLqMo0HYmHPseIjQOoZjcod1StV7K\n8W9dsysrNgucHs0/+d3JcFSjP6seTPmg/DBoeAJSr8PeKhC5OOcpkT61oexMCNoEaRcgNARuDIL0\nK66PqeQHn1eg2D4osgIsoRDXC+JegLTVIDnY7P03yVkIZR6glRWwXURq37s0iiJp83/HgZvNMP0b\naFwdihaH/eegq5PNzkN7oG1tSE2BjSegcUv9c9lsMHkk/DARFuyABi2M2XozHIa0g0HfwJMulMH8\ndRL4BUD7N4zrWi2wcxE003mSNCt6QigF/x975x1eRbW18d+kJ6SRQOiQAAJBeu8EEAQUBUSxY8GG\n2LFX1GvBhnI/G1gAla4UpVcJvbeEHiAhhfSeU9f3xz4xISQnp4Xizfs8+1l75qw9s3OSvLNn7VUa\nQNb5S4mlZmPw8Cp/dW4LPH2gz8uwYXLlukGNYOh0WHon5J63rutTEwb/CIemwd6PHZtbaRhzwasm\neIUqn2XNHRLmuobEAbzrQ5tZ0HYenP0UdveDnN3OX9enDTT6Ga47pAj4ZGc4dycUOlHeDsCrM4T8\nCMFzwetGKJgCaQ0h91kw7HP+AeRKOEHgIrIZqGxDxU7vC+u49glcBFb8CcP7wtoVsDwa3vkY/CsI\nNMnKhDeehVceh9emwBc/Q2CQ7ffLyYK3HoX9W2HOdoiwM9NhZio8OwTueRFutDGiszTiDsEfU+H5\nGfZ74gDsXwVhEdDAznkXQ18EYS2s6/j4K6Ium1ZW0yCiD8RtcezeAJ0fUStwW2pmRtwInSbCkjGV\nV6kPaAIjN8HRH2H3e47PDxR5D9wGt6TBqEK48Rhc9zyc+Ql23g96F2yaAgT3hm67oOEjEDsSjtyi\ngnechWcDqPcxtIwD325wdhScux1yf3du5ewWDL6PQM1oqLkFtEDIHgUZ7aHgM/uKOlQVqnYTU4Be\nmqYd0DRtuaZpdtpNL8W1S+AisHolRPWAt16Fl96GRasq9g03mWDmt9C7Feh1MG89DBtl3z23b4AR\n7aFmGMxYAzVr2Tc+PQU+ewYG3g53OLAaKzadPPQRhFUQ8l8ZNs6E/uMcGwuWVLI2PDiCKzCjNO0D\npyvxELEGTx8Y8hFseBWb0rr2eAX86sB6G2pJ+jdQJH5iLux4wzUrQzdP8G8K7T+DEcngGQRr2kLS\nX8Vqm5EAACAASURBVM5fG9Tqvt790PUkBA+GIyMgZiTk7XP+2u6BUPt5aHkKgu+CrC/gdGMVkWmI\nc+7aHs3B/10IPQ0B08B4BHLHQP4NoP9OVeu5EqhaAt8LNBKR9sA0wMmE91yDkZhms8i6NSIDeop0\nihRZOK/iOpXF2LxeJKqdyMj+Iof2WdctjdnfiHz0qkhRkciHL4j0ri+ycbnt40sjLlbklgiRb992\nPHpt9rsirw51fHxuhsh9QUo6ipmPiaz/unK9aTeKHC7nu0rYL/KBHfU3y4PJKDKjh8jub23TL8oS\n+b6FyMEfbdMvuCAyt73Ilkn2fddFNn6vKetF/goX2fWgiM7G+qy2wlggkjBVZHs9FX2Zu9+11y86\nIpLyrMiJUJH4G0VyFomYHUiDWx5MeSL6hSL5d4pkB4nkDRDRfS1ishL1Wwq4IhLzz4rbhg+Qt+8q\naeXdDwgHDtl4vzggxKk5OzO4qtslBL5pg8jgviLtW4jM/VXEWEnO4jOnRR66TaRzE5GlC+wMaz8u\n0sJXpLm3yKDrRCaMFkl3oACriMjev0UGh4ks/cmx8SIi+zeJvDJM5EK849dYO0Pk6/GOjxcRmTZK\nZNfCyvV+eVgk+vtLz5uMIq8EieQ6GSaecljkk1oi2TbmPk89IvJVLZFEG9MUFKaLzO8ssmmimnNl\nKEoTWVhHJHaqbSH1+hyRPY+LrLhO5Pwi14ekG/NFEj4X2VZX5NiDIrnbXXt9U4FI9myRc31ETtYV\nufCaiO6Y665vLhDR/y6Sf7eFzPuL6P4rYqr49+0SAl9me7OXwIE6gGbpdwPOODNfuSYI3GwWWbVK\nZPwDIm2aifw6S1Vdt4b0NJGpH4u0DBH57D2RggLr+mVhMokM6yjSRFPFHfo1r3yVXxFWzRW5obbI\nttWOjRcROXtUZHSYyJ61jl/DoBd5tIlI7BbHryEi8p/eIsf+rlxv3Rciqz8q/7OfxogcXOzcPERE\nNrwtMucW28nvxBKR2R1E0mysyl6UKbL+QZFVt4rosirXzz4usrKXyJookVwb846kbhZZ31Zkc1+R\nTDtz4NgCY75I8nSRfeEih7uLpP3mWOEIayg6IpI+WSS+jkhSF5HsL0SMThbPKA1zoYh+iUjBvSK6\ncBF9dxHjhyLmoxepuYTAl9reyt4PmAMkAnogHngIeAx4zPL5k8BhYD+wFejhzHzlmiDwxX+ItLte\n5LdfRfSV/OFdSBF56yWR8BCRF58SOe/ganXycyLhboq8GyMS7i6ydpl91zCbRWZ9IjK8kcjxA/bP\nIT1ZJHqpSOYFkbubiiy38fW/Iqz9QeTtQc5dQ0TklRYiiTYkEdv5i8gPd5T/2cbPReY85PxcDEUi\n/xcpcmS+7WNiZot8V08k9ZBt+kadSPSTInObi6QfVOcKkkX0eeXrm4wiR6aILKglcuJ72x4uZqPI\nmekiK+uJ7L5HJP+sbXOzB2ajSMYfIjFRInvri5x/X0TvgmRZF93DIFKwWiRtnMi5YJHkQSK5P4qY\nbHj42XwPnYhptYhhgoiuvoiulYjhFRHTTtcQ+BLbm7P3c0W74iRd6RdqNFb+T5CUKPLqcyJNaoq8\nMEHknIP/ABlpImMHKNJuFyIypK3ImH4i428ViV5n+3X0OpFPnxUZ21Yk2cGHyOdPivTRRO65TmTG\n67aPMxou/b6MBpEnmokc3uTYXErjyWCRXBvKwp3ZKfJhh/I/S48TebO2mpezOLdV5LN6IgU2zKkY\nsb+KfFtX5MIBkQ2Pi5xZWfmYE7+IzKolcuxnkQVNRNaOsK6feVhkeSeR9cNE8s/bNi9DrkjsmyLL\nQ0RiXhMxlFPOzxXI3y9y6iGR3cFK5rnYTi6iTCz5C0QujBI5FyhyYbRIwe8iJhf+TGaTiGmniOE1\nEcNE1xD4Ytvb1UDgxfaYyw5N03yATYA34AUsEZFXy+iI1fklxMOXH8OC3+CucfD0i1Cvvv2TMRjg\nl29g2vsw8GaY+BqEVxByXxlOx8Kr90KbrvDcx+Bvh4tiMXRFMKI2FOapwg5frocO/WwbO/15Fdwz\n6nmI3QI7lkCDFrBpNry/yf65lIZBB69cB5+cqTwIqCAL3mgIn+WW77XyWSe49Qto3t+5OQGsfVkF\nywyxo/jzsXmw7hGgEALD4Z7jlY9NPwgrosCco/JuD1wM9a1UQzcb4PAHcPz/oMsUaHKf8hqpDIXx\nEPs6pK6ByP9Aw3vU/VwNQyqkfg8F24A0qPkABI0Fj0oCteyFOQvyF4FpCRg2gmdf8B4JXiPAva7L\nbqNpGiLisJ+1pmkif9ihPwqn7ucKXDE3QhEpAgaISAegHTBA07Q+Ng3esxuemQD9OoKvH+yMhQ+/\ncIy8N62Coe1h7TKYsx4+/dEx8haBOf+FB/vBmEfhjW8cI2+ATYsUWYKqzjNpKCSdqXzcgfWweR4M\nsrgJ7l0JSz6Hrx+HLrc4NpfSyE5SYQi2RHD6BYN3DciuoPpNu9Fw6Hfn5wTQ/x1I2glb7AhsC44A\nTQdihPzzcHZ55WM8/YAildvDVACb7wWTlYo3bp7Q7m0YtBbifoC1nSBlbcnn2fvL9wn3bQSdZkH3\nPyFzHfzdFOI+dS4jYbk/T22o/zo0Wwxhb0PeBjgaAWfvhNxVrsth4hYMAQ9D8FIITQCf+0G/HjIi\nIbM35H8CRifzu7gKVetG6HJcUT9wkX8K2nkB7kDFSRiKimD2TOjbHe4aAw0bw65j8O4UCKtj/81j\nD8H4kfDWRHjlI/hlNbR0ICkUwIVEeGIYLJsNM7fA7XYWVC4Nsxm+fEZFTHr5QM06MOAO1beGvCz4\n4kF4egYEhqpzCcfUA8Bsgl/fhO/srJdZFulnIbSJ7fphLeBCBf+YbUfBoT+gMBtOrHNuXp6+MGYx\n7J8BMfMr1zeb4K8RYLYkuzIWwt82VME5/LEKk/cMUilViy7Air7qetZQsx1E/Q2t34Z9T0D0cMjc\nC1ujYMewihNpBXeG9r9Cp79UpOXfEXDiTdC7OKeI5gGBw6DJPGh1Gvz7Q/JbcLQJJL0KRUdddy+3\nQPAZC0FzoFYK+L0N5jjIioLc0VD0AhhXgzhQCs4VqE5mZTs0TXPTNG0/kAJsEJGYS5Ti4uC1l6B5\nI1gwF155A2JPwYuvQGio/TfduxMeGAl3DIao4bD6MAy+xXHCXbMI7ugIbbvDzGgIryRK0RqMRnik\nK+TnwOMfw+wYWJoMr/8MoZW8an73NHS9CbqUShGbbAlZd7O8toc48IZSGmlnIdSOAKKwFnChglqF\n3gGgy4HJdWBGBUWk7YF/Pbh9Cax6EhIryViouUHfadDmCQhtr1bKuXHw503WSbzrF3DTDug3B3p+\nC80fhsxDsLQtZMVWck8NGoyGIUegzhCI7q/SuOYchMPPWB8b2AHaz4Xu2xV5b24JsU9B4Vnr4xyB\nRwiEPgHX7YCIVYAJ4u+GM50h/UPQu6j2JIDmBd5DIOBrCI0H39dBCwbdu5AbBvlDQfcFmGIvX7j9\nNbYCv2I28IsmoWlBwCrgFRHZWOq8vO3vC+07QKcuRI0eTVRUlP03EIEtG+DLD+D0CZjwItz9sH2J\nq8oiLQV+/Bg2LYUPfoH2diakKovCfHh7LBTmwuT5EGLHW0X0Qpj5GkzbBz6l6meO9lKru45D4fGv\noU64c3Nc9j7oC+C2D2zTX/+5soXfXCaDYPQ0WPqCekUXszJNfOii9LPHLSQ+bhsENrJtjJjh2K+w\n+SlocjMM+A48K6lDWgyzCY5/C/vfgRaPQbvXwaOSvysxwZqGoEtWx5ontJkG4Y/Zdk9dEpyZCudn\nKPt42BgI6uv4IqQyiBEKoyF3IeQuAo8w8L8NAsaAt9PR4BXcMwuM68C4SjUEPIaA103g1he0Wmzc\nuJGNGzf+M2Ty5MnO28BteIH7R/+OK28DvyoIHEDTtDeBQhH5tNQ5kfx8x4o4gCLuNX8q4s7KgKde\nhdF3g5eX4xMtKoSZU+HHz+DuJ+CRl8HPSoFfW5B5AV6+GcKvh5e+t6/IcMpZeL47vLkEWnUvOR+7\nFV7pDc/9AlH3ODe/Yvz8CDTpDAMet00/ZiWsnQJPr7/4fPIR+HYQFKSrB4xvTXjPiRSmZbFtCsTM\ngXv/Vit9W2EogE1PQOoeGLoIatqRL6YgEXY+Axn7oMc31jc309bDtkHgEWixpxcBJggdpGzfPja+\nKekz4cIsSPpeXafeI1B3HHjameLBHogZCrdCnoXM3QIUkfuPBu/2VfMQEQHzMTCuBLfNIGtBawba\nIHAbBFpf0Gq4ZhNznh36Y688gV9JF8FaQLCl7wv8DQy6xK3HEeTkiPz8vcg9I0QGdRBZMr/yqM3K\nYDaLLPtNJKqxyJOjROKOO3e9YiScFLmzucj0N+2PxsvJEHmsjciyMqHtukKRCa1Eohe4Zo7F+HSI\nyAE7UgnkpYtMCig/kjEvVWRqN5EXNJFX/Su+htkssuNrkcJs2+9rNotseE1kzgCRQjvTBpjNIoe/\nF5lRS+SEHf7lxYj/U7kZ7phYcTCPsUgkfYtI5h6RnCMieadEkv4U2TVGZEVNkX0PieTE2DfnrGiR\n2PtFNgeJHLlTJGN91RccNptECraLpEwSSRooEl9fJPUhkbyFrvX9vuS+ehFTtIhxsoi+n4iuhojh\nQde4Ec61vTl7P1e0K0ngbVHJXfYDB4EXy/1C7cG+PSLPPKr8we8ZJbJpnWv+iPdsEbm9u8ioTiI7\nNjp/vWLs3iAyqqHIYhtzepRGYb7Ic71Evn3u0p9x1qsiH452yRQvwqstRRIO2zdmcnORxArGGPWK\nxCe5Wf89LX5UZMG99t3XbBJZ+6zID21EchzwxU/ZLTIrQiT6BRGDnZG8+jyRmE9EFoWK7Bgvkhtn\n+1hdmsixd0VWhonsuEUkPdrOe2eIJEwT2dVWZEdzkfNfiRQ6WY3e5nsfF8n+UiT5RpGz/iJJ/UWy\nPhLRHazah4k5T8Qc6xoCn2N7+58mcJu/0MpQvNru31mkTRORT95XgT2uwMlYkadvF+nbQOSPmY6H\n05dFYYHI1BdEhtcT2WVHgNC5Y6oZ9CJvDBOZct+lczq6Q+Te2iIZtiUAshkmo8gHfUUKc+0b9/M9\nIlt/qPhzs1nk49YiR1dVrKPLF/kyUmTfbPvubTaLbP9Y5JvGIml2rGiLUZghsuU5kTkRImeW2j++\nKF3kwOsii0JEdj4qknfG9rGGfJG4r0XWNhXZf59Iwg/2BfaYzSLZ20XOTBLZXUvkUFeRxE9Fis7Z\n/3M4AlO+SP6fIulPiiREiCR1E8keJ1Lws4ixCiJNRVxD4L/Z3q4GAr9qbODlocJAHrMZtm2FpQtg\n3mzoEwUPPgYDBjtWZaYs9myF7z+F3dEqqGfsI+Bn46ZWZYjZBZPHQbM28NLXEGyHvfLRDnAhHjpF\nqXqPb/5+sb08NR4m9YKJ30FXF3h2lEbSMfhiOEw5Zd+4jV9Bcgzc+W3FOrtmwr5f4dHVVu5/AH6+\nAR7bDiHN7JvD4Vmw6SUY+Qc0cKCMXMIa2PoUBDaHXl9CoJ3316XD0c/g1HfQ6HZo/RrUsNGbR0yQ\nugLOT4fMvyFsFDR4GIJ72W5vFiNkr4eM+ZD5B/i0gtCxEDIGvJz0TLLp/qL8vA3rwLAB9BtBCwCv\nAap5DgB35+fhEhv4L3bo33vlbeDXDoGLwI7tsGg+/L4AgmvCo4/DraOhbj3nb2YywZolirjTUmD8\n8zDmAdcRt0EPP74Pf3wHL3wFg8faNz5mO0waBPpC8PGDuecvDhTKy4KX+sAND8LoF1wz59LYtQC2\n/QpP25nC+MwOmPc4vGwlP7VRDx9EwPjlUN9KPdJtX8GBX2B8tCoYYQ9Or4C/7odhP0Hzm+0bC+qB\neXgqHJgCrSdAh1fAw87NdV0aHP0UTn2vPFYa3QlBdtRf1SVD4mw4/4M6bvAQ1L8fvO2IZjTrIWct\npM+HzKVQ80YI6AKBN4F3y6rzZCkNETAdAf0GC6FvArda4Hs7eLQA957g1tzuubiEwGfboX9fNYFb\nhaZpIrt2wsJ5sGiB8kYZMxbG3AGRLnJfKiyAhTPhh88hKAQeexFuHAXuNoQ824qTh2Dy/VC7Abw2\nHWo58MB5cTDstUTxeXrDwLvhpR/VsUEPbw2FxtfD43aEk9uDP95ScpQNRYVLw6CDV0Lgw1TwskJ4\n6z+ClBi4a1bFOiLwy81QvxMMcqBqTuIO2PQiNB0MXV9V9TDtRV4C7HgBLuyEnlOhiQMxBEWpcHY6\nnPlGRV2GPwENbgf3SoK1iiEC2dsUkaf8rupkNn3N/p/FrIO8jZDzB+T8pfyyA4YrMvePAjcb5+Ms\nxAzGg2DeCaZ1YNoGFIJ7L0Xm7r3AvQto1h+YLiFwK39+l+jfX03gVqFpmsj115WQ9vVtXEdOx47A\nvJ9h8wpo0kwRd5feriW/7Az46SPY+ifcOwlGPOjY9bcvh9dvUgE5nl7g7gFdh8Fb89Q/82f3Q1Ee\nvLqw8geP2WyfmSk1TvlyL34Het0HXcfYP/+Zd0PX+6G1lfqfhdnwbR+49f+gqZW8L/lpMPsGaHsP\n9H7R/rnkxsOa8aDLgCEzIbS1Wl0bcsHHjsCw82th/3/AwwzXvwwNhtn/uzUbIflPReRZ+6DxOIh4\nHGrYYaIx5oEhHXztiJAtDyJQdFgRee5yKNyvIjIDboLAG8Erwrnr2wtzvCJy0zYwbgXzYXBrDT6D\nQbse3LoBF6/SXULgM+3QH1dN4FahaZqI2ew6Us1Ih8VzFHGnJsNt96mAnggHE1dVhPxc+O1L+G0q\nDLoNHnkL6jRw7Fox2+G1m8AvEB56D67vDXXD1XciArPfgv1r4IP1yrRiDXtXwKpv4dUltt//12dh\nzTRAIHIg9BkHPe8uie60BWunQHocjP3Gul7MUlj2HDx7ALyt+NbnJMDPUdBtIvR41vZ5FEMEDn0P\nW1+HLi9BfhzELYG7YsHbjvw1ZiOcmQ+HP1K/jzavQJPbHVzZn4Qz38O5nyG4EzSdALWH2L4qdzWM\nmZC7GnL/AtN+lcDLLwr8Bqjm6WBJP0chhWDaA+xQzbwDyAWtm2pu/dHcb3CewH+2Q/+BagK3ikqz\nEdoCgwHWLYf5M2HLehh0E9wxDvoOcq2ZBFQWwYXfqlV3t0Hw+GRo7MTDYfkP8MOr8MIP0GvExZ8Z\n9PB/E9XG5UuzIKi29WtlJMGkTvDCXLjejgyA0bNg1gTQWSIlPbzh09NQ045Npwsn4Kv+8G5C5av/\n+Q+oyMxRX1vXyz6nSLznC9DtSdvnctE14mDlPZC+XZFuoxth+FL7FwwicH4FHP5QBfRc/yI0f8Ax\n8jUVQeJCSFsGaash7GaoNxZCB4N7FWQktAUioD8KBRugcCMUbFQBPH5R4DsAfPuDl41Rry6dVzLI\nLguZu6N5vus8gf9kh/6DFxO4pmk/AjcBF0SkbQX3+AoYBhQAD4iIU8VL/50ErtdD9EZYtwqWzIZm\nLRVpj7jdvgr0tsJohKU/w/R3oWVHmPAetGjn+PV0RfDtC8rm/d4SaFymUHNOOrw3Rq3KX/4F/CqJ\nNjSZ4N0hENkX7nzHvrkkHIF3uoKhUCWNemoRtB9W+biy+LAN3DkDIipJOVCYBV+0gzE/QAsr0YwA\nmXEwMwr6vg6dH7V/TgAbHlWV6MUEbl7Q63No5+ADASAlWq3IM/ZA5HNw3cPg7UDOHlCblskLIWke\n5B2BsFstZD5I5W+5UhABfYwi9IKNYE4ELRG8e4J3DyW9Oiib+mWES0woP9qh/9AlBN4XyANmlUfg\nmqYNByaKyHBN07oDX4qIUzk4/j0Enp0Fa1bA8iWwfhW0iITht8LIMRBup9uXrcjKgCWzYO/fingm\nfgDtnMyJsnM1fPk0dL0Bxr8P/sEXf34uFt4aAX1ugwc/sO0tYuEHsH8VTF6n7Of2wGyCh70BDR6a\nDn0fsG98Mf58A0wGuPXjynWPr4aF4+G5Q+BbyQM34yTMHAD934COj9q3ei7KhJ/CwN0L0NTqV0wQ\nOR76f2ufmagsMg/CmV/hzHdQ5wYIfwDqDnXMvAJQdB6SFkDyPMg/AQ3HQWg/qDkQPOxIF1AVELNy\nE9RtA912JY0nFYl79wSvHorY3RtUqZeLSwh8hh364y81oWiaFg4sq4DAv0Ul7ZtnOT4K9BeRFIfn\nfE0T+LmzsHKpIu29O6FXf0XaN94MdVyXKP4iiMDBnTD3G1i3GPrfBHdPhA49nPvjTDoD/30eTuyH\np6dC7xGXXm/3KphyH4yfAkMesO26hzfB52Nhym5V6MERjNOgzVB4cUXJOV0BbP0ZBkyw7Rrn9qjN\nzDeO2vY9/fEEGIrgDhveabPOwMKRENIChn8PPsGVDgEsNuw/LblIRD2s4tfAuZVqQ7PbO9BsjMpe\n6Cj02RA/H878DPmnocm9ED4OghxMXQwqC2H6akibDznbIaArhAyF0KFQo+3lcQWsDOZc0O0CvYXQ\n3c1g3g0encCzk5IeHcE9wmXzdQmBT7dD/xG7CXwZ8KGIbLUcrwVeFpE9Ds/5miLwtDTYtAE2rYeN\n66FZM6hbW5H2gCHg72RSKWvIz4O/foO530JeNox9HEY9ACGV2J4rg64QfpsCC7+CO56DOyeBdxnb\nqUEPS76GRR/D6wugjW11Lzi6DT4cBS/OgzYOVr4pzIWnwuDLZKhRajV84RR8Phg+Om3bdURgWj8Y\n9h5cF1W5vi4PZo+CDmOhy/jK9Y1FsG4SnFoOI+dC/W62zauiuZ5bCbveVrnCu74DTUc5R+QAOcfg\n7Cw4Mwt86qpVebNHnTOHGPMgayNkrIT0FWAuUkQeMhSCB4KXg+YbV0MEzOfBsBeM+8C4V/UlTxG5\nZ0e1UvdoAW6tQLPf3u8SAv++4s83HlOtGJP/dIjAPxKRLZbjtcBLIrLX4Tlf9QT+1zJF1pvWw5k4\n6NMP+g+EqIHQpq1rIi8rgsmkojI3L4cF30GX/nDXE9DzBufvKwKbF6tVd8suMPEzqFPOzv6etfDV\nU1AvAiZNh1o2erMc2Qwf3wbPzoJOVtz3KsO+ZbD6S3h57cXn43bBL0/Am7ttv9a2GXDwd3jMhuo3\nAGnH4cdBEPUGdLMx1erR32HlE9DjRej+vHOkKwJn/1JEbjYqIg8f4bgZpBhmE1xYD4nLoONU5x8M\nxRCBwpMlZC5n1FwD+kJAPwjse3kiL+2BORUMFkLXzoF5E5hPg1s4uLUB9zZKurWxBPdUbNZyCYF/\nZ4f+Yw6ZUDaKyFzL8f+ACWXoQBgwSJF2p87gWcWbNwYDbN8IKxfBmsVQuy6MfRiGjIK6DpogSsNk\ngs3LYOUvkHgUnv4Sugy6VC/lHHz9PJzYC09OVV4otr5qHlwPn4yFF+ZAhxucm++siaqIw00vXXz+\n8EpY8wU8t8r2axmK4L2m8PhKqG/jJm/6KfhpEPR+AXo+ZduY7LOw+C7lEjhiJtQIs32O5UEEziyD\nM/MgeQM0vx9aPARBThTvuBwwG6BgH+RshlxLcw9WhB7YF/z7gu91V4fJpTREB+bjyvfbdLhEShL4\n9gatNmitQYtUkuagebqGwK1kfLhE/3G7Cbz0JmYPYGr1JqYroNNB9BpF2uuXQeNmMPQ2uHG048WN\nyyIvG5b8AAv+q4o13PkMDBwDHmVWc3odzP8MFnwOo5+CO18CbzsKT+xbDV/cCy8tcNxsUgyzCaaO\nhNs/hEZlbLY7foMDy+DROfZdc82HkBIL99oR8pZ5Fn4cCN0nQB8b0wSYDPD3W5CyHZoOh45PWmpa\nOonMGDjxE5yaDYHXQYuHIXwMeFah+c5VEDMUxioiz9kM+jNgPgp+XVTztUjPhlcfqYMyt0hsqRaj\nGvHgNgrNc67zBF5JqMJF+k9c4oUyB+iPSpWdArwNeAKIZW2vadp/gaFAPvCgM+YT+F8lcBE4dRyi\n16lKPQc2Q0SLEtKu70Kf1rPHYf40WPUr9BiqiLtN90v1RGDbX/D1cxDRBiZ8rswmtsJkgiVT4cBa\nuPMNiOzt/Nz3/wV/vAOTyylRtm4aJB+Fe/7PvmsWZMLnXeGxFVD7OtvHZScoEu/4AETZETaeFgNb\n3oLEbdD9NWj/iMXrxEmYDRD/Fxz/EVI2KxJv8SDU7uE6k8jlgCEJCvZAwS4o3K0kbiWEXqM7+F4P\nHo2uTlIHS/3MdDS3hs4TeCXhBxfpT6gO5LEKlxJ40nnYvE6RdvQ69cfYZ5BqUUOgtgOFka0hNRE+\neERlHxz5KNz2BISVY7/Oz4WVs2DRfyE8Uul2s9FmPW+K2tAMrqUKGnt4wjM/Qr2mrvkZPrtJhc73\ne/DSz5ZOVnbhkQ7kJFn/KRxbAY+tsW8vITcJ/hgPgXVg6BfgY4dPf/IeiH4T0mOg19tw/X3O27KL\nUZAIJ2dD1l5Ij4b6N0GDEVB3kP0Jr640RMCQAAW7FaFLOuQvUZGQ3m3Au+3Fzd1Gj5/LAJeYUP5r\nh/7EagK3CocJXAROn4TdO+D0MfhrAWSkQq8BKgKzzyBoWsW2P70OVs+BG8aCTzkmkLPH4Pf/g1W/\nQOeBMOYp6NDP9jmtmgmfPwyh9dQ/111vw81Pum5T98JpeKcbfHEOvMshod+ehtpNYbADoewmI0zr\nA13ugz52Bs3ocmH1i3BiOdwyA5oPsW98QjREvwH5ydB7MrQY45y/d1nknIDzyyDxT0jfDWH9FJk3\nuAn8XLCHcqVgTAPdoYub/gi41YSgm1WUqGcr8GwJHi3Bve5lX7G7hMCn2aH/VDWBW4XNBJ6RDnt2\nwp4dirT37lRpYLt0h6gboFNXaNOhaj1WbIHJBNtXwMJpyt97xHgY+TjUsdNkc3QnvNAf9EXqdf3t\nRdB7pGvnOv81MOrg7s/K//yb26HrWOjiQHIrgAvHYFpveGYH1HIg0OrUGlg6HprdCEM+BZ9A28eK\nwNm1sPcryD0CLe+FVvdDsGW/48JOSN8HkTZ6vlQEfRYkrlRknrgCajSBJrdCSDcI7QWeVRAVq7CE\nWAAAIABJREFUfDkhZjCcAeMxMBy2yKNgOAaiV2ReTOjebcCjMbg3BbeqWbW7hMC/skP/6WoCt4pL\nCFwEEhPh8EE4dFAlpFr7J6SmQIcu0Lm7Iu3O3V2TI9wVMJng4FbYsBgST0HmebXaHnjHpf7etmDf\nBnh9mErTCoAGPUfAu3YkqKoMySdgcm/48AAEV/A9vtsZ7v0Gmjrhb73xczj9N9w3Fzwd+C6KsmH1\nJEXm966A2pH2jReBtP1wdBYc+00ReKtximzPLoXWT0Cvr1xj0zYbIXUbpK+BtM2QuQv8r4PQPlCr\nL4T2Bd+r5G/WFTBlXEzobplg3A6mU4C3InL3Zkp6WKR7BLg1BM0x05ZLCPxLO/SfqSZwq1DJZWYo\nsj5sae7u0LY9tGkHHTtB23bQqrXrE1M5g8IC2LkWNi6Gv5dBnYYQNRKiRsF1DkbKxR2CuR/D+l/B\n1x8CQlQOFn0hBNWCn4+7Zu4i8NFgaD8chj9fsd7TNeE/JyDAiQroZhMseETZtsf9rnKtOILT66BR\nL8fHg/JaObcSYn6G87+DBrh5Q8Mb4Yb5rk8kZdZD5h5lM0/brKRXCNQdDsGRENQJAtqC+zVmQ68M\nIiCpYDytyNxUSnoZwLwHtLrg1hi0Jkq6NQGtWDYCt/LftlxC4FPt0H+2msCtQtM0kYfvV2Tdtp2S\ndVy82egqpJyHHWtg0xLYtR4iOyvS7n8L1A937JoisGcNLPwM4g7CLRPh5scUYVcVon+BFZ/Bu7sq\nzpuSnwkvN4Fp2RU/jGJWQk4K9Bhn/X4mI8y9D/LT4YHF1os+XA5kHIEl3cBYUHLO3Q/aPgutHoUA\nJ/NuVwQxQ04MZO+BrL8hZx/kHQW/phDYURF6YEcI7ACeV8/GocshBpDzYD4H5rMgFmk+B3IWvIqA\nDEXkNFJSawRaezT3W50n8C/s0H+umsCt4rL5gdsLETh9FPZGW9pmyM2GYbdBp77Q5yZV3cdRFObD\npnmwyPLXdNvzqgKPVxWnE005DTMehjunQLOuFeud3Qs/PQjvHLCisxtmjIZ3ToF7JcFXJiPMe0Ct\nxB9cdmVJ/OgM2PwIeNSAmm2gVicoOK+KPqTtAe+a0GAINBwM9aLAyw7bu70w65WNPmcf5Oy1yANQ\nZzBoBqgRCX6RJfLfTOzFEAGyQOKBeCUlHrQQNI9JzhN4BVs+5eq/UE3gVnHVEHhhARw7CPuiS0jb\nPxA69YGOfZRs2sq5TdK0RFW5J3opHPgbbrwb+o2GzoMvz25+6ll4PwpGvAw3PG5dd/dCOLEF7qpk\nufLlAOj5MHS7t/L7m02w6HEoTIMh70LdtnBoHjTuBUGXMde0sVCVPKtRjt+zmCHjICSsVi11BzQe\nDsHhENpVtRqNq/b3JSYoOAUFRyA/VrWCWCg4Cu4BJYQe1EnVyvRpBt7hl6882hWES0won9qhP6ma\nwK3ishO4CCSfh9gDqh21yMRzMHQUhIZYSLu382H1InDqEGxZqlrCSeg+FHrfomTAZVxNpSfAe/3h\nxqdh2DOV6//6lAqvH1pJSbMjy2Hpq/DKfttIzWyGXTNg9evQaRzs/AqCGsKEffb5fF8uGAsUiadu\nhrRdkL4LEAjtUkLooV3B18lQflsgArqEEkI3p0H+LtCdAt058AwD76bg09RC6k3Btxl4NQDPelZz\njFwrcAmBf2KH/ovVBG4VVUbgZjMkxsPpE3D6OGSmwa4NcPSgsvtGti9prdpDs1bO52Axm+HcCTi8\nHc4ehY1zlHdDn1sUabfvqwJxLjeSTsInw2Hgo3DzpMr1T26DWY/CuOnQrJI0DiIwpSsMexPa3Wr7\nnLLPw09DID1WBds06AIPb6rcFHOlIQIFCYrIiwk9fTc0iAL0ENgaAiOVDIgEr8v0kBYT6BOg6DQU\nnQLdadX3MEF+NJjSwaMueDUGz0aquo5XI9X3bqw+8whz2DvkcsElBD7FDv2XqgncKpwicINBRV8m\nxiuSPn0c4iyEffY01AyBpi0g4jpo3R6aNlOEXdtFecSzM+DwDjiyAw5tVzIgGNr0gA59VWbD8NZX\nLjzZbIY138CCd+DeTyDqgcrHiMCEQCjKh3f2QpMOlY85FQ0/jIHnt0EtG1MDmM0wpT7kW5K0aW5Q\nrxOMjwbPK1RWzFGIGfJOQ26M2qTMiVUy96gqxFBM6CEdlRuhX1NVoPhy1sI068FwHgzxoLc0wzkl\nvQSK9iiSdw8Bj3qXNs+G4BEC7mHgFqb8vK/A37VLCNyGeiP/6L9cTeBWUSGBi0B6OiQnQVI8xJ+F\nhHNKFvdTUyCsLnTuBsH+iqyLCTuiuQr0cQV0RXDmOMTFwulYOBUD52Mh+SxEdlV5T9r0UDL0KvGg\nSYiB7x5R/cemQ8PWto1Lj4eXmymXOy8/GPetqlRfGTZNg63T4fmt1osVFyNxL3zTWa2+xaxc+IyF\n4F9HZSXs+CDUqEJPnMsBMUNhQgmhG1PURmXBaSiKB89aUKMp+EaAX4Qi9hoR4FMfvBuAuxMukw7N\n1wjGC2BKAmOZ5l6oKvCYLqgmBeBe20LoFunTBDRfcAsFt1pKaqGW41D1mZNwCYF/ZIf+K9UEbhXq\nC30fkpIgKdFC2ImQkgx+fnB9Wwj2g0ZNoGHji2W9Bpdm+nMF1v4Oh3Yqsj4dA8nx0CACmrWGiEho\nGgmRHSC81dXlmw4QHwPrf4To2TDmbRj8uH0br/uWwrTR6pW8GG/vhvDO1seJwG/jwaSDO7+v3MtE\nRHmk+ASpDIKaZikcvAt2fg2xS6DdXdD8BgiPAl8nPH6uRohJlVDLPw2FcVAQp4hdy4e8/aBLBA9/\n8G6oyNy7AfhY+r4Nwas2eNZRdm+3y1uXUs1fB6bUEkI3p4KWAeYUlVvFbGml+7hBjesBHWg1QQu2\nyFKNmuAeClogEKx0CAJqgKa5hsA/tEP/1WoCtwpN00Refxnq1VeRlfXqQ716qu97mVcgxZj+gXrF\nbxqpSLtRM/C8Av8ktkJXAFsXwJrv4UIcDHwIhj8FwQ68DXx7j0oj6+UH9SLhjo8hcqBtr8sGHSyd\nBMfWwn2/QCML6YvY/7pdkA5Hl0LsfIjfAiHNIXwgRAyExn3B+wrXiKxqiBkMaYrkdefV5qXuPBQl\ngHseFJ0EfQoYU5VnSjGZe9YBrzrQaDJ4XkUPPRGQfEXoZIFkghTLMs3TAJy36GUpiR604WheS50n\n8P/Yof/6/zCBa5rWCJgFhAECfC9lMhFcNW6E1xoyUyB2C5zcBeu+hxY9YPCj0Pkm+4saF8Ogg8dr\nqJwjzyyBFn0du86eOfDHM9DvGRj0MnzTBxp2gVu+cswN06RXK/Mz6yFuPSTugjrtFKGH94ParcG/\naovpXrUQMxgzwHBBEbrB0uqMB3cXmRCvBogeKEJzC3KewN+3Q/+Ncgs6DAWmAu7ADCljVdc0LQpY\nAhTXIlwkdt21zByuIIHXBeqKyH5N0/yBPcBIEYktpVNN4JXBbIaEo4qwY7ZAbDTkpEOrntD9Fugy\nHGqXU6rNXsyaANnJMHGR82SYGQ+Ln4OUI5B1Ajy8IKI/3LfI+SAeQyHEb1WEnhcH8evBUAChkRDa\n+mIZFO7aTITVuKJwiQnFjuzI2puXFHRwB44BN6BeE3YBd5XhtCjgeRG5xdF5lkalyzFN054GZotI\npituWAwRSQaSLf08TdNigfpArNWB/6sQgew0lRAr6RRkJELMJji2DfyCoHUfVcRh9CRo1Np1mRcN\nOvj9LUg+7hryBqjZCB5YAJs+hVWvK9I9sRo+bQUP/gX1LqlGZTs8faHpINWKUZihXBLTY1U+8HMb\nlCxIhcadwbMG+DcC/4aqBZTqV2WkZTWuPji3XuwGnBSRMwCaps0FbuVSTnPZ66At79N1gF2apu0F\nfgRWuXpZbKkj1xHY4crrXlMwGiErVZk/MlNUZGQxWRdLN3eo1wzqN4OItnDDA/DUdAipoix2J3fA\nDw9BvZbw2K/qQeEqaBpkxqnKNu6eKpAkOx6mtoN67aDlcGg2EOq2gQAnc0v7hkDD3qqVhj4Psk9B\n/nnIS4C8eEiKhuPxJcduHlArHDwDwKc2+NQC39rgbZE+tSznQ5Rft2eg6wpFVOPywzlmawDElzpO\nAMqW3xKgl6ZpB1Cr9EkiEuPoDSv9SxOR1zVNexMYAjwA/FfTtPnADyJyytEbF8NiPlkIPCMieWU/\nf+edd/7pR0VFERUV5ewtqxYioCuE3KxSLbOkn58LucmQkQKZFxRZZ6RAXhYEhULNOlC3CdSqpci6\n7xhF2PWaQeBl2HhKj4edC2HnfPAPhZFvQbc7qsaG7OmnPEma3wBNekLDziAaJOyEUxvg8HxYeI+y\nc9dupdLFFsuajcG/HvjVctwM4uUPtdurVh5EQJcFhckqvL4orUTmn4P0vVCYqs5pWWDIBEOOSn7l\nFazyfZeWfkEqx4pnALj7K0+Sf1qAkp5+yj7t7qdcBd39/hVRklWBjRs3snHjRtde1AqBb4yDjWcc\nHf0P9gKNRKRA07RhwGLA4erYNtvANU3rADyIKsi5HugBrBWRSuKprV7TE/gTWCHlJHJ0uQ3cbAa9\nXvlu63VK6izSUARFhSrvia5Q9f9pBWDQq2ow+blQkFfSCkv1zWbl/ubuDv7BKnAnsGZJPyBYJbmq\nGaIKG4fUUYQdUgcCQy+v22Fehsr7nXQCUk6qvlEPx9ZDp5HQ/XZoPejKRIeWRUE6XIiF1KOQGqtI\nNXkX5CVBURb41YaAeuBfV5G6fz0ICVdBP95BpVqwkl4BVWf7FjMY8sCQpQo6GLKV1GeD5IAxz9Jy\nS/XzwJQHhlzwKABTmebmCW6lCL2GP2ieKr+Jm68K+nEr07x81TjNW6XF1bwsstSxp4+6juapjv+R\npfpuniU6lOpfhQ8Vl9jA37ZDf/IlNvAewDsiMtRy/CpgLruRWeaecUBnEclwaM6VEaSmac8A9wPp\nwAzgDxExaJrmBpwQEQfKqYCmaRowE0gXkecq0BF5diIYDSqysnQzGlR4e2G2Ile9vnzp5QP5qRaS\nNoC3t8rq5+1jkd4QGAzegK+fqgDvY2mlj/1qgL8f+PlX3HxrqCRXjhRqcAYiqjpPQTbkZ6lW3C+W\n+kJIPaGIOuWkCsape11Jq9McGkRCeAe1qXitwGRQEZu5SZCXrEg9NwncjJATpwhenw26bNXXZSuC\n9awBI+ZAs5uu9E9gHSIqUtJcitClEMxFYCpSsrzmVgRmnfLJNustUnfxOS+zuq7oLWlc9Zf2fTzB\nnG05ZwCKJSWk7ldLuQFqnoCHJeS+WHoq6RMMFKGcM0rp4GF5GHioB6umt+hYzhX3NUvfo4aawz/n\ni3Uj0DzucZ7A37RD/71LCNwDtYk5CEgEdnLpJmYd4IKIiKZp3YD5IhLu6JxtMdaFAKNF5GzpkyJi\n1jRthKM3BnoD9wIHNU3bZzn3qoisvEir+XWKqIubh+fFxz5e4OWlfLG9yvQ9vVQwj4+PhbC9/p3u\nZKnnYGJLqBGsml/QxbJGMASFQdvBMPgJRdiBtf8d34W7JwQ2VM1WmE2gzwWPayBDn6apSFR3b/Cs\neaVnUwIxlZC6GEAzqmhNiqXh4mPNAJhKfV66bzl2M6lxmEo1y2dS3NdA05WcEwNQBNol1lcHfy4n\nhooYNU2bCKxCPVV+EJFYTdMes3z+HTAGeELTNCNQANzpzHSv/kCeq3h+Vw0cCYapRjX+ZXCJCeV1\nO/T/c+UDeaq3y/8NqCbvalTDNbjG1ovVBF6NalSjGsWoJnAXIzZW2bB9fFQCK19fZfuuXnVWoxrV\ncDWqCdzFuH00FBVBs2awZxd06gi7oi1k7qekX42Svq8ftGihPC9qBCiXqxr+4F+mHxgEAQEQEKS8\nUGr4X1sPBRGY2E4F8dRrDnWbQf3mln5T5T3zb4RRpzYhr3Tx42rYDhGgCKS4FZb00YNWAOgsx+VI\nN2/QUlUfnRqDxZumuO9WNl7G0bm65jKXC9fmJqbBAAUFyme7PGnUQ04m5OdBXq6S+XnKh7u4XycM\nYvaoYsS52crfu0aAIvOAINWubw/6fAgOhZq1SlpwKARb+kE1XRe2bg9EVHRm0klIPKlk8XFKHLTp\nDcG1oUVPaNkTIjpc3VkTy4OhCJIPqvzgiXvg/B5IOwq3/Qxt77g8czDpofCCCuYpSCklU1R63H7f\nXp55VCXEDOY8MOWCOdfiWpgD5vxSLa+kL/kq6Mh8RuX+NltcG8v2fduCcROKdL1B81F5vzWfkr53\nG9DiAR/lo/6PtOjjDR51wK1Q9fEGvCyfl+7XQ3Pv5vwmph1RLdonV34T89ok8KqA0Qh5OYrMs7OU\nLMyD9GTISldl1zLTyvTToHU7OH8CatevuIU1UKR/uVb4JhMkHocTO+DYdji+DZJPQY/RENEOet8J\noU7W9Kwq5CZDzFKIWaJ8lQtSoX4naNAZ6neGuu1cu/rW50J2nPIZz4mDnDNK5iep8mOGHPAJA786\n4FsXfOuU9Gs0gGa3u24ujkDMYMwGQzoYs8CUCaYsdc6YXdI3ZavPfWqDbp8i638Iu9ASKBQAbgEQ\n0BXM8eBWo6Rppfpu/qrghJumSNjNDzQ/Czn7WY59LZ/5ogi26hc5LvFCsaGq4D/6n1YTuFVcE26E\nBoMKhU9NrLiFhMLJvdCwefkt1MlcH7agMFclvto+H3b+AY3aQO+7oO+94GtDlZyqhFEPe+fAru/g\nQgy0GArXj4SWw8DXRflX8i/AhQOWtl9Vds86oSr9BIZDYAQERZT0A8IhoCH41ros5PMPjAWgvwC6\nFNAVyxRwM0PRcTBkKLIulsZsS87vEAjpqYomuAeBRxC4ByvpEVxyzjPEEqZvIWv3AAtBX4G3SBfD\nJQT+gh36n1UTuFVcEwRuK7IzVOX5su38SRWq3+tGCA6BFl2gZWeVrMqriuo/GnRwYJUi8oMrYNQb\nMOixyx82b9TBjh9g/UdQ93ro+zQ0HwgeTv7cOQlwfhtc2FtC2IYCCGsPYR2UrBUJQU3BL+zyvBmZ\njVCUpIoeF8ZbZIKS3n6QtVkRthjAuw54hSnpbZE1wsHDFzxDFQkXS4/g6uRZFriEwJ+3Q//zagK3\nin8VgVtDfg7EHYETe+H4Hji+WxF740ho2QVadIZ2fdSxq8nm7EH4dRKkn4O7P4HOzgTX2oHYlbD4\naajdAoa8BY27OX4tfR6c3QSnV8PpNWq1HXkLBIeXkHZg46olahHQpUPuSdVyLNLdDdLXgS5VkbFv\nQ/BrqGRx36+RMtN411FJra6lzfSrCC4h8HKTelSg/0U1gVvF/wyBl4eiAjh1QBH6sd1wdj/kZkDX\n4dBtOHQY6DrThwgcWAnrp0NYE7j7s6rbmBWBDZ/Bpqlw32/QvJ9j18lLgaNLIOY3SNoD9btCxGBo\nOhjqdqzCZFUCuXGQth/yz0DmzhLC1jQIaF7SAi3SvzH41KteKTsDsx60DFVWjQyQDCCzRGp10Twm\nOE/gz9qhP7WawK3if5rAy0IE4o/BruWwczkc2wGRPaH/WOh5KwS5oEp7fhZ8ehPUbQHjpztefq08\nmM2QeAB+HA24wVMbVWEHu65hglNrYM90OL0O2twBrUdB437gVQUlwoxFkHkE0g9A+n5F2hkHwCsI\nQjtAWHe1yi8mbJ9Q18/h3wgpUoWOzalgvgDkgpxXNTElwyJLFT2WDPDuDG4xoIUAIagixyGljiPR\nPMY6T+DP2KH/ZTWBW8VlJ/BNKyEjFVq2hWaRKlPh1Yr8HNi/DmKiYe0P0P1WuGkCtOjm3Ct4UT58\neZuyyz61wLkUtwWZsOMniPkTzuxQlXfcPeGtOAiqb/t1dLmwbyZs/RR8Q6HLI9D2blWf05XQ50Li\nZkjYACk71eo66DpF1rU6KBnavpqoy4M5H0zJFzdjErgJyCFF1MWkLUXgVhvcwpT0agNuBtBCwS1U\nyX9aiDpHYKV/1y4xoTxlh/60agK3Ck3TRMY/DC1bqmr0TZtB82ZQq4oy6S1fAKsWwbFDEH8aGkYo\nMm/VDlq0Vf0GTa6M37c1ZKfB2p9g+TcQEALDJ0DUPY5vghr1MPNJCKoLY+woElgWp7fAV31Kjt08\n4PZvoOd428abzXDgV1j1Clw/Gjo/qFwKXQVDASRthYT1irTTD0FYV2g4ABoNhLDOauPwfxliAuMF\nMCaAIaFEGuJVhkTjFkXWGMC9HrjXtTRL36sJuAeWkLVbbdCCquT/1yUEPtEO/f9WE7hVaJom8t13\nkJYKMYdVoM6uzepVulkLaHYdNC8jg4Ndc3OdDk4fVWR+/JCSxw5BwwYQFAwde0OHXtCuu8oFXhb5\nuXBgO7RoB7XquGZOlcFkgr2rYMNsiNsND0+FLg7mu844D2+0h5fWQHhHx+e05gNY9Z4yR3jVgP+k\nqUIClSF+J/z5jCKQm7+Cxj0cn0Np6LLh+O9wdg3EL4Va7aHhQEXa9Xr+7xG2GEAfD/ozoIsrkW6A\nfjMYksA9BDwbquZRWjYCz7rgURe0ylfIVQ2XEPiTduj/XzWBW0WFJpT0dDh1Ak4eV/JUsTwBHTqr\n4KzItirIJrIttGoD/i7a8EtLgQPbYP9W2LcFju2H8JbQNFIFA/n4qs8T4tQK8r0f4db7XXNve7Bv\nFUyfCI2uh4e/VJuT9mLmk/D3zzAtCfwcNFfoC+HNusoMMuB5uPVT6/omI2z8CHZ+DUP+Ax3H2f/G\nc2IJRL+h3ARrtYYa9SHzmCr2cHYtNB4IkXdDxFDwDnDs57qWYNZB0UkoPK6aMRX0uxVZG5IUCXuF\ng1cEeEeovndT8GoEHvVUKPs1AJcQ+AQ79L++lMA1TRsKTEXlA59RXjUeTdO+Aoah8oE/ICL7yurY\nPIdrksArggikJMHRIxB7SLWYg3AiFsLqlZB6xy7QpgPUb+T8qkGvg5i9sHwOLJqhyrEVw9sH5u2C\n5m2cu4fDcyuCxZ/An1/CyBfh1hfs25g0GuFhLxX5+MhP0HWM/d/X5u/gxDoIqAVD3rBu+9YXwG93\nqdX6Xb9CDQc3ZuP/hgWDVRh8adw4A1qMBp+rqDCCK6FPg/zDUHSkhKwLj4E+EXzCwacF+LYAv0jw\nDQfvcLWKdrvGUixUgP9n76zDo7i+Pv6ZECO4E9zdHYIEdyhuxQpUkBangrTUKLQFSqFAKVZKcYcC\nQYK7BoIFlwQIcc/unvePCYWSlZndpcDv7fd57rO7mXPuvRvCd86ce8QpBP6BDvlfUnXkSYPakacJ\nasPiE6TuyNMKGCoirRRFqQnMFBG7Hy//twjcEoxGuBmkknlgAESFwfbVaqhZlVpQuZb6Wr6qWhjL\nXiQnw9dDYPPvags3FxfInhHqtIL67aBOC0jvxM7uWhFyA9Z+A9EPYcQqfYWuhuaGqIfgkQ4KVFKJ\nPHdxbbomE0wqBO9vgbwVbOzxAqzsC7nKQOffHGvrdnsfrG6S0gnGBdLnhT6n1dZf/wswJULsZYg5\nnzIC1FdTHGSoooYvpi2lknXakipRu7wGvU1fMpxC4O/rkJ+bisBrA5Oe64n5MYCITHlOZi6wV0RW\npny+DDQQkYd27fn/BYGbgwjcuw1njsLpo+rr5QAoWlIl9LqNoHo9+/zXK+fCN0Ohkg9MWw4Ht8CB\nzXBmP5SpAW36QL12apPjfwuGZJjTH0LvwLhNaps1LfiiFlw/pr53SQOlG8I4P226V3bD+jHw8enU\n10Tg0WW4sgPO/gH3TkK2YjDmin2HxCJwazcc/BKi70HWwurBZLo80PuE2vD4TYTJANEBEHEUIo5B\n0lWIOQNpi0D6CpC+fMprBfBwwhPlvwVTBBhvqgWxnn813oJ0X4FHe91TOoXA39UhPz8VgXcGmovI\noJTPbwM15bnYFkVRNgPfisjhlM+7gHEicsqePf//zSxQFMhfSB3tUtrSJSRA4FmV0P23wISBaiRK\n3ebg0wyq+miL7Oj2PpSurFqgOfNCx/fUER8Lx/zgxA746SNo2AU6DoHiFV/mN1Xh6gZDl8Li4TDJ\nFz7bDlk0kFrW/CqBu7hC06HQ+Wvtax5dDLX6mb/2UzV4GAiImlLv4gYjztlH3vePw/7xEHkHfD6D\nsj0g7Aps6Qmdtr5Z5J1wH8JTyDriKESehrQFIXMtyFIHMn8E6UqrnehfZ4iodVkM1yD5GhiC1Peu\nrmD4CzCBS2FIUwjSFAaXIuDWOOWzxie8l7Jvy5f8H4B/sL3a/8CLNxm7rdT/vxa4FiQnw/njcHCH\nOq5fgur1VTL3aQZFStpv8TwJgc0LYONc8C6sEnmDji+/5KsIrP0K/JfABD/IVdi6/OZv1IPM+Aj4\nKVh7hmN8FEwsAJOCIL0Z18XpZbD2XTU2HAVqDIDOv+r7LoZE2DcZzvwGLWZAmS7Oy8D8t/qMxj+A\nR7vg4S41cSXquErWmWtCllqQqTq4vQK3m1aYEiD5CiQGgukBGI6rRG0IAsUdXIs/G25P3xdWE3Gc\n/Pt1igWuMcIVQFmQygKvBXz+nAvlE8D0/EFmigvFX0RWpHz+z4XyryEiDA7vgkM74c51iHkErXtB\ny56Qt5B9cxoMcHAjrJsNty9B20HQ/j3IkdepW0+FbbPg1EYYsxE8Nfj9J1aGHtOhtK+2+Q//Bhe3\nwqB1lmUWtoUr29TiVUOPgrcNP/nzCDkHG/qomZBt5kN6J4RqisDd3XDmRyjeBcr0d3zOF5EcDaH7\n4aEfPPKD+GDI2QhyNlFf0xd/Pd0gxjiVqJMCIemiSthJgWC4C25FwL0seNVMCStMIWuXf/ew2CkE\nPkCH/G+pCNwV9RCzMfAAOI71Q8xawIz/DjFfBUTUUMJtf8DOVVColErmTbuojR7swY2LsH4OlPeB\nZj2du19zmNNXjckeNM+27LapEBECPX/UNvfj62o0iXdZ89eDA+CXRlC6uepKGW7GT24OJgMc/A6O\nzYCm30PFPo4TniERri6HM9PV+tqVR0DJXuDqJDdF1DUI2QEPVkHEGchSXSXsXE0hSxXJLcZNAAAg\nAElEQVRQXlLdFnthCIOEsxB/5tlwywQu0eBeBjzKqq/uZcC9OCivxwGpUwj8HR3yC82GEbbkWRjh\nbyLyraIo7wGIyLwUmZ+BFkAs0F9ENP7xm9nDa0uQvOYE/jySk+DQDpXMD/0FVepDq17g205t8fa6\nIi4KPq4EfWZAtXbWZe+chTldYcpVx9c1JMOMqlB/JNToB8ZkNcXeFpJiYdMHkPAY2s6HTDprqbyI\nuMdwYS6cnwM5KkGlEVCgqXMs4OgbcHuVOuIfQKHukK8FZK8Hri+hbou9SA6FuJOQcPwZWRvDwLMi\npK38bHiUee3DDZ1C4DoeupRF/yXyWIVFAo+KgsH9oUEj8G2iZmG+Lo+dsdGwZz1sWw6Pb0LzntBl\nqNqR53XE5YMwowtMOQOZrRz2GQ0wJBNMD4G0Dia/HJoLt45Az8Xa/90SY+D31pClCHRY4JivOykW\njn0DIfshaymoNByyWXhS0IOY23BnNdxaCbG3oUAnKNgVctZ/edUR9UCMEH8RYo48G0nBkN4HMlWE\ntFVUsnYvypvY4MEpBN5Ph/zi/wjcKiwSeFwcbFkP+3aD/y7VndGg8bPhraNQkjWIwKNgyGXnfLev\nwO/TwH8dtOoDPUdC7gLO2ZszsXI83L8EI9ZYJ9Qva0K3H6BEXcsytmAywZQy0GUuFPfVppMQBUtb\nQY7S0H6e/bVoRODKatg3GvLWhfpTIaODreWMiXBjhXoIGbwd8neAgt0gV4NXXz7WlACRhyDuKET7\nQ+xx1Uedvvazkbbs6+fCsRNOIXAdSdPK0v8I3Co0uVBE4EYQ7N2lEvqBvZAzF3TqDrXqQJ0G4Gan\nj+7hfWhXASrUgM4DoWFbcLfjMfLRfVgxAzYtBJ/W0GcsFH1F2ZnmYEiGyfWgx1QobaU+99L3IU9Z\naKKjZNuLCNwGWz+D0ae1Wd8JkbCkBeSuCG3n2E/eoRdh9zBIeAKNZkF+O+uQP0VcMFz6Ba7Mh6yV\noOyHkLfpq02YESNEn4aIXRC+G6KOQrrykKs9eJWD9LXUXpb/NoyhkHQKkk+BVzdwLfpSlnEKgffW\nIf/7fwRuFXb5wI1GOH8Wjh+EdX/A7evQtA206gi+zSCtzmJFCfHgtw5WL4DrgWpdk84DoEgpffMA\nREfA2l9gxUxo1g26DlN7YjqKqCeQ0UEXza5f4PwOGLnBsoz/PLhxDN5ZaP86c5pCtd5QQ4OpEx8B\ni5tBvhrQZpZ9brLEaDg8EQL/gDqToOJ7jlnGj4/DxZ/g7lYo0gPKDoPMpe2fz1HEXYPwnRCxGyL8\nwd0bsjSBzI0hcwO1D+a/iefJOumk+t4UAe6Vwa0qZBj8ehP42zrkl/1H4FbhlEPM+3fhrw2wbT2c\nPwUNmkLLDtC0tVpVUA9uXYO1v8H6xVCwuGqVt+yqFrDSg4R4WDcH/vgWOn8IPceqdVPsQWQoDCkH\nH6+GcvXsmwMgMQ6GF4JJhyynyt88AYsHwRdn7VvjQQDMbQ4Tb9lOlTeZYFVvtXZKi6n2kffjC7Cx\nJxSsBz6fg1cOe3atRqbc3gTnv4P4ECgzFEq8Ax6voKaKCESegEcb4NF68CoAXnkgS2OVtD28/8W9\nGCDxPMQfgoTD4BIPyXvBvQq4V1UJ270quBZ7+T51iUdx8XKcwHvpkP/j/zmBK4qyEGgNPBKR8mau\nOzcK5Uko7NwMW9fB+dNQpzZ06QcNWqgZYlqRnAz7tqpkfv8qdBoEXT7QX0cl5A78NBxuXIBRs6F6\nU336T3HGD6b1hAmb1C499mL1BIh5Av3nmL+enADDssKscHCzo0LdnwMgW2G1qJUtHPoJzv0J7x2w\nrzPQ5bWw/X1o/COU1/Fc/CLu+8PhUZC5BBTvCgXa/fsHkqZkCN8PD9erxO2aHnJ2UEemav/egaMx\nHBKOqoQdfxgSToBbQUhbBzx9IG0tNf77Ze5HBLgDchpMZ9RXOQNKORT3nY4TuI7oXWX5fwReD4gB\nlv4rBP48oqNg62pYsQAe3IHO/aDbO1BQ5+PdtQCY/yWc2g99RkHXwfqJ/NAWmDEMytSEYT9CdjsO\nTU/+BdP7wqStUKK6fn1Q47yH5IF3F0GDvuZlfu4E7T+H/Kn+uawj+hF8UxI+u2Y+M/N5PAyEefVh\n8FHIrtPFlBgDByfB5TXQaT3ktrMBRMRVODIWQs9B7e+gaJd/N9JJjPBoJzxeD4/WglcxyPmWStrp\n7XDf2QNjFMTug5jdkHwdkvzBszqk9Ukh7VqQ5iU+hYiA3AHjSTCeALkNaXYCHqBUBqUKuFRW31MI\nxcXFcQLvoUP+z//nBA6gKEohYPO/TuDP48oFWPkbrF+mdt/pPhCadwBPHW4NR4k8IQ6WfAVbfoOR\ns6BhV/3f49gmmDUIvtgORe1owmAyQm9X1Ufccyq0GJ6atKa3hEZDoGIbfXMfmgfBF6HzT9blDEkw\npxbUfB9qaqgsFBcKN3fCnf1wew+EXwNXLxh8E9Ll1LdHgMggOPUt3NoElcdA+Q+dl9CjBTHX4M4i\nuLsUPPNAkUGQoyV4OhgtowWmRDViJWaXStoJAeBVA9I3hnSNwKsaKC8xssb0IIWsT4Ip5ZU0kKY6\npKkGLtXAtQoo5sNdneID765DfsV/BP56EPhTJCbCzg0qmV84DQOGQbd31VriWnHtgkrkJ/2h7xjo\nPkSfjzzoPEzurHae/+B7/e6DQ2vhlyHwlR8U0mklx0fDu1nVbEd3L6jeEd59obTr0vcgX0VopKPy\nPcCvb0HlrlDNxjPqjs8g+Dz03aTN4t0zFo7/qFqsoIbEddsJhRvZ1r22Em5uhKRIdUReV33ceXyh\n+SpIa6fPXC8MMXB/NdxZCLFXId/bUKA/ZPwXIpUSbkDEZkg8BNHbwaOUStjpm0C6OuDykjoUiQEM\nAZB8CJIOqa+enmpRqzTVnpG2kkfzk49TCFyH3aSsevUE/tpXI/z888//fu/r64tv7dpqWODL6Evp\n4QFtu6njVhAsmwVtykLrHjBwrNoP0xaKl4NpK1UiXzsPepaHzxZAVV9teyhWAWYfg696wMctYcJK\nyJhV+3fw6aRmNi79BIYv0Redkhir3jBMBrWTzqFlULk11H7OLMlaAMLvap8T1P0E+UP3+dblHpyF\n07/D0BPa3RV1J8GlVRB1W/2cvaw28gaIuALXV6tkAoAC1b6AGhO16TuK8DNwaxYEr4ds9aHYKMjV\n6uVmPIoJYk9A+CaI2ATJjyBzG8jWG/LNhzQvqcSxKQqSj6pEnXwYko+BSz5w9wGP5pB+MqQppstN\n5e/vj7+/v3P3+frGdJjFm2eBL18KX34GXXtB995Q2gkZdNYQ+hAWT4fVv0Ljt+Ddj6GQjnKXBzbD\nd4PBpxUMm6q9oYPRAPM/hsMb4cuNUKiMvn0vHAnhD2DUCu06D6/DqBLqIVTWvDB0BRR/oc7O4aVw\ncScMWqZ93huHYM0wGGuj5MP8plCxG9TUURIuMQp+qwUx1wEF3loJJTTWkjbEw6JcaoEpJQ0Ubg8t\n1mpf2x6IwMOdcPk7iL4OpT6E/L3A8yWWvDXGQdQelbAjNoNrVsjcTh3pa7ycRB5TvGrVJ+yGhD3g\nngGUJHDzUUnbrXZKt3nnwSkWeGcd8mtevQX+5uXL9uwDa7apYWZvNYP6VWH2DHhkVzVG28ieC0ZP\ngR3XIE8B6F4HRvWCaxe16ddrCysuAAp0Lwv7N2nTS+OqulB6T4CRvnB4s7599/oabp6Fgyu162TJ\nA50nw4j16lPOi+QNqgX+5I6+vVzeCaWaWZe5cxweX4WqOlLhDImwsiMU9IVOm8C7BhRvq1334Mdg\ncleTb9wzgu8C7WvrhckAd1aAXxU4OwoK9YfWQVB81MshbzFCuB9c7gsXm0LI9+BZCkrvh/IXIf+3\nkKG288hbDJB4BCK/hpBGcC8nRE5SC11lmQpZt0LW/ZDhW/Bo4zh5i1GNQjH8DKaPQE8VKqvz6hiv\nA0TklQ3gT9Syi4nAXdTKXM9fF6swGET2+Im820ckf2aRji1FVi0XiY+3rucIoiNF5k0RaVNeZHx/\nkdAQ7bqn/EU6FhP5tJvIk4fa9S4eEemaT2T7In17vXJMpG9OkbBgfXomk8iQ3CIh11JfexgkMraQ\nvvl+qCVyeZd1mYXtRA7O0rFHo8ia7iIrO4oYDfr2E3ZVZFllkU0dROJCRTY2Ebn1l745tCI5TuTa\nLyJbiojsrityf7O695cBk0kk+rRI0EiRI94ip6qJ3Jshkqjz318rku+LhM8XCXlP5HYmkfsVRZ6M\nFIndImKMcu5apmgRg59I0uciCU1F4jKIxJcWSRwoYvxTxHRVUvjCET4S6ah9OLqeM8Yrd6FYg65D\nzNhY2LIBtm+Bo7uh9yDoPxi8X1Jd7dhomPclbFwEH3wBXd6DNBqsmYR4+PVz2LUKxs1W+2VqQfAN\nGNsQ+n4FTXTENS/7DO5cgE826AuDm98fClWBZi+kzScnwte1YJLGVPi4cJhUAL55rJauNYfgAPi1\nGXxyA9w0HJqJwI6REHwS3t6pTecpbmwFv35QazJUeP/lhQaakuHqfLg+HTKVgVLjILvPy1kr/hY8\nXg6PloExHnK9DTl7gZeTww3FBImnIWaLOpJvQLoWkL4NpGsKaZx46GuKAMM+kPMgG0AuqyGDLnXB\nxQdc6oDyTyveKS6UDjrk1796F8r/DoE/j+tXYcEsWPsHNGwOgz6CanbXTLeOaxfg68FqGOBnc6B8\nDW16F47A+M7QdQT0GKWNSG4HqiQ+eglUb6FtneREGFsD2o6ERhZiu83h2Cq1E8+Ybdp1zCFwO5xb\nBz2sHGD+0QPyVIaGY7XNeWo+HPsJ+h+AtDrikAMWqa3XOm+GXHbGh2vBAz84ORzS5oFqP0AWHY0q\ntEJMELoD7v4MaQS8CkHOtyFjbefelEzxELsLYjdBzFZIkxHStVVJO20d59UClzgwHITkPWDYA8ZL\n4Fob3FqCWw1wqQqK9XBOpxD4WzrkN2gncEVRsgIrgYLALaCriESYkbsFRAFGIFlErBPKq34EsPlI\n4wgiI0R++VGkamGRFjVF1i4XSUpybE5zMJlENi0VaZhbZPJ7IhFPtOkF3xbpU0FkykCRZI37unBI\npEt2kUvHtO/vxlmRfrn0uVJiwkQGphdJjNOuYw5bJols/MTy9UdXRSZlF4nX+MgdEiAyJbdI2HV9\n+zgzV2ROPpHQy/r09CDymsiediLri4rc2aj+XTgbSREit2aIHCgucriyyL2FIgYH/41ehDFRJHKz\nyK1eIuczidzvL/JkukjiVeetYTKIJBwRiZskElVfJCydSFRd9XPSPhFTgu4pcYYLpZ32oWc9YCow\nNuX9OGCKBbmbQFbN8zryhV/2cJjAn8JgENm2QaRDQ5GaxUUWzHg5fvLIcJGvh4j45hLZvU6bTmyU\nyJg2Ih82EokM06ZzeKNI15wiV09p39vyz0TmD9YuLyIyt4/IpX36dF7EvLdETq6wfH3rxyJ/TdA2\nl9EgMremyPF5+vZw8ieRXwqKhAXp09OK6Lsi/p1FVmYTCZgiYtBPPrbXuCgSOFhkdxaRc91Fwg85\n9wZhShaJ8hO5M0AkIKvIVR+Rx7NEkpzoPzc+EYlbLhLWSyQku8ijCiJxE0SStouYYhye3ikE3lb7\n0Engl4FcKe9zA5ctyN0Esmmd93/ThWINF87CjC/g/EkYPlGthWJvuVmLa5yAL/pBJR8Y/ZPtQlVG\nI8wZAzv/gAnLoIaGmiiLPoWVU2HCGvDR8NwX8RCGl4bpFyGLxsSkZR+pXelbjdYmbw6TisAH2yC3\nGX9scgJ84Q1jLkAmDWcVh2fApQ3Qf4/2PIDj38PZX6DbHsikIY7fFuKCYV8HiH+oJuAkR4EpCdIX\nheYHwMvJxaRC/SF4CTzZDvnehXzvqRmazoAIxJyAyCUQuQbcCkDm7pC5K7g72O3o6fyG85C4DRK2\nqu/dfcGjNXi2gjROWOM5OMWFoiPBWNmiy4USLiJZUt4rQNjTzy/I3QAiUV0o80TEaqfv/38E/hRn\njsO0z+DOTRg1Gdp3d25yUGw0fDkA7l2H79ZAXhvd3wG+7AM7focCpaBxV6jcEMrWBA8Lh3T9ikNw\nEBQsC51GQoNu1hsU//ahWoSqzzRt3+HAEgjYAYOXa5N/EfFR8Jk3fB9lvgDUhU2w/0cY7G97rvCb\nMLc6vHsEsmmMwz/yNVxYAt33QAYnpaIbE2BdIUh4Lmw1Rx1occg58z/FkwNwZSLE34WSX0CeLs5L\n8DGEQ+gyeDQfJAly91NJ28MJZV7FpIYTxq4BuQGmCymE3RrcG9j0YzsCpxB4ax3yW1M1NfZDta5f\nxGfAkucJW1GUMBFJlaGnKIq3iAQripID8AOGicgBi5tw5JHjZQ+c5UKxhoO7RdrVEmlSXmSHk/2W\nJpPI8hkiTXOK7N+sTeftciI+iNRLI9Ikg0gDN5H7N8zLHt8m0tJVpBki7dKJtPFU3SuW8PiOSN8s\nIlGh2vZy57zI2JLaZM0h6IDI1OqWry/rJXJwtu15TCaRRU1E9n+nfe1Tc0WWVBeJfqBdRyvOfi2y\nVBFZisjyDCJxOkJCbeHJYZHDTUR2FRa5vVDEmOyceU0mkagDIkG9RU5kErnWQyRyr3P+3k0Gkfj9\nIqHDRG7nEblbTiTsc5GEgJdzDmABOMOF0sry2FsTmVTs2dCzHqoLJXfKe28suFBe0JkEjLIm8+Yl\n8sTFQYNq8OsciI93fD6fRrDhMIz7Br6fAB+9rdZBcQYUBXp8BNPWw5QPYPanYDBY1xk8VXW5mIxq\nCnr9DuBdyLxs+QbPSncmJ0LmXFC8quW5s+eHmh1hm42CUk+RpzQ8uavWSLEH985B3ormryXHQ+AW\nKN/R9jxnlkB8GNQZqW3dW3vgwOfQfg2kd6JLw2SA05MhYCZkKKYmwdSaC2ktFM0yGcEQq23u8ONw\ntCWc7g55ukHDK2o9FEfbsiWHQfAMOF8WbgwCr0pQMQiKLYeMvvZHrIgR4vdB6FC4mx+eDAWXnJB7\nN+QLgCyTwKPc69OrViusJO74ZoXPiz8bOrEJeBoG1hdI1TlFURQvRVEypLxPBzQDAqxN+uYRuJcX\nTJ0Fu7ZDhSIw/Tu1ybEjUBRo0ga2nwHf5jCgJXw7GuI0/uezhYp14PdTcPE4fNQKIsMsy9ZsDumz\nqsQsJnj/W8v/CTy91KqDLi6qi2L6Ichuw5f81jjYMUcbKadxhXzl4M4527LmEBoEeSyE0F3eAfmq\nQEYNWYihl6H9Am2FvaLvw8Ze0G4ZZHJi/9GYO7C1IYTsgw6noeFGKDMKClmoPxp9Hfzqw+VZNua9\nAeeGwclOkLs9NLoGBQc63pot4RYEfQjn6kLsSSg8DyoEgvdIx9qqJV2DR+MhqDBE/gCuecDbH/Ke\ngyzjwf1fKnX7svDyMjGnAE0VRbkKNEr5jKIoeRRF2Zoikxs4oCjKWeAYsEVEdlqb9M0jcICatWHl\nJtiwEy6cV4l88ngIfezYvC4u0LEPbLug1kBpVQ7273DOnrPmhFk7oEo9GOoLYY8s76H3J5DNG94e\nC+PbQ0yqcNFnaP0uVG8FtVvDxhm29+FdHMo3gT2LtO27UFW4becTyd0zkNtCu7Fzq6BiF23zNJui\nxonbgjEJ1nWBasOgcGPt+7SFe36woToUaAMt/SBdXshUGqp8l/rmKgJX58L2WlCgC5S1ENtuTIRL\nX8GeGuCRRyXuQu877ueOOQeXesHpqmolwfK7oNgyyFjPfmvYGA0RC+FWPbjlAxIL+TdD7k2Q+VNw\nK+HYnl8nmHQMHRCRMBFpIiIlRKSZpMSAi8gDSfG8i8gNEamUMsqJyLdaJn5tB1p94Deuiwx/XyR/\nFpHRQ0WCneT33LddxLewyIieIqFO8nOaTCK/ThTpUVrksYV9mkwiCfHq66yPRD6sJ5JgI9Y34rFI\nr9wiFw/Z3sOVwyLDimvzT/ovEFk2wracOYwvIPLYjP8+KV7k00wiUTrKEGjBjmEiq9o6N1X9wjyR\nRd4iIYdty8beE9ndQmRrVZGIQMtyIX4if5UQOdhOJOam43s0mUTC94icb66m0N/5TiQ5wsE5jSIx\ne0Tu9xG5nEnkTnuRqPUipkTH9/uSgDN84E21D0fXc8Z4My3wF1G4CEz/BY5fhOw5oH45+G4SxMQ4\nNm/95rA1AHLlhVblYe3ilJZODkBRYOAX0LSnaok/vm9exsNTfR38I2TPBz+8qxbwsoRM2eGD2TCj\nPyTaOBsoXkt1z9w4ZXu/3qUgyI4IC0MSRIdAFjOhYjcOQME6kCGX/nkt4eKfcH0btF3qnJZeInBi\nMpz5Djrsh1w2WtXdWgHbqkD2WtDiiGqhv4j4YDjWA04NhArTwGcjpCvk2B5D/4KzNeHa+5C9M9S4\nCfnH2t/M2BgNj2fBlRrwaDR4VIKiVyH/BsjwFigvsdTt64A3rJjV60/g07+HkR/Cgwe2ZXN7w7iJ\nsPs03AyC2iXhj4VqnLW98EoH46bCwu1wcAeM7KaGCDqK/uOhzQD4oD4E37Ys5+ICHy+G2HBYO936\nnD4doWoL2PqzdTlFgXq94KCG8MDcxeFhkG25FxF2W43tNue3vr5P9X87C2HXYNdI6LgWPJ1Qz9pk\nhP1D4OZ66HgIMllp65YUDceGwPkvoOFWqDAptf9aTHB9LvhVAK/C0CwQ8rRzbI8RR+BEPbgyBvJ9\nAtUugfdAcLGjVylA4nW4NwIuFoKYA5BvJhQ6CdlGgKsdnY3eVPxH4E5Gj7fVhsPVysHo4RAcbFsn\nf0GY+wcsWQ9/LoLGVWDfLsf2UbYyTFkEGTND1+oQFOjYfKD6uLsMUy3xBzcty7m5w9BZsHIK3Dhv\nfc62Q2HdVOt+cwCfHnB4hUpW1pAhhxoNE2Pl4NUcQm9A9iLmrwXtg6IN9M1nCSKweRD4TIBcFiJe\n9MCQADu7qc0e3toHXlYOWWPuwBYfEDdodRqyVUstE/8Q9raARwfAdz+U/0Zt+WYvYq/A2U5wrivk\nHQB1zkGODvY9dYhA9G643g6u1gLFA0qdgcKrIL2Pfp+5KU69Wf3bkASQS06aS8d4DfD6E3ju3DD1\nRzgdqP5BVS0LY0ZASIht3So1YPN+GDURRr8PPVrDFQeI18MTvpgPA8ZB3waw9U/753qKbsOh5xj4\nqh88umdZzrswDJoG3/aCpATLcnmKQ/U2sMnGgWbeUhAbBXNs1FFWFMhlhxX+5CZkM0PgSfFw/wwU\nqqNvPku4uAISI6HKe47PlRgJW1qqZNhmm1oj3BIeHYPNtaFEf6g5HVzNJFuF7ILtlSFbTai5BDJa\nONDVtLcQCPwAjvtAphpQ9yrk7W9fPW9TMoQuh8sV4N5HkKkNlL0NeaeAux2RO0mX4fFwuFVArVb4\nb0CSwLQFDH0g2RuMU5w0r47xGuD1J/CnyJ0bpk2HUxdVX3CVMjBuFDyyEM3xFIoCbTvBoUBo0AQ+\nHQI/fgFJSfbvpWN/WOAHP42Hrz90bC6AToOhTksY38G6/7pZX8hfEhZ+an2+bhNUN0pMuI2FBfb/\nDn7zrIvlKgaP9BL4DchmJvv09lHwLg8eOho+W0JiNPiNgRY/m8/01IPkWNjzLmQrD03/hDRWXBE3\nVoJfG/CZC+VGpLZUTQY49xkc6Qu1f4eKX9ofz22MhxvfweGykCYt+FyBwuPU93phSoZHi+BcKXj4\nK+T9EUoFQPZ3wUXnU4EkQfQquN8Q7vuCSzrIfwo8zTyFOAumZDBtB8M7z0hbqQ5ugeC6xElr6Biv\nAd4cAn8Kb2/4YSacCIDkJOjSGn6aZptE3d3h/RHw8zI4exza1ICLZ+3fR+lKsPoUPLgF/XwhxIr1\nrAW9xkHeYjDtXcsHpYoCw+fBvlVw2opLKHcRqN0BNvxoWUZEdY0gsGQEbJtpWTZXcQi5pulr/I0K\nb0FFMzVarjvRfXLgKzVcsICDdbZNBvirO6TxgrozLd8MRODMZDg+FlruhgJmuv+EHoVt5eDJSWhx\nGnI7EM4Yuhf2VYD4+1DrFJT8Edzt6GTzPHGHLoOii6DsXsjYVL+bJPkOPBkPtwpC1C+Q8X0odAey\nfQ1uTqg18yJEwHAU4odBbB4wzgalPLidA7eDkGYYKE5M1nrDLPBXHipoM6zHFoKuinRpJVK1hIif\nxq4qJpPIqsUiFXKITJsokuhAaJTRKDLva5FBTUSuBdg/j4hIfKzIO5VFVvxgXe7EDpEe+UQirZSt\nDbkp0jOrSKSFtPmIhyI9PUS68Gwc32Bedv8ikblva/kGtvGzr0jgNsfneXxJZFp2kWgHq+WZTCK7\n3hVZ10zEYKWkb3K8yJ4eIhtriMSmrGk0iNzfLnJxqsj+jiJrvUX+QMS/vWOhjEnhImcHivjlEwm2\nUhrBFoxJIg9/EzldWORiI5FIBypLxh4Xud1F5FZxkUcfiiRaCZN0BgxXROInikQVFYkuIZIwWcRo\nvZokzggjrKd9OLqeM8abZ4G/iKLFYdVW+PpHGDsMerSHm9et6ygKdOmrZl5eOA2tq8OFM/at7+IC\n734KHd6B95qolQjthacXfLMB/pwGx6wkEFVrBo16wervLMvkKgQ+XWD99+avP76lRuekcQOvTNDj\nGyhd38JcxdSwQEdhNKg+W0f93yLw1zCo+xmkd7Cf5Ilv4eFxaLVa/V2YgzERdnZWrd9W/s8ONqMC\nwb8FnPsU7q6DhGDIUQ8abLA/lDF4HfiXVSNZGlyE3HZEq4jAoxVwsZ7q6y66BMrshowW/n2tzRO9\nE242grudwcsH8p2GHDPB3QF/viWYHkHiTxBTA+LqA5HgtQLSXQaPCeDihGJbtvCfBf4vW+DPIyFB\n5MdvRQpnE/nyM5EYDTWGTSaR1UtVa3zu9yLJDhQP2rtRxDeHyEkHa2if3C1S30XkoBXrKyZSpEcu\nketnLcuE3BQZU1Mk3szvITxEZM1kkX2/i4ytaH0/j26IjCygaetW8eCCyFclHED4RQMAACAASURB\nVJ/n2naRJY2sW8xaELhE5LeCItH3LcsYkkT+ai+yo5P5wlLHh4osd1Ut7z89RCJ1NIwwJovE3REJ\nOyJyY5bIjpwiO/OJPDmg+6v8jahTIqd9RE5WFonwt28OU7JI+J8i1yqLXC0rErZUxPQSGqGIqE8q\niX4iEV1EQkuKxL4tkrxd3YNO4AwL3Ef7cHQ9Z4w33wJ/Hh4eMOJjOHAWbt2A3h1hz3brOooCnXvD\nznNw7gj0awFhofat79sOpvwJozvDIRvrWkPVRlChLnzSHr7qDXfN+J/TZYTu4+E3K23IchWCTDng\n0KrU1zLngk4TwKe7ao1HPEwt87dsHogItp5IpAX3z0LeSo7NIQJ7JkK1wZYtZi247QcHxkD7bZDe\nQn1tkxH29AYxQuPlqQ8iTckQH57SVswF8raFjCW1rR8wFLZ5wN5ScKQxXBwGLp7QIACy1tX/fZIe\nwpVBENBKLQ9b5QRk0nnWYEqAJ3PhakkImw05J0Ox85Clt/Nap/291kOI/Q7CSkDMKHDzhSzHwOt3\ncG0OioNFvOzFG2aB/28R+FPkzQcLlsPwsTDmPRg3WG16bA25vGHWSihfDdpXgwANWYrmULMxzNgI\nE/qC3xr75gAYNVd1z/j9Af0rwKhmcPPiP2VavQcPb8IpK+6WpoNg1wLL19O4QhlfuLjHsoybB3hl\nhigbET+24AwCv7UPEsKhlI7mhS8i4gacng6tV0O2MuZlxAT+70BiGDRdDWleyEBMjoZdbSApElqc\nAK+8UMl26Yq/kaermnRjilNHmvTQ4By460xEMsSoxH28DLhmhBqX1YQePeGFYoTQxXCxJMSfhXxL\nocgByNjGOVmtf69jgqRdENkFnpQE41XI+AdkOQteg8HFzuxRZ+I/An+NUL8x7DkHsTHQuBKcPGpd\nPk0aGDcFPvke+reAtXaGJlWsDXN2wNQPYYcZ61cLCpRUiVNEjfs+uRtO+P1TxtUN+k+BBWMsZ5tW\nbaWS/J2L5q8DlGsCAX6WrwNkzQcRZtL+9eD+WcvlZbXi4HdQZ4z9YYMmA2zrBQWaQV4LPmGTCdZU\nhbAAaL4BXF9oQhD/ELY3hHQFoNF6yFwW2t9WS8xqhWcBULwAFzWEr+xMcLNB3qYEONcUjpeCI3nh\nQDo4lAFC10Llg1D0B3DVcQMQgYiNEFgBnvwGhZdDvrmQzsGonlT7joXo2RDeKcXabgjZbkPG38Ct\npuMlZ0VA7HxqTrVXHeM1wP82gQNkygw/L4XxU6DfW/DteNshh606w5/7YM43MGmofXHepSrB/N3w\nyydwyI7O7i4uUCzFWlUUGDMfug5PLVenA3hlhN1Lzc+TxhUa9Yddv1leq0JTCNhlOXwRIHNeCHMg\nVFLEcQs85Bw8PAcVe9s/x9Gv1ASdKh+mvhZ1E05OhoUZIDwQWm4Btxfio+OC4fBgyNcG6sx/5lbR\nQ0LBW2BvTSg0AtwyQboikL+fbT3FHZIeQPwV9dUUBx4Foc5jSKfzUDF6H1ypAw8mQr5pUGK/mn3p\nTBiDIeIzCC4EibvAa4RzrW1TKJimg1QEedvx+eA/C9zpOHwINm90fJ42nWDPWbUnZuvatjMyi5eB\n9cch+C70agRP7HAfFC4Nk5ep/TGv2BHlUqM5ZMwKlepB6B3zMooCA6fB0gmQEGdepvE7sO93temD\nOXiXgIIV4aGV6J2s+SDcAQs88oG614wOxOwenAo1PwI3O9ty3T8M5+ZCi8X/dA0EH4RV5WFlGTj1\nJRjioe4sSPeCbzwxHP5qDpkrQeXP7Ug1N0DAx3BmMNRaB6U/g9p7ofpmba4KxQVyvwekrOviCeX/\n0ucuiTsH11rBrX6QYwiUPgOZWjnQ2MGQ+safcBCe9IPgMiARkPMwZF8PnvWdY20b90JiD0goBtwC\nZSYodhhJZufXMV4DvP4Erijw6Rjo1hHuO/gInzM3LNsMfT+AyaNh3TLr8hkzwdz10Kw99PCBezf1\nr1mhNnz8C4xsCyF39en2HAerbsH45bBxDtyw0JyjdG0YMBWLf1XeRaFQRTi63vx1RQF3Twg6Znkv\nOYuqPS7tRcgFNXzQ3v/A4bcgaDtUf98+/cQo+OttaDrPTJceBSKuqv0uxaBa1UVfqFVuiIMdbSFP\nY6gyXv/6SeFw+n2IOAONT0H2FGs3Y0XwKmRb3xADgYPh5veQwQdwgQKfare8DZFwYxjc+kgl7LJX\nINvbjvm4xQT3M8K9NHDXA+6lg7uu8LgBuBYF7yDIMhvc9LevSb3WY0j+HhJKQtIwcKkDaW+Cy0xQ\nGjrPV/+SCFxRlC6KolxUFMWoKIrFSm6KorRQFOWyoijXFEUZZ2ve15/Aa9eBE+ehXHmoVQnmzHKs\nuqCiwNsDYcJU+PFz+HK09TZnLi4waAz0HQ69G8CNy/rXbNQJeoyA4a0gJlK7nocneGWAHHlhwDcw\nbYDl796wp/WGxs3egwu7LV8vWgOuH7d83SszPNKZjfk8HgRA1kL265//A6p/AJ52PnrvGQoFm0Kx\n9qmveftAk5X8bdlmrwIezzUMNyXDrs6QoQjU+kH/TSjuHuyqp7oN6m4Djxz69MP2wZEKqg+89nko\nuxJyD4ACn9jWFYHHy+FMaTX9vfhayDnUOQ2SFRfweJppmgQSBy7ZwPs+ZJoAaezIGn0ef1vb3SG+\nuNog2X0xeAaA2zBQUjV1dxwvzwIPADoA+y0JKIqSBvgZaAGUAXooimL1Dv36EziApydM+AJ2HYD1\na8C3DpxzIA0eoFQ52HwcLp2Dvq0hwkbdkF5D4KOvoG9DCLTDHdJrJBQpC01zWHZ1WEPrgZCrIPhZ\n8HXbQuXmcGglxFmwoovZIPCMOR2LQnl0FXLY2bnFkASHZkBlG4W3LOHaBgg+Br4WSgsYk+D091By\ngFopsESfZ9fEBP791LC2Br/pt/QiA8HPBwr3gyo/6HN3mJIh6BsI6AmlfoJyC9WDTo88UHK+7VC7\nuMsQ2ATuT4VS66DoPHBzkFSfR/w+SLj3jMyUTJDrBLg6mFwl8ZA4H6KrQfLH4OKjWtseiyGNA09x\nmtbWMfRMK3JZRK7aEKsBBInILRFJBlYAZiyOZ3gzCPwpSpaCHXth4HvQrjl8MtqxxsZZssLSv6BE\nWWhbA65YidQAeKsPTJgNg1rAaZ1NDhQFJi4GV3donA3+nKnPGlcU6P0ZLPoE4u1oVOGVEUr5wBkL\n8emFq8Ld82BINn89Y06IdoDAH1+FnHYS+NVtkKM0ZLVQntYaEqNhxxBovhjcLDyhHBylWty+86Dn\ndSjzrvpzETj8EcTehcYr9fepfHwYdjeECl9B6dH6dBNC4GhjeHIIap+DHG206xrj4c54uFAPsrSD\niichQy1961tD/AG43wgeDYBMI8C9POAKObaAqwN9SE0hED8RIgtC8mZI+z14HNVmbYsTavTDq/aB\n5wWe97PeS/mZRbxSAtfr7wFUl0bfd9RiVkYjNKgCAXY23QW11vikH+GjCdDVF3bYODBt1hGmLIUh\nb8EhG6F3L8LTU/WHJyfCrLHQIjd83hdCLBxQvoiilaBiQ9igsav8i6jxFhxP1Qw7ZW/pIUdhuGvB\nz54hB0Q70HP08TXIYacv9MwSqNzXPt2j30DhppDXQkedS0vh9nZo9rtqXXvlfhZZcmE2RFyG5pvN\nl4u1hvub4UB7qLUECuuMmgk7DAerQfbGUGMzuOtoQhy+Dy63h/ggqHQO8nzkvKSY+FNwvyk87AsZ\nekOBS5CxD2RZANlWgocdCUgAxgCIfQeiSqvhgBkOQPrNarihNWtbRK1OmNQMkq0aqtphJWzQPwo+\nf/BsvAhFUfwURQkwM8xUPTP/jXTv91WlgAJpgCCgEOAGnAVKp0pttYU/l4oUyS7yy0xtPR6t4fQx\nEZ+iIkt/ti178oCIbwGRgzv0rRH2SKSWm0g11FFdEfFbpV3/7hWRztlFosL0rSsiEvZApHdmkSQL\nxbvm9hfx+8X8tbgokffS6V9TRCQhWmSUp1r4Sy9iHot8mUkkPlK/bliQyMxsItFWeqQGLhYJNVOE\n7J6/yMJcIlG39a8b9JvIulwij4/q0zOZUlLqc4iEbNGna0wUCRonctBbJFSnri0k3RO520fkkrdI\nxCLnpNWbTCIJe0SimoqEe4vEfS1itFB4LZVuvIhhgUhiGZHECiKGxSKmBOek0lfQPuxZD9gLVLFw\nrRaw/bnPnwDjrM33Ki1w3f4es+jeG/yOwKpl0L2tY53pK9eAVXvh959h+kTrcdFV68KMFfBJLzhv\nJXrjRWTJoR5KgmrxTV4GTTR2ZwfIVwLqvAWrp2nX+Xttb7WRw0V/89eLVIN7FsIrPdOrxagS7fDf\nP74G2YupT096cf5PKNEaPK00V7CEvaOhxmgzUSfPoXRfyFbunz+LC4FdPaHxYsig0yVwbSHcWg2N\n90H2mtr1jHFwti/c+RV8jkCu1tp1Yy/BqZoQdwmqn4NsGnXFCCEzIcxCspkpHh59BUEVwTUvFL8C\nmfo5llYvAok74UldiPwA3PpCppuQ9lP1ANSq7mMwfAFJhcC0Dlx/ArezkKav2k3IGfh3XCiWHitO\nAsUVRSmkKIo70A3YZG2iV0nguv09FlGkGGw/CKXLQb1KsFena+N55MkPy/fBro3w7WjrJF6xNny1\nGD56C27ZOp94Dj4tIW16Vd9WizRz6DURts6DMA1diV5E9fZwwoKbqGBlCDps/pqipPjB7bhBvgr3\nya1d8Pg8VDOT/GQNJgPs7AGlB0KBFvp0b6+Bs+Oh+kztNVEAYu/A0WYqodY9Auk0Vt0TgXuz4Ux9\nyDsYym0Ad40RLnEX4JIPRKyDtC9kx4pA5Eq4VgoSzkHRE5D7G0iTQft3MrfXhO3wpA5EDYd0QyHH\nRfDsZZt8Tdch/n1IagDyANz2gttWcGns/APNlxdG2EFRlLuoVvZWRVH+Svl5HkVRtgKIiAEYCuwA\nAoGVIjZ6xTnyyOHg40on4NfnPr8NzEr1SLNggT7XyF4/kVJ5RCZ/JpLkwKNe+BORDjVExr9v+9F/\nza8iLYqIPA7RNnfEE5HHD1R3Sps8Iid269/fnOEiPw/Tr3cnUOTr1uZ/p7GRIv29LH/fWR1FbpzQ\nv6b/TJEd3+jXexgoMr2UWndbD4zJIgvKilxZr3/NI5+IbGyif837O0RW5hR5ckafXmSgyLb8Itd/\n0vd3nhAscraFyInqIrFXtOsZE0TuTRQ5nV3k4bzUdcvjzopc9xG5Vkkkxl/7vJZgMonEbxV5XEPk\nURmRuBUiJo2/W8MZkdjuIlHZROLHixgfWhXHGS6UstqHo+s5Y7yikl8A3AfyP/c5P6oV/g98/t0U\n+H4atG6Db5s2+Pr6Wp/Vt4lajfCrT6FHK1iwCjLbES+aOSss8YN328KYfvDdQvXA0xw6DYRH9+H9\nFrBwr9r42BoyZX32fvwi+LIvLD0LmXSEeHX/BL7vC08eQDYL1fTMIV8puHMeHlyFvC9YiV4ZIX02\neHwTcpmxAuMjIc5WmzYzCAmEPBX0611YC0Wb6a97EvgnZCwAxXV65G5tgSu/Q9fT+tZ8dBgO9IKG\nGyCrjlIBYcfhSDsoNxUK9rEt/7eeP9yZBhmrQaGJ2qNjog/DrYHgWQLKngV3Mw+8pgjI3B+y9LOv\n3+bziN8NcdPBdBvSTwTPTrbDMEXAeACSpoDxHLiPgLTzQUlt/fv7++Pv7+/YHlOt79zpXjpe1Z0D\ncAWuox5iumPpEDMxUWTiBJHqVUW2brJ6B/4HkpNFxg8XqV1S5PpV7XovIi5WpG8zkSGdrXfuMZlE\n3vYRqZ1JJMRKfWlz+HmsyMwR+vf282CRpRP1683qI7Jzrvlr37UUOWmhDvnsLiLHVupf75eWIgGb\n9evNriFybZc+HUOiyKwCIvd0HiBG3RVZWkjkwUF9ek/OiqzMIXJPYzeopwjZKbI5u8gDHX/TJpPI\n7Z9F9uQSeeynXc8QI3L7I5Ez3iJPVjt+2G8LiRdEQlqJ3C0qErtOW3cik0kkaaNITG2R6OIiib+K\nmBJ0LYszLPDS2oej6zljvDIfuGj197i7wxeTYeZMGDFETatPthCr/DxcXeHL6fDeCGhbDw7utW+j\nab1g3ibVqp4w0HJNbEWBX3dBYgI0zQfDO8KpA9Z96E8xYBIcWKdWHNSDtkPhr3mQZKHGiSWUbQgX\nLPw+8pWFexbi4b2yQGyYvrUAwm5D1oL6dKJDIPQqFKqnT+/icshaAvLqOEAUURsal35XzcrUiqjr\nsLsl1JgNeXX4y++tgpNvQ6314K0xwsyUCBcHwd25UPMwZG+iTS/mLJytCuIO5S5C1s4vLxHGEAKh\n70FIQ/BsCnkDwauDdatbBBK3Q3h1SPpTtbjTXQL3gc47mNSDN6wa4Su9e2i6Iz6P0FCRDq1EGtUR\nuXvH2s34n9i/W6R0TpGl87XrvIiEeJFe9UW+/si6BfPDWJFyqKNGepEmBUTuXLc9/751Ir1KiyTr\n9Nt/2kxk11J9Og9vigzIZf57+C8Smd3LvN6qj0U26/Rlm0wio9OLxEXo0zv+q8jybvp0jAaRX0qK\n3NyjT+/ycpFl5fV1+EmMFFlbXuTqQn1rBc0W2ZpHJOKcdp2EYJGjtUVOdxBJjtamYzKJ3J8lciS7\nyMNl+vaoF8YYkfDJIrezijwZJWLQGOKauF8krJ5IaCmR+NWO9REVJ1ngJbQPR9dzxnizMjGzZYM1\nm6FVO6hXHbZrrEBWrxFsPgBzvocJI+2rpeLhCbM3wJFdsPAHy3KN2kPalIw/QzJkzaEOm3t8C3IV\ngDU6k3TaDYONM7VZ+k+RsxC4p4X7Zuq6WLPA09lhgcdHqP7ktDprmFzeDKW15j+k4Mp6SJsFCvpq\n14kPhQMjofEC7R1+xAT7+kCuulC8v/a1rv4EwRuhwQHIpOFMwBgH1z4H/wKQtSlUWgOu6W3rJYfB\npQ7wcBFUPAw5e2nfox6IQMxquF8Ski6C9wnI+j2ksXHmlHwKIlpCVB/wHABZA8Czs3ObR9iLV5uJ\nqR+v+g5i845oCYcOiBTPJzJ+nPY+luFhIv07iXzU1/5O9A/uiDTIJ7LpD/PXk5NFqnqKVHIXqZFO\nJOyx9rlvXxFpnU2NUNEKo1Gkf1GRwMPadUREfu4nsn126p8nxIocXmFex/9Xkd8G6Fvn7hmRb8vr\n00mKE/k8g0jsE+06JpPIgsoiV3X4lEVEdvQR2Tdcn86Zr0Q21Vb97Vpx/TeRTQVEYmwkBj3cIBIw\nQGRfUZHtaUS2I3K+j/Z1Ig6IHC8gcn2EGnHyspBwSeR2A5FbtUXiD2nTSQoUiegs8thbJPZn3T5u\nW8AZFngx7cPR9ZwxXoNbnp2oUxcOnYbzZ2HIQG0JPJmzwC9/QHQkDOwICQn61/XOD/O2weQhsGxW\n6uuurtCwPXQaAC26wvfDtVvHBUpAm0EwZ4z2/bi4qL7wjTot93INIdBMYTQPL6jdzbxOhuxqgwg9\niHwAeXR24bm+B7wrg1dW27JPcWOHWvypmI4EmNs74f4+qPWldp27f8GlOdBoTeo2axZ11kLAePD1\nU7v4WMOV0XB/IcRfB4xq555yi22vISa49z1c7gxF50CRH9WWbc6GKQFCJ8HdupChIxQ4AJ51bOiE\nQ/iHED4IXKtDtiDwGvJqfNy28IZZ4G8ugQPkyAHrt0GBfNCsNly7YlvHwwPmrgKvdNC/HcTbkVlY\nsjwM/wq++hAmDILHLyTUTFsB4+fAxz/D1XOw3ko3nBfRdzyc2w9nLVadTI1m/SHqib7EnlI+cO2I\ndnkAj/T6S8qG3QZ3L9tyzyNoD5TtpE/n4gqo/bH2x/DkWNj7PjScC+4a3BKgHlru7wcNV6Zu9mAJ\nIX5w6gOovxUyaCjmVWXrs0xHFy8o/o3tQ0djLFzoAhHHodIpyKrjJvZ/7Z13eFTV1offPSmkQZCQ\nEGoISAm9RkBFFLFgAdQrCjZQPwvFq16VKs1yRfSKolIUUQQRLIjSBCFI70iJdEJNDwRSSVnfHydc\nEWfO2QOBmXjP+zzzEJjFPnsmyTpr1l5r/dwh+xdIaAb5OyFqG1w10LzUUIogaxIkNgQpgLC5EPxy\niZScl2I78CuMwwFDX4MXhsAdHWG1huPz84MJMyA8Eh7uamhmukvvflC/Kcz5BG6Kgidug1U//zna\nDgyCsXPgg8GwV7PjMjAYBrwLX4/Tj9yDQ6FyVVj5tf7+I+pAfjZkOJnK43JvFdwXdTid5L4Kz/4l\nUMuN6Xmpv8OBnyHmfv3/s+1DiLodamtWjxRkw9Ie0HI4RGoObUpbC+t6wbXfwVUtre1F4Mg0cEQY\n8mk+gRBp8ZryjsGWjkaXZKPpUO7impn/vI8iyNsKWQsgcyqkDIF9leF4N4h4B6p/C341LPb1KyS3\ngZyZEL4YKn0MPm4M5fIUtgP3EA/1hckz4LH7YPYMa3tfX3hvGkTXg163wmk3Rrue47EXDGHhgrOw\najE8cSvsucBRRzeEl8bDm0+5HtV6IR3vgeQEWOeGTFSn3hCn8brPoRTUbQsHNur/n4ty4InuOfDs\nNEN9p5pL0ZK/snUKNH9M/xDyzHHY+Ba0GaJ/jU0jIPIGiOmnZ39qO6zqDtd8AeEaDl+KYUc/SP0Z\nrt8KDd6Fhu+ZN+mc3gib20FET4j5rPRSJtmL4XArSHwQkp6Fk28CBVBnP4RYHCwXHoW0ByDjIagw\nCMLjwP8SdFCvNGWsjPDv48DB6MKctxxeGwpjR1tHsA4HvDUJmraCB262FnW4kGu7/DGgydcX3pwG\nDZ3ke29/EEJC4UuT6pUL9/XoCJg2Uj8Kb34TpB6F427MZLk6FvabiDhcSGCo0Y3pDqcTIdQNB37o\nV4i6Vj/XXpgHO6ZDyyf0r7F2JDR9EsprRqtHFsDBb6CNRjoDIOcEbH0FWo2Hqrdb2xcXwNaH4cwu\naL8MylWGqH5QzUSoN3k2/NYV6k+AqJdLt7Y7+Dbwj4Hi00C+kauu+au5UIMUwsm3Ia0n+DWAyN0Q\n1PPyii9cDuwI3MPENIYl62DRjzDgcWtFeYcDxrwPt9wFj98JeW4IRFSpbpQI+gdAhfJQ1cXHSqWM\nOeBfjoMjmjnk63sYc8PXztez9/GFjg/Acjei8IuJwPPcjMAz3YzAD66AOp307Xd/D5Et4SpNsYf0\n3+HAXGirN36e/JPw6/9Bp8/AX2OYU1E+/HqvoXlZ6wFreymCrU8DDmi3CPwspi6KwKHRsP8laLEE\nwrtrvQy3yFkN+ZkYE5/9ocLjEGByEJ2/HY63h9xFUOkLCB1l5O9dUbgXzoxyr/T1SmE7cC+gSiT8\nGAcB5eCJ+62duFIwcBjUqA0De7lXJz5qEsxeB+/OgSEPQ4qLnHL1aOgzxEil6PzgXkwUfuNDsPxL\nfftzDlzX3j/IkDfTTQWB+ymUg3HuOfAtk6Hlk/r2q4cazjtAcz7O6oFQuwdUv9HaVgQ29ofAqtBE\nIz0jYijU5yRA8ylGztvUvsgQNj6zHdqsh/KlnJooPgtJg+HI/VBtIlTsB47yEPFvF/vJh4wRcKIz\nVHgKqi4F/6tN1s+B08MhrUPJbBMv8YLnYztwLyE4GN4YbzjnvvdCvkW7ucMBb38G2Wfg1f76Tu2G\nrkbapF1n+MfT8PKDrkWSew6E7NPw42d6a1/fA4oK9KPwq1sZOfk9mvPJK1Yxouqk/Xr2SrkXhRcX\nQVYqVKiiZ5+dDicPQXXN/Hf6XkiLhwaaQ6tOrIXkTdCiv579obmQvBauceHALmTfJENGrcPnetUw\nu4ZC5lZoNxd8Asxtiwtg+8OQvRcaTYNyl6g7eSG58XCgHeTthKu3QYW7jAPL6J2GE7+QM7PgSHPI\n3wY1t0GFJ8zTJXk/QWoTI/oO/w1CXihFJfn9UDSllNZy4+EF/H0dOBhzVD6ZDf7l4LEe1nXf/v4w\n8TvYug4mvO7+9Z4aZlSezBjv/HlfXxj6CUwYBOnJ1uu5G4UrBZ0fhc0udC+d0bY7HHEho+aMqLb6\nB5ln0qDOdfqHi0c3QLMH9e13zYZmj+rVY4vAylegw2jwtXCWYHRornrWSJ240tI8n5RVsH0EdPoB\n/DRSLfvegcS50GGBtX1xPmy7HwozofVPet2Y7pA+E448BWFPQ9Q88Cu54SpfI++dtwZOjoWUp+B4\nJzhYHlIehNCnIHKuIfbgisLDkNEdMl+A0ElQ6WvwKYVKGQA5BYX/goJ2wEVMyXS6phsPN1BK/UMp\ntUspVaSUchmhKKUSlFLblVJblVKWB1R/bwcORsngpK8gpDw82t1aBLl8BZi2AD4bD4Ofcu9aDgeM\n+Qy+GAvxm53bNGgBd/WFz9/UW/O67hAZBVs0B1217w5Lp+p/gihfCQ652KszMo9DvmbZZXaqUUao\nS8Iq/XSLFMPmydDE5KDvfA4vNfQuYzT1Kde/AnUfgKoaw7Syj8HK+43Iu7xJCuEcCVPhwAdw7c/G\ngaUZRTmwpZtRb93ye+s0izsUF8CR5+HEcKg5ASr9n/Mo+uQ7kDEEzkyGvBUg2VDlJ6j4vOuoWwog\nazyktQa/NhCxwxhwVRpIIRR9BAUNgEzw2wk+L5fS2m483GMH0AOwqnMWoJOItBSRWKtF//4OHAwn\n/vEMY2pfixpwwCJlEFEV3v0CvpoMd7aGVUtdTyG8kMqR8MI7MLKvUV7ojMeHQ9w3sEsj1eFwQOyt\nMNdJ16czajQEP384pCn0XKupayFjZ5QLgTxNB56VCiGaCjFgROA12urZHltvNOBEas4ZX/8WRN+h\nN+f72DJI3ABtX7O2LS6AbUOhwQCoplFTfvw7iB9mOO8gi1rq3GOwoi74hkLzWeDQ7PzUoSAZ9t4M\neXsgZhMEmRxSVh6PcaCJ8WdILwgxaRY6uwsS20PeFqi8EcoPK72uy+JFUNgcir8F35/BdwqoUkwn\nXaYyQhHZLSK6JWLapTv/Gw4cjPTFVwuhqBja14NbYuHziZDiIpXR6XaIjqXdVQAAF3tJREFU7Qg7\nt8CT3SC2Grz/mnUuHaBrb6hSAz57y/nzQcHw5GiY8LJepNy5N+xcDUkJ1rZKQdu7YMOP1rYANZu6\nl0IpF6IfgWel6Tvw4mI4vglqajrwXbOhsWbjTvIWyNgNMQ9q7KMQVv0TYkeBn0bH4G+vQ3YyNNKo\naknfAAcmQweTrszCM5A0BzbdCStqGWmMZjPBUYraK1nrIL4NlO8E9X4CX5MD3cJ0SOwHRALlQAVA\n2LvObaUIMsdCUico/xSETQPf6NLZc/E+yH8cCp8DnzfBdyk43BzRoIPnc+ACLFVKbVJKWZ7Oe78D\nn+1CcPViCAiACdOMkrttG+HVF6FZNZg51bn9g08a+fPcHEhLho/fNP60QikYOhG+eh8OuJjs1/VR\no/191U/W6wUGwy2Pwg8fWdsCxLrhwKvUgdMpkHtGzz7gMkXg6fshIBRCIqxtpRji50AjTTHojeOg\n9T/1cuXxUyCgMtTpYW2bugF2fwzXTbUWbM5NgtX3Qt1noaKLrsxd/eGXyrCjL6SVHFy3W+e+IpEr\nRCB1Euy/G6I+guqjzA8Ss+PgYAsoVx+i9xozT8LeAl8n36OCvZB0nVFKWHUjlH/SJL3iRvgq2ZA/\nFHLag4oB3+3guPvy1ZebOOy4fBiZ9cfjQpRSS5RSO5w83Bmrea2ItARuB/oppcxzeJ6epmU5Hezu\nO0TGv6s1jUyL/HyRWkEi4YhUcYi0ihJJcaG1l5woUq+cSG1l/Ll7h3vXmjNR5KFYkUIXGoCrfhJ5\nIEZvmuLxAyI9KovkZlvbFpwV6VlRJF1zquHg1iJ7NKcZTuotsma6nu38kSI/Dtez3TxdZPo/9GyP\nrBb5sLGe7alDIu9XEsnLtLbNTRf5NEIkVWNWd0G2yDf1RQ7OtrYtzBdZ0kFk5yhzuxOzRBYHiizE\neKxua722LsWFIgefE9ndRSTXQqGquEAkeaTInqoiZxZZ2BaJnPqPyOEwkcwPrGd658wRSW4sUmTx\nc1xcLHJ2tsiZmiI5vUSKjpnbSylNI6ys/7iY6wHLgVaatiOAF81svD8C/+Aj+HQyDH2ldAr//f3h\ntruNiMnHB3r1gXAXUV9EJERWh+pRUCcaNsS5d617noSAIJjxnvPnO3SFSlVgwTTrtarVgZh28MtM\na1tfP2h1K2zUiO7BSKMc3aln63YErjn/4tjGy5M+2fQfaPo4lLNokAHYOArq3guVNfLqG1+G8FiI\n1vgUsGUABERAo2HmdpH/gOCWgAMcAVDrGeu1dSjKgT33Gkr0db+BgHqubQtPwsE74OwRqLMFQm51\nbVtwDFL7QM4cqLoWKvR3HdEXpUJGTzgzDCpOMW/0KYqH3C5wdgwEfAmBM8BRSpUrVlyZFIrTjw9K\nqSClDPFPpVQwcAvG4adLvN+B16oFv6yElSvgqcdd11i7Q59+UC8GFqyFWZ/CDyZDoD5bAAu2waQf\nYcJo2OrGBD+HA4ZPgTULIPkves3Gx8B+Y2HKCMjNtl6vxwD4YYLejSz2btioWT8e1RxSDunZVqhi\n1HfrIAIVNA+YUvfqHWAWF+mnT3IzIH46tH7O2jYjHvbOhNjR1rbHF8PReXCNxsHy/kmQtsqYiWJV\n9/x7SZBS/y1AQaSbExmdUZAGuzqDIwRiFoCvyY0sLx72xkJAY6g+ybx1PnsRHG4Dvo0g8lfwM7kp\n5H4Lqc3ApyaEbwX/9s7tJBvyxkDuDeB7NwRtAd+Oeq+ztLh8ZYQ9lFJHgXbAfKXUwpJ/r6aUOveL\nGgmsVEptA9YDP4nIz+b79YJUielHmnNkZYncdZvIPXeJZGukEXSJ3y7SNFxk9XJr26U/iFxXQyTN\nRcrFFROGiAx/2PXzr/UVmTPBep2iIpERPUTi11rbnkoReSRCT6Jt60KR17tY24mIfP+qyNyRerbv\ndxaJX2xtV1QoMiRIJPukte3R9SJTO+ldf9MHIsv+pWf7yxMiW/9jbZebLjKrusjxX6xtU1aKfB8h\ncnqfte2+t0SWNRLJLxGx0JVOMyP3gMjm+iIJg6xTG6fmiewIF0mfZm5XXCCSMkRkf3WR7Dhz28JU\nkfSeIkn1RfItRB/yl4mk1xE501+kKMnc1gWURgqlov7jUq9XGg/vj8DPERwM384z6rTvuAVOllLh\nfkxT+GgW9OsF+51IjJ1P57vhvr7wzmD30jmPDYINSyF+k/Pne70In4+GPIvZ5A4H1GsFS76wvmZo\nOFxVDfa7uOb5VK0HiZoVTv5BcFZzhnp2hp4oQ/pB4/AyqKK17b6FUFWjU1MENr8P9e+xtj2xGo4s\nhSbPWttueAXqPQHVbjK3y02G+DeNyNuqNvzoDEj4CNotBv+S9+tSm3WyNsOO66DqQIh603X0LwLJ\nb8CxZyD6R6j0qOs1C47D0ZsgbyNEbYGgG1zb5i4sibprQMQ28Hch+lB8GrKegaxHIGQ8hHwADs3O\n3cuB56tQ3KLsOHAw6rmnfgFtY+Gh+12XALrLdTfB8LHwf93gjEWX4bPDDJGGOW607gaXh6dHw7vP\nO3f80Y2gSXuY76Ia5nw6PwS/znZdY34+TW+E7cus7SpHQWYSnNUY5OWOA889CcEaDjxpO0Q21Vtz\n/0Ko39Xa7ugKo+qkmsZc8fWjjNGyvhZVKinr4Nh8aPK8uZ0IrOsLoS2gqkkOGSBtJewaBrELINCi\nLlyXzBUQfxvU+RCqmoy/LcqGwz0hcx7U3wDB17iwy4CkgXDwagi+BWosdF6JAoZiT/oASBsIV82G\n0HGgXDQfnV0Ep5oa5YcVd4L/ne69zsuB7cAvMw4HvPUO3NAJ7uwMqRpSajrc8xBc0wle6mMeXfv5\nwZufw3tD4XiC/vp39THmoCz7zvnzvQfBV+OsB0VF1oZajWCDxqzwZjfBDg0H7uML4dF6M1H8gyDf\nnQhcY2hU4g6oqnFwmJ1qiDfU0piv/dsn0MxiPgdA4ho4tRdiTCJPMHLvq5+F2LfB30Kged9EyEuB\nZiPN7XKOwYae0OJjqNDI3FaXjEWw6z5oMBfCTEohC1Jg/73gqARXx4HfeQpDxTmQOhSOdIR9YbC/\nMmR+AGFDIWyYaxWegn2Q2AEKk6DaRih33vdJiqDoKBSshtzJkF4NzvSGkE+h/GRwuCl6fbmwHfgV\nQCl4aQjc0Q26dYEMN5XSXTFiPJw4AlMs5nbXawx9X4IhffQ7NH184Pl34f2XjY7QC2nSDqpGwy8a\nqjpdHoFfplvbNe4Ie9fDWQ3tz6r19dIo/kFwVuPAtajQaPgJ0PjFTNqu58AP/Ay1O4GvRVdfbgYc\n+AmaaLTNrx8FbYdY14jvnmTMLKnby9wuczdsfxWu/dJcjKEoD9b1gLrPQaSmKpAVGYtg9yPQ+AcI\nvda1Xf4hiL8OgttAzY+NipfzkUI49SHkroTiDEAguAdUNqmiyZoJJzoY9d8Rs8HnvHRY7iRILwcn\nG0LmrZD9NEgeXLUL/G++pJdc6tgO/AqhFLz6miHi0P0WOHXq0tcMCICPvoHJ42DdCnPbPi8ajnjG\nBP31YztDncbwtYvqhYcGwZf/tr4pXH8fbFkKpy1uXEEVoFYT2LPOem+6DrycZgol9xQEVrRucAFI\n1Eyh7FsI9TTSJ7u+hDpdITDM4rpr4eRuiHnM3C43BbaMhA4fmkf0RWdhTW9oNgYqNHBtJ2LMAA+u\nA/VLaYbHf533XAg1ERnO2QHx10OVAVDjNeevx6cCVJnMf6vdVABEjHO+3tkEONocTg6HyKVQ4Zm/\nrul/O1AOyAGyAT+4aj04SnmiYmlgO/AriFLw+ttwTQe4uwukpFz6mjWijDkoAx+EZBO9SB8feGMa\nfDQaDrmhgjNwLMybYqRTLiT2FqOGe41F+V9IRWhzq5ELt0I3Dx5ZH5I0I3CdFEp2hl7+Oz8LTp+A\nyiZlaGDc1PYvhnoWCjci8NsUaK6h0HMu920VfW8cBFc/DJWamNvtGAmB1aCexRC0Ax8YY2RbTy2d\njsI/Rd4mzvvMKth9M9R6GyIHuLbL3QwnXoSAToADQu4B/xLBjNxlkDEIEm+Ew2FwPBqKz6VMXLS2\nSx5IGMY8lXIQ8Az4WHy/PYXtwK8wSsHY8UZuukltWLXi0ht+Ot4CDz8L/SzEIKLrw7Ovwqhn9EUg\nohtCTBv41klbvFLw0GD41UWe/Hy6PAZ7NOTQmt8MqYet7ao1NMQarAgIgRCLyBaMCLyGhpBvym6I\nuctaQi1xK9S+ESrWMrdL2gKh0VCrk7ld8mY4mwmN+ljYbYQTy6DVCHO7lDVw4DNo96m5U06Ngz1v\nGDPAfTXG1FrxJ+ftor4a4OQ82HcP1J0OYSYzYTK/hUO3QdXxUGsJVOwP4W+ct85oyHwb8uJK0iv+\nUHMv+Di5WYtAzjRIuxYCXwafVkY0HzTmIl/sFcDWxPQASsHiX42P611vhHrVYNRQ2GNRFmhGvyHQ\nsCl8aPHD1rs/hATBd5/qr91nKHz1H+fNOzfcA1uWwAELFfuWN8Ga7+CkRSVOvbaw/lvrw9HKtWC3\nRdoIjPxzskaknnPSeFiRshutH8OEOAjWmJOyayaEN7dumtk8Dq6+3zz6FoG1L0CLUeBv0gBTlA9r\nnoTYKUbHpSvyUmDHMGgzHYJLYchTxnLY/7y1806bDQlPQf35EHqLcxsRSHkLEp+H6J8h9B7jsLLK\nePCL+sMu/AvgXG6/HFQc4vwAsjgTTvWCrHEQtgxC+kPoPAhd7lwgwluwI3AP4esLQ0YZzjw5Cd4b\nC21iYLMbmo/n43DAcyPg6ymwzWTsq8MB/cfAhOGQqXmYGt0IWt0A3010/jrufBJ+cPLc+fgHQOtb\nYZ3F0KqgChARDQkW42XDasDpVEOH0wy/AENI2Iq8TL267pTdEG6SLz7HoTiobVJ3DCDF8PtsiOlp\nbpd1HBIWQ+O+5nZHF0F+OtS3mDm+cyxUqAc1TcrgRGDj41C5I1QphbnYp7fCjp5Qb6K58075HA6+\nCA2XQ4iLTlcphmMDIHsD1F0HgS4+ORXnQupgoDrGZEI/CH3hr3Znt0NGH1AVofIG8Cs533BEgq/G\npzJPYjtwa3TVKdym+33GLGzjItDvn9CqzcWvFx4Jr34ALz1iTCR0RcMW0OU++GC4/tqPDYOZ45yL\nKN/xBCybBTkWEwLbd4c131tfq0F72GMxAsDhA5VqQJpFusUvUK9ePDdTrwIldQ9EWDjw4iI4vApq\nW7RVH1trzDyJsMhV//YxxPSGcib7k2JYPwTajjGfBnh6P/w+HmLfN7/mgYmQlwiNR5rb6ZCbAL/d\nCQ0/gqtMbmopMyBhMDRZAoENndtIARx+FHJ3QK2pfy4nPJ+C43C0I1AMUTugwj+h0pt/jaazvobE\nzlDuXqj4sfnME2/EduBa6KpTuEetKKhew8iHBwdC8xaXfkjU9R/QpDWMG2xuN2AMLPmGuC8+0Vu3\nXjOjdPAHJw1B4dWhRSdYajG4KrYr7Fpp7ejrt3PpwOPi4s67brT1TBT/QCjQdOCBmg7cKgJP2g4h\nkRBidOj9ac/n8/vX0MhCCb4wD3ZOgRYmh3gAB74xZnBHm3RyisD6ftBkEIS4zs3Hzf8cdr0K18zQ\nG2lrxtl02HobRA2CKve5tkv9GhL+ZTjvIBfOuzgXDt5rDLC6ehH4/PH9+tN7nLsBjlxjHGZWnWk4\n5bB/G8OrziFFkPEynBwEkUugfO9Le52ewnbg1oh76hTu8cowGDYalq6DkS/DyuWXvuaICbDoW1hr\nUs0RWgn6jyHundH6h6h9hsGXY53np7s9DT98bL5WcCg0uhY2LTS/ToP2sNd5KeGfflEjoiHVwoHr\nRuB5Gg68uAjS9kO4C3GDcySsgOg/Ik2nDry4CH6fY50+2T0TIlrDVSbXLC6EjcMh9g3zACBhNuQm\nQiOTYVlFZ4mbNQiavG5eWqhDUS78dheEd4NaJjegtG/h0HPQeDEENXax1mnYf7sx5Kru9+D4c7fk\nf9/jM99Bcn+I+BDCBjt/P4oyIOl2yN9SUo3S4uJenzdgO3AP0+tReGEQNIiBT2bBEw/A7vhLW7Ni\nJXhjCrzSB85kura7p2Ra4k8z9NZt2Bo+XG6UDl5I65shNwviLWTX2neHNXPNbao3gOxTcMriwDO8\nNqQmmNvoRuA5JXXgZpw8AkFhhsqPGQkrrPPfR1caUXqYiWMWga3joaXFdMI9n0NwNahh0mRyNhM2\nvgDtJpo37OwcDn6hUMdSXMWc4kLY+SAE1oGrTfRU03+Ag89Co4UQ7KI5qjAN9nWGgBioPd3IZTuj\n6BSkvgqRE6F8N+c2Z7fDibbg3wwiF4GP5vhgb8V24AalpE5xaVx/I4weB29YzGHW4YbbjcfPJjln\nHx+4vivM13TgALVc1MM6HNC9H+y2OIRt3w0yEs0jdYcDrukBqUfM16rZ1HoeiI8f1GxhPVK2fDhU\nijK3yT0J9TUO9ApyrB14+m5o+oi5zZmjUK4iRLmoxDjH4Z+so+/jC41DywiTuuv8DEicD9XuuvRU\nXvoCKMqCRlNNZm5nQcJLEDMfQkwOC4+9BOW7QM2PXLfFg9FNGf0bBLg4pirOheQecNUYCBtnyL+V\ndcpYGaGS0hBJuNiLK7UcQ3Fii4vnveQ+Z2NjUxYQkYu+U16Mv7mU65UG3nDLdPkGePrNsbGx+d+h\nLPobT5UROlWnsLGxsbHRx6MpFBsbGxubi8frq1CUUmOUUr8ppbYppX5RStX09J7MUEq9rZT6vWTP\n3ymlvGTQsWsuW2NVKaOUuk0ptVsptU8p9Yqn92OFUmqqUipZKWUqTOtNKKVqKqWWl/w87FRKDfT0\nnsxQSgUopdaX+Id4pZRJic7fD6+PwJVS5UXkTMnXA4DmIqIxas4zKKW6AL+ISLFS6t8AIjLIw9sy\nRSnVEONcfRImh8qeRCnlA+wBbgaOAxuBB0Xkd49uzASl1PVAFvCFiGhKDnkWpVQkECki25RSIcBm\noLuXv89BIpKjlPIFVgH/EpFVnt7XlcDrI/BzzruEECDNU3vRQUSWiMi5IqP1QCnpZF0+LmtjVekR\nC+wXkQQRKQBmAS6Kk70DEVkJlJJ465VBRJJEZFvJ11nA74CL/nrvQETOzbnwx5hZW0oKL96P1ztw\nAKXU60qpI8CjwL89vR836AtoaJ/ZaFAdOHre34+V/JvNZUIpVRtoiRGIeC1KKYdSahuQDCwXkUvs\n3Cs7eEMZIUqpJYAzeY4hIvKjiAwFhiqlBgH/ASyGOF9erPZbYjMUOCsiFgNNrgw6e/ZyvDvX9zej\nJH3yDfBcSSTutZR84m1Rct60WCnVSUTiPLytK4JXOHAR0Z2vORMviGit9quUegzoCnS+IhvSwI33\n2Fs5Dpx/gF0TIwq3KWWUUn7At8CXImIxp8F7EJFMpdR8oA0Q5+HtXBG8PoWilDq/17wbsNVTe9FB\nKXUb8BLQTUQ0Bmd7Hd7azLAJqKeUqq2U8gd6AvM8vKe/HUopBXwKxIvIe57ejxVKqcpKqYolXwcC\nXfByH1GalIUqlG+ABkARcAB4RkRKQfzy8qCU2odxmHLuIGWtiDzrwS1ZopTqAbwPVAYyga0iYiE+\neeVRSt0OvIdxUPWpiHh1yZhS6ivgBiAMSAFeFZHPPLsrc5RS12GMed7OH2mrwSKyyHO7co1Sqinw\nOUYw6gCmi8jbnt3VlcPrHbiNjY2NjXO8PoViY2NjY+Mc24Hb2NjYlFFsB25jY2NTRrEduI2NjU0Z\nxXbgNjY2NmUU24Hb2NjYlFFsB25jY2NTRrEduI2NjU0ZxXbgNmUCpVTbEpGMckqp4BKxgUae3peN\njSexOzFtygxKqTFAABAIHBWRtzy8JRsbj2I7cJsyQ8mUvE1ALtBe7B9em/9x7BSKTVmiMhCMocwU\n6OG92Nh4HDsCtykzKKXmYcyErwNUFZEBHt6SjY1H8QpBBxsbK5RSjwD5IjJLKeUA1vwvKa/Y2DjD\njsBtbGxsyih2DtzGxsamjGI7cBsbG5syiu3AbWxsbMootgO3sbGxKaPYDtzGxsamjGI7cBsbG5sy\niu3AbWxsbMootgO3sbGxKaP8P3ujzW7g1gNZAAAAAElFTkSuQmCC\n", - "text": [ - "<matplotlib.figure.Figure at 0x10b5b2ed0>" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.4-2, Page No:136" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "%matplotlib inline\n", - "\n", - "#Variable Decleration\n", - "V_dot=0.053*10**-3 #Vloumetric Flow rate in m^3/s\n", - "D_inlet=0.0107 #Diameter of the nozzle in m\n", - "D_outlet=0.0046 #Diameter of the nozzle at the outlet in m\n", - "delta_x=0.0991 #Length of the pipe in m\n", - "\n", - "#Calcualtions\n", - "u_inlet=(4*V_dot)/(pi*D_inlet**2) #Velocity at the inlet in m/s\n", - "u_outlet=(4*V_dot)/(pi*D_outlet**2) #Velocity at the outlet in m/s\n", - "a_x=(u_outlet**2-u_inlet**2)/(2*delta_x) #Axial Acceleration in m/s^2\n", - "\n", - "#Result\n", - "print \"The magnitude of acceleration is\",round(a_x,1),\"m/s^2\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The magnitude of acceleration is 49.6 m/s^2\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.4-3, Page No:138" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "x=[-2,-1,0,1,2]\n", - "y=[-3,-2,-1,0,1,2,3]\n", - "\n", - "#Calcualtions\n", - "a_x=0.4+0.64*x[4]\n", - "a_y=-1.2+0.64*y[6]\n", - "\n", - "#Plotting\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "\n", - "Y, X = np.mgrid[-1:5:100j, -3:3:100j]\n", - "U = 0.4+0.64*X\n", - "V = -1.2+0.64*Y\n", - "speed = np.sqrt(U*U + V*V)\n", - "\n", - "plt.streamplot(X, Y, U, V, color=U, linewidth=1, cmap=plt.cm.autumn)\n", - "plt.colorbar()\n", - "plt.ylabel('y')\n", - "plt.xlabel('x')\n", - "plt.show()\n", - "\n", - "#Result\n", - "print \"The acceleration at x=2 and y=3 are a_x=\",round(a_x,2),\"m/s^2 and a_y=\",round(a_y,3),\"m/s^2\"\n", - "\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEPCAYAAABbbZ8rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4FNXXgN9JJ3QSegih916kG0CqdAVBFBCUYgUrVmwI\nIohiAWmCihSlCojSW+id0DuEBBLS+272fH8M/IBkdnZmdxH4nrzPM09C5txz7y7J2TvnnqKICLnk\nkksuuTx8eNzvBeSSSy655OIcuQY8l1xyyeUhJdeA55JLLrk8pOQa8FxyySWXh5RcA55LLrnk8pCS\na8BzySWXXB5SvO7n5IqiXAASgSzAIiKN7+d6cskll1weJu6rAQcECBWR2Pu8jlxyySWXh44HwYWi\n3O8F5JJLLrk8jNxvAy7AOkVR9iqK8sJ9XksuueSSy0PF/XahNBeRSEVRigJrFUU5ISJb7/Oacskl\nl1weCu6rAReRyJtfoxVFWQo0Bv5nwBVFyS3UkksuuRhGRJx2yTpjb1yZzx3cNxeKoij+iqLkv/l9\nXqA9cCS7nIhoX+npSLsWyEej7cs4ujauQRqWQeJi9eXeHoR89pq+THIi8mhxxrw0TF9u0zJkYCPE\nZtOX+/gpZNlU51/bndf6OcjEvpr3xowZc/vfX7RDDv6trys+ChlZzPGcaycgi99wz/qv7EWm1NBe\ns9nLkob8GIDEn9OXO70AWdLM8f+TgWvM6JeRpQFI8nnX3wtLArK9KnL5J9d12SzI2d7I6S5IVob9\n34u0w8ipUkjsdB1dNiR+InKxNJK+z76c9RoS0wqJfRzJircvl7kMSSiKpE8y/H/gDsRm/HoQuJ8+\n8OLAVkVRDgK7gJUi8q/h0b6+8PtSWPYH/DLbuRWEdoCOPeDdEaD3C/DOV/DXfDi6375M3vzwwvuw\nc73+nC27QlI8HHDgKeowAP75RV/GKBUawNl9juUCysCNy/oy3n5gSXesKz0R8hQwtj5HXN4BZZq6\nR9eZpVCsHhQsZ19GBA6Mg/rvguLiBktscPUvqP4B5A1xXdfR/lCkNQQNdVFXFlwYALYkKP8nePho\ny6XtgkuPQbFJUNjOMZVY4cZLkDQXSoWBb31tOcs+uNEIfFpBoRXgUVBDVyakvQ5pr4H/CvB93fX/\nAzOIiesB4L4ZcBE5LyJ1b141RWScaSWBgbBoJXz8LmzZ6NxC3vsSThyBJfPsyxQJhLfGw4fDICvL\nvlyfYRAfA3s225fx8ICnX4ffJ+mvq2F7iDwHV07ryxkhqCrEXYWUBH25gGCIuaQvY9iAJ4HfA2jA\nj86Ems/ry1z6GxAIftz1+c7NBLFAxVdc13X2I7AmQuVvXNMjWXDxObBGQ/kl4OGrLZeyAS53hZKz\noWBfbRlbElzrBtazUGobeAVry6X9CrEdocBkyP8ZKBqmx3YRUlqB7TTk2w9eTZx7fa6Qa8D/Y6pU\nhTkLYFBfOHnC/Pg8eeC7efDxKLh03r7cE4PAzx9+n2ZfxtuH0CEvwZT39Hf0jw+Aozvhgs56vbyg\n7dOwxg27cE8vKFsbzh/IcSs0NPT2PwLKQKyDHbiXD1gzwebgGTI9EXzzm1+rFtkM+F1rNkP8WYg5\nDBV66Msd/BLquWH3nRoBR98ntM9n4OHpmq5riyHqN6j9h/3dshHEBpdfhswrUGE5eOTRFAtt7AsR\nfaH0H5DfzgeZ5QpcbQleQVB8JXhofGCLFZLeheRPochG8OtlR9caSG4M3k+A/3LwKOLkC3QRm4nr\nQcAtPsp7dAEiERFiiF9mi9QqLxIdbUw+O3N/FHmiuYjVal/m9DGR1mVFonTWlJUl8mJHkXWL9ef7\ndYLI+GH6MqcPigyspup0lV9HiyyfpC9zdL3IV10d63o7RCQ9RV9mzgCR/X8aX589kqJEvqnqnvdg\ny7si2z7Ul4nYIrK4uUiWxbW5bDaRTd1Ewie4pkdEJOGAyIZg9atLa8oSOTtU5FQfEWuyfbnY30SO\nlRdJ2WNfJu2QyJkyInE/qK9VC2uMSFQbkRuDRLJi7azJIpL0jsiNaiKZW42/Fg1Uc+aivckwfrk6\nnzuuB38H3vExiI52LPfsc9CzD3zwJmRkmJ/nmWHg7QPTvrQvU7EadHsGxo20L+PhAU+/Bt+/B1ar\nfbnOA2H9Qoi9bl+mQm1193zYDZGVparA2b36MoVLQ8Rxx7pS4sDq4D1OigLffMbXZ4/LO6FQWfV9\ndQWbFcLnQJU++nL7xkGVgeDhYoDW5cWQdBqqvOqanoxo2N8Dqk6AAnWd1yMCF16B1KNQfiZ45tWW\ni5kKkaOh3Arwb6gtk/IPXHkMik6EQi9qP6lkHoGoRuDTAArPBI/COWWyIiChDVgPQqHN4N3C+dfn\nLnJdKG6mRy/o1A7i4hzLfvQ5pCXDa8/ruzC08PCASXNh9jdwWMfQDX8fwvfBlr/tyzTrAIElYcUc\n+zJFikGbPrDkR/syigLtB8C/bnCjGDnIDCgDsVccv3fefo4NeHqie3zgl9zk/z7/NxQoC4E17ctE\nH4Abh6DqANfmyoiFfa/CIzPB045/2Qg2CxzsDSX7QcmnnNcjAhdHQfJeqPo3eNpxbV0bD9ETocJm\n8KuhLRM/CyIHQqklUMDOh2HqYrjeBgp9BoUngKLhPspcB/ENwbs9FFwNHkWde23u5iEz4PfdTeLw\nkcZmE3lzlEjzR0QSEx0/R6WkiLRtJDLhU8eyWiyfL9K6skiKziPmljUibcuJpOq4EY7sEmlfWl/m\nwgmRTkVF0nRkoiNEuhTSlzGC1SLS118kJUFf7oUAkfhr+jJvlRWJPq8v81kNkYgjZlaozYxWIqf+\ncV3P0m4ih2fqy6zpI3LAgZvJCDsGi+x+yXU94S+L7OksYtNx6znCZhO58KbI4QYiljj7MhHviByv\nLpJpxz1os4lcf1/kbAWRjJPaMlkWkej+IpeDRDL22tFjFUn+WCSmpEjGevOvR3Pe1SKWAe5xoaQa\nv1ydzx3Xg78DVxSYMAnq1IUeXSA1VV/e3x9+Ww6/zoQlC83P160v1GkMY9+0L9OyA9RuDFM/ty9T\nszHUagILvrMvU7YK1GwKq3V22IGloNojsG2Z47XroXOQeRfuCiV0xw48ywJX90GZR1zTkxwJEVuh\nis4uNv4UXNkA1V0Mz4taD1HroK75oKq7uDwTYtZCnd+1d7BGEIHL70PCOqj2L3gV0pCxQcRLkLwe\nKm4G71I5ZWwZEPkMpK6H4B3gU/n2vaxoSFsJsSPhSgFIXQYl9qiuk+xkXYeEjmDZCIX2gU8b517X\n/9YeD9bBYB0BHs+6put/Ok1cDwAPvgEH1Yh/9yMEl4Xnn3Ps4y5REn5fAaNfge06IX32+OR72PQ3\nrF9pX2b0ZPhjBpwOty/z8lj4ZSIk6rh/+r0BC77Wj+r4L90ogcFwww2hhO4w4FGHoVAI+GnEC5sh\nfC5UehJ8dHzy+ydArZf1ZRxhTYXdQ6HRVPB2IQInLgxOvQf1l4O3C6/96iSIXwnV1oKXRlSHzQIR\n70D6MaiwHrwCc8pkxcGVgYANymwAr5uuDhG4WhUigiCmHyR/C2RCqdPgVSKnnoytEF0fvNpBwXXg\nWdL51wVgWwWWWoAfeB8Bj8dc03eLXAN+j/DwgBmzoUA+eLYPWCz68jXrwKdfQbfWsPxPc3MVKAiT\nf4V50yDmmrZMsZLwyicwfZx94xtSBdr0hHk6cbt1W0K+QrB1uX2ZFj3g+C6IuWr8NWhR3oABL2Jg\nB+7lq2/ARSAjGfxcDCN0R/y3iBr7XUsn9jvpMpxbCrVdjNU+8S0UbQGlOzuvI+0KhL8FtX6GfFWc\n13Ppc4icC9XWgbeGYbalw9knIfUYlPsbPDU+bDPPw9lm4FUKSv52d8ihooBfR0ABSQY8Id9L4JXN\nMIsNkiZAbG8oNAPyvQ2KCwfEEgfWQWB9BbzmgtePoLgpXBUeujDCh8eAgxobPWWqmkzz/AD9pBqA\nvgOhdj14rjd0eRQ2rzd+uNm4JVSvDe8OsT/mqWFqos3Sn+3rGTYGFv8I165o31cUGPQeLNZxtfj5\nQ/cRsPkPY2u3R8WGagy3HkHVIT1ZX6ZkNX09malQoaXrsc9xF6FcqGs6Lm2CwLpQopF9mf2ToNar\n4OdC7HHMXjj2LdT9ynkdWWmwpycU7wrFXEgiuvwlXP8Naq8F72Ia8yTBqcdVg1xxKXhqxIKn7oGz\nzaHIi1Dq65xuHBGg9M2cci/AGwq8dbeMLRZie0DaUii6G/w6Of+aACwrwdIAyAfeh8HDRReMFrk7\n8HuMjw/M+xOir8PLQx0nlHz5nWr4w7bAM92hTghs2WBsrlc/huuRMP8n7fuenjDmJ/j2PYi1E+pY\nrDT0eB6mf2x/nmZdIPI8hO+yL9OoA/w903x0zZ0EVYODqyEtyb5M3sJw6ZC+noRI1UjbIz0RrjmR\nVJWd8CVQsp5rOo7MgtIt7SflpEbDiV+ghgvVjG0W2DEEGk6EPBoG0wgicGgo+FeAiu84v5YrX0PU\nTKi1AXw0XBnWWDjZDvwqQPl52klBiSvgQmcoPRUCNZ5KbGlwfQCkzIcS+8CzOOTprCb03CJzD1xv\nAJ4VoOhm+xmaRpBYSHsWMl4Dz7ng9T0obghR1ZzLxPUA8PAZcAA/P1i0HE6dgLde0zdqdRvejiFO\nSYGYaNWgG8HHB76eB5M/gLN2DFLVutD1GZioc+g58B3YsgLO24mx9vKC3iNhgU56fa2WquE968C4\n6uHpBcG19A8yjWRjOgojdIf/O/k6pMZC0arO60iPg7MrocYz9mUOTYFKvSGfxuGdUcK/Av/SUK6/\n8zrOTYakcKg72/kM0MsTIPIHqL0BfDVeT+phCK8P+VtC2Z+0D0djvoOI4RCyCgp0z3nfchkiWqoZ\nlqW3gW8tKHEAAm7WIxKB5B/gxuNQcBIUmgyKC5mjluWQUguUIpD3MHi2dF6XEVww4IqilFEUZaOi\nKOGKohxVFEUzCUBRlCmKopxWFOWQoiiu7VDudxiMw7AePeLjRZo3EPngHfvZYCIirRuKBHiIBHqK\nfDpaX6cWMyeKVPUR2W4n7CklSaRlMZGpOqGLcyeIjNLJckxJFOkcIHLlrH2Z2R+I/DjK2JrtMf1F\nkRVf278ffVHkpdL6Oqb2Edm1wP79C3tExjdwbn23CF8mMruDazr2fSeyvK/9++kJIj8FiMSdcX6O\n+BMiCwJEki44r+PaPyJrSoikXHRuvCVO5GArkS3eImnn775ns4okhYmcHyqyWxE50Un7b8WWJRL1\nicjJKiIZ57TnSdkmcqWLSOx4bR1ZCSJRfUSu9xGxuPCeiojYYkRSnxZJqihi2WJoCO4II4w1fmWf\nDygB1L35fT7gJFAtm0xnYPXN7x8Bdrqy5odzB36LggVh+T+wZhVMnWJfrvuTULUGrAmDP+bCutXm\n5un/IlgyYVA7GNQh527cP5+6E//+I3jnGUjQaPHZ52XY8hcMaQnpaTnv++eHyg1geDPI0LgP0O5Z\n2PA7WB0c4OpRrj4c18nsLFwKEq/rz+EoCsUdO/BLOyDYhQPM9CTY/C7UHGhf5ug0CG4PhSo4N4fY\nYMcLUPsjyFfWOR3JZ2D/s9BwIfibcDNkpcD1BXC4LewIhMQtUGUe+IWo960JcKYv7C+sukyip6sR\nJFVW59zh29LgfG9I2gHlw8BHo1Jj3Ay43BMKjIDC7+TUkXEIIhqqGZcBc8HLyfcUwLLk5q67OOQ9\nBF73eNd9Jy7swEUkSkQO3vw+GTgOZH8U6gbMvSmzCyikKEpxZ5f7cBtwgIAAWLkWZv8AP3ytLfPq\n27D1EDRoDLMWw6uDIPyw8Tn88kDhQNXfvn0ddK0LE9+9W6b7QNVV8/cCaF8Ols2527Xjlwd888Dh\n7fBkVTih4caoWBvirsGgunBd49AzqDKULA97jVfdzUFiNOxeCtfOa9/39IKCxdXqhfZ40A14agzM\nqQWWZChUXlvGmgYHJkPD0c6v8dR01f9d5SXnxlsSIfxdqPoJBLQyN3ZfTTg1CBI2AFngWxaK9b59\nX/GAlDCwpaiX4gOlPtJYQzScbgOKH5RfljPcUDIh8kW48TWEbIP82SJsRCBxFkQ+BoXGQNFp4OFn\n7rXcwhYNSQMh80vw+wP8vgbF3zldzuImH7iiKCFAPdRS2XdSGrjTR3kFCMJJHn4DDlC8BCxbD9O/\ng1lTc95XlNs7hkZNYewUeK4XXIsyPke5m8kLYlMPL2tkq3kcUBzy5AVbFqQkwgfPwcls/up8BdVf\n+KhLMLgZLJl+9/0CAerXK2dgQC04EpZzHe0GwFoXYsJjI9Svn7W3v9N35Ad3FEboqgG/lcAT1Nj8\n2IQLMLceJF5S09jTYrTljs2FYg0hsLZza0y5AucWQtOZzkXbiA32PAveARAy3Pz4SjP4nxVRvKH4\nkLvve+aHoG9ubiIU9QrIVhI2/RScagr520LIbznLylqvw8V2qt+73E7wrXz3fVsKRA+ChK+h1BbI\n78IZQMafEF9bTan33wRezZ3X5Qo6YYObtsLH429f9lAUJR/wJ/DazZ14DpFs/3b6SPT/hwEHCCoD\ny9fD11/A/Ln6sj37wuAXYUh3SLNjxLJTra76h1okEFq1h069774fWEItXuXtDb5+8Os21a1yJ943\nD3MUBXx8IX+2Aj9pN/+vxQapSfBm55yhko/2Uet6J8cbW3d29q9Sv8ZcgqlDtGUcxYI73IEnuRYD\nHnUUilaHPBqZg3qkRsOc+pB0FRDw8IYUjTj+LAvsmwSNPnBufSIQ9iIUfxQK26kZ4ojjn0BmLNTV\ncf3pkREDku/mbleBotl+H+PWwNnhEDJbjfHO3wq8Am7fT94Op1pB8dFQ6vOcLpG0A3C+Efi3hDLL\nwTNbQlHmcYh4BBAovRt8qjn3OmzXIakPpH4A+RdD3omgaJe4/U/Q2XGHNoOP37p9aaEoijewGPhN\nRLTSpyOAMnf8O+jmz5ziwTfgZsLmQsrD0rXwyWhYukhfdtgoKF8ZRg10HIoI0O1peHMcrD8LZ4/B\nqgV33y8epBruYR9C+UoQeTGnDr+84OMHxUvDqInQLtsfXWqi+iHh4QH1W8MvR9Td/p0UKKL63Lc4\nERMeF3V7B27NhG0LIEzjfSpRUS1qZY88hdDdNGSmQj4nw+kALoVB8Vrmx/kUgLrDwCuPGmGRla5t\nwE8ugHyloaSTKfrn/4Cks1DnXceyWkQshgs/QxOdTjh6XPsTTo+Eepug5loI6AH+d0TrxPwJpwdC\n1eVQbBDUOAAhM27fj1sE53pCyFwI1EhwyopXGzkUnwjFPs/ZfCHhd4h4CgqOhKJzwcNOZUM9RCBj\n0c1ddwgUOgDezczrcTeuRaEowCzgmIjYy95bAQy4Kd8EiBcRO9mCRtb7AESb6J4Kj3xFv0a3FocP\nilQqJrJ6hb5cerpIj+Yi498zqX+PSNOiIlcvad8/tEOkbQmRhGw1kI/vF4mLFtm/WaR7WZGM9Lvv\nb/tLZN4Ekc1LRQbWsB9ZE7ZcZFQLc2sWEdmzQuQJRJ7OKzKkuMjCj0WiNCIO1nwrMkenGNPKsSJ/\nvmv//tLRIn9/YX59t1jQX2S3g8JTesxtJrL5A5FFHUROLb37ni1LZE51kQtOFshKixH5vYTItTDn\nxscfElkRKBJrp9iTI64vE9lcTCTRTm3wa7+L7Copknww5z2bTSTiS5FT3URSNO7fiVWj6FlWmkjk\nMJEzFUXSHIzX1R0pkviESFw1kcydzuvJBu6IQok0fmWfD2iB6nA5CBy4eXUChgHD7pD7HjgDHALq\nu7RmVwbf6wsQafuoSN/eImlp5v439+4SaVpTZNNafbmY6yLNyossmmNO/9SxIgNa22808Plwkc90\nGja8/rjI/Mna92w2kedqi+z8W/t+ZobIk0VFIkyGalmtIokxIucOiLxWzb7cnqUiE3VCHtdMEpmv\nE8644CWRjd+ZW9udTCgvEhXu3NjoYyLflhCxZmrfP71U5Lf6+mGnemwZJLLjFefGpseIrC4ncnGe\nc+NFRMIHiyTYMf6XJouEhYikaFQLtFlEzg4XOVRbJP2y+Xkzzoicqydy5Ult424Em00k5XeRyFIi\nyZ+I2Ez+TTvALQb8qvHL1fnccT34LpSVa9THra6dIMFBT8c7adAYJv4AI56GndvsywUUhTkrYezb\nsHOLcf0vvKOG2v1sJ/LllXGweQUc2qF9f8Q4mDtOPfDMjqJAnzdgoZ3EHm8fCO0L638zvl5Q3TH5\nA6BMDYi5eNvnnh1Hh5iOfOBpLhxiJl+H1BvOJ/AcmgW1B4Gnd857IrBnHDR+z7lkmYi1cHUDNBhr\nfqzNCkfehqDeEPy0+fG3qD4LCmSr9CcCFz6Bq1Oh3mbwz3bYmJUMJ3tAxjmovhV8TQY93JgIF5pA\nweeg1CLtuimOyIqCuF6QPBaKLIO8H6mRLw8auZmYbsbPD+YtgBo1oU0ruGqioFOzVvDjPBjcCw7s\nsS9XqZraF3NEH4hwUInvFp6e8OWvEGXH0BUoBK9PgrEjtH3sFWtB044wb6L2+LZ94dJxOH1Q+367\ngbDuF+dS6728IagGXLCju1ApuBKuRtRocS/DCC/tUMvHOtOBJysTjv4Cte0czl7eAJmJULGned2W\nFNg1CppNc67S4ME3Ifkq1HDC+OshAmdfh+ilUG8L+GWLJc+MhGOPgncJqLISvBz8v4gNMs9A4p9w\n7S04FQDR70Cp36HIK+Y/+EQgdR5E1wGvGlB0H/jo1KVxBtsRyHKx0fMtcg34PcDTEyZPgaf6waPN\n4ISJOhuh7WDyLOjfRT/2u+VjMH0xFDeRUh0UAu9/a/9+x77w6Rz7xuiFT+FcuLYR9vaBXq/a34VX\nqq8eiB7TCDU0QvkGcM5OZcLLh9VIjRV2YqW8fcHqwIDncdaA73Q+/vv0CihaE4pU1L6/9yto+I52\nR3RH7P0IAppCGScKMp37GSJXQ7P5rrdquxPJgpPPQ+IuqLsRfLLlg6SGw9GmUKQXlJ+hRuU44kIj\nOF8TIp+DuIlqQaoy6yBfO/Pry7oKsd0heTwUWQ0FPgfFhQ5F2ZEosA4F62OAgddmhNxqhPcIRYG3\nR8Nn46B7O9hlxzWhRYeuMO476NsRTusY/0bNjddJMYKi5AwlvJOSZWH8Yvu7mq5D4fJxiNaICFEU\n6Pg87F3j3Noq6BjwjTcjFpZ/DtfO5rzvZSCM0NmO9K4k8Hh4wSN24rsid0PSNajqRKzy9T1wZh40\n/sL82JidcOgdaLEcfEyGRephy4RjfSHjEtT+F7yzhaTGb1DdJsFjofT7xnfOAW/f3GEmAwrk7QZ5\nW5tbmwikLIDouuBd9+auW6PBg7NIGmSNA0tNoAB4nwBPJ5Opcug2cT0APDwG/BZ9+8F30+Gp7rD6\nL+PjuveB98dB73Zw4dy9W587yV8IareEJXZihVv1hlU/QqaD5gpa1O0IoRpp5unJcPBmrLg1E354\nOucTgm8+yKfTw7BwGedcKFlWsGQ4l8ADULkHVLCzQ945DmoN1vaN62GzwJYh0GQS5DHZtzHtKmx/\nEhrPgoJOxknbI/mQWle71krwylaZ79ovcLwflJsJgSY+sMQKKYdBPAFf1UddzOSHljUCrnWF+C+g\nyL9Q4FPXilndtT6BrPlgqQq2feC9C7wmgqLRMNnpOUxcDwAPnwEHaN8J/lwJrwyFOTONj+s7EEa+\nDx+/AREOKu49KDzxGvw9S/uws2gQVKwPO1eY1xsQBLXa5vz5niWqIUUBLx84txsOZWvg7OkF18/Y\n131+h3MulKjDqvvF341/kAAx4XB1B9Sy4xvX4+AEyBsEFU0ePGalw9aeUPFFKN3V/LyOKNAIqs+/\nO3tSBC5+AhfGQJ1NUOhR4/oskXC2HaTuhgonwKcC+LcGX4OJSiKQ9DNE1APfRlBqL/joPH2aJSsM\n0lqAbR54/Qref4LiQr0Ve+QacDczfBhEaaS8N2wM/2yBSeNg/GfGD/MGDYcmLeCptnDdRCr9/aJE\nCDRoD6tnad9vOwDWu6Hd2i0KlYRWz0GN1lD3cfhoG9TM5v/09tP3gWc46UK5uAPKuqEDfXZ2fQkN\nXgVvk3U14k/AkcnQYqq5wzsROPAW5C0L1Z1M9jGLLRNODYYbK6HeDvA3seNP3ginGkK+UCi/BnzK\nQNmdUGqBw6EAWC/Dtc6QOAVKrIXCY9y367ZdgLSn1Mt7OHitAA+TdWPMkGvA3UypUhDaCg7sz3mv\nYiVYtx3+WgojX3TcoecWw9+AJ56Bfu0g9oZ713sv6PMGLP5Gu0Jgs54Qvk0tguUOarWD56dDk77g\nXxAqN1ejVu5ELwrFlgWZaeDrRHaeqxUItYg/D+dWQd0XzY0TG2x5ARqMgfxlzY09OQVuHIRHfna+\ntrcZrPFwtDNYbqg7b61GDlqIDa6OhaivIXgulBhzu0a4Z3710h0vkDQLIuqDb3MotRt867j0Um7r\nToCM0ZDSADxqQt6T4P2scwfQpuY1cT0APPgG/KMx8NVE6NYB/tRI+y5eAtZshvNn4Z3XjNc2Gfkh\ntOkM/TtAoon48vtBlYZQshxs1ujtmScfNOkOm+a7d86AMvabG+sVs7pVB8UZw3VpJwQ3MT9Ojz0T\noc5Q8DN5gHhiDvgGQnWThj9yHRwdB81/BS8nPsTMknYRDrZQd9w1loKnwTktMXCqMySsgeBpkN9k\nU2DLJYgaAInToeQGKPyBWlTLVcQKmdMgpYpaJyXvEfD98L+rSpgbhWIORVE8FUU5oCiK/RPJrt3U\nkrHvvQWffpQzrjp/ftUnnhgHvdpBnEY97pwTw3vjoUFTeLYzpDjoA3m/6fMmLJqo7SpqOwDWOSjg\nZZaAYPvJPHo78PA1aiKPo96b2Um+DikxUMyNh33JUXBiPjQYaXLcFdjxDjQaa67SYNJZ2N4fWiyA\nfCHm5ozdCXs1DpX1SNwP+x+DksOhwhTtDjua6wyDY/XBvy5U3Qg+pY3PKQLx0+FCA/CuBiW3gY8T\ndWu0yFwDqf3BuhDy/A15ZoOHC52SnCF3B26a14BjOHpL6tSFrbth43ro9yQkZzO4Pj4w7Vdo2AQ6\nt4QrBg5WwPnDAAAgAElEQVQpFQU+/RYqVoXnTFQmvB880hlesBOXXTtUNZgXjrpvviI3d+CaMep2\nDLgIrP4EENi30Nx8l3Y6n8Bjj73fQK2hkNdEvXwR2PIi1HoZilQ3Ps6SBJu6Q62PoESouXXG7oYd\n3SDoKeNjYlbDgQ5QcTyUftnYE4+I6i450xPK/gBlxpvrEG+5CJfbQ/wMCN4Ige8Ziy13hPUoJHSE\n5FfBsx/k2QCeLvZCdZZcA24cRVGCUFsMzSRnjdycFC8OazZA4cLQpjlczFbxz8MDPpsI/QdDp+Zw\nzIBB8/CACdOhXCV49wXINLlz/K/w8ICG7bT/UD09oUlX2ODGXXie/KqrJEnjjMBeT8yDSyD2gvr9\n35+byxK9dgIqakTFOEt6PBycAfVGmBt3ZhEknoP6Jg4fxQZhA6FoU6hs0uUStwd2dIH6s6FEZ8fy\nAFemwbEhUGcFFH/C2BhrPJzpBbELoPouKGQiMsZmhesfwoWGkLctlN0BvjWNj7er9zokj4CENuDT\nGQofBb8e/825gT1yDbgpJgNvYcaj5OsLU2fCs89BaBMI06hz8vIbMGY8dG4OM39wrNPTEz7/DlKT\n4bWn1bre/wXOpMHb47GBsGnezRBAN1GikrYbxcsXCmQrF2vJgAUv3d6Zx0fAORNZoidWQ0k3HYAB\n7P8BKnaBgiYOINNvwPaREDoTPE1EURz5DNKioNH35oxP3N6bxnsWlOziWF5scPoduPQ1NNwKhQwe\n+Cbvg5N91OiSqlvBN0RnDoHkNRD7HVx7BS62gFP+EDcZymyCgNHmdu2ac6RD6pcQVx3IA4VPQJ5X\n3Re54gq5BtwYiqJ0Aa6LyAH0dt9h27UGwysjYfocGDkMftGIBX/yaXjrI3j7ZahXQW30cGi//drf\n3t7w3ULViL892FiNcFfYvhI+M+nz1KNMNTW2++B69+ksUFTbgPvkgWun7v7ZtRNqaOGtKAFLGuz5\n3dg8WVaI2AfBTtbnzk5mCuydAk1Mtkvb/jpUfApKmDhIvbgUrm6GVovVDkBGid8POx6HutOhpIHd\ncFY6HH0a4rdDwzDwt1Mu4E5EIHIqhHeE4s9D2Sk5u+5kx5YIET3g+hsQ9z2kbVfT3ytGgp+TzSvu\nXE/KAohvCNadUGgH5PsaPIo4Hvtf8ZAZcDfmjZumGdBNUZTOgB9QQFGUX0RkwJ1CH3dsD02aQdNm\nhLZuTWho6O2b7TpAyBLo1w3Cj8DYSXenwr/0BmzdCP+ugnEfweRxqitixUaok60lGqi7+2lLYFAn\n+GAEjJ127x7n6reGr1+Bnf9Akw7u0dlmAGz4BRq4SV9AsHYkiufN9zjLevv7oDowKR7CZsPpzfDE\nJDVj0wiRh6FgGfMdeOxxaCYENYdAEweil/5RDXFfE+cIcUdh+1Botxr8SxofF38QwjpD3WlQqrtj\n+cwbcPJNdQdefx14GqjiZ02Cs8PUeii1t0Oeyo7HgNp5p/BbEHszA1PJA6V+cxxS6IjMXZAwSt19\nF5wKvq43Kt60aRObNm1yWc9duGCYFUWZDTyOujHVPNlVFCUU1fPgDcSISKjzM8J9r/l9sw7vo8Bf\nmvV5L14UadlEpPvjIjEx2oWA42JFerYX6dFO/f5ODuwVKZlHpDAiAR4iTaqLJCVp67lFUqJIj0dE\nPh3pfN1oI4StFnminEhainv0xUeL9CkokuJkvebsLB8rsuBt7Xsj/EXSNN7H9ZNFFr5qbp7tP4gs\nHGx+fVpYM0S+DxK5utv4mIwkkXn1RC46qB1/J+k3RP6oIHL6F3Prizso8leISMQyY/LJZ0Q2VRY5\n9qZIlsHGJslHRPZVETn9vIg11fjabFki0VNEjhYROVVa5LiHyPkmrv0NWC6I3OgncrWUSPLP6hz3\nCNWcuVgP/IjxK/t8QEvURsZH7OgvBIQDQTf/HejKeuUBqweu/dkXHAzrt0DVavBIPdih4VctVBgW\nrYKqNaB1Iwi7o6533QZQsrS6k/b0hLp11BK1euTLD3P+hp2bYNKHzr8iRzTtBNUaw+xP3aOvYCDU\nCoXti92jz94OHOxHojhTidCdGZjhv0NAVShpomTpjg8hoCYEG4yFtllh01MQ3AMqPmt8nvjDsKUD\n1JlgbOcdtxN2toCQkVDtK2MhjdfnwtHWEPQeVJwBngb7S2acgXOhEL8AKoRB2c3gWQRKznDuKdSW\nBAnvw/X64FUZip+CvIPufSKOq7jgQhGRrUCcjvangcUicuWmvJ2O28Z5IN5NEdksIt3sCnh7w/iv\n4JsfoE9PmDwxp4/aywvGTYZefaHzo9CzPaxZqcaEv/Q6FCgIG/dBQjwM6gEpKfqLKlgYfvkXLp6C\nqU5UoTPKyG9g5Sw4o1Pq1gxtbh5muoMAnebGdg14kvlCVu4y4LYsCPsSmppoVhy1C07Nh1Z2GnNo\nsbazWm63oU5r8uwkHFWNd70pUKa3Y/mopbCvK9SaCWUNRNJkpcKJ4XBtLtTaBMUGOBwCgGRBzAw4\n0wQK9IIKW8CviloLpeI189EmkgXJv8G1KmCLgOKHoMDHzvXNNDznNbD97VjOkC4Tl3kqAUUURdmo\nKMpeRVFMfPprcz994Obp0hVq7YZPP1SrEU6bAwEBd8t8+LlaqGrBLxC2VTX0gUXVA83qtWDucnjj\nBejdFn5dCQGB9ucLKAoffAP9W4F/Xhj4mvtfU0AJGDoWvhwK07bnbGJslgadYNYouH4RipmIwNCi\niE5nHnuhhOmJEGiiyFCSGxN4Ti5RMy6DDdbKyMqEdc9Dq8mQR+f34BapkbCuO9zYB73PGa/tnRAO\nm9tD3clQpo9j+fPfwLmvoNEaKGigDGvqKTjyJOSrBdVW5KxOaI/0U3B+sBr9USEM/LL5yc3ullPX\nQezr4BUCAX+5t4SsFnIGsiaCbSF4vOAmnfZvbdoDm/a6pN0bqA+0BfyBHYqi7BSR084qfCB24KYo\nW1YNI6xYGVrW164LPulHyOMPGelgyYSY61C2nHrP2xu+/RlatIG3h8HlC/rzFS8Fc9errdMWmah8\naIZuz6uV/9a4oSiVrx80ehw2mWy3pkWRIGg5SPte6VpqpEl2vP0hX0DOn9vj0k6o0Mb1BB4R2D4O\nmr1r/JF/75dqnZPKffXl4o7CxqfgjxC4sQeqvwr5DH44JhyDze2gzkQIdjCPZMHxt+HyDGgWZsx4\nX1sE+5pD0EtQ/Tdjxluy1ISe482gSB+osi6n8TZD5nGI6gIxw6HwJ1B8+b013ra9YOkNlqZAUfA+\nCV4T3KNbZ8cd2hA+Hn77coLLwL8ikiYiN4AtgGuxs6460e/lpS5Ph7+WiZQrJvLtxJwHLe+/IRLo\nI1LEU6RGaZGoyJzjZ08RaVRaJNxAh+0Lp0ValBZZ4UJDWj3Oh4t0CRSJjnBd14mdIsMq3dsD2E/q\ni5zXaK77fWeRw38Z17NqtMiaj1xfz5m/RX6qafyQ7MYxkZ8CRRIvOdD7u8hsRGZ7qF/n5hGJ2W9s\njvjjIivKiFz41bGsJUVkR3eRvf1FMuMcy2eli5x8WWR7eZHEfcbWIyKSekIkvKnI8UdF0kw2xc6O\nNVok+iWR84EicV+L2DJc06eHzSaSuUYks51IRhkR62QR292H6LjjEHO/8UtrPiAE+4eYVYF1gCfq\nDvwIUN2VNT98O/A76dIdNu6CpYtUl0rsHTVQXnpd9Ym26wzPDoGOjeFwtoqGz70CY76B/u0gbKP+\nXGUrwux/YPwb8O9S97+WkOrQfTh8+6rruio3VnehJ3e5rsseej5wM6VkL+503f8dexoWdoFy7Yw9\n9osNdn4Mj3wM+cvoywZ3hVLt7xibBYUN1P5IOAnr2kKtCVD2GX3Z9GuwLRS8C0C92eDtIJwy7Tzs\nawEZEdBoH+TXCInNjmRB5EQ40RwC+kOVDeDnZD3trHSInwiXqwEeUOYEFBp1bxJxxAqW+ZBaHzLf\nBI8h4H0WPEeCYtBVZGo+E1c2FEWZD4QBVRRFuawoymBFUYYpijIMQEROAGuAw8AuYIaIHHNtvQ/A\nTlv3E9EIGRkio18XqRYssivs9s83bxBJuRmit3yRSNVAkWULc44P2yhSr5jICo172QnfL9KkmMjm\n1cbWZob0NJF+lUS2rXBd1+fdRZ4pJmLJdF2XFl+1Fjm2TmPeOiKXDO5QrRaR9/KJpMQ6lrXHiaUi\n4/OIfI76vRH2fy8yv6WxsDybTWTDIJE/qor87CWyrJ7jMQknRRaXFjkzx7Fs4jGRf8qJHPvI+BPT\nqZEiF782Lp9yTOTUMyLHW4uknTU2RgubTSThT5FT5UWujRDJOO68LodzJYtkTBFJChFJaSViWeXw\n9eKOHfge45er87njuu9G2uEbaoa/lom0bSTyvYZLRUTk8H6RBiEiZ07mvHfskEjjIJFZ3zqeZ3+Y\nSM/aIrs2mlufEfauF3kyWCTFQay6I34YLtIVkffbimSkuWdtdzK5k8ihlTl//n45kesGH82v7Bf5\nsppz89uyRNa+edt4j/cTOWEgtjrhosj3ASIxx4zNc2SKyB+1RDKTRC6uELngYI6EUyKLg0TOzHas\n+/ICkVVFRS78bGwttzBquG0WkcvjRXYEikT8YDyOXIvU3SLnWoicqS2SpPHB7S6yokXSx4gkFRVJ\n7SVi3WF4qFsM+G7j14NgwB9uF0p2unSH2Ytg+SJ4tkfOsrK16sG241BB48CmWm1YvA1+mwpfvqdf\np6ReUxj9LbzZBw6aaK5shAZtoG4ozHIx/vyWe+PYVni/NaS5uVyuPReKmW48F3ZAiJPuk6SrsP9H\n1U0GalU8m4NCZCKwbgTUfw0CDES9RGyAA2Oh/XLwzqe6U8rqxG/HH4W1raH2x1DhOW2ZrHSI3gSb\nW8DevlBrCpQd5Hgtd2LkkDYlHA41g7i1UHcPlHrRXGncW1guQ8SzcLk7FBoE5fdDPjcWHbtF1gW1\nGmFaB5Cr4L8V8iwGTzfXh3fEQ5ZK///LgAMEh8DKrVC2PLSpD/uy+YH1kniCyqpGPPIivDUQLBod\ncG7ROBS++AVe7QHHNLoFucJLk2Dd73DSTtd4I0TdbNxszYTTe2C8wap1RtELIzSayONK/HeBIHgt\nEopUUVPLLalqbLYeJxZA0iVo/I5j/Ynn4cAX0OZ3KFBOX1ZscGoqrKwDFQdDRY3em5d+gU2NYFVB\n2NER4rZDlTFQxkFkilnECpe/gCOhUOJ5qLkW/ELM67Elw/WP4Fxd8A6BCieh8BDjNceNYj0IiU9D\nXAPAH/xWgt908KhiXIckgs1N5z25BvwBwMcHxk6Gsd9A/64wdbL+jvpOCgfAuBmQGA9Du+o3emjR\nET6aBi8+DmfC3bN2gEKBqhFf+JXz1QVjLqtGFuCR7vDMWPetD7R34JYM9X32MljUKSPZtRZqKdch\nKRJevgidf4IyLezLpsbAplHQ3kClwcxkWN0DgrpC6TbaMiIQswt2vwSLisDuF6FIfahjJ6s28Qgk\nHFSfEmwZ4F0Eqro5yzflCBxqAgmboe4+KDHUfBalZMGN2XCuK2Seg/IHodhnrtdCuRObDTI3QHwH\nSHgcvOpBkfOQbzx4mqgpYzsC1hFgKQu2Oe5ZW64Bf4Do3AP+2QVL5sOAnsY69YAaQ/7jEihZBp5p\nDTeu25d9rCe8NQmGtoeLTsfj56Rdf0iIhiVTnBvfaQS89jO0ekpt+FCpofvWBpC/6G33xS3SEqFk\nDWNGIzkaTm+E4i4k8IRNgIYvQr5iUHcIFAy2L7tpFFTtByUdVDwUgQ2DoGgDqKMTEXT4Y/inGZya\nBpYEtZ1Y81/ty1f+ADwLAR7g4QcVX3ffbtZmgfOfwckRUGI41FgDfjrvhT2S1sPJBnDjZyg5AYJ+\nA28HUTqOSP8TbgTBjXJwowrEhMANX0jsA75PQZFz4P8WeBh8apMMyJoPlpZg7QRKCfA+Cl5TXVvn\n//SbuB4AHnwD7mqDhbLlYNU2qFIdujWDA7uNjfPygrHT4dHO0Kc5XDxrX/bxp+HFT+D5xyDion05\nMygKjJoG876AKCd09noLWvWFxwbDJjd2rb9FlkUNGbyTjCRIizc2/uJOCG7sfAJPYgQc+xMaGwi7\nPLcGMhKh+WeOZfeNheQICHXQib7qq+AfzP9K2ecpCQWrasumRsCmR6F4dyhQA8QCIW7KHEw6BHsf\ngYQwqD5fdZuY3XWnn4Sz3eDSC1D8A6i0BfKaqCWjh1dVsF1Tu8vbToFcAq+WUCQK8gxWS9UawXYR\n0j8ASw2wzQLPUeB9HjzHgGKiJZwjcg24m2lUFzY5iNF2hI8PfPAFvDcOBnSBGd8Yc6koCoz8BJ5/\nE/q1hKM6Puknn4cRH8HwNnD9qmvrvUVQJXhiJEx52bgLKDu12kLsVbjsWrhpDrQaG6cnGq+D4soB\nJsDOr6HOIPB3kPWZmQz/DIe6L4GPg7jhc8vh6DToZKC2tyUFLDbwLarupMvbKWsRfxg2NIUy/aDh\nDGi+ARouAt9i2vJGsWXCuU/gQDsIegXqrAY/k7tl6w248iqcbgH5WkG141D4SfeVULbFQepysN3S\n5wVezaHQWmNlCMQG1jWQ2k3tTk8KeK4C73Xg0cs9TZRzrNnE9QDw4BvwT8fCC4NgwNMQGemark49\nYdUuWDIPhvSCeL3CYXfQbxh88iN88Ya+Ie01BHq+AMMfg9ho19Z6i75vQ+Q52OJkhUFPT2jVHzbp\nPN47g5YP3IwBP77G+QPMlBg4/As0fcOx7JYPIPhRKNdeXy72GGx8HjouhrwOGukmX4Y1raHGKOh2\nEkq2g/IDc8pFbYTNj0HtCVDtHdUw+gZC6V6O161H0kHY0xgSd0Pj/VDqOXNG15YJkZPh7OOqkax6\nDIq/6bjZg1GslyH+DYisANbTUGAm4A1KIBRc7th1ZIuBjK8guRKkvw9ePSDfJfCbDJ4mDjedIXcH\n7ma694SDx6BsCDSoBVO+ca3lWXA5WLZNjTjpUN+4S6VdD/htg+M/lMGjoe0TMKIdJBr8gNDD2wde\n/wm+fw2SE5zTEToANv8KWVmOZY2SeA2uZju4NRqBEr4arh643QzCLLu/h+pPQwEHj84RO+HEQmjj\noNJgehxsGALNJ0IJBz7ylCuq8a72MtQYCb6Foc3fUKDS3XJnZsO2vtBsmeMaKEaxZcKFiXCgPQS/\nDnVWgl+Q8fEiELsUDteAhHVQZjaU+R68i7pnfQBJX8O1m+U9ih+CInPA71nwGwyF/rHffUcELDsh\nbYBquG3HwH8+5N0LPoNB8XffGvV4yAz4fU/WcRhYfyfHj4t0aCtSv5ZI2Hb9qH4jrFosUrOoyPTJ\n7q0bYrOJfDVK5NlHRJIT3aNz0lCRySNcGP+0yCE3JmCMLCoy1FvNprzF7t9FZjylP+76aZG3/UVG\nIbJpsvl50xNFxgeKxJzSl7u4SWSCt8jBn/Xlsiwii9uLbLXTuOJOkq+IrO0lcniCfRmbTeTAByJL\ny4vEn3Cs0yjx+0S21hI5+IxIuhP1cpL3iRx9VORgTZG4f9y3ruxYTotkmcistSWLpE4Xia0nElNe\nJP1bkSw7jVscgDsSeTYZv1ydzx3Xg78Dv5OqVeHvtTD6fbUX5vBBEK0TIeKIzr1g5U44vBdGPKGG\nDroDRYE3JkFgSegUDFcvuK7zhfFwbj8cczJxqHIj2OSmrvUR4ZAar+6ats26/XNHO/D0JJj22O0q\nhsf+Mj/33p+gfFsIqKR9PzUa/noGFrRVozOqO9j9bn9XDZ1r5iDMMuUq/NUaAh+BWm9py2RlQtgA\niPwXOu6Agm543M/KgFMfwN6OUO5tqP0L+Dpw8dxJZgScGQQnHofA/lD7ABRy4E5yBa+K4FHYsZz1\nBCS/BjeCIXMV5B0PRU6D76vgYaKaJYBkgpx0br05dJm4HgAeLgMOqnHs/RSsC1NreT9SE2b86Lx7\noGx5mDgLSgRBl/pwaI/71jnhD/Vrl/LwalfYulo/OUiP/IWh50j4ZihYndDRoh/sWeGejMy/PlVD\nCG1WWDwaMlLVn9tsUEjnIG3laEi4wv9++y/sNNc82pIOOyZDy3e17x+bD9PKw4lFqlH2znc7Fl6L\n47/BmSXQeaH+oVpKpGq8qwyGum9ry2TEwYYOYE2BdhvBz8VDSoCEvRDWAJKOQvNDUPoZ477urBSI\nmAyHa4NPKahzEoq/4HpHebMk9IUbFSCuEcR3hLgmEF0A4luCkh8KH4CCy8Cnvbn64yJg2wHWF8FS\nGrI+d896cw34f0T+/DB2IqzcAEsWQuvGsMfJbCxfX/h4Crz7FQx5HOZ853zUx514ecGnc9VQua0r\n4d2+EBoA65w8kAx9CgKD4I+J5scWKg7VWsKuJc7NfYu4CNj3p3r4Bequet1k9fuEyNs/16Ld+9B7\nuhoNkr+E2sU+0UTEzsG5ULIelLBTQtmSqhpu280PuLzF7eu6the2jIKuyyCPzo4vNQpWtoHKA6Ge\nnS73yRfg3+ZQuC60/AO8XPTXZqXDyXdh7+NQ4X2ovxT8DCa4iA2i5sLuKpCwB2rug+AvwMtklyR3\n4VFSDQG07gXLP2DdBV5tochlyPs5eJqMV5ezkPUJWCqD9Tk1hNB7D3i56ZA+14D/x1SvCas3wYiR\n8HQPeHUo3LjhnK5OT8DiHbB4Dgzs6J6Y7ibtbh/WpSSpUSHlqzunS1HglR9h8SSIOGN+fOgA12PC\nbVnQuB9UbQMBIdD+DSh3s16FoyiUgqWgRlc1CmFMBExIh0IGD+GyrLD9S/u7b4A6Q6DhW+rO28ML\n8tvRnRIFK3tB258gUKc0bOo1+KsNVOoP9d/TlonZC1sGQMXh0HCyc/VGsnN+EqScghaHoVQ/47vu\n+M2wvxFcnQbV/4DqvzuXRu8ORCB9HaQfVz9UAfCDvF9B4aVqMpNhXbGQOQ1SmoOlB8gN8PodvI+D\n5/ughLhv3blhhPcBRYF+z8Ke42pHmuHPwq8zzD2e36JsBfgzDFJToGU5GNAB5kyBXVuc85H7+kGD\nUEABL29o0gZCXPCNliwHlRrA4Cqw22QfwIZd4fwBNc3eWQKC4YXfoONbUKIyPPklVL9Z3MhIFMqF\nOxJ4PE3E8R5bDAXKQHBz+zIJl9QCV8/uhg4/Qd1hOWWsGbCqN1QfDBV1wvnSrqs774p9ob6dHpuX\n/oJ/O0GN16GaG+q436L8O1DvT/DVeYK4k9TTEN4LTgyEMm9DvTAo6KYm0WaxxUHSNxBVFeJfhzw9\nwLsZ4Al+AyCPgdBPUDMuLUsgtScklQPrRvB5F7z2gdcU8Gjkvnj1u+Y1cWVDUZTZiqJcUxTliJZq\nRVH6K4pySFGUw4qibFcUpbary/3/YcBvUagQfDUFPvgcfp8NnZvBIScKTfn6wp/boGod2PovjH0D\nnu8KdQrDhlXm9fUcAsVKwYIDEHcNJr3qmoumy3D1UfnjHvBeJ7hu0CD7+EHTJ2GLG5oee2nEgacZ\niAO/6EQCj80GGz+DVjrNikXg7+HQaCQUrQa1B0P1fjll1r8MhWtCk48czGmF6sOhgR25Yz/A9mHQ\nbhWU7WHu9TjCw8uYcbLEwbl34UBTyP8IND4BxZ66N4bNCJYzcLUcZO6BIrPUMMJ8w9UDSt9+kO9H\n/bWJgHU7pA2H5FKQOQW8ukD+S+C/ELy7gMc9aBpx1xpMXDn5Geioo/0c0EpEagOfAdNdXe7/LwN+\nizr1YdV2eHYo9OsMb79kPGnnTr6bDz6+atx5cqLalae5E6U02/WG1RehQg2YvAqO7oLvRztvxIuH\ngF9etdLg/rUwqCKEbzc2NnQgnN/vuo9fqxphRhL4OSh65EwG5smVagGqCo/ZlwmfD0kR0NTOISPA\nwalwdQc8OsHxgVneUlDzlZw/FxvsfhOOfwePb4OijY29Bndis8DFKbCtCogXNAqH4HfMuSXuBV4V\noORpCJgHvi1uG2ufllDgV/sJPNbTkDwGEkIh/XnwCIa8+yHvJvAZAkrB/+oVuGTARWQrYNfQiMgO\nEbmVzLELMBHEr83/TwMO6iN6/8Gw/Zj6R/dIZXhjOCQlOR57iwpVIbSz+ovo5aU+1p12surgrW7z\n+QrCt2sgbDUs/NY5XUVK3i4kpQCNOkEZg0WhqjSFC/vhnAulakE7E9PRDjzLCpf3QlkHyTJ3IgKb\nv4BHdZoVp8bAutfh8Zn23TKXN0PYJ9BjOfg4WVnPmqY2N47ZA13CoEB55/Q4iwhcXwFhNSFmFTTc\nABU+Ax+DrpZ7jaLA/7F33uFRFd8b/9xsekIagQQCBAi9Swm9SJEiQvyJIooVVOpXAWkiCqioYEcU\nEBXBioUgvYdOaKGHFnpJSCC97+78/piN2bTN3ZIQIO/zzDO3nLkzC5t355458x6Nyk1B+jhImw93\n2kF8JxCJ4PYZuJ4Ep7fALrBkx1oUSm8Rcxiw1tqHlHJM0V2Atw/M/RZ69IWXBsHShZKMK3iCpxc8\n8QxMKUICFGDSbNgUCp8tA40dDO8DY2fAM6Msf1X1qghfb4YxXeQCzxCVfsEceFaC7CxZ2wkYNA48\nitjhlh+KAl2fh+1LIcgKhUJLttLfPA61uoKrijjhHFwMkzslG5nwV++ZA02GQtUiBJgSL8Oqp+HR\nX8DbwjyQ6XGw738ycUTvjcVrpdgaSUfgzHjIioEGX4KvqTf1MgJ9PNxpKnNX2gWCJgh0V0B3FkQM\nOPYDt3fAsZd1uiZCD1ixHyTPs2zzGFNQFOVh4GXAxIKOOtz/BJ6DPgPkbLxTY0l+8bdlVIh3MZsG\nghrAvutQ2RDG1bglvP4khIfBB4vlD4ElqOgHX26B0V3A2RUeH6m+rUYDs9dD445weCPMew3mHwUH\nlaTSeShMawfPfwL2FvoUHZzBM9/Mb8QK8DERFnZpH1Qwc7a4/UPoPLno6I5z6+QC54hjhd/PSoXQ\nEAieBDVNuGBMIeEcrO0HdYdA6xnmxStbi4wbEDUdYtdA0LsQ8Io6IaiyAMULhBb0Z0B3BrIBFHB6\nHlhWbHMAACAASURBVCp8pV5CtjCILBDbQR8K+pWg2Eg90UTcQ9gxCCt0eVI9DAuX3wF9hBBWa23c\nvy6UwlC7jpxtuxjidPU6qORbvD+4slEMbmAd+GMv+AdIDXBrsvFUrgZfbIZls2GdmbskW/WSxN8h\nRLpP/vhQfVu/2hDQACLMjGIxhr0TROfb/eZXz/TGmUt7oZYZ/u/rByHuNDQvIqt7ZjKsGQH9F4Kj\nW8H7QsD6l6FSM2j1hvp+jXFzN6zsLDfwtJlVeuStTYOz78HuLlKrpOMZqD6y9Mhbn25d++wzkDhd\nup3++/NyBe9w8FxiGXnrk0G3HLTPQrY/6N4BpYZUJ3RYYd14c2DCZdKtKcx4JreYC0VRagD/AEOF\nEBbEARdE2Sfwme/ALRu9HgGMmgBVAuQsds43sGAuDO4B5yLVP8PJGd76Al4YDyN6w+/fWL4oGFAb\nPt8EC6bCluWWPWPkPFj9NVw9rb5NF4MbxVIUlRPTFC6auYC5+3PoOKHot4St06BWd6hdxMx670cy\nauGRhZa5u6L+hA0h8PASaGQj/e7iIPRwdRlsqy93YLbfBPU+AodSWMgTekhaL7XBz3Y2v70uFpLn\nQXQwxHQDkQ5eS0FxBFzBax04mDlT1sdA1neQ9iikBMgZt9JZJnFw2AuayaAUocNuCawLI/wN2APU\nVxTlqqIoLyuK8pqiKDnxrO8A3sC3iqJEKIqiUknP1HjLgGiVSXGZUa8K4eclxOjXhDhXjICRWpw8\nJsTXc+VxdrYQi78UoqmvEO9PEiLZTPGpS2eFGNRCiPFPCpGUYPmYzh0V4jE/IXb+a1n70C+FmNhF\nCJ1OnX1qghDPewiRfNuy/jLThBjprN4++ZYQkz3Vjy/mlBCzqwmRkVL4/St7hPikihBpRYz/3Goh\nvqoqRNI19WPMgV4vRMQcIZYGCBEbYX57SxG3Q4jtrYXYESzEbRuItalFdqwQ0R8LcaK2EJEPCRH7\nnRDaIv7dTSF2iBCxzwqRtl4IvZHIWcKzQmSsU/8c7VkhMuYIkdJBiERPIVIHC5H1mxB6039fks6s\n5JuV6ou1/dmiKMIWW8ZLCIqiyP+XmBj49mtYvAA6dYFxE6GtjbNV34qGj6bC+WMw6i3o/X/qZ22Z\nGTB3POzdBJ8sh4YPWTaGyAPw8XAY+ym0MtNfq9PB3GehdR/o+aK6Nt+8BA27wMNFZFA3Bb0eRtjD\nQp26f6cTq2DHPBi1Ud3zl78IvnWh+7SC97SZsPAh6DYDGj9V8P7t0/BzF3hiJVQzM2RRp4U9r8PN\nHdBvLbhbmVKsMKRfg7htoEsBbTKkXYTrvwEKNPsGqg4ueVeNEJC6F+K+haRV4BkCviPBNdjyxXkh\nLGsrBGgPgTYMdEsMOy0HgkMIaB5WnbVHURSEEBYHwSuKIkSoGfYhWNWfTXC3fjkAZ2Qs5BHgFPBh\nob+IxkhJEWL+V0LUqynEo48IsTpU/YxOLcK3C9G7sRAv9Bbigpkz/rW/CdHZV4jfv7FcnvbIDiFC\nKglxbKf5baMihBhaSYj4GHX2h9cI8XY78/vJwQhHIbIy1NmuekuINe+os71zSYiZPkKkxRd+f+s7\nQvw2oPB/4/R4IRbUE+LI9+r6MkZmshArHxVi6ytCZFjxNlUcLn0nxL92Qqx2FuJfRYh/EWJjgBCZ\nFr4NmQNtshDRC4Q495QQJ+sIEf2JENmWybdaBX2WEJmbhEgaLURsgBBx9YRImSlE9l4h9Jb9TWOL\nGfgK9cXa/mxR7poPXAiRATwshGgBNAMeVhTFRFpxwM0NRo2Fk+fg1REwZxa0awxLv4fMTJNNVSO4\nC6yKgE694Mn28Nl0SE9T17bv07BsD+zbBG8NkZt/zEXzzvD2r/DO/8FpM5URa7eA7i/A9+PV2Td7\nBG5dhBtnzR8nmOcHT46BWiqjpnZ8Am1eARevgvdiTsKV3dBvfsHZnl4HK5+BWr2h+cvq+spB6k34\nuyu4VoYu88GpBH3OAUPAvgLoMwAhhaa6HgVHlaGgliDtJFwYA4dqQPx6qPgyNDwDfhPA3kz5Vkuh\nT5FJjhOHQpwfpLwNdtXAazNUPCNDCu3blW6UT36Ui1mphxAihxkdAQ2gLm28vT0MeBzCDsLc+fDv\nX9C8Fnz2oWU7LvPDwQGGT4DVR+HSOejTGDb/q65tYF348Beo4AXPtYIzR8zvv1VPmPQDvNUfoooI\njysKQ2ZA5G6I2FS8rcYeOj4DOy1czKz+UK62tynotHB4OQSqWMBKjoEjv0CnQqJG9DoIHQYNB4FH\nIZvYtk+TSn49Pi2+H2PcPgnL20PQ49Dje/M0WsyBEHBzDWxpDQ41wM4FNK7QYik4lgCJ6rMg7nc4\n0RVO9QJ7H2h+FBqsAO/epUOUuhhIWQy3+kN8V8hYDI6dwOcE+OwDtyky8XFZwT0mZnVXp//IH5Aj\nQDIwp9BXGrU4cUyI154XoqaPEFPHCXHlsvq2xWHXJiF61hfip3nmtVv3qxA9fIX4a4FlLpVty4V4\noooQlyPNa3dwrRCv1BYiI7V424sRQoyuYZkralJ1IeIuFW93NUKI9xuqe+a6qUKsGFX4vT1fCvFd\n58LHmp0hxIqnhUiNVddPDq5sEWJRJSEil5nXzlzEHxVie08h1tcX4sZq+Rl2tBXiwJO27yv9khBX\n5ghxwE+IEw8LEbdcCF2W7fspClnnhEicK0R0RyGueAoRO1iIlN+E0BbhErMRsIUL5U/1xdr+bFHu\n6o4AIYQeaKEoiiewQVGUbkKIMGObGTNm/HfcrVs3unXrVvjDGjeFBT/Btauw4Et47TmoWR1GT4TG\nRehHq0XHnrDmGGSZ6abpMwQatISpT8GhMHhrIbibEf/a7UnISIM3e8EX26Gqyq3brfpCndbw+3vw\nQjHx4TVbgKsXRO6Axt3Ujw0KF7QqDBf3Qk0Vi85pCXBoCYzcU/BewmUImwXDd0uZhAJjcYKQ34rv\nwxiRS2HXROjzB1R/2Ly2apEeDafmwo1foOHbUPs1uZsToMM224kzCT3c2QjXv4HE3VBtBDTaBq4q\nJRas6ltAVgSkr4D0UNDFgetA8HgbnNUvQpqLsLAwwsLCbPvQMuIaUYsyE4WiKMp0IF0I8YnRNWHx\n+BITYNki+O5LaNAERk2ELj3ujlJbRjp8+gYc2gYfLof6Lcxr/+8COLgBxnwFlVVGRcRHw9im8P4W\nqFmMauXqT+HaSRjxg3njmtEMhv8M1Yp5/rLnIagzdCgmlnrrh3D7Ajz5Xd7rQsDSvlCzC3QtQpfb\nHAgBB+bAuV+hz29Q0UJ9dlPQpsPpz+HUpxD0EjSdBo5mSAioRVYcRP8I1xeAvRcEjAK/p0FTyMYm\nW0JkQ/oOSAmVxSEQ3DuCawg4tr0rfmybRKH8YYb94LsfhXLXZuCKovgCWiFEgqIoLkAvYKbNOvD0\ngjGT4JXX4Z9fYfrrUllw5Jsw8CnpRy8tOLvAtIWw7hf49i3oNhAGvqr+x2TACLklfEpP+GQ7+PgX\n38bbH4Z9BotGwvs7C5+15qDjMzC1JWSkSpVDtVC7iHlpH/QwoRIIkJUGO7+E17YUvHf0F0iJhk5F\n5KI0B7os2PgaxB2HxzeAu4p/S3MgBFz6DY5MhYptoO9+qGCh/oox0s7C/qZyxq7xADsnyIqVOyb9\nh0Lj36BCCWlk50CfAqkbJGGnrgXHOuAeAgEbwbHB3ZOxtSXKxnxWNe7mImYVYKuiKEeQ4YSrhBCF\n/PVaCScnGPKSFDGY/B78vAja1YEfv4FUG+SHNAd9n4Vxn8Pf82HGs1KLRS0GTYDuz8KUXpCkMuNQ\n12cBBTYsMG3nXQXqtoFDZgTBgjoCT4mTC5P+xbzKH/gBAtuDf+N87WNhy9sQYkJpUC0yE+GfRyHj\nNgzebnvyjt0DG9pD5GfQYRl0+cs25A3gEgSaCjJ2POsGZFySs+w2x6HhEvCwIn7bFLS34M73ED0M\nLlSFxEXg0gECj0GNcPCZCk4N7w/yhvIoFLUQQhwXQrQUQrQQQjQTQswt0Q7t7KDXo7AiDBYtl9El\nnWrBnGlyE09pIbA+LA4HF3d4uRWcO6q+7bPTIbgfTO0NqYnF29vZwYiF8Me7cKeY3JPth5gfjaKG\nwC+HGzLwmEg1psuGsLnQvZB0aavfgKZDIcAK5USApKvwWyfwrg8DVxSunWIpki9C+BjYORjqjZaz\nbr8utnt+yimIfEO+hWGHFIQKgLanwL0EfNyZURD7KZzvDKfrQfJGcOkHta5AtQ3gNRIcAmzfb1lA\nOYHfA2gZDDM/h9B9Mk1aj4Yw+RWIOlN8W1vAyQWmLIKX34XXe8LK79RpqSgKDPsIGrWHaf3UZZiv\n0RgeeQ0WF5Pyq9VAiNoPd66r+wygjsCj9kBt0+H9RPwqd13WyJcc4fQauLoPulnp9751BH7rAI1f\nhB7zbJO3EiArEfZPhpWtwbUWDDgDtZ+zjf9XnwU3/4DwrnCgJzh4Q+vdMqu8vSc8tAMcbBQ3LgSk\nHYLo6XC2KUR1hMyzUPktaBQDgX+A5xOgKSQu/37DPRZG+GASeA4Cg+D9+RB2VqoLPtkZhg+EAyqz\n21iL3s/CNzvhz69g5lB1LhVFgZFfQvUG8O5AyFQRh/3ENLh8FA6sKtrGyRWCn4A9v6ofv1c1GeNt\nCpf2QqCJrDV6PWz7qODsOzMZVo6CxxeBoxVZ3i9tgj8fgW6fQ5sJtnnV12shcgH8VR8yYuHx49B0\ngvXZ6AHSrsCpt+FQCFxdCIFjoOtlqDsLPFtC7Q+g+SZwqWXlZ8iGpK1w+X9wsjVceUYmLAlYCA1v\nQLWF4NFX+trvBdgqGKN8Bn4PomIlGDcDdl+CLr1h/PMw7jnYuEJqjJQkajYwuFTc4N1B6jbu2NnB\nG4sgoC58NVzqm5uCkwu8tgC+G2N61t7pedj5k/o/hsxkyDTxPJ0WLh+AmiYy8FzcAU4eUKd73uvr\np0KdnlDHghR2OYhYBGtehZBQqD/I8ucY49p6WNEcLi6HR9ZBlx9k+jVrIPQQsx72DYBtD0l9lAaf\nQPBW8H8yN+wQoMab4GGhO0mXCnf+gajnIcIfrk4BB38IWgb1T0OVOeDW4e7uhFQDoQdxGnQ/gXY0\nZLcGrY0SXNxjBF5mwggLg6IoQpw6CQ1KeZFEp5M7Lxd9CMkJ8PIECHleRpOUJDYug2/GwysfQr9h\nxX9mbTZ89KTUiJ78u9xZaQrzXoKWfaFjIQJQIGfD44PgjX+gpgpBrqWvQM1g6FJEeOC1I/Dj0zC9\nGJnbjHy5NC/thl+fhHEnwcWC0Duhh7BpcPovGLwWfOqa/4z8uHMSDrwJSVEQ/AnUeMz672RmHFz5\nAS4ulHKxtUZBtSFgb0P/fFYsJG6E+D8gKQzc24F3CHgPAEerUzKWDvTRoNsPunDQHAexA/ABu2BQ\n2oISDMpDKHZu1ocRmiHLr7xw98MIyz6B16kOzs7QfyA8FiJVCDU28mEWByHgwA5YPBdOHIShY2DI\nyOKz+FiDy5Ew8ykIag7jF8jFTlPIzoT3BoJnZRi3xHS4oF5v+j7AX+9AWiI8ryJf569jZRKHHoUk\n/wXYuQAuhcNzPxb/rBxoM2HeQ9BzFjS1YNaszYTVL8o0ak/+C66+5j/DGGm34MC7EPUPtJsB9YfJ\nBMvW4vRMOP85VAmBWiPB24ZRJOkX4HYoxIVC6jGo+iJUCAavfjJWvCxDpIDukIGwDaRNqiRrTTA4\ndAC7lqAUzL1pkzjwJWbYv1hO4CahKIoQej0ciYDVK2FVKMREQ7/HJJk/3ANcSnhWnINzJ+GHT2Fz\nKAwYCi+Og+pW+iGLQkYazPsfHN8FM/6E2k2Lt5/RF6o1hNHfWkcE0VHweX/44BjYFxO29+dE8KgM\nvYuIz176AtTuCJ1eVd//tjkQFwmDfjD/c6Tfgb9CwM0PHlsKDlZ8N7QZcOxLODIX6j0HraeDsw3F\nphKPgks1yzRQrn0OcX+Be0twawGuDSAjClJPSqGqrGioOBB8Q8Cr+93PVl8UhBa0pyA7HLT7QXMH\ndOtB0xQ0bSVha9qCEqTqu2ATAjdjrqG8VJDAFUXpA3yB1HZaLIT4ON99X+BnwB+5D+cTYdbPRr4x\nlHkCzz++SxdhlYHMHTXg4wX9BsIjj4JPKaiqRV+HZV/B6cNQsSK8OBEatSqZvv5zqXwE/V42/SVO\nS4bpvaBBexj+mXUkPqsjDHgLWjxq2i50usyW03964fdn1oPhf0NAMT9AObh5HBZ2h3FHwNPMMLX4\nC/BHP6j7GHT/2HI/rhBwfjnsmwK+LaD9x+BVz7JnlRSufQUX35S7IbEHtIAClZ+BKiPBox0opfSW\nqhZCgP6qJOvs/QbSjgC7AHBoCw7Bcgenppkhg4/5sAmBm7EZWXk5L4EriqIBzgA9gevAAWCIECLS\nyGYG4CSEmGog8zOAnxCimGiAwnGPZEc1Qs1aMPYNWW7HwcY1sHoFTBoLzVvCoyGS0GvULJn+/QNg\n4sdSKvbv7+D1EAisBy9Ngg6P2NZX/8hzUL81LH4Lej4jFyOLgmsFmLkO3uoOP0+H5963vN9Oz8Ou\npcUTuIOz3EFZGJLjwCcQqqjcpq7XwV+vQJ8PzCfva/th1yxo8z9oNcq8tsaI3ge7x0tFw+4/QkA3\ny59VEtCmwu2NcHu7jCJRAAQ4B0GL/SUrR2su9AmQeQCy9kPmfrDLBnFYkrV9MLhNl+nV7MqYS8e6\n8MBg4LwQ4hKAoii/AwMB43yNN5Hy2QAewG1LyRvuxRl4UUhLg7DNsDYUNqwG/6ow4Ano0x+atCi5\nRdDsLFj/ByyZK/vo9SQMHQcaOxnil5EuZx/+pbRglBgLC0dLbfBBFsZPp8bD+Frw2UVwM7GIuHW+\n3Gk54N2C946vhrAvYawKWVuAnV/AiVB4bWvxfnpjRK6AVa/BwB+gfn/17YyRdBl2TQVtItR7Euo/\nX3YiMTJjIW413AqFO9vAsy1UDoGbn0DWNXBtCs3DpKb43YI+C7KPGsg6XBK27jo4tgQnw8zasQ3Y\n1yjRYASbzMC/K97uP/tXCszABwG9hRCvGM6HAm2FEGONbOyArUA9oALwlBDC4uzi994MvCi4ukK/\nAbLodBC+B/aEwSuDQKuFPiHQNwTadratDoqDIzz2HPQfCrs3wJQhMH+6/KLaO0giyMqA7bHgbeWC\nmhp4VoLhX8C0LuDkBo+9bv4z3LyhcS8I/xO6m/BfK0ByEQmnL5qRgf7OJdj8PozZYx557/0C9syF\nZ9datlMzMwkOfATHF0KLsdB6IjiUsAiUGqRehOiVEB0qv0NOnuD3JDRZIjf0AChpcHsVNF1X8sJV\nxhACsqMgIxzS98tadwOcvcCpLTh1AY83waGR3HR0r8HEfDHsjCyWtf4PbwFHhBDdFEUJAjYpitJc\nCGGGrkYu7sF/YRXQaKBDZ1kmvA1nTsK6UHhvEly5AD0elYTe7RFwKybKQy0UBTr1gZ13YHgPOLQj\nNz67WbvSIe8c+FSFmVvg7S5SnKrXcPOf0el5WPOxaQK3d5ZRH4Xh4l7o8Wbx/QgBf78GXd+ESip9\nzXodbBgPUZvg5d3gXVNdO+P2J76Hve9Czd7w3DFwv4tbw4WApKNwM1SSdsYN8B8AQW9CpZ6gKWQR\nsvpEWUoa2ljI2C9LejhkHAA7d3AOBpe2UOEJcG4FdmXgh88WMEHB3erJkoOZqwuYXAeM5UKrA9fy\n2XQAPgAQQkQpinIRqA8ctGS4ZZ/A358BHTtDcDuZUs1cKIqUk23QBMa9DdevwsZ/YekCeONFGPQM\nNG8NPR6DSn7Wj1dRYP4aeOohuHIe7BS4fAJmvQxD34TaJSBdWhgqB8KMzfDOw+DoYhC2MgPN+sDi\nYRATBX5FCDIVtZVer4MrB6GWCg3wQ8sg5RZ0naBuXFlp8M+zkJEAw3abHyd+eRPsmCAjSkJWg18J\nLUAXB70WYndC7Cq4+Y9cdKzyODT9Gnza351FSH06pB2GtP2QFi5r7R2o+Cg41gTvUZK47W0sAlaW\nYJ1H+SBQV1GUmsANYDAwJJ/NaeQi525FUfyQ5H3B0g7LPoFnZMCsd+DYEWjYWJJ5x87QoRP4WjCr\nDagOL42WJTEBtq+DjaEw+02o3wR6hUCvgVAr3+aPzAy4dB5q1pUKh6bg7AILN8LjTcAvAJbshH8W\nwMju0KgNPDcRHupc8puTqtaFdzbAjJ5yq3y7x9W3tXeAEcvybrDJj6II/MYJ8KwKbsUsqiXfgi0f\nw7PL1CsN/jVYvq4P+l0mcVCLuEjYMQ3Sr0L7WRA0sPQV9LRpEL0RrofCjdXgVhNqD4G2q6FC49Id\nj9BB+mlIPwJpOyVZZ54Bp0bg1hY8+oH/DHCqV3bWA0oDVhC4EEKrKMoYYAMyjPB7IUSkoiivGe4v\nBGYDPyqKchS5E36SEEJdKslCcO8sYqanw8H9sHunLOF7oecjUNkH2hncJdUDLf8jyMyEvVth00pZ\nhJBE7OkDMdchPk5uhPlpA3Tupe6ZZwxKg/UNGYEyM2DNUvjlU2j0EHQfBF0eL/mNSRciYFYfGLtE\nZuuxFY6tgbBv4X/53iXVbuBZOgS8qsOAOer7TLgMnmYshqXFwq6ZEPkHtH8LWo22zUYctci8Lcn6\n+gqI2QoVgyEgBKoOALcapTeOrOuQEg4p+2VJPQgOflAxBJyrg2swuLQouzHjKmCTRcxvzLAfVb6R\nxyRMRqFotXDyOOzdAXt3yuLgCO0755YGjcxbFMuBXg/r/oLpoyHhdq42iL0DHLwlk0VYA70edq6E\n3+dC/C0YPAH6vWg6TNBanNkL370KL80zP3VaUTi1GdZ/BOM3573+9wTwbwQdhxXd9uRqCH0DJh6z\nTqyqKGgz4dA82PcxNHoGOr0DLqWUfT3lElxZKTfr3Pwb/HpJ0q7SD5ysCPXL+R4WK7GQBMkHIT0S\nkrdI4hZZ4B4M7m1l7dYGHErp36OUYBMC/9oM+zHlBG4SZoURCgFR52DfrlxCj78DTzwFtWrL6JNm\nrcDRjNlXZia8OhDCt8vZs4cHONvJxcruA6FLX6jgadmHy8Gx3fDbXDi5Fx4fBY+PBq8SWvA8GQZf\nPAUTV0I9lREipnBuF/wzBSbvynv93XrwqokNPBlJ8HETeOYnqGvjXJRCwJm/IWwy+DaBh+dAxfq2\n7aOwPuOPwZVQuBoKadeh2mNQ43Go0gPsbfTDfPljuPIBeHaBio+BT0+py50eCUnhkLxf1hmXwL0F\nePeACo0kYTvVun+SLhQBmxD4PDPsx5YTuElYlRMT4OYNOLgHwndA+E64eF4uWLbtDK3ay4XN2GjY\ntxO2rYOIAzD7axg0NPcZWi2Mfgo2hcJHi+HhfrBtFWwJhUM7oUV76D8YOvSGylZEMlw+Db9/Ctv/\nhp5D4OkJ6pMYm4Mj6+GbF2DKOqjd0rpnXT4Ma96HUf/kXkuJg+lB8OmdonW3/xotU5sNNiPoVg2u\nH4DD8yH2CHT/FGpaoWRYHPRauLVLzrSvhgKKJOwaIVCpg+00x40R8yucHgYiAxQHw05MwCkQvLtL\nvROPYHBrmlfB8AGBTQj8KzPs/1dO4CZhNYHnR1IiHNgjyXztP7kJHOw0MnLC2QV+WQcduuZtp9PB\nknnw5EvgYTTjTk2Gnethz1rYvhJq1JX5LruFQG0LFRTjbsLf82Dn71CvNTw1ERq0sfwzF4b9K2Dx\nSHh7M9RoYvlzrp+A74bAjOO5146vhq1fwutFbOC5sAuWDoZJJ8DVRkl+E6/C1rfgwhboMRuaPVcy\nBJqdBtc3wcUVcGU11HgYfJpJ0vZqYvsZbtYdSNwPCftlnbgX7O4YdmDag5M/NF4FHmYmyb5PYRMC\nV6Hh9p/96+UEbhI2J/D8iDwBT3aHhDu5ut8N60LbrtCmsyzVaqr7w8zOhsM7IGwlhIWCo7Mk84dD\noKkFCoppybDue/j7c/CvJYk8uK9lPv3CsOtX+HkivBsGVSyUW711Hr7sCx+cy722cpqMWhjwXkH7\n7AxYPBA6vgbN/s+yPo2RlQK7PoaD30DrUdBxEjiZiJqxBBm34fJquBQK17dApdZQ63EIHAAVAm3X\njy4DEo9A/H64Ew66a5AUAZ6twKsteAbLcrChjCDx6QcNl4GmhNZN9FkygXJZgsgAcQ24BuJqbi2u\nglIdxeFb6wn8CzPs3ygncJMocQIHSIiHoY/CsYMydPDbX+DAztyi0cCwCTBsnPpnCgFnjsC2UFkq\nVYGAatAlBFr3ME9XXJsN25fD8rny+Mk3ofsz4GiDTClbFsM/78GMHVDJAjK6cw0+ag9zruZe+7w7\n9HoTmvQraL96OkRHwvC/LB8zyLeloz/BtulQqzt0nw2e1YtvpxZJl+DqJrjwK8QegoCeUCsEajwK\nzjZY+BN6SDkH8eG5hJ18EtzrS1lZ77bgEwwVGhaMBz8zClyDoNp462f8+kyZ/zLzLGSchcxzuceO\nNaBBuBWfMQsSHgfHfuDyNNgV8+8mskB/XRK0uCqFr/RX5bneQNIiEZxbgOIESnWgmqyV6kAdFE0T\n6wn8czPsx5UTuEmUCoGDnD1PGwu168GI8bnXhYDLUZCVCfUaF92+OFy/ADv/hR2hcDYC2vSUZN7h\nURmmqAZCwOHNksgvn4Kn34ReL4GblYuo276HVR/C9B3gbWZmmeQ4eKchfB4rz/U6mOAN718qGAN+\n/Rh83ROmHJEx4pbi/FbYOlEuDPb+DAJMpGtTCyEg7hhEhcKFUEi5BnUGQe2+krwdrIySSY+BO/vh\ndjjc3g8OdpB6RhK1d7AsXi1tk5ItP4QOMq9AuoGY089B9g3IPixrx0AZ6+1cz6iuCw5VrYv/Fjq4\n5QA4A3opXGXfDjQBgBZ0BoLWGQhafxvcgkHRS0K2q55b5xwrlU2OySYulE/NsJ9QTuAmUWoEXppI\niIPdaySZH9oKDVpJMu8yEPxVzoKjjsA/c+Hweuj5Egx8A3ytEMv69yOpPvj2dvAoKJRfJDJSzF4b\n1gAAIABJREFU4M0q8LVBxuHaUVg8GGbky8Cj18Gn7aHjq9DBgm39ALFnYN1EiDkB/T+HBgOsm4Hq\ntXBjdy5pAwQ9DkEhUKWDzHJkCbJTIf6QJOrbBtLWJssZdUWj4lxZ3fMyb8CZsVApBHwfA4dCQliF\ngKwYSDsrS/ZZyDgnSTvzAthXAhcDObvUA+c6UkPcKVAuhloLXQxoL4L2miRm7VVZ61aAYpyS0A40\nTcCpuyRlTXWwq2ao/a3WTrEJgX9ihv2b5QRuEvclgRsjIw0ObJaz88NrwdsPOoVAxxAIalY8Qd26\nDCu/gC0/QfBj8H9vQk2V2tv58ed0iFgF07aZViA0hjYbxrjCAkM0RHYmxF+FynXy2m39DE6shrFb\nzCfdtNuwZSYc/RW6ToH2Y83bgVkUNjwPt09Iwq4dAr5NzR+bXgcJpyA2HGL3y9rBERztoKLBDeLb\nFtzrWP5jk34R9tSVvm59Frg1AKfq4FQFdCmQdk6Stp0TuNaTxbOhlJh1ridrTQnM7I0RNwyyj0ki\ntjcQsn11SJsK+kuACzg/DRW+ALuSU020CYHPNcN+YjmBm8R9T+DG0Ong5B7YFQq7Q+V5pxBZmnYy\nne8yJR7WLoDV86BWc3hiEjTtZh5pCAG/TIBze2DKJnBRsRgoBMzpAhO3F724GncBPgmGCfugUp3C\nbQqDNgv2zYew2dD0KegxA9zNeDso9vmZ5v0QCAEpVyFuvyyx+yHuELhWhUptoVKwLD7NQWPFD4wu\nA9KiIPWsLMmn4fZP5O7xVuRuSd+B4NvPQNp1waEMaYHnIOFxmbzB8zdw7FLi3dmEwM3YFKxMKidw\nk3igCNwYQsClk5LMd4VC9CV4bY7MymMK2Zmw7WfY9CNotPDYOGj3RPHJjo37/XEk3IiEieukfoq1\nn2P+I9CgF/ScpL5N5GpYNx5860GfueBXSgJgxshMhFsH4NZ+WWLC5dhqdICKLSVp+7YGJ0uSLusg\n9TKknIXks7m1IxC/A1xqgls9WdzrwaW3ITsW7FwgcCrUeqvsZdwpDPpEw4Jj6WzPtwmBf1y83X/2\nk8sJ3CQeWALPj1tXQaeFKipzcOr1cHgNhM6BO9eh/zjo/rKUllXTdtGLUqhq2CKrhk12JmyZC72m\nqPsRuXoI/h0v1RO7jYe6j1jXv1rosiD2GNyOgOhdELNfzrYrtYTKweDXFvyCwd2KhASXf4Zrf0qy\nTr0Ezn7gXhcqGEjavZ48dg0s6H+P6ANpkdB0BXhYufnqPoZNCPwjM+ynlBO4SSiKIsTxY+DnL/NP\n2ioG+kHC2X2wci5E7oBHRkLfMTKDvSnotDIrjzkLmtYg8TqsnQZnNkCfWdDmJfVvDeZCCEiIguj9\nEB0u69hj4Fkb6j4qa7+24NPY8oXMwhC7A7LiDGQdZF78dna8nH0Xpgt+NyD0kPoLuPQBTQl+R0QG\niAQZPigSgARQkoA78jjnGglAbRSH2dYT+Idm2E8tJ3CTUBRFiIcawa0YSEyU8rF+/lDZT5ZqNaCS\nt+HcX+p5V/aTyY3LyT4vbpyFVZ/Bnj+g4xB47A2ocpeT9WamQthc2DUP2o+A7pPB2caLXKmxcPMA\nxJ+Wsd3R+2W4XpW24B8M/m3BryU42ngD0P0MXQJc9QacwfUx8JwETvkyIgkhCVifIEsO4eoTcklZ\nn++aowBx2XA/AdCD4g2KF+Ala8dqhmgVwzmehuNAFE0n6wn8AzPspz3ABK4oSnVgKVAZuUKzSORT\nIsjjQsnOhlu3JJnHRBtIPQFuXIbYGFliomWdkgwVfSWh120A7k7gayB5XyOy9/UDb58Hi+wTb8H2\nZbD2I6jfGfpPhLo2ELYyB0LAgZ9g/dtQuyv0my0TIFuL7HSIiYAb++F6uKzT46BKGwjqBb71JWm7\nWxGH/qBACBDpoIuXvmx9oiRufYJM8pA0ltyFVTvAHuyqyt2b/5E2YOctExe71UYSspc8VzwNtVfu\nNY3RueIFOJvlsrKJC8WMXODK2wUJXFGUPsAXSD3wxaIIr7qiKG2AvcicmP8UZqNqDHeRwP0BfyHE\nEUVR3IFDQIgQItLIxjIfeFYWxN6SZH47Fm7dgDgDyd+Klsc5dWoKNG8DZEhCzymV/KGi0bGvH3j5\nmP5CCQGHd8Gyr+B4OGy+XHYV4DJSYfsPsO4z8A6A/pPgof6l82MmBPw7AVo8BYEqsvYUh9hT8O9z\nMmmDbyOoGixLQFupRPggJSTIgRAyw44uAbQJubXxsV0GaKPleWEFDXg2BpGaS7A5dcZiQAs4yFhy\n10HgOhgcaksbO69S1xa3CYEXogBRpP30AkmNNcAZZMad68ABYIgxpxnZbQLSgB+FEH9bPObiCFJR\nlP8By4QQ8ZZ2omogihIKzBNCbDG6VvKLmJmZkshv34I4A6nHxUiVwrgYuG049qoIZw9AxcqS2Cv6\nga+B5NNS4OIZiIyQsd0ZaeDiBgdTSnbstoBOC/v/htVzZLqyfhOg41Cp5XKvIDMZYk+AXwtwKEFN\n9XsJR5rKbfIaL7D3Kljbe8nNRHYu8lqB4mmagK9UAn0SeIwCr1lgd/ddUDYh8Flm2L9TgMDbA+8K\nIfoYzqcAiHxLo4qivAFkAW2A1dYQuJpVGj/ggKIoh4EfgA22ZlVDDrmHACvEFyyEkxME1JClOGRl\n5pJ6TomLhmPhELFbSs8KvbTNSIV+1aCiP/j4yVLRD6rWlIqGPn7gY7hXwfvuzdQ19tB+MLR7Ck5t\ng9VzJaFPXnd3xmMJnCpAtVJ2A5V1NI+wemejSfjMB6eW4GBGbP+9AOuYLQAwEgbiGtDW2EBRlABg\nINAdSeBW9Vjs/7AQYpqiKNOBR4AXga8VRVmOzPcWZU3nAAb3yV/A60KIAlPWGTNm/HfcrVs3unXr\nZm2XlsPRCarWkMUYr02T5L3kU/h2FmRlQL3mMD/UQPTRcCeH8G9AxBaIN1yPj4HMdPCuLHdi+vhB\nUFOpl+FtIHlvP/AyHLt7lQzZKwo07i5LRqrtn1+O0kVJkjeA+1Ml+3wVCAsLIywszLYPNUGnYRch\n7JKlrf/DF8AUIYRQFEUBrPpjVu0DVxSlBfAS0AfYCrQDNgshJlrcuaI4AKuBdaIQIcdSjQOPuQnz\nPoQVv8LeqLy63+bgxhV4ZxgE1IKZKuOoMzMkkd8xlLQEiL0sr8XHQHx07nFWOnhVhqadITtJEru3\nv6zzH7uVENmXQx10GXDpB6g+BBxtpH1ejiJhExfKu2bYzyzgQmkHzDByoUwF9MYLmYqiXCCXtH2R\nfvBXhBD/WjRmFT7w14HngdvAYmCFECJbURQ74JwQIsiijuWvz0/AbSFEoVqt8h90Gjg4gL29zElp\nby/PHRzkjNjRruC9PMf24OggXQXGz3FwkL+XVy7AL9/BuhVyE4sQEHEdKpZSDLS5yDKQfcItSLgJ\nCTGyxEfnHicYjnu+DMPN0Mcsh22RdAo2NZXx27VHQL3J6kWsSgNCADq5MzSnNj5GB0IrFQKFtqBt\nTq1oAT2gLXg/51gjgGzDdW1BG3SgUYBMw3kRNvYOQGpeG3Sg1Eexn2Q9gU83w/69AgRuj1zE7AHc\nAPZTyCKmkf2PwCprolDUvGf5AP8nhLhsfFEIoVcU5TFLOwY6AkOBY4qiRBiuTRVCrM9j5eQk3ROp\nqTKUUKuVtU4rowu0hus513JstIba3h6ykvPdN9xLTpRZevKjTWVwsDcifQdwdYedlwvaljYcncEv\nUJbioNeX/HjuBvR6QC/FpISukForjzG6VsBOK5+jaPPey/8cirDJY6sHTXbB9pm3pCtDlwbnvoTz\nX4JTZajYGRy9Cj5LCLDPynuNQvpz0hZyX5vXzgkQmUWTs9CBqyEtm6IBNHnrnGPXCiCyCrfJqZ0q\nIInXPve6sQ0acHIDsg2unSJsFFfDj4FGPuu/6zmytBpZKz5576MBxYp0hsaw4oVfCKFVFGUMsMEw\nsO+FEJGKorxmuL/QJmM0QtnfyFPS40tLhYWfwfyPpYBUdjacjpeze53RD4FOK0MJy5EXr3rCokRY\n9yHEXYTkaEkOOm1ewtTrpHiUPin33PheThs3bymNmv+e3kCoQgdulUAfJ//47TT5ant57FIRlORc\nMspjZ7Bx8gBNRq6NsV3Os+xdwF6X1yaPnb3MP+moFLTJToArCwwE6CBtPZtBlUfBqVJBe+zkhAFN\nwXv5+7azN7Kzz0u6xuPP/yzjc2F3X+2BsIkLZZoZ9h88wBt51KBUfeCJCfDVbAj9DcIvypl7OUxj\n81fwxyQIGAxDX5UJjRVySdSYNDWGaxpjEspHSHYa+VaVY1vAzsjmXvDtp16E9UFg7w4N3oagMSWT\ntKEcgI0I/C0z7GeXE7hJlDkxq4x0WDQXDuyAZZtt99zsLEhNgrQkWWuzoaGNExnbGlu/hmNr4LkF\nUDFQClc52ECn+36C0MGVn6Hq/4HD3Y+TBuDWPPDsC073WfgfNiLwqWbYf1hO4CZRZghcCFizHGaO\nlZt2hIBT6XLHZ2oSpBhKahKkJco653pqYu691CQ5c4y/kkvWqUmgy5ap0dw8wNUDAoLgA4vXNUoe\n2xfCzu9hxHLwrSmvfd4Teo6HpoXkwiyHxFZD+jeNqyz2hlrjknvN2V0mZzC+bpfPRuMM9m7yup2L\ntFf7RhKhAcURfJ6DqrPB3rfkPm8pwyYEPsUM+4/KCdwkSozAs7Ig2UCwyTlkm5hLxClJcoEzJQnO\nnoQje2Ub47F4OEm/rJsHuHvI2r8aOCnyOKe4e+a1cfOQIYquRudOLveGSwBg27dSR2XiVqhsFIB0\neisseQHeOQ6uhaT9KgncPiuLTx3wqmWbTD0licTjckFTmwa6dHmsy3esZIAuteB1XRroDdecBGTf\nNmyVT5MLkZocMjeQvLsvIAwkbyiKE6QsMQzG4Ipybg5ej4NjLSNbl3x1TnsXyrIsgU0IfLIZ9h+X\nE7hJFCDwzExIMpBuTp2SKGvjkmR0DSDumiTkHNLW6aCCJ1QwEKt/VXDRyGPjUsFTxmifOASH9sCd\nW3I3pmIH+26AT6V7h3htge2LYPX7MHFbXvLOwa+jIDsDXvihdMYTtQHCv4D4KEi8Am6VJZl7B+UW\nn7rgXVsuWN6vEDpJ7Pocok+X+iV6w7UcotfGQfR4ZOidRrbVeINra7l1Xp8mBaz0abntnB1Ad9Pw\nzHQ5e1dyCN1A8i7+gNZA8EbXc44VF3DwNCzkuua1yznHUNu5AS5YkqvTJgRuxq4WZW45gZuEoihC\nNArKJWydDjwNxOvhAf5VwNVenhsXD8+8516eBkI2ELOzeSpngJx9HwmHb2bDjvUQHi3FrR4U7FgM\nq2bBm1vBrwj/aUYKzGoKQ+aXvitFr4XEqxB/XhJ6fBTcOS/DUC+ukpnlveqAV5ChGB27Vn4wfoiz\no+FEVUm+viOh8gRw8FffPkciVuT8SBiIHgPxi7S894TRdXstUtc73/WcY9LA2QX015Bx3gr/kToG\nosdF5gIlWx7nXMMVlEYo9iOsJ/A3zbD/pJzATUJRFCHOnc0lbEuItySQE1/+oGDnD7DyXek28atr\n2vZuuFKKgxCQGi0TOSScN9RGx1VbQNZt8DAQu3HtXk1GvtwPEAISV0CFR0DjfrdHYxoim/9+GDAQ\nPYaiGF8zHOOHYv+M9QQ+wQz7T8sJ3CTKzCLmg4ydP8LK6XLm7a8yAcSvoyAzDV5aUqJDsxky4iHp\nAiSeh8SovHXGbahQEwK7yJhwjyCoEGSoa1mXwLgcNoVNXCjjzbD/rJzATaKcwO8ydi2Ffb/B0C/A\nv776dhkp8P1g6DoamhTjSjm+Aup0BxcT2jPaLLB3VN+/LZGdBkkXIeUCJJ2D5ChIOg9JUZB6Vfp/\nPYLAow5UbAxuAeBeR5J8WQkdfEBgEwIvVNSjCPvP7z6BP0B+gHIQdxV8AtTtvtv9M/w5FSZvMY+8\nQYbC9ZwAS1+AaSZcKULA2U3wzyjoOxtav1D42Fa8DEnXoNVwaPxE6Wp+O7hKYq7YuOA9fTakXJFk\nnhwFGVfh1jZ5nHIBHNxl/kv3IKhgIHWPOvLc0dd8d6A2CezvocXY5Klg5w+uYwy7QO8B3GPzxfIZ\neEkiOQEiD8PpQ3DqIHToAwNeKv1xxFyEv2fDvn/gve0Q2MS0/Z5f4PeJkrwDGlre7++jQJsJQ783\nbXf1IISOldokj8+DGsF572uz4MwqOLQYru2HpoMlmVctwxnahYD0m5BiIPeUKDmD112B5NNSu8Qt\nSM7W3YLyHjsHFPS767NghwdUHgz15svdnWUF6WGy1viBprJMo6bYQWwg6GNAUxM8fwaH1qaeYjVs\nMgN/3Qz7L+/+DLycwG2FlCQ4EyGJOvIgRB6C2BtQrwU0ag0NW0HLrlBFReIIWyH6Avz9AYSHQp+R\n8Ng4qFDRdJu9v8FvE2DSJqhWyKzTHGQkw+xmMPgbaNzXtK1eD4eWwbqp0KCvnJFXKER7JuEKRCyB\nwz+Asze0Hg7NngGXe0yuNSseUqMg5XzeOuMmiKvgUgtcg8Ctjqw1znDhf3KG6OAFjf8Er053+1NI\n3JkImeGguyUJW58KGl9wiAElR1DNHjS1wOlZcGwLdpXBzk/WFoQMFgabEPhYM+znlRO4SZRZAk9N\ngdNH4ORBOHFQ1hW8wMVOEnXD1pK0azaQ2h+ljZvn4a8P4OAq6DMK+r8BFVSEPO77A355AyZvgmrF\nzNLV4sxWWPaidKWY8nPnID0RNr8HB3+CR2ZAu1dBU8gfuF4PF7bAoe8hOx4qVILmwyCwa5nebKIK\nujRIuwCp5yEtSpakfZB5hDzv+A5+UGU4eLQElyBwDiobM3ORBdqbcKcWcrxOSMlXX9DUk6na9DGG\nEgdKBUnmro0BO1AM5K5UBsUv7znuRbqebELgY8yw/7qcwE2i1AhcCClktXwJ7Dqb9wuSngaRR+XM\nOoewb1yCOk2gSWto1ErWQY3ufmjh9bOwbj7s/AX6joH+r4O7ypnpgRWwdBRM2gjVm9p2XL+NBF1W\n8a4UY8REwu7P4Ooe6D8PgroXbZt2G078DEcWgzYdmr8MzV6ECvdR9vlr8+DcOLnLUp8F7g+BvSc4\n14LsG5B2HjIuGK4FgUdrcK4oj53rGMi9YumF4eqTINZTErbrG+D8LNgV4r8XehB3QH8LRAxgmMUL\nw3lOnXPf2R/5Y+AHVDaqm6PYP209gY82w35+OYGbRKkQeHISjBgM+3bIjUKL/5RZdU4cguMH4fJ5\nqN8Umj8EjVtB49ZQpzE43qWoiMJw9TT8/j4c3gCDp0Gvl6S2ilqE/w2/Tobxf0FgC9uPLyMZ5gbD\nU/Ogfs+89+5cAu/AwolFCDgVCuvGQ0Br6PspeJlwQQkBNw7A0e8h8k+o1hFaDIc6/QqfxRcFXTbE\nHoTKwWUnBjxmOcT8DFVeBp8+0qWSH0IPWTclmWddg8xTkHEeMqJkjcglc+c64NoInKpJYSuHqrZ/\nc9FFg8aMjUJqoE8GJVYSOzG5Nb4o9iOtJ/BRZth/U5DAFUXpg0ybpgEWG2fjMbL5CuiLDGB/UQgR\nkd9G9RgeWALPyIAlX8MXH0BKsiEBAFC7FnTuAU1bQ5NWkrydymis75VI+P09OLIZBrwOA8ZKjRVz\nsH8FfD8Spq6HmoWQd2YaRJ+1ntjPboFfXoIpRq4UIeDrDjKMsM/7Rc8Os9Nh51zY+xW0/x90nlh8\nJEpWqiTxI4vBToHAjtB0GHgXsxEJZNjg+oGQdgOq9YYa/aB6b3C5h4WfhADtnVwyz4wCkQIZu+Wx\nLkHqoTgFSUJ3DJLHjnXAKVBuoS/jsIkLZaQZ9t/mJXBFUTTIjDw9gevAAfJl5FEUpR8wRgjRT1GU\ntsCXQoh2Fo/5gSDw7Gw4fQKOHYSjhnLmpCGFml66PvR6ucNy9GR460Pr+yxJXD4pifvoVggZB/3H\nyMwp5uLgSvjuVZiyDmoVEdGx6Ws4tRleD7VuzADLR8qIkmeMXCkpsbCoJ9TvA/0+Mv2KH38Z1k2A\nG4eh32fQcKA6l8CdM3D8ezi1FHzqQ5NhUG+QDBE0hZSrcGUdXFkLN7aBdyOo3lcSeqWW976v3Ri6\nFMi6IMk8KwoyDSTv6A7pa8E+AByCJLE71DGqaxv0S+4+bELgI8ywX1CAwNsD7xrlxJwCIIT4yMhm\nAbBNCPGH4fw00FUIEWPRmO87Atdq4fQpOHIQIg5KOddNoVCjFjRvDU1bybpRc3B1lcR94giEbYC1\nf0PH7jB9Tsl8IGtx4Ths/FH6uEPGQ//R4GLhotXBf+G7V2DyWqjdqnAbbTZMrgsjf4c6Fk8ScpGR\nDB83hacWQMM+uddTb0sSr9Md+n9SPClHbYGtM+XCcc854NtAXf+6bLiwGo4vhpt7of5gaDocKrcs\nvk9dJtzcJcn8ylrwqQ2ulaBaP6jSC5zusSgYcyCyIPuyJPbs87LOOg/ZUZB9ETx7AglgHwT2dSTR\n5xxrSk8vyCYE/qoZ9osKEPggoLcQ4hXD+VCgrTCKbVEUZRXwoRBij+F8MzBZCHHIojHf0wSu1cLZ\n05KsjxyS9cljUK0GtGgNLVpBq2Bo3Azc7tLqvF5vfdqqqGOwbBac2AVDpkC/4ZYTN8Ch1bBoGExa\nA0EmYnN3/ww7voep2yzvKz/ObIFf87lSANLuwHePQM1OMOBzFYSaDQfnw64PoPmL0Hm6eYqDydfg\n5BI5M3fzgyZDod6zMjRRVfsLcH09XF8LMTvAu7kk84B+4N2sbGj2lAaEHrTXQHdBErr2PGijZMk+\nL99S7OuAayeDlnkQaOrI2q6KTd9ibELgrxR9P+wGhN3MPZ95uACBPwH0UUHgHwkhdhvONwOThBCH\nLRrzPUPgOh2cOwuHD8KhgxBxSGabj7suyfqh1rJu9hBUuMtbmLMyYc8GWPerjFhZts+y55yLkMQd\nuQ+emgiPjQBnK1NyHdkA374Ak1ZBkImsP3o9vN0Mnv4EmvUp2s4S/DFCEvAz+aJS0uJhcW+oHgwh\n89SRYEoMbJ0KFzbAwx9Cs6HmkYLQw/UdcGoRXF4Lgf2g0XAI6Kb+Odp0iNkO19bCtTWgy4Bqj0L1\nPuDfExzuod2TtoQQoL8tyVx/BXSRoIsC3XlZ65NAU1vO1jVB4NgENAFgFwRKoNnx4TYh8OFm2C8u\nQODtgBlGLpSpgN54IdPgQgkTQvxuOL/PXSiTxkvSPhoBvpWgZWtZWrWGFi2lvGxZgE4Hh7ZL0t66\nAoIaQ58h0HOQ1A03B2cPSeI+cwAGT4JHX7WeuAEOr4N5L8C0NVCnmJRtR1bD32/DrAjbzyaLcqWA\njANf3Bfq94CeM9W/vVwPh/VjZd7MPvOgShFuIZPjugNnf4FTiyE7GRq+DA1elIqEaiGE3HEZvRWi\nV0DcHvBpA1X6yeLR8MGZnRcHfbKcueeQut0t0B8B/XkQN0GpBnZ1JKHbBcljTR1QaiGlZPPCJgQ+\nzAz77wsQuD1yEbMHcAPYj+lFzHbAF/f3IuacD3PJ2qeM6W8LAScOSNLetBwq+kvS7j3Ysh2XkQfg\nn6/h2BZ4erJ0lTjZSPcjYgN89RxM/Rfqqfi+fNAZeoyGdk/bpv/8OLv1/9k77/Coquf/vzaFhN57\n71WQrhTpHelNwQYCViyoWBFsgKKAnaJSRJooIr33XgSkhtBCCzWkZzfZ9++PCx8D2XJvdiP6/fl+\nnvOwu3dmztllM3vunJn3wJqP4LH5aQt8EqNhajsoUAW6TDTvxOWEfVNh7VtQ60mo+wJkSUfmiASX\ndxuO/PhcKHQ/3DPYOMAMsFg1mBwHkWvgwhJjYIPC7QxnXrC50RrtP6SF7OA8ddOZh4Pz5gi6DOwD\n8oCtLNjK3fy3NrbAdr478P4W5L93mUbYjr/SCL+TNMpmsw0GkDTxpsyXQFsM4vMn0hs+gX+DA/8n\nru/4IVj0EyyZDZVqQKVq0O4hKG3yMO1OHNwOP4w0Din7vg4dB0CIizzf9OKPFTChHwxbAJUaeJcP\n2wo/DoHhW40O8RmFn58yGjH0mpL2WlIMTOsAectB18nW8rETo2Drh3BwGjQYDvc+ZezM0wNHHJyY\nD2HfwY2jUO5RqDgAclkk+IKbu/PDfznz4EDjx6lge2NkM5Hi+B+MH2rOgW46d4WDLSe2oDd8d+AW\nqIpsP/xXyOMR/ygHfvaU4bAXz4Koq9CuN3R8GKqayGBwhz+3wvcj4dQheOQN6NAfMvk553zfKhj/\nELz2K1Q2yZ3x6YNQvR20slDVkB4kRsOn1aHHRKjYJu11exxM62gU73T/3npRzZWDsGoIJFyGFl9A\niSa+rTfqKBz7HsKmQY7yhiMv3ROC07mLdkTD5dVwaQlELjEaFxe46czzNTGe/wfT8EsI5XEL8lP/\nc+Ae8bc58LhYyJI1rSO+cgmWzzN22yePQuvuhtOu09i3zJJ9m4wd99kweORNaPeY/x03GKGYcX3g\n1V+gSmNzOhF/wuhWMO4kZPJyF/DHb3BiOzR4DJaPSV8vzGOrYG5/GOqGK8UeDzM6QfZC0H2q9TsC\nCY7Nh7VDocj90PQTyFHc+jpTw+mAM4vh6BSI3AxlekGlgZC3dvp/zCWI3m848ktL4cYfkOcBKNIO\n8reHLKV9W/P/B/CLA3/Ugvz0/xy4R/wtDvzwAXiwEXw2BTr1NBoiL/8VFs4yemD2fgwatYYGrayV\nzyclGgebWVLtzvZsgCnvAQ5o9wi0fRSCM6jCbf9amPkGPDoGqlrYeX77KBSpDJ3e8C67YTKc2gGt\nh8LXXeC9I+lb68+DjdvinpNdX3ckwI9dIHMe6DkjfWEdRzxsHwN7v4K6r0CdFyHID2GquHNwbCpc\nXGR0ky/3JJTuCyFeWB+9wX4drqyGq4vgylIIzgP52hvOPHcjCPiHVgffRfjFgT9iQX7Gfw7cIzLc\ngYcdgQ73Q3SUEceuVAE2r4L7mkGnh6BFx9sdsFmkpMAjDY0GypNWwK51MHkkREZA/7e8uOvaAAAg\nAElEQVSgfT8I8g+FpkscWAeje8KwuVC9mXm9K6fh7VrwaThkNdHPcvXnEBkG7d+Aj+rAx+fTt15v\noRQwut0vGARBAdBpsjVuk9SIOgl7xxkpgw+Mg9Id/ZMVIidEroPj38G5xcbOudwAKNTc91xnOSF6\nj+HILy+BuEOQp5nh0PO1g8wu7igclwAbBFvMgPoXwy8OvJ8F+R//c+AekaEO/NhhaFcf4mJuTQaj\nJkDXfpDTx6q68W/AzM8hJRkqV4P4aBjwNrTtm/GMhX9ugFHd4bU5UMMDg58rTB8CmTJDnzT8O66x\n7GOIuQwPvguvFoQv4qyv9xaOrYQFL8DzW93TziYnwZzuEJgJesz2rc3a6RWwfgjkKANNxkNuk/0+\nzSDpGpz6CY5PAfsNKNsfyj4OWX0M3dyC/QpcWW44dF0x2AjztIc87SBHAyNT5lhXiNkIVTZB5nQe\nrv/L4BcH3teC/My778DvKpmDzWb73mazRdpstgN/y4ROJ2zfBP06wgNVDOcdEmrEnwMCDYIkX533\npmUwfRwkxoPDDokOmHcYOj6W8c774EbDeb86y7rzjr5sVF62edG8jiMRgkMhJKvxOCXZ2pypUaEV\nVGoJS15xLxMUAr3ng1JgXk/DoacXJVtD3/1QogXMbQCbhoE9Jv32UiMkD1R8DtrvhQd+Npo07Hwc\nNrWHs/MNOlhfkCkfFOkL1X+E6ouhwiSDbCp8KGwtAH/2gKilkHwVDtaH2F2+zXflfTjbCa59Agnb\njBS//6uQhfEPwN1m4/kBIx8y4yDBgb3w3mtQtxQMexqq1oDZy2H9QZjyM7w7Fh57Cor60C1Hgkkf\nwjPtDcKm4BAIzQzHDsC5k357O25xaLPhvF/5Ce5t6V3+TmycbuR85y5sXseRaPzo2WwQmt0o0PEF\nrT+AsBVwbIV7maAQ6DkPbIHGbtyRmP75AjNBraHQ7wDER8KMynBkpvF/6Q/YbMbBZr2vodHvUPwh\nOP45LC4O+14xUgp9niMQctwHpd+D2rug7mHIXtn4kQNIiYaD98Pp143D1/Qg10DI0Q8cZyDyKQjL\nCxHN4cq7ELcKnLHudR27QD78H/3d+Jc58LseQrHZbKWA3yWl6SLgUwglPAxWLoKZkwzq2K4PGaOy\nn5sVSMau+9uRcOY41GgAzbvcjKvKiH+26g5ZM7C8//AW+LALvDwDarmJIXtCYiw8Xxre2wKFLeQi\nz3kZcheD1i/DGyXhlQ2Qt6T1+VMjbCXMfxJe3A+hHqpsUxww/2Gwx0LvX407AV9xYauxE8+SDep/\nCPlq+m7TFWKOwanv4fQ0yFoGSj8JxXr6r5tOxFtwfgwEZjW6+9iCjB6cgZkhV0fI2Q5ytU1/fDwl\nChK2QMJGYyT+ATkbQ3AVCG0MIY2MlmpKgcvZjerJ3CuNrjoZCL+EUCzUrdlm3/0Qyv8tB37+HPwy\nB+bPgnMR8MRgaN0OatX3f/myBBsWw7fvQWICDH4HWvfwnbgqNU7epLwt6+FH5/A2mPU+dH4eaqfz\nZmbxOKN458W51vQWvAP5SkOj/vDlg9D1Iyjqhx/IXwYZn293N1kpt5CSDL/0MzryPPQbZPID3YAz\nBY58DzvfgdJdod4HRmebjIDTAReXwMnvgETIXgqKD4Bc9f76vl5ebHTZyW2h/+WNNRB/ALLWhCzV\nIejmgXTSWbixDKKWQPRqCK0EudobI2vt9B+2psSDfSfYN0HiRkjaatDPZqoMzsUYHXRyQ+5VEFQ9\nfXOYgF8ceC8L8nP/c+BeHfi77777v+dNmzaladOmtwtduwoL58PPs+DPfdChC/R4CBo3y5iYswQb\nl8JXww261aeGQ4uu/nXcAGvnwbhn4OVvoGkP1zJHd8DwjjB0KtRrn755ku0wpCy8ssA9raw7TO0P\n5RoZDvzjhtBtjPHcVyRGw/h7oNtkqNDas2xKskFmdWkP9PrdO8e3WSRdh53D4fgcqDMCqgzO2O48\nCefh3DQ4852xUy4+AIo+DNtrQPINqLPJ6H3pLzjtELMJbiyF5NNGZ/nsbSF7e8jeGoJ8oK1QMtj3\nQ+wHkPIbcKuxsQ2CWkD2TwxH7mN2zrp161i3bt3/no8cOdJ3B97Tgvy8/xx4+nbgsbGwaCGs+B1W\nLYHmbaDHw9CyLYT6sQQ9NSRY9Rt89R4UKAK9B0Czzv533MnJMPlNWDcP3p8PFdz80R7dCe92hJe+\nh/odvNu9dArylUi73nU/wOZZ8JaHuLM7TH4YqneE+g/DF+2g6fNwTzp/SO6E2VAKGLvmRU9AdAT0\nWgSZ/MgvcnU/bBoC9iho9AUUNlkQlV7ICVc3QMR3cOlXCEwCko1deL3dRof6jID9FEQvhZglELse\nQqtDjvbGCK2RvjvYqHZgXw0EGcyCAYXBGY9x9BYDwQ0huDFkagxBtfC1649fduBu9kou5X/+z4Gb\nd+B2O6xYBnNmwfIlcH9DeOxxaNUuY+ljnU5Y+St89b7RYf7Z4dCiU8YwykVdhpF9jJ3e8FmQ082t\n+7FdMLwDvDgF7nvQu92EGHihGgydAxVTEVk5nfBKVXjiS7inhfX1ftUV7n8EanWDyb3h3q5Q10MQ\ncdVow7k+8Lx7mdRY/AoEBkBbEw02nCmweCBcPw69F0OIH78TEoTPha2vQPnecM9LkLWo/+y7w94H\njUKeWwjICtXnGvnfGQlnouHEY5ZC9BLjkDJfF8jSArK0hECTDKCJvwJxENwIAu7oe5pyHhwbwbHJ\n+DclHLL0gcAiENQYAu8Dm7UzAb848O4W5OfffQd+t9MIZwFbgAo2my3CZrOlpZJZuwaeHgilCsO4\nsfBAEzgUDr8tgW69Ms55O52wdB50vhcmjoaXPoBfdkFLk228wKjG/H26uayGI7tgUB2oXB8+Xure\neYftMZz3C5PMOW+AH9+E6i1vd94AuxdCaDaoZjHl8BaSE/86PMyc0wh9eEKhqrDvZ/P2WwyHA3OM\nzBRvCAiEjlMgb0WY3Q6SvKzFCmw2KNcb+hwxfhh+qwH7RxtdejISUWsBGwRkNg4cbQHwR0fY0xoi\nf/Y9HdEdAkIhRxsoOh4qH4Ny6yFTJbgxGU4Ug4hmRkph0kHP3+3QrhDaDwJLpf2bCSwCob0h+xeQ\n5w/IGwGZegB2SBoBMQUhth4kDgXHAnBeyZj3eif+ZVkoSPrHDkCqX1P67BPpzBn9LUhOlpbOl9pX\nlbrXk9YulpxO63Z2b5A6V5SGdpcS4j3LrvhJ6pRfWj/fs1zYHql3AWnTL+bXcXiz9ERhKeba7a87\nndK43tLWeeZt3YlPmkqHVhuP5w2Vln/iWd6eIA3LKcVcMj/HseXSxyWkhBvm5J0p0pKnpB/ukxKi\nzM9jBTfCpJUdpZ/LS2cWZ8wckmS/JiUn3P5acrx0foa0s4m0Lr909GUp5mDGreFOpMRKMYuki89I\n4SWl8BLSxcFS7CIpJcZ/8zjjJcd6KfEDKbaNdCOHFFNZcgyVkmdIzlNpVAx35qO/6Wp++DqfP8Zd\nD6F4wt/KRpiSAr/Pgc8/gFy54cV3oHEb66GSmBvw+euw/nd4/Qto3tW9rD0Jxr1gkFt9NBdKVXEv\nG74PPnoEnhgJjTzYTA1HErxcEx56DxrcEdw7uA4mDoZxB9NPGTvqfuj1GZS9Hxa/ZxwodnrPs87U\nXlCpDdxngTl/wc1GhV0mmZOXYMUQuBYGXWdDqAlagPQgYgnseBFyVID64yFHuYyZxx3iw+D893B+\nGmQuC8UehwK9IfBvah8ogf0IxC2BlCOQOBtC7ofQ9pC5PQSV91+oUcng3A/a+NcgBAIag60xBDTF\nFlDZ9xBKFwvyC8yHUGw2Wx5gDlASOAX0khTlRjYQ2AWcleTxNvtuF/LcfSQnwy8/QsuqMP1rGDEB\n5m+CB9pa//KtWwg9qhnhl5//9Oy8L52FZ5rA9UsweYsX570fXmsDjw4377wBfv4IilSA+10E9n4d\nDZ1f9Y3v25EqhBKaw3sIBeCerrD/V2vztB0LYcvNhVLA+H9r/TkUrQ1zW0LCNWvzmUXx9tDlABRs\nDIvug91vg8NDUYu/kaU8lBsFjc5A6Tfh2kLYURyOPQnR2/xXkOQONhuEVIY8QyH/ZCh6DrI9DY5D\ncKk5XCgH156HhKXgTPBxriAIrAVBL0DwzxB8EYJXga05aBukjPXPe3JaGNbwOrBSUgVg9c3n7vAC\ncAgzgZq7fQvg9ZYmo+BwSHOnSg+Ul7o3ljauSl+oRJIuX5Be6Sk9WF7auc67/O61UsfC0rRR3ucM\n3y91LyStnWNtTacOSI/mk66cTXvtxF5pYBHJnmjN5p34tIV09ubt+7YfpTkveteJj5Jey24+JHIL\nVkMpkvHZrhkqTa0pxV+xNp9VxJ2Tdr4i/VpMOvlT+r9LviLpvHRmlLSjnLSrinT2M8l++e9fh9Mp\nJe2TokZJFxtLZ7JJUb2luC+k5PAMmRJ/hFAeND+szAccAQrefFwIOOJGrhiwCmiGkdzh0e7/fztw\nhwNm/wDta8G8H2DURJi3Hhq1sL7jluCXH+D5blCsDMzdB3U8ULdKMGscvNMH3pkGj77uec6TB+G1\n1vDMOGhqocIgJQV+Hg19P4K8LrIlfhsDHV8yyv19waVwg/wKjJ349TPedTLnhDKN4NBSa3OVbw3l\nWsNKEzS3t2CzGfzfpVrDnOYQf9nanFaQpQjU+QQazILDH8PqpnB9f8bN5w6ZCkPx16HOMSj7NcTu\nhZ3l4HBPiFr1V4l9RsNmg0zVIefrUHADFDkDId0heTdcbwBXK0HMy2BfBcrgw2AryLhDzIL6q3Fx\nJOCuLHUc8Com9/gZzK70D4LDAXOnw/gPoXgp+OBrqOdD0cmZcHh3MMREwftToPK9nuXjY2HMYDh1\nGKZsg8KlPMufOgSvtYKnP4XmFvtSLv4KLkdASxdx5ovhsH8lDJpozaYrJN8RQkkwmflR+yE4tRlq\n9bY2X9uxML05hK+Esq3M6dhs8MAoI0tlTnPotRqyFrA2rxUUaARtdkH4JFjTEkr0gurvGQRXfyds\nNsjVxBjJUXBpFpx/C05fhHxPGCPER9oDKwjMDYE9IbSnkeuevBfsSyB2OKQchOCmENoFMrWAAB84\niXyFD1Enm822EmN3fSfeum0KSTabLc1MNputI3BJ0l6bzdbU1KS+3HJk9MAfIZSkJGnaRKl2KalH\nS2nrBt/sORzSd59I9+WVvh9rPPeGM2FSz2rS5695z0iRpNOHpe6FpRUzrK8v8pT0UF4p4ojr6xOf\nkma+ad2uKzyfU4q9md1yYps0qp45veiL0hs5jawUqwhbJn1mMZQiGbf0G4dL31WRYi64lrHHSUem\n+y/8kXhF2vG0NL+AFDZRSkn2j11fELtHOvWstDuPdKS1dHWulOJjKM1XpFyWEmZKca9I0XmlmGpS\nwmuSY53ktJs2gz9CKO3dj7X10bvl/hpW5sMIoRS6+bgwLkIowEdABHASuIDR9Hi6R7u+vOGMHj45\n8MREaeo3Uq0SUq/W0o7N6bd1C4f2St1rS0+0lM6YjONtWCS1yC/N+cqcYzh1WOpSRFptMeYtGfaH\nt5HmfOj6+tUL0ss1pOsXrdt2hadCpKSbP0jnD0nDK5rX/byRdHBR+ub97Ulp4aD06W4eKf3WXYo5\nl/Za7Dlp9j3S2oFSsnnH4RXX9korm0ob20tX/PA99AdS4qUrP0qHm0l78kunX5TifExHjP5Gsh+7\n/TVnihT3reQ0+SPhTJYcW6WE4VJMHelGTimuu5T0nZTi4v8sFfziwNuZHxYd+MfAsJuPXwdGe5Fv\ngokY+F130l4/UKtISJAmfSX1aCP1aSvt2GLdRhqb8dK3o6SGBaRffjDniFNSpIkjpLZFpT88/NEm\nJkix0cbj00elrkWlJVPTt841M6TnqksON85nxhvSt0+lz/adcDqlJzHepyRdOyu9Vti8/tpPpdkD\n0jd3QpT0aXHp+Mr06W/7QPqhvBTj4oA3KVpa3FH6rbmUcDV99l3B6ZROz5QWF5V2PCLFnzdej5gu\nhY+zbi/ZxJ2cWSQclyLelMLuk8LqS1cnS8nR1mw47dLV56SIgtL5e43DS0e4ZN8sRSJda2beiadG\nykUpaaoU10u6kVuyt5Ycb0opmyTn7Xe/fnHgbc0Piw48D8bh5DFgBZDr5utFgMUu5JsAC73a9eUN\nZ/Sw5MATEqRvP5cqFZV6tJd2bjOvmxpxsbc76G3rpOblpdcHSJfc3Hrfiejr0pAOUv9GRoaKJ3z2\notS+sLRnvdStmLTo+/StO+qS1K+gdGyn6+uxUdKjeaWLJ9Jn/07YE4wd+C0kREtDsprXv3JCeid/\n+sMKYcukz0pKiRYdzS3sGC19X1aKdlEglpIsbR4qzSwvXT+aPvvu4IiRDrwuLcwr/TlcWpJVWpxZ\niv7TvI24MGljfunk+5LDj8VKTod043fpVBfpz1xSRH8pdrO1kJIzWUpYI10dLEXkly7mkyJtUmSo\ndK2F5ExK//pS7FLyBsnxhmSvISXlkRx9pOTpkjPSPw68tfnh63z+GHfdSXv9QL0hPl76erxUsYjU\n+0FptxsHZgZJSVL9ktJHw6Qb16U3BkoNikkrfzNv49h+qXM56eMhkt3LbbjTKbXOL9W3SfcFSD+O\nSf/ax/aVpgx1f/2XMdJnD6ff/p2IvSaNbvTXc6dTev9e97t/Vxh7r3R8ffrXsGCAtHBw+vV3jZW+\nKy3dOOX6+sHJ0g8FpIjV6Z/DHaKPScuKSL8j/W6T1lUznJ9ZxB6WDj4ibcwrnRgu2f14tyBJ9gvS\npTHSkfLS0crSpbGS3WLoLSVJisxq7MAjkSIDpMslpKRd/lmj86yUPEWyd5PsnfzjwFuZH/8EB/7v\nTSOMj4evxsG9ZWHjWpj9O8xeCLXqpN/mxE/hciRMGgctKhrkVcv+hJadzOkvmQ1vPwEDh8OrEyDY\nS+PdI3sgMc5IL5Tgx8/gcjoaA+9YApfOQ9+Rrq/bE2HReOjymnmbRzYYHOHukJxkNDS+BZsNrp6E\nJAuFLNW6wgGLRT2p0eZTuHIQTq5Jn37toVDzBfi5Kdw4mfZ6lSeh1WxY9TAcnZb+dbpCSjQ4Lt58\nIog5DEfeNq+ftRJUmQ61t0PSOdhWHsLfALufUiWDC0H+16DCUSg6ERL3w8V+cKEHxC01l46YcgDj\nHC4TEAoBhcB5A6IawPXGEP8lpFz0YsQDbEUhcAAEz4fg39JvJzX+ZVwo/z4HHhdnkFo93AO2bIR5\nS+CnBXCvj1zJF87BhPcNAiqHHYKywogvIbsJ5jWHAz5+GT5/E0ZOgQ6PmJvzl2+M3pmBwUZOdq78\nEHvD2rrjY+Crp6HPmxDqhkZ1/QwofS+UrmHe7vrvIcJDq9LUVZi3YLYa8xbu6QJXj6e/YjA0Jzzw\nNizqD0npbOdW8wWo/Qr83AyiwtNeL9oMOm+Ao9/AtpcM1kN/wJkAeR+A7NUgtJjRiDh8NOx40GiQ\nYBaZy0KlKVB3j8Ebvr0inHgL7Bf8s06bDbI2huLToMjPkLklXB0Op0rB1XfBccq9blB1yL0b8p2H\n/PGQ7xwUiIL80ZDlNXBsh2uV4XozSPgWnBmYp28W/znwDEJsLHz6MVQpCzu3w/ujYeYvUN1L/rUZ\nOJ3Qp4XRWcdmgyxZIeIkLDbBnHclEga2ghOHYc4uqGRyPX9sgt+/h9wF4OkPYe4RmHUASle2tvZp\nbxkNjGu66YOZkgILPoaunip3XeDETihT1/11Vw48s0UHXvgeuHIEzu21trbUKNsGSreE1RbuLu5E\njWeh3huwbiBEhaW9nrsCtFkK1w/Aqs5g9wPTYZ5GcP9aaHIAWkZA+wRouMPg/FhXGc7Ps/bDFloS\nKn4N9Q5AYCj8URVOPA9JEb6v9RYCc0Kup6DETiiyCFKuw5k6cK41xMwB5x0FObZgCK4FAXlvL1iz\nhUDIg5BzhuHcswwB+3q40RHiWoF9Cjiv+m/dVvCfA/czYmLgk9GG4967G5asgp/mwT1+as108jjc\nXxpOh0OrTvDKe/DhVzB7FbTyQte6fzv0qQu1G8NXiyCnyWKNC6dhWDdo2QeWRcIjr0LhO4oqzp+A\nOC+O4vBW2DgPBn7qXmbXIshfCqpYaESQEANXTkGxau5lHAmud+Bmi3nA+KOu2hX+9CGMAtDyUzi+\nGE6uTr+NewZDhYfht+Zw/Wja6yG5DSeetRgsaggxp9I/lzvkrgv1l8K90yHsfdjWAqL/tGYjpCiU\nfAfuPWTQwu6rAeGDIdFFiMgXhNSAAp9D6bOQ4wm4MQkiO8L1F8Hu4c7tTtgyQ0hXyDkLcq6BTIMh\neTnEloG4dmCfCq45nzIG/zIHftcPKr0eKhTLLz3ykHTIz5SZDof05WipWl7py1HGAaYVzJ0oNc4v\nrV5gTe/CaalLaWn2BPcy0dekh8p7zgW3J0mDqkjrPcg4ndJLtaStv1pb46F10vD6nmWOb5E+vEPm\n87bSgSXW5jq5RfqkqjUdl+tZKn1eyshKibskXQtLK5Nsl37v6ToH/BYOfS9NLSJdPeT6utMpHRgv\n/VRYupiBOd0pDunkl9Ly/NL+5w1q2fTAflk69aa0PY907HEp/ph3nfTCflyKels6V1S6WE+KmSSl\nWCy4ugVnjGT/SYrrIt3ILsV1lJJmeLSHPw4xm5gfvs7nj/HP34Gv2gDTf4LKHtj6rOLAHuhYDzav\nhsU74dnXIZPJdk5JifDWQFizEKZthOadzc8bGQHPNINeQ6D3ENcyyckwog/c1x6ae+A/mTsKCpeF\nxh6a+O1bZRxg1jN5CHsL3sInYIRQgnyMgQOUqG+wBV52EbqwgrJtoWQz+LkrfFMaFvdPKxMYDPlr\nwMLO4HATZ678BNw3Gha2gGsH01632aDaC9DoO1jVBY7P9G3d7hAQBKWehaaHIFM22FIZzk4xytCt\nIDgflPwQah2H0FJwoAGcHgoJh/y/5uCykPN9KHwacrwLiUvhfEm41h+SNlsLCdmyQfBDkOVXyH4W\ngnpD8mxIrgmOrpAyG5QBzI//sh34P9+BV6zkP1vx8TDqTejXFga8ADOXQ4nSnnUizxtxZIDzZ+Ch\nxgb/ySezoHRF83NHnjWcd8/n4KEX3ct9O8z4I33GAz3m6UOwfi48+7VnMqz5Y6DbMOt9O0/uMufA\nfQ2hgLG2Kp19D6PERULcGYhYA44411klAPXehNyVYPnj7p1hxUegwVhY2BKuugkHFG8H7dbA6Xmw\n923rjlWCQ2/AjX2e5TLlg4ofQc3FBvf3jvpwY7u1uQCCckPxd6FWuHFoGtYMTvSC+Awg3LIFGnzg\n+X6BwkcgqDJcGwBXmkD8WHBesmgvB2TqB1kWQfAuCOgMzmngKAqOnuD8GWTh4NcT/nPg/1BsXANN\nqkNiEqw6AD0f884+mBAPLavAiBdg6xroWR869IYJcyGbhVZul87B2Beg29Pw0Evu5ZZNh80LYcQc\nCHLDM5aSAp89CR2fhfzF3NsK2wnnj8EDD5lf5y2cO+TdgackQ+475s9T3EgvtIpqfoiD7/4KTq/l\nf39ZcZGud3w2G7SaDLHnYOsI9/YqPAwNx8PvreGKGyebpxo0mASRa2FDb0h240Tc7TyzVYItLeHY\nKHAmu18LQI7aUHcTFB8C+7rBwScgKdKzjisE5YCCL0HVcMhaH463gfAuEL/bui0zCCwIOV6FQoch\nxxhIPgjXKsCN7pC0xFw6YmrYckPg4xC8FIJPQEAbSJkEyRbuhD3hX+bA73qc22tMyldcvyYN6S/V\nKC4t/92a7g+fSxUzS+WCpXtzSlvSUdBx6ZzUubz0w2jPcge3SQ/ml056ifX/+oX0YqO/StjvxLdD\npB2LpI+6SQvHW19v9BVpQA6jtZwnbPtJmtjn9tcWjZQWvmN9TkeSNLKwFOWitN0snE7p0FxpQgFp\ndKA0CiMW7g5xkdKUUtLhmZ7tnlggzSwmXd7tXiY5QdrYT1pcx+AFvxOHPpL2DTPi2mnWcVra1Fxa\nf78UYzI+7bghHX1FWptPOvWZUaGYXqTES5GfS/uLSWHtpBg/UE94nfOGFD9RulZXulJMin1bSvax\nQtjp8E8MvKH54et8/hj/d3fgEiz8GRpVhdDMsPFPaN3RvL7DARPeM1ILHQ5IsEPu/NbWcPkCDGoG\nnfvD48Pcy105D293g2Hfee7Mc+kMzBgBL012HxZZ+i2M6glbF0BINmOnbAUnd0GpmkYRkye4i4Fb\nDaEABGWCii3h0ELrurdgs0HlnvDMaah7M0R1cJZ7+SwFoPNCWPcinPdQsFS6M9z/OSxrB5d3Ga85\nU27fbQeGQsPpULwrLK0PV/fcbqPMQIjaC+tbQMId+dlZSkCDlVC0D2y8H05+7T1WHJQDKnwCdTfC\nlWVwsBtcX+VZxx0CMkOB56HqccjZCU49BGcHQNz6tLJWYtge58wBmQdB7h2QczEoGq7XhaiWYJ8N\nSrRu0+YnZux/2Q78/6YDv3AOHu8Go9+B7+bBmC8hew5rNr78EKKuGp3As+UwnPgCCwdWVy7C4ObQ\n8TF4wkMOdlIiDOsKDw2Dhh7SFiWY8DR0exFKeDgXCAwCe4KR2/7FQJj5rvk1A4SbOMAE/+SBp0aV\nzvDnL+nTTY2gUGg+FrotgF3jPBf45LsH2kyF3R9B9Gn3cqW7QuPJsKw9XNgIK1rCqg63y9hscM+b\nUGccrG4DZ1KFhELyQeMlULAFrKoNl9beoRsAZYdAo01wZipsbQvxZ72/16yVoNYyKPwkhA2CQ90h\n8ZR3PVcICIH8T0HVMMjaAM4PgJNNIHaV8d1L2gunioPDj3nlYBT7ZJsAec9C5qfB8R3EFoPEIZBy\nFxpi/OfA7yKcTpg6Cbq1gMr3wNo/oH5D63a+Gw8TRkLx0vDaRzBpAfxxFV4fbU7/aqThvNv3hQFv\nupeTYPQgKFIaejzv2ebaWcYOvJeXgpWAmzvnkCxQtyP08jC/K5g5wAQPh5gWKzT3Gv0AACAASURB\nVElvoWJbiNgO8dfTp38nKnSGEs1gnYc7H4DS7aF4C1jUEewenH3JTtB4EqxoAZe3wOWtkOii2KRk\nD2ixFHa9DEcn/LVrtQVCleFQbxpsfxgOj0p78Jm9EjTeAnkawt6ucG6m912vzQb5OkPtg5D1XthT\nB06PhJR09qC0BUPuAVDuCOQeCBeeh5MN4GJ/SLkAFzqCHOmz7XHeUKNjT9aVkHUnkAviO0BsXbBP\nBKXze2UVGdcTM2Nwt2M4XmNSZnHsqNSuidSsvnTwgHm91EhOlsa+LdUtLP3qJTbqDlcjpe5VpIkj\nvcvOHCs9WlNKiPMsF3VZ6llQOrzdu81OQVJHmzRvdPoaEzxbRIr0EI9MipfO/CHNekma8bR0I9KI\nx6ekSHt/kT5pJJ37U4oyydyYGlM7S7unW9dzh4Tr0pfFpJNezi6cTmnNIGlhB/fsiCnJ0oo20vRM\n0lSk6aHS0UnubcZGSMtrSdsek5LvoFGNi5BWN5A2dpCS3JBQRe2SNlSR9vSQkm72tLw4R4ra6vm9\nJJyWDvaUtpWSLs/3vTmFM1m68rEUZpPCkMIySZFP+2bTytz2JQYf+I2cUvxjUrJ7dkT8EQOvZ374\nOp8/xr9/B+5wwKejoFUD6NgVVm6GKh4qCN0h6hr07wg7NsLivdDlYes2rl2GNx+D1g/BoOGeZbct\nh1mfwpgFEJrFs+zUEdDhKahUz7Nc7HVwCgZ9AT2GWe/xef08OJKMyk23654J79WCtV/BxinwciFY\nNR6eD4HJveDEFvioJswcaG1u8E82SmqE5oK2k2DrB5531zYbPPClsWvd4uYOJzkOEi4CNgjIBM5E\nOPSZe5tZi0HzDeCIhnUtITEVz0eWYtB0nbHj3tkTru9Mq5+zNjTYDZlLwqYacOYbOPQI/Nnbc8ZK\naAmoMhcqfAenhsOxRyHeh5xvWyAkbeSvmIEdor+B8938xwvjae7gdpDlZ8h2DAKqQcqz4KgEKR+D\n0pGF4w3/hVD+RuzZBU3rwqb1sH4XPPOC98M3Vzi0DzrVhXKV4ceVkN9dv1EPuHYZBrSAanVh4Fue\nZc8cg/cehQ/mQiEv/f92LINti6HXq97XsOQbaN4PHnzW/LpTI3wnlKnj2fHX6WmETlLskOKAkKzQ\n8AkoUdv4g5YTgkKg8WDr81d+EI6vBrufcnoByraD3KVgg5dQSmAwtJ0HJ3+Hg5PTXs+UAzr9Ad3C\noPbHkL0s3DgCf3qgMQjKCg1/hvyNYdV9cCOVIw0IhhpjofSzsL3D7YeXMQfBaTcORyuNhRoz4PgL\nIDs4rsB5F+u7E7mbQ+0/IFcjONwETr9skF2lB1laQY6nIOdzkHMIZG4F8cvhTAWImQmyeFCeHgQU\ngJBXIHgPBP0AOmI4ckdXcC723xoyyIHbbLY8Npttpc1mO2az2VbYbLZcbuTesNlsB2022wGbzfaT\nzWbz3Hn8bt8CeL2lcYXYWOnNoVLZgtLsH327TVwwS7qvmLTgp/TbuHZZ6lpdGv+m97XEREm9KkoL\nPNx+30J8jNS7pLRjuXfZxHipb0HptA+UAwvHSL+P9S730xDpyQBpUCZp6U0O87P7pedCpaeQXivk\nPs3RGyY2lw78kj5dd0i4Ln1bTDptIg302lFpSgEpYo132T8/lWZkkc6v8i57Ypr0a37p/NK012LC\npLU1pF19pGtbpGXBUviov66HvyOtySStxhhrs0oOC40s7JFS+ABpdyHp0vdGmzNf4XRKcculiEbS\nqXLSje8t9a/0C5w3pORJkr2+ZG/pnxBKbfPDynwYLdVeu/l4GC5aqgGlgBNAyM3nc4DHPNn99+3A\nV6+C+2obtLLbDkDvvtZDBWCEXt55Aca8Dd8ths6pCl7sdvMpU1FXDTbCxu1hyAee15KSAiMeh+a9\nobOJEMN3b0ONJlC3tXfZVT9AxfpQwgfKgYNroHB573JtXzM+n4BAaHGTEqDoPXBvN+Nxq1etV3/e\nQs2+ELYsfbruEJoLWk2E5QPA7qX8OncFaDMbdr4LUcc8y1Z9GVotgw0PwbkVnmVLPwoNf4EdTxgd\n61MjWzlovNU4QNz+gHFIeGJ0qoNIG2QuA4HZgEBwxsH2qkZ4xgyCC0CZKVBhIUR+CwcbQKyLsI0V\n2GyQpTUU3QD5J0PMj3C6AkR9a4SX/g7YckDgQAjeBkEmmEPNIONCKJ2AW6Ty04AuLmSiAQeQxWaz\nBQFZgHOe1/sP2Gl7/EW8hatXpYFPSOVKSEstEibdicgLUpfGUr/2RqFPaly9LHVrJC2Z791O1FWp\nR01p7Kvm7gImvCYNbua5a836X4zemAe3Sd0KSVFXvNtNdkhvtpQO+VCE4XRKA/NI1zw3jv0fXiwg\nfdn19teunTd24LHpJF6SjGKekXmsNRV2mOy1uPRxaaXJA7hDk6RZ5c31xYzcJM3OL0WY+F7GnJDW\nPyDtfeb2AhynU9rZVloaJC1FWpZJOvFZWn1HlHRpobSphLS5jHTDYncbZ4p06QdjNx4+QEryU4Nr\nSYrfLF16UjpfTIr5QnL6sW+nCeCPHXhN88PKfMD1VI9tqZ/fITcIiAEuATO82vXlDfs6gLbAESCM\nmx2b03ygTqc0b45UsrD00hApOp09EG9h5xapVlFp7Ii0t/knjkmNyxkt1byFAK5flXrWkj4eas55\nL/lR6lRaun7Zs1znwlLTTFKnAtKKGd7tStKamdLQxuZk3eFiuPRMEfPy3/SUdrhgQnwxhxR33be1\nfFlPCjPZsPjEamlaE3OyVkIpkrT5JWlhc3M/Jpe2SrMLSGdMVPvao6TNbaVNraSkm59V0mVpdQFp\nWYi0IttNJx4sJbhxsE6ndOEnaUN+6cRI69WYjigp4h3pQH7p0nj/hj+SdkiXO0nnCkvRn0opsf6z\n7QF+ceA13I+1ZdG7Bf8ad84HrAQOuBid7nTYwDUX85cFDgF5gSDgV6CvxzX78oZ9/LACgeMYcZ9g\n4A+gcpoPtOuDUo0q0lYfS3ydTmnq11K1/NIKF39k2zZItQpKM03Epm9cl7rXlb5+z5zzPrhTapFP\nCtvvfY1Ng6VGSA8ESr3LSifd0Jqm1nm6urTDx7uSLbOlsZ3Ny3/+oLTXRa/QN4pLV0/7tpa1o6QF\nz5iTTXFIX5aVTq0zJx++WJpUSkqKMWE7WVrSQVo/yNz/8+Ud0tJGUoQJiuEUh7RviLSikhEDv4XE\nSOnSMunYcMORL88mxYW7t5N4VtrbRtpRx+iTaRUJB6WwFtLhqlK0ibi/FSTtla70kM4VkG6MklJ8\n3Hx5gV8ceHXzw+IO/AhQ6ObjwsARFzK9gSmpnj8CfOXJ7t2MgdcDjks6JckBzAbSMtLUrgM79sJ9\n96d/poQEGDEUpn0NC7dAqztK6hf8BE91h3HT4WEvsenoKOjfGmo2gKfe9h5/v3IBXu0Kb02Ccvd4\nlo29g7j+0lmI8BKH3XUzXlynrWc5bzixC8qaKOC5BbuLhg6Q/nL61KjaFQ7+ahRmeUNAEDR8Cza+\nb852mfZQsTds9ZLmCTdj/D9B5BY4MMG7fL66UG887BgEEV7SIQOCoPoEowJzQyO4crN0PaQA5G8D\n5UdCixtQ6mXYdh9cckMzEFIUaiyFIgNgT2O4YJFyNrQKlF0Jhd6DM0/AqV5gP2Ne3xMy3Qt550H+\nNeDYDxfLQMwn4PwbGzRYRcbFwBcCj918/BiwwIXMEeA+m82W2Waz2YCWGDtyD+u9ezvwHsDkVM/7\nAV+k+UX0FWdOSc1qSS8OlOLuuJVzOqUJ70v3lZAOe9kdS1J0lNSzvvTec+Z2ZEmJ0hP3S5NMFPVI\n0tE9xu67abA0rJMUGeFd55UHjBCKr3ivibTPRLbLLYxuJB110VH+4/ul4z42OnA6pY/LSPMHSBOq\nSxE7Pcsn241mDmc2mbOfeF2aUkw6YzKUEn1Sml5IOr3YnPzVPdIvBaXTc83JR66QFheQTn3v+vq1\nLdLa4tKR11wTYt1CXJi0r5F0oJmUcMrc3KmREiedf1fan0e68J6UkmDdhifYj0rRr0qX8xoEVikm\nzncsAH/swKuZH1bmA/IAq4BjwAog183XiwCLU8m9BhzECL1MA4I92b2bO/CMT4VfuxJa14ee/eCz\niUavy1uw2+Hdl2HtUvh1K1TytjuOhifbQtXa8Pbn3nfeEowfZpBTDTDZbXzRFGPX98lSGP0bFPBA\nFwtwaAtcPgMPeGj8YAbOFEhKMHLAzSJbfgjOnPb1QpWsdaa/E6c2wZhiEB0Be6bClaMGV4gnBAZD\nwzfM78JDckHzibDqSe9ZKQDZS0Gr+bDpObhmosVZnprQdDnsHgKnZ3uXL9AKGq+HyIVw+FXSUKzm\nvh8a7IGYfbCzOSSed20nSzm4Zx3kagv76kDkD9YIqAKyQOERUGE3JPwBZ3tBzG/+I7EKrgDZPzZI\nrJyRBq1s7DDr/OAZiQzagUu6JqmlpAqSWktGnzhJ5yV1SCX3saSqku6R9JjkmbfATxRe6cI5oHiq\n58WBNAw+I0aM+N/jpk2b0rRpU++WJfj8Y5g4HibPhkZ36NyIggHdDYc+Y5l3bu/YGHiyHVSuCcO/\nNJe2OHMC7FwL0zabS6mLjIA1c2DqfihtMhVw3hjo8apBYOULzh+F6CuQzWRPT4BLYa5DKEmxvvGZ\n5CgKyQk3qw0FskG+Ct71qj8Gmz6Ac9uhaH3v8qXbQ1gT2DwMmn3lXb5QA6j/Eax6EB7cDpkLeJbP\nXQOarYR1rQ2HXKqvZ/nsleDeKbC7G+zuDvf+CEHZwOkwilQy5YPaSyD8Qzg0EEoNhTzN09qxBUKx\n1yB3Wzj2CFxbAGUnQSYLxWkhpaD0fIhdCZEvwPVvoOB4CPFTc5XAMpB9EmR5G+LHwLVKEPo4ZH4V\nAgubNrNu3TrWrVvnnzXdwj+kwtI0fLnl8PF2JQgIxzjEzIS7Q0yriI6WHusutawnnb0ZgkhJkTo8\nIK1ZIZ0+KTWqLL01xDvntSTFxkiPt5TeGeQ5M8Vul9YvNm7/t6yQmheSzp40t2anU3q1g/S9yVCL\nJJ06KD11j1HA4yvWTZXG97am80Y56aIL/uofn5Q2mjgI9oRLh6X3cklvIo3MaV5v51fSvK7e5W7h\nf6EUC4d3u96Wfm8gOW6GFxzeeGwOSr8WkcKnmrOfkiT90V/aUEOKDZe23yftbn+7zJUV0sZC0skP\nPBflpCTd7IdZULpiIi3WFZx26cpn0tF80sVXpOR09rj0hORzUsyL0uXcUvwIKeVMuszgjxBKZfPD\n1/n8Me5aCEVSMvAcsBwjUD9H0mGfjIYdhVb1IE9eWLQBit4MQaxbBbu3Q9/O0KYuPPYUfDDBe9l9\nXCw80R4q1IQR33jeSe9aD093gMHt4I2+MGY2FC1lbt2r58DFU9DPA+3snZgzBhr1ghAXYQyrsHqA\nCa7ZCCF9fTHvRP5KMGjjzdCJhS1Rjf5GH8uLJrvLhOSC5t/CKhMFPrdQayRkKQKbnoT978OcvODw\noJuzCjRfDed/hpPfe7cfkAmqT4HCfWFLNYjeC9fXQEKqg8W8raDuLri6FPZ3BIcLVsRbtkp+CJV+\nhZOvw+mXINniAaItGPK+BGUOQMoVOFEZbszwX1gFILAIZBsHeQ6DLQXiakDiIHCe9N8cZvEvYyO8\nq5WYkpZKqiipnKRRPhlb+Cu0bQIvvmHEu0NSUQhMGANJSUZzhng7dPTQCPgW4uOgfwcoXR6GjfYe\nBtmzyYhfb1kBBEHxcubWfeMqLJkKw6ZAsMnGypfOwPZF0Pk5c/LeEL7zn+XAAQpWgzajITibeZ3g\nUKj1LGz+wLxO6Q5Q9AHY+aE5eVsANJwEF5YYDjwg0KCW9YQclaDGp3DoXTgxybMsGCG64ECwOUFJ\nRhjlzLjbZUKKQs21kKUK7KwN0Ts8zH8/1NwLOOBgdbiRjuYPQYWgyA9QbD5c+xzOdYGkPd71rCCg\nIIS+B1mPga0AxNWBhMfB6SUTy5/IuCyUDMG/r5T+TqSkwMi34PUXYc5C6PPo7dfPnIItqbqLJCTA\n2y97tpkQDwM6QokyMMpD95vU2LziJpmTbvKBm0zrm/AyFK8IVe8zJw8w/zNo0x+yueTDMQ8Jku0Q\nccDowmMFnhx4ejnB70TDl42y8uunzOvUGAgXtkOkl2bBqfHAODj+E5xb511WTljV2ihnl8OI10eu\n9a6XvQI0WQuHP4Dwb7zLR3xlOPKAUCDFeJ4cd7tMQDCUHwvlPoN9HeHsl+53xoFZoeSXUGoKnHwC\nTj8PKekgDct8H5TaDjl7wsX2cHmwsTP3JwLyQcgHkC0cAspAfENIeBhSDvp3Hlf4z4H/jbh6Fbq3\nhx1bYf1OqHMH3WpiIrRtaDj5wkXgsUHw3Wz41MMfUEI8PPkgFCkBo6eYc95OJxzcZfzBhWSGbgPg\ni9+8621fAXvXw2CTuz+A6Kuwajp099Ac2QwunYJ+oTCkrOEIts6Fa55pF26DIyFtSzXw3w4cjN1t\npQfhkAWK2eDMUHcobLGwCw/NDU2+hjUmQymFWxnhicDMgBNOm+wklK0cNFkHR8fA8S88yzY8Dvf9\nARW/gLztjYPQzeWNH4w7UaAb1N5idK2P2eXZbs7WUG0/JF+HQzUhNh0d7m0BkL0fFDtiNGKIqAI3\nvvIfI+D/5skFIcMhazgEVIeEZuAYDM4//DtPavzLHPhdDcCbOlRwh727paqlpDdfkRwucmOjo42D\ny/L5pX173NtJjYR4qW8L6cV+5g44b2HkU1IVm/TpMCnKJA9IXIzUtZS0xQU7nSdMHyF99qQ1HVdI\ndkh9Q6VeGKNPoPTDEHO6Doc04l7XufB75kszB7ufM9FiWfXh36VJFmkCkmKN5saXLDb2WPmotP45\nc7KOeOnYFGluQWk60iUTzTZuIfaktLiUdNQF14k7JF2VttaUttWTEt00y3Ba+M5K0tV50p6CUsRb\nxoFnepG0XzrXVIqoLsWvS78db0iJkZI/lZIKS/ZOUsrt9QH44xCzrPnh63z+GHfdSXv9QF1h5jSp\nZD5pvgsuDkk6d1Z64F7phYFGdogZxMdLr/SXXnjYmvM+uFuqlVla6mYt7jD+JWlEP2s68bFSj/xS\nxNG019JDqTui6U0HbpOeLSUlmCgvlwy5p7K4vnZwmTShletrS4ZLiy12rbcnSF/XlaItki5tHS0t\n6GNNJ+Ga9ENR6exa8zpOp7S8mTQnn2S38OMUe0paUkY6Nt7aXMfflTaUlKL3mdfzBPsF6XgfKTF9\nmR//g9MpxcyVTpeQLvaR7D7a8zhXvJT8uZRUTLK3lVKMwjG/OPAy5sc/wYH/u0Iodju88Bz8tgCW\nroNuLgpY/twHbe6Hbn1g3EQIDvZuNzERnuwKSXYYO818U4grkTCkK4yaAW0tFNMc3AErfoIXxnmX\nTY11s6BmSyjmIi/6u9dg5bS0r3tCvZv0r5lC4a0VEGrywNCRCJncZL9kzgmJbmLg+crBlePW1hgc\nCnlKw9HfrenVfAZOr4WrR8zrhOaGpt8aoRRHnHd5MMJmrVZDkXaw5VHzZexZSxrhlItzIGyM+bnK\njoDyo2F3C7hs8TNxheBCUHYWhBT3Luttbdl6QrFDkKkKXKkHMR8Zh7D+hi0zBD4PwcchoAskPwzJ\nD3nXM4P/QigZtAM/d05q0kDq1kmKinL9y7xisREy+dVkCbMkJSRIfdtKT/d2HYpxh6QkqW9D6Yvh\n5nUkyZ4k9b1HWmax/N1hl/oUlw65uFW3J0m980vnwtJe84Tju4wd+KbZ1vSuRkhDi7q+dv6gNKKS\n62snt0pj61ibS5L2zZKmt/cudye2jZEWPWJdb+Wj0vrnrekkJ0rLGkl73rCmF39WWlVBOvqBNb2o\nbdL6ItKZL3zve5kRcIRLVzpLF8pK8SYYGn2B0y6l7PfPDryk+eHrfP4Y/44d+OZN0LAutGkH836F\nnDnTykz+BiZ/DTMWQBcTaYJgpBYO6m5UYn7+IwSZrGiU4MPnIG8BeOZd8+8DYMZYuKeR0TfTCtbM\nMnbelV30xdyxGIpXhiImUxdvITkJCpWHhr2t6bnLQAHPh5j5ysHlMOs5xBXaw+mN1g9H7x0MJ5fA\ndYu7/kbjIeYEnF9nXicwBJr8AqfmQPh083qZi0LDdXD2Rzg60rxezvpQdytc+x2ODTRasP2TEFQG\n8i6AXF9C9FC40gEcGZQOaAuGAC9UGGbxL9uB//Md+NdfQp/u8M0UeOPttFkhTie8+Qp8PQFGT4D6\nDczZveW8M2eBL2aad94Av/wA+7bCR9OtdZ45dQRmfgaPvW6ti5DTCbPHQB83hT4rvofW/c3bu4Xw\nnVDNRTm2NzgSXWeggGcHnjWv8W+cm8ITdwjNASUawbEl1vRCckLN52DbRxbnyw1VB8N6C6EUgND8\n0Ox32P0KXNpsQa8wNFgH5+fCkeHmf+Ayl4Bq88FxGfa3cV/QczcR2hYKHICQpnClAdx4HZweGkzf\nbfznwP2M7yfDui3Qtl3aa/Hx0LeH0dx49RYoU9acTbsdnuoJmULgy5/MxclvYesa+Owt+GIhZLVQ\nZOJ0wgcDYdAI742M78S2RUaculaLtNeuXYBDm6BxD2s2IX0VmADJHmLgIdmMpsSuOpbbbJC/vPU4\nOECVrv+vvfMOj6rM/vjnnRQSEkIavQVpERYQBKQLKAqsCrgW2EV0YUXBgqLIj6KwNmyAuCLWRUHs\noKCogHRW6R0S6SWEgJQE0jOT8/vjTtaQzEzm3gmZxH0/zzMPYe69555Mku+8c95TIMHCxPprR8PB\nRZBqsqov7lao0QU2jTd3XWRz6DYfNt4L6SbuGVIDOq+CU99A4kTvRTwgHFoshCrtYXtHyPzVnL9l\ngQqGKmOh+i5wJMPFv0H2/NKt5iwttICXMmt/gUYuhPn0aejXE8LDYdFSiPayEVNuLkwcbVRqvvWZ\nOfE+fhie+Cu8Nh/qNfT+OoCF7xiidsdIc9eJwCdTYbCbVfuKedD5dggJK36sJKxUYIL7XuBgfCKp\nFA7ZblZZBWEUs8T3h4NLjdW/GUKi4JqRsHEqXNgP297w/touM+HwAkheU/K5hanVG5qNhnW3ej+3\nEoxe4J1Xwunv4dDL3gucCoBGr0C98bCjO1ywUGlZFgTUhui5UHkcZE2DtO5gv4I53VbQAl7KVK5c\n/LmEfdCrI9zUD9796PKyeU/k5cH9d8PpZHhjvjnxTr8Eo/rDyEnQyWTY4XQSvP0MTHzP+wyXAnav\nMzoFdr29+DERWD7HWvgkIw2i6kBdC0OQ7bkQe5X743HXua/GrN8O0i20Dw2vDtVbwpGV5q+9qh/s\n+xDmtoLVJgqgKkVBt7dhzTBzoRSAJg9Dtevh50HOzore3jMWOq2A019C4pPmVqm1hkHzLyBhCCS/\nbc5fMzh+g0s+9EMJ7gKRmyHkHki7GdJHQX45Cf9cIQFXSt2plNqrlHIopdq6OaeeUmqV87w9SqlH\nS7Jb/gW8KKtWwh23wKRnYcJk72PJeXkwYpCxCn7/Swj2su8IGOGPp4ZC644w5CFz/orASyPhroeh\nUQtz1wIsmwd3jXUt/AkboE48NPcy7l+Yw1shN9taK9rcTMg87/542knIcbMCD68GSV42mypKq7sg\nYYG5a3a9C190M6oEHTnm9h7AeihFKWg70xDvHU+au7ZSDHT4CS6shYTHzAll5PXQZj1c+BGOjPZc\nHZnvoqrTGxypkDoNUvqDPcWaDRUAISMgKgGwwYXmkPU2xXqhlzVXbgW+GxgIrPVwTh7wuIi0ADoC\nDymlrvZktGIJ+Edz4J7BMHsODL7H++vy8uDBv0JujnnxBvjXP+H8bzB5lnkBWL0Ikg7DfSY6DRZw\ncCf8vARudPO9LpsD8deZ9wmsh0/A8yYmeB6rZjUGDtD0Vvh1MThMrGgb/hliWnr2tyQ6v+4Mpawz\nd50tELp8ASlL4aDJFXFQFLRfDqkbYN8j5kQ8tDE0+xCyEiDxNrC7+FlIHiS2hXMfuLdjPws5LjJH\ngptA3U0Q3AqSWkP6F977VhRbNIS/CVWXQc6ncLEn2Ndbt+crV6gboYgkiojHNBwRSRGRHc6v04EE\njIk9bqkYAi4Cz0yCqc/DT2ug+/XeX2u3w6ghRnfBfy/wPtxSwNKF8PWH8OYC88Kfeg5eGAlPf2Bs\nmJrl01fgjscgxMWGYXYmrPsKbhxa/Jg3HNoCjX0QcHebmOAs5nGXStjEWiohQFQcRNSFEyYyPKrU\ngb9thhbDjFWfmXmRBYREQ4/34T8ms1IAgiOh27ewZwqkmIxNB0VC+2VwcRvsHeXe90vbiq9cAyMh\nfokxnGFPZ8gusqGqguCqr+HMNDg+AvJd7C1kb4JjXYz2sUVRwRDzPNRcDOefgdODwOFDGCSwNVRd\nDaGPQ/ZgyBoC+W4mD11JykkMXCkVB7QBPDarKf8Cnp0NQ/8Gq1bAug0Qb2IqiN0OD90DF9NgzkLz\n4r1vJ0x9CmZ9DbEmJpoUMP1J6H0ntDLRabCA5MOweSn0f9D18fULoHkniPH4Bu0en1bgHjYxwXNH\nwrAYQ7w9hWA8EW8hGyUgCG54E7q9Yvw/w8LH/np9odp1sGWC+WurNIZOn0PCZLhkMkskqCq0Xwrp\ne2DPA8VFXASOPQ0JgyC/SNWjLQgazoIaDxgifrHIG19IPDTdaIREDnSD3GOXHw/vB/VXwNkXIXko\nOFyExUKug7rbjQ3KEy0hw4fqUKUgeCCEJYCtPmS2gpyXr0w1pzs8CPbqHJiS/vujuPtquVJqt4vH\nrWZcUEqFA18Bo50rcQ/+loOKS4+VUT26igy60+hVYga7XWTkvSIP32dUW5rl7BmRLg1EvjVZpVjA\nz8tE+tQXSb9o7frpo0Te8VDVN7anyNovrdlOPSMytKrnCUOeWD5TZL6HSsV5wz1P5ZnWTiRxuUjS\ndpG8bHP3TtklMr2+9erDlY+KrH7C2rXZ50Q+qS2S7GKYszcc+UDkh8YiPm+yHAAAFFpJREFU2RaG\n+eZdEtl8i0jiY8WbVjmyRfbeIbKzl0hemogjVyTlvcun9Zz/QWRTNZEzc4vbzs8XSXlNZFcNkbRl\nxY870kVODhM52EQkc6t7HzNXiyT3FDk3TMThplraDI4DIhm3iFxqIpL3fYmnUxqVmLHeP6zcD1gF\ntPVwPAhjyM1jXtnz5Ru+0g9AZPw480Jjt4uMGCIy4Ebzwi9ilMnf1V3kFZNl0QVkpov0ayiyruRf\nOpecSxH5c5Txb2GOJYj8raHIzFEit0cZU++tsHWJyJRe1q4VEfn+ZZEvxro//uXjIstfK/78ts9F\nXmou8kSgyJgAkceVyIHV5u6dny/yeiORkx6ExBMXk0TejBLJOG3t+qOLRD5vZK5xVWF2jRVZ08Na\n9z97usjWniJ7hhYX8Xy7yP4HRLa0EUm4TeQXRFKXX35Oxh6RLQ1Fkl9yPYrt4kqRXTVFTr3o+m8u\n9RNjtNq5192/gTouipx/QCS5vkjWT07fHCKZH5nvllhA3hKRS40NMbcfdHtaqQh4jPcPHwT8WjfH\nFDAXmOGtvfIfQnnRi2k4hXE44KG/Q0oyzF8EoRZGjj07GqpUhSdM9JQuzFvPQKtO0NVF8ZE3LHgD\neg2C6CJhGxE4lwzfvQOXLsJjXeHwLvP2j2y3Hj4Box90ZQ9591VquC7kCY+F3/YbmRniMHp3x3Uy\neW8FVw+ERAtFPWDExOMHw9bp1q5vcBtU72QtlALwp6kQGAHbR5nfBwgIg9bfQW4y7B16eXqiCoDG\nsyEoEFKdYYxTRXLeK7eAVhsh7Vs4fBc4isTzq/SEZpshdx8k3Q6OImGwqoMhbgOkfQwpI1wPcrBV\ngai3IepduHAfXHgYMqdB+r2Q7cVIOVcE9oOwPRDYFRw3gn0iiMm9CG+5cmmEA5VSJzCyS5YopX5w\nPl9bKbXEeVoXYAjQUym13fnwOBmm/Au4GRwOeGQ4JCfBp9+6ziEviflvw6a1MONjc28cBezZDN/P\nh7Gvm78WIOMibF4Gg1yknsXUNv7o8x3G49hea5uB+zf4JuAZ5/C4DR8YBBdPFX++SS/oMMyISQO0\nuAUCTW4MA1x9ByR7GCFWEu3Hwf6vIMviJJlOM+HoV3DKU0aYG1QAdJgPF7bAAQtvIgGVodViyDsL\ne4dcLuKnZ0PmVv6rLmlLwV5kryGoGjRdAbYw2N8dcosM8QiuC3Xfh8A6cLg9ZO8xns+/BDnbIbgR\nxP0HKtWEpDaQ5abIKeRmqLEL8pMgY5zxXMZTUEJI1y2qEgSPg6D1wFHIuxocn5d+NeeVy0L5WkTq\niUioiNQUkb7O55NF5M/Or9eLiE1ErhGRNs7Hj57s/nEEPD8fRt9vjFCzKt4b1sCMyfDuIqgSYf76\nvDz4cBo8MR2iq5m/HmDRu1CrMdR2USgTFvH7yrZKFPxrIzRqbc6+iLGBaTUDBbxLI3SXhTLgdQhx\njoJrd6+1+9dtD2d2wTkLFZ0AEfWhYW/YYfFNtlI0dHoLEl43n5UCEBgOnRcbAp5sYdMvIBRaLQLH\nRdg72JiZCRDWFqL6G6tgFQKSa+SCF8VWCeI+hMg7ILEjZGwtfrz2LKg2CY72hNRP4VR/SOoO+elG\nBkr0c1DtXTgzCM5PMT5RpU2C88N/t6MiQB01AgNgiHf6FPPfb2FUHQicbzzyp4K9F+Tv9s1mYcpJ\nFoq3/DEEPD8fxoyEI4fg8yUQZqGs/MRReO0ZmDEP4kx29StgzqvGCrqvxd7EuTnwxQwYMs71caUA\nMVL4Zm2Bqyx0YDuXZLxesT70f/bUjRCMNEJ3WSjBoXCnMye66Y3W7q9s0GyA9TAKQLtxsHs2ZF+w\ndn1cfwiqDDsmWru+cn3otBCOvQ1pFsJgASHQ6msj/W/P3UaRUpWO0GwhtE+FFusg8hY493HxUAoY\nv0u1xkO9mXCwD1xwMRYucig0WA5nRkHWOsABaYXGEVbuC3W2QfY6SG4Dl6ZB5ieQ58y0kbPOFXcg\n4Px9yZ4GmaVQJWrrBoFbwXYn2G8A+xO+2wQt4GVOfj48+iBkZFkX74x0GNYf+gyEbjdZ8+PIrzB3\nOjw921phDcCyj6FRK2hyjevj6alGccj0Na5X6N5w0Ln6tuojlJwHXtJczJYDIaSq+2pNb4gfCIle\nzqJ0RUQcXDUAdprojVKUDm/A0S/htMkCnwKir4P698Cm2yDbQmqjrRK0XAAhtSHx7t/TCJUNwttB\n/LfQdCGcfB7OfOjaRtTt0GQpnBgNp6cVD0nkp0BANmAHyYILL1ye1hdYC6rPAzkAZAO5kPaU078a\nEHMQYrMh+hBUXQlB/SDjUcj4p1FM5AsqAAJGQVAC2Lr6ZqsALeBlSH4+PDYKEvfB9FlGYysrNh6/\nD1q2heEuPm56a2PK/fDgM1C7gTUbDgfMfwWGeKjYXPUZdO4P8T6EPw5Z7EBYmJJW4CUJuFLWm1oV\nENcDzu2HiyYGMRel3QTY+SbkuPm0UBKVouG6t+Dnv4PdwoR3gDqDoN59sHkAOCyUttuCofEMUIGw\n7y/FC3KiB0KLtZA0GZJfdW2jcluI32jEs5PuvTyfPGcTEACqMhAM+Wlwukg7ibQxQEEsPh+yv4Pc\nQmEZZTPyxIO7QeQSiD4K9o2Q2hHspTBpXsWAbaDvdkALeJkhAmMehj27YOH3UKWKNTszn4eUkzD1\nbeur0q/eA3seDDbZJ6Uw676BiGi4prv7c378N/Sx0LiqML7Gv8F3AQffSuoBAoKhST/4dZF1G5GN\nIK4v7HrTuo36/SG2I2y3mJUC0GwyhMbBjuHWNuVsQRD/Kdgqw96BxUU8NB5a/Ad++xCOjXVd0Rlc\nG+p/BvmZcKQX2J0Nx6KfgasuQf29UPNjCL0B0j+A3wo12op4DiJnQdgIo6ISBWc6QrabitmA2hCx\nBEJGQmoPyHy1eCWpv6hgAu73XO8S8zJdkZ8vMuZhkR4dRdLSXJ/jDd8vFGlXVyQl2bqNlCSRrrEi\nB/ZYt5GfLzK8nciar92fc3i3yN11zA1cdnWfoZEiF0wOCC7K9D4iuzzkuJ8/ITK+tmcb308S+cHk\nOLqi7FsgMvdG32ycTxR5t5pIjsWCKxGRrLMiX9QSSVlr3YY9U2RNB5HEf1q3kZ8nsm+QyM7ehr2i\n5J0T2d1J5PDDxhgylzYcIqcmiiQ0FMna7fqcrI0iR1uKpAwRcWQUP+5wiJy9TyQpSiT9I88+24+I\nXOghcuF6Eft+z+eWAKWRB17Z+4ev9yuNR8VbgYvA2Mdgyyb45keIsJAtApCwG8aNgPe/hhq1rPvy\n4iMw6CFobKHTYAHb14ItALre5v6cnxfDnx803462MKcOQnx3iLTQFqAw4bEQ7CHLJyQCYkrol17r\nT5CV6psfjW4Gm4JMH3pwRDWDer0hweRA6MKExDhDKRbazhYQEAodFsHxD+CkxeZQKhDi50FwDdh7\nCziKhHUCo+Hq5cAFOHS7sdouZsMGNZ+HGs/C4V5w6Yfi54R0gHobAAVJnSC3yCcpmw1i5kC11XDp\nJTg/1P0UnoA4qLrCaC2b0RlyZrn+hFBWXKE0witFxRJwEXhuMmz82Rji4Go2pjecPwevTobJM6B1\nO+v+LF0AWdlwv8lWo0X56AW4dYT7vHN7HiycCT1Nzq4sysHN1trHFuXMASOE4Y5K4XDkF9fFPAVU\nrQfHfvHNj+AwIxPk4JKSz/VE+wmw9Tnr4gtQf4ARTtk1ybqNkJrQYTEcewtSLea5q0CjE2GlerBv\nIDiK5F0HhEHcHKPZ1YGbwO4mCydqCDT4BpKGw9mZxUM7tspQ/SOIGAEnO0PGd8VtBLeC6puBYDhz\nLeRuc+OzDUKGQ9h6yJsHmTdD/nGz33npUMFCKBVHwEVg3JOwZi0sXgaRkdbs5OXBP+6Ehk3gL0Os\n+5N6Hl54FEY+ba3TYAGJW+FoAvTx4MuGJcZA47pNrN8HfOtAWJiSYuA2G1QKgxwPRRu+xsALaDYQ\nfvUhnRAgpgXUvh72+Jje9qfxcPxzOGMxKwWgamtoNAa23Q5ZJ6zZUAHQ9N9QpTUk9ivehEoFQYOP\nIKyDs5jHTde/sM7Q6GfIXAWnHy6eNaIURD4ENb+BcxMh9dnisWxbGES/DxHPwtk+kPWO+zh/QDND\nxAN6Qfq1kPth6RfqlIQW8JLxZjrFZYjA+KdgzWr46muIirJ+82fGGOX1E0wOui3Kq2Phpr9AG5Ol\n4EWZ9zIMGgNBHla0P5TC5iX8nkLoKyUJOBhpgp42MsNijT92swOOi9L0Vji6EvIsZoEU0G4S7HjN\nNzuVYqDdW7BhmPWsFIAat0HcY7D1NrBbrVy0QYOXIPRqSOxbvCe4skGdaRA9BPZ3gWw3raqD46DO\nXLAfhaS+4HCxYg/tDLWXQs5K+O0WcLjoNFl5EFTfANkfwMX+kO+mClYFQsh4CFsBOa9DZn8jlbGs\n0ALuFd5MpzAQgQn/Byt+gh+W+ybeH78Pa5fD7E98iyX/sgJ++QkeL/4msHr1au/tnDgA21ZB//vd\nn3M+xRir1uNO834WxmF39kC59rKnTflbQEl54OB5qAM4UwmtrcIv8zk0Gmq1h0NLTdu5jNhWUKMj\n7HvPNzv1BkBMB9j5e4GPpde44RNQtS3sHGI9Jqxs0HA2VG4FiTeDvUi6pFJQcxzUnAQHejjL8F34\nHBABdRZDpZZwvBPkukj/DKwJ1ZdDUHNIaQe5212ccxVEroeAeLjQBnI9zBoNaAXhm4x/M/qW3Upc\nC3jJiBfTKf7LpAmwfCn8+JP3g4tdsXE9vDgB5i6GCIuxc4CsTJj8AEyeDeHFUxdN/bHOfw1uHwWV\nPeSvL5sHXQdCqIUc98IkJUBUbQi7PPRkWcBLWoGHepFKGNvYdwEHo6jH1zAKQPunYfsrYDc5OLko\n7d64LJRi6TVWClrMBnsq/OrDHouyQdwsCG8PCb0Ne0WJHQ71ZsOpSZC+wrXPKgCqz4Cox+F4N8hc\nXcwMKgiipkHkS3DmJkh3sTGsgiH8FajyHlwaBBlT3KcQqmAIeR7C1/tWeGYGLeClzA9LDPGOibFu\nI+k43H8XvDkXGjX1zZ83p0Cr6+D6fr7ZOXsKVn4Jdz7i/hwRWDoH+vzdt3tB6YVPwMsQioehDgXE\nNoGzPhTzFNB0ABz4Dhw+VvZVa2s8EjyMGfOG0gql2IKhzQI4vQCS5li3oxQ0mAlVukDCjcUbXAFE\n9oea4+H4YMjx8DOJfABqzYfkuyHVzesUdhfUWAMXp8L5kbgcyBDcByK3Qd56SOsFjiQP/luorraK\nFnCD0ppOwdIVEBvrmzNvvQYPjoFeHjszlkxGOqxfChMsNkEqzI51cMswiPTwvZ1NhqrVoGUplAln\np8OfevpuB6B285IFvHar37sOuqNOGyN90lci6kD97nDhkO+22j0NJ5b7bqfeAKPA55THZnIlExwD\n134Hh18Fuw9ZMkpBg+kQ0RNOTHZ9Tlh3aLITKpWwWR52A9RfC+dfhiw32TJBzaHmJnCchrQprs8J\nqAVVlxpintbPv+mDBVSwNEIlZb3LW/jmSq0CnhARl/lFSqly8j6n0WgqAiJiOdZiRW98uV9pUApJ\nwT7j9gXw94uj0Wj+d6iIeuOvNEKX0yk0Go1G4z1+DaFoNBqNxjrlPgtFKfWcUmqnUmqHUmqFUsqH\nSQRXHqXUq0qpBKfPC5VSPuQslg2mC6v8hFKqj1IqUSl1QCnlZupF+UEp9W+l1GmlVCmOjLmyKKXq\nKaVWOX8f9iilHvW3T55QSoUopTY69WGfUmqqv30qS8r9ClwpVUVELjm/fgRoLSL/8LNbblFK9QZW\niEi+UuolABHx0OTb/yil4jH21d/Bw6ayP1FKBQC/AjcCJ4HNwGARSfCrYx5QSnUD0oG5ImJhfFLZ\no5SqCdQUkR1KqXBgKzCgnL/OlUUkUykVCKwHnhSR9f72qywo9yvwAvF2Eg5YnERbNojIcpH/5kNt\nBOr60x9vMFVY5T86AAdF5KiI5AGfAf397JNHRGQdYHFmm38QkRQR2eH8Oh1IAGr71yvPiEhBsn0w\nEAC4SHT/Y1LuBRxAKfWCUuo4cC/wkr/9McEw4Ht/O/EHoQ5QuLtTkvM5zRVCKRUHtMFYiJRblFI2\npdQO4DSwSkT2+dunsqI8pBGilFoO1HRxaIKIfCsiE4GJSqn/A2YApVCaaJ2S/HWeMxHIFZFPytQ5\nN3jjczmnfMf6/mA4wydfAaOdK/Fyi/MT7zXO/aalSqkeIrLaz26VCeVCwEWkt5enfkI5WNGW5K9S\n6j6gH3BDmTjkBSZe4/LKSaDwBnY9jFW4ppRRSgUBC4CPReQbf/vjLSKSppRaArQDVvvZnTKh3IdQ\nlFKF63r7Ay7anJUflFJ9gLFAfxHxsSuSXyivxQxbgCZKqTilVDBwN7DYzz794VBKKeADYJ+IlELP\niCuLUipWKRXp/DoU6E0514jSpCJkoXwFNAMcwCFgpIic8a9X7lFKHcDYTCnYSPlFREb50aUSUUoN\nBN4AYoE0YLuI9PWvV8VRSvUFXsfYqPpARMp1yphS6lPgeiAGOAM8IyI+dKW68iilumK0ed7F72Gr\n8SLiY1OXK4NSqiXwEcZi1AbME5FX/etV2VHuBVyj0Wg0rin3IRSNRqPRuEYLuEaj0VRQtIBrNBpN\nBUULuEaj0VRQtIBrNBpNBUULuEaj0VRQtIBrNBpNBUULuEaj0VRQtIBrKgRKqfbOIRmVlFJhzmED\nzf3tl0bjT3QlpqbCoJR6DggBQoETIvKyn13SaPyKFnBNhcHZJW8LkAV0Ev3Lq/kfR4dQNBWJWCAM\nYzJTqJ990Wj8jl6BayoMSqnFGD3hrwJqicgjfnZJo/Er5WKgg0ZTEkqpoUCOiHymlLIBP/8vTV7R\naFyhV+AajUZTQdExcI1Go6mgaAHXaDSaCooWcI1Go6mgaAHXaDSaCooWcI1Go6mgaAHXaDSaCooW\ncI1Go6mgaAHXaDSaCsr/Ays+98FUSMgnAAAAAElFTkSuQmCC\n", - "text": [ - "<matplotlib.figure.Figure at 0x10bc1c050>" - ] - }, - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The acceleration at x=2 and y=3 are a_x= 1.68 m/s^2 and a_y= 0.72 m/s^2\n" - ] - } - ], - "prompt_number": 6 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter04_1.ipynb b/Fluid_Mechanics-Fundamentals_&_Applications/Chapter04_1.ipynb deleted file mode 100755 index d747961e..00000000 --- a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter04_1.ipynb +++ /dev/null @@ -1,195 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:a9d9c8590586ec3e8a7506eeddb2c5a00fb67f0aefc6c82bd4f6542b3faf29e6" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 04: Fluid Kinematics" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.4-1, Page No:133" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "%matplotlib inline\n", - "\n", - "#Variable Decleration\n", - "#Defining u and v in comments\n", - "#u=0.5+0.8x\n", - "#v=1.5-0.8y\n", - "a=0.5 #Velocity component\n", - "b=0.8 #Velocity component\n", - "c=1.5 #Velocity component\n", - "\n", - "#Calculations\n", - "#Part(a)\n", - "x=-a/b #x-component of stagnation point\n", - "y=c/b #y-component of stagnation point\n", - "\n", - "#Result\n", - "print \"There is a stagnation point at x=\",round(x,3),\"m\",\"and y=\",round(y,3),\"m\"\n", - "\n", - "#Part (b)\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "\n", - "Y, X = np.mgrid[-1:5:100j, -3:3:100j]\n", - "U = 0.5+0.8*X \n", - "V = 1.5-0.8*Y\n", - "speed = np.sqrt(U*U + V*V)\n", - "\n", - "plt.streamplot(X, Y, U, V, color=U, linewidth=1, cmap=plt.cm.autumn)\n", - "plt.colorbar()\n", - "plt.ylabel('y')\n", - "plt.xlabel('x')\n", - "plt.show()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "There is a stagnation point at x= -0.625 m and y= 1.875 m\n" - ] - }, - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEPCAYAAABbbZ8rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4VNXzuN+7SQhpQAKht5BQRaoUAWkiVRBBFPyAgAXE\nAgJSBFGRoqIiIlKUKgIiRQQEpEjvvUMoIYQSSnrPlvn9cYmGZHfvvZso8P3lfZ77sMmdOWeyCbPn\nzpkzo4gIeeSRRx55PHqYHrQBeeSRRx55uEaeA88jjzzyeETJc+B55JFHHo8oeQ48jzzyyOMRJc+B\n55FHHnk8ouQ58DzyyCOPRxT3Bzm5oihXgHjACphFpP6DtCePPPLI41HigTpwQIDmIhL9gO3II488\n8njkeBhCKMqDNiCPPPLI41HkQTtwATYrinJIUZQ3HrAteeSRRx6PFA86hNJYRG4qihIIbFIU5ZyI\n7HzANuWRRx55PBI8UAcuIjfv/XtHUZTfgPrA3w5cUZS8Qi155JGHbkTE5ZCsK/4mJ/PlBg8shKIo\nireiKH73XvsArYGTWeVExPXr7h2kZjnk92XGdT8bgfR7HrHZDOl9PGI40rQIcvF0zmzPeq36HhnX\nw/49czrStSASHZn9nsWMvOSDJMTYt/fjjx3P+fNgZO2X9u8dWIrM6PbP11YL0h9979fG8ciakdpy\nVgvyaQEk6a62zUd/RFa+pD2mzYrMq4hc360te2EJ8ltD7Z/JkoKsqohErDb+Hjv82c3I/pbI+dHa\nsreWIHtLIylhdmxLQk63QC72UX92nfN/PPJ/yNlAJGGDfptt6UhUf+RGdcRsx5a0LcjtYkjiV4b/\nX+m5cgOx6b8eBh5kDLwYsFNRlGPAfmCtiGzMtdEtFhjxLjzfHTq9YEz3yD5YPh8mzATF4Afs4R3Q\nqisEVzOmp8VfS6BlD/v3zu6FkiHgXyz7vfDTUKMV+BYyPmfCHSgQaP+ezQKmTA9wJjf1slm0xw0o\nDzFXtOVMblCqHkTs05YN6QiXN4AlzbmcYoLH+8PJWdpjVugG5gSI2OBczi0/1J8OB98FS5L2uHow\nuUPNJXDjJ7j9h3PZot2hzHA40QbS72SxzRsqr4HUyxD2pn7P4xkCZVfBtVcg7hd9OooH+M8An9fg\nViNI23v//XwtIWA/pC6GhDdBEvWN+18iBq6HgAfmwEUkTERq3buqi8hnuTrBB4MhNQ0+nGBMLyUZ\n3u8Nn06DIkWN6V69COePwVtjjelpcesqhJ+Bem3s3z+0Huq2tX/v/F7wccF5A8TfAT8HDhwTFCpx\n/7fc8oElXXvcgPIQfUWfDWUbwdU92nK+xSC4HVzdoS1btTfEXYKUu87lTG5Q92M4Mg60VnglWkFg\nEzjxqfb8evEsCrV/g9N9ICHbw+n9lHoXArvBqfZgSbj/npsPVFkLyafhyjvaP0sG3o2g/CaIHAqx\n8/TpKAoUeA8CfoQ7nSBpcRZbykHALjD5Qlx9sJzRN+5/RZ4DfwiYPR12bIHv54GbmzHdL0dD9brQ\n3uCqHeDbD2je7WUobGclnBO2/gJNuoBHPvv3D66HJ9rZvxe6Dyo/6XDo5s2bO57X2Qo8PQmSY+//\nnrtOB+5f3oADfxKu3r+Sc2hzyXpwVsdq0bsI+FeGUz9qywZ1hXw+cOU3bdm6X8OleRBzv7N1+h5r\nUbAuVJkCx56DdI0PnPLjwLc2nO4C1ixPIm5+UGU9JB2Bq8M0nfjfNuevAUG7IOZzuDNS/wreqwMU\n/QtiR0HchPv1FC/w/RryD4P4ZpC2SP1++hwwr9M3/r+FzcD1MJDbcahcjmmJbr7+XKRdS5F1q0Uq\nFhO5fFG/bgZ7t4nULykSE2Vc98A2kbc7iSQnGdfV4o1aIoe32L93O0Lk9aoi5nT799+sJBJ23LV5\nB5URuR1m/962mSIL+t3/vfcDReIitce1WkU+ryaSlqwtmxwt8kVJEYtZWzY2XOSbwiIWB+9FZm4f\nFZldWp/s1fUiv1YSseqw4cIckV09RKwWbVkjhI4UOdBMxJrmXM5mFrk4UOTs8+rrrJhjRC4+JxL+\nlojNqn9+y12R8EYiN3qIWFMN6EWKRHcTie4gYo22Y89xkeiKIgldRRI8RRKKiNhS9I+fiXv+Imf+\nJk3/ldP5cuP6v7MCnz8Hdu+A7s/Dd3MgKNiYfkI8DOsLE2dBoQBjuhYLTHwXOvYEL29julpcPQcx\nt6BmM/v3D6yFkDrg7pH9XnwUxEZCmceMzyviPIRiNYNbliQmvSEUkwlsZoi9qi3r5Q9eARB5TFu2\nYFnwD4Hwv7RlA2tBwQpwScfKunQb8CkNoXO1ZYP7QOoNCJ2qLWuEkAngXgDOvet89ay4Q9AksKXC\nhVdArPffdy8E5RdAyjG42u+f+1aNeLRbYSi9GSQdrrcBa4w+u92KQaFF4FYJouqC+Yj6/bQVYL0A\n7jWgwC6QDSBpQBKkf6Nv7H+DvBDKA+DmDYi4qjpSFBg+GO5qPG5mRgQ+GADP9oCnnzU+/9KZ4B8I\nrV0Iu2ixdy20f91xKGjfaniyk/17ofsgpJ7xMBJAaiJUagL5fezft1rALcuHRpna+hw4QOEKEHVJ\nn2z5pyBc5/GAKt3g3DJ9sjUHwjEdjlZRoN7ncGQsmDU2KRUT1J8NpydAwkV9duhBMcHjiyB2D0R8\n71zW5AmVV4D5Flx6I3vYw60ghPwJaZcgvA9EzYKzRbWdsskLSiwFz9oQ0RjM4Tpt94ACk8HvC4hu\nA4ljIPklSOqj3rd8BkravTPZKWD+FB5UdY08B/4AWPs7WMzqay8viIyE0HP69Rf9AOdOwsDRxueO\nug0zxsKoqcYzVrSwWmH5t9DUwQdDSiKc3gV1HWxuntsLVRzHv50SfwvuXHZim/n+LBSAOxe1s0Ay\nKFwBopyMn5lyT8EVHZuTAFVegNBVqn1aBD8HiRFw67C2bGA9KNYETn+rLesXAo+Nhv2vaceMTw2F\n2xpZLhm4+0Gt1XB5PNzVSNhy84Iqv0NKKIQNzL5qd/OFkD8g9QzceBuwQbSOjUrFDYp+AwX7wdVG\nkKLjvcsgfzcI2AjpnwNWsB4D8xZQQsDUCJSSgBuQCklVwHZL/9i5RZ4D/49JT4fRw9U/0Kdbw9xF\ncC0KGjVxrrdxDezYDCePwKQPYdYy18If346Cjr0gxIUwhRYHNkCRkhBcw/79I5ugcgPwKWj/fvRN\nqNLItbljI6Fgccf3bXZW4O6e+h14gEEHHr5LX/ZEwXJQKBjCt2rLmtyhxttwXGe444kJcHIypOp4\nuqs0EMQMF2c6lyvRGY70hqQwfTZ4B0HNFXDhTUjQcJ5uvlD1D0jYD+HDs79/aRfBch6wquGLu1/r\nz1Dxfw+KToWYwZD0qz4dgPRp6tMEAMmQ9AZ4DADv7eBzHXxSIf9+oCgk1wWrzg/u3CLPgf+HiEDn\ntmqI4PRlWP0ntO8IHnbiwVkZ/wF0bwfdW8P4aRBc2fj8Jw7AjnXw1sfGdfWw9kfoYKdEzI/D4NXK\n8MtEeNxBbNycBrt/dd2Bx2k4cJM75Pe9/3tGHLiRFXjB0uDpB3fO6pOv2g3C/tQnW/11SL4BCRE6\n7AiB4O5wUkeM1uQGDebCiY8g8YpjucJPQaVRcLALWJL12ezfGEImw4lnIfm8c1n3glDtT4jdCNcn\n3u+g435RHbfJT/3aEgnxa/XZAODXFQpPgZgRED0c5N4ZAEuYkw8CCyhFUFfa+UDCILE92O49qSju\n4F4ffE9B/hmQ+hKkjbgXH/8PyHPg/xEiMGoYJCVBaASUK69fNykJLoeqcdyYONi7Uw1XGMFqhc/f\ng8Gfg5+DFXBOiLoJx7dDy+7Z75nc4VoonD8EP4+DQY0gLeV+mfP7oVQVx6tzLbQceGqC+v5lxqgD\nj9bpwAHKN9UfB6/aHU7NA7MOh5g/AAJrw5FJ+sau/TFcnA3RGnnZAAWqQNX34dBbzkMpQQPBrxqc\nGKB/BRzYGSpMhGOtIVXjw8cjAKptgsRNcO39f+YoPhGq3oLSC6DQq6Dkg6tdIOWUPhsAPOtAiYOQ\nfhRutYPUv+B2RUhZYl/eZwEUug6FUqHAKfAcA5adkNQZbFH3y7p3BO8TYAuFlPpg1fGe55RHLI3w\n0XXgX06ELRvht/Xg52dM99AedYUEYLPC3O9hy3pjYyycCkVKqZkn/wbr50HzbuDtm/1eyRDwyK++\ndnOHAoXBw/N+mRN/QY2Wrs8fGwmFnDhwqzmHIZQgdQWu12EZiYMXKA0lGkCojgwTgNpDIXQRJN7Q\nlvUKhNpjYa/OU41V3ld/N6FOVu2KAjV/gLijcGWGPpsBSvSF0gPheGvtHPF8RSFkJSTugSuv/bNa\ndg+Ags9DmTlQLQn8noUrrSHVgLN0KwLF1oNHdYhqDVghfqgaQnKE4g5uFcH7UygUBW4hEF8TzJuy\nyAVC/pXg8R6ktATL9OyZNblJ3gr8P2DmNPh5PqzeCAEGU/4AZn8HaamQLx+07wLr9sEzHfTrXz4P\nMybA+5+rKXG5jc0Gf8yGZx1U2C1e/p8Y9BNt4ZPfsttxcis83sJ1G7RW4PYcuIcBB+5VEMrWgwSd\nG1VBLVQHq9fh13gVTupI+wPwLgZV+sBRnavwyv3U9/+Cjk0/kzvU+gbOT4IoJyUB3H2g3ko4/wlE\n6zh5mkHZoVDkeTjRLvsJzGxzBEClzWC+BpdeAluW35XJBOV/gxJfweWnIXGzfjsUd1Bu/xPftsVA\n8hyduvnBezL4zIekVyF5MEhqpvsKePQFrwMgy8HSBERnOM0oeQ78X+aXxfDNJFizCYo7cTCOWP+7\nuoHZ7jk4EgFzl0PdBvozSKxWGNkbBo6Fsg5yzSMMhAbscXQrlAyGyk/Yv1+4pBq+qNUSPvw1ez52\nWjJcOgzVNDZynRF707gD9wnMHlZxhtUMdzRiuBn4B0FcONw+rU8+pBPcPgFxV/TJ1xkG536CpEht\nWcUEjWbC4VH6NjR9ykPdWbCvO6Q7SdXzDYHa8+DSZ5CiI0c+gwoTwK8OnOqqHUd384GQNerf+4Vn\n7ed/F3oZyi2HiP9BzHx9NljvQuqvahgGHyAN4gaBRcfeQgYeraDAcbBdg/h6YDmexfYgcN8MplfA\n3BSsX/zzJJFb5MCBK4pSRlGUrYqinFYU5ZSiKAPtyDRXFCVOUZSj964Pc2Luo+XAZ/8AY0bD2s3G\nYt4Z3L0DowfCS31g/ioINFjrBGDOV+DlAz0G2L9/+hC80hiSc1DUaPGX0PJlxx8qN8PU8M2EdfZz\nvM/ugfI1wMtO+EUvcbez1zrJjD0HbkvXF3fOoGhluK0z3VNRILgNXNS5OenuCdV6wMn5+uR9SkDl\nnnD0K33yhWtDUHc4NEKffKnO6nWwr/OniGIdoEgLONQOzDoPyygKVJoOftXhbEewavztmTyhwi/g\nWRZCW4HFTs61T1MI2g63PoXIj7WffNyKQIlEKLIX/OeCzzBQPOF2JTAfd657n20B4PMreI2BtGcg\nfRRIpv0dxQRuA8DjINg2gqUR2HR+qOshZytwMzBYRB4DGgJvK4pS1Y7cdhGpfe8anxNzHx0HPmUy\nTPoMNmyGipWM66emQp/O8EJPmKrj0dceF07D3K9gwhz7oROLBcb2g8FfgLeDAzBaXDwBl07AMy87\nltm2BF4a6Th8c3JbzsInAFHhEFDa8X27IZT8YE61L2+PwMr6V+AAIa3hkk4HDvB4X9WB663fUWc4\nnJ0Lybd1yo+D6xvg1m598jUmQcp1uKiRthg0BIq0hsOdwZoKqdcg+YJzHcUNKnypOuXTbcASryHv\nDuVmg28TiBgA6Veyy+SvAsF7wXoZbnQBa5zGmJ7g8Th4vQgFJ0GxWCjwBUS1gsSp+sNfigL5XgSv\nE2C7CCk1wbo9i0z5e6vx18HSHKy5VAsvBw5cRCJF5Ni914nAWaCknVly7cDIw+/ARWDcWPhxFmzZ\nAcEGj8iDGlMe2AdKloGR41yzw2yGEb1h8AQoXd6+zKKpUMBfzQt3laVfQ9d3IZ+n/fupybB/LTTt\n5niMIxuhtoPqhHpIT4WkWCjg5AnF7iamQQdetArcNuDAg1pCxF5I17nKL1YbPAvpywkH8C0Ntd6D\nY1/qk89XAOp/A+e+VR2tFqZ80HApnJ0A0Qedy1b5GjyLwdEusK8mnNKxWa64QcU54F0DTrUCs8Zp\nRkWB0l+CbyO48CQk7sou41EMSswG9xIQXh/SDKx2TSbwHQhF9kHKIoh+Fqw6PxwBTMUh/6+Q70tI\n6wlp/UAyFVBTFHDrBx6HAIOJDI7IpRi4oijlgdqopbKzztBIUZTjiqKsUxQlR3WnH34HPnIYrFoJ\nf+2AMmVcG+OLj+BGBEyd7/qm49xv1Jj3iw42Fm+Ew+yJMMaFGuIZ3L4Gu9dA5zcdy+xfC5Xq2a/9\nDerhnZsXoUpD12wAiL0B/iWdv1fe/uCZ5SnDI7/+TUy4twI3cGI2f0EoXgvCDRzuqDcQjk3TL199\nAJyfDzE6P1jKdwMEjo7SJ+9bAerMgHOfQKqTDVzFBBU/gdhNaogj4Xj2Wt+O9IK/hwJPwamWYNbQ\nURQIHARl5kF4F4heANZoCG8J5nvxa5MnFJsOhUdBRHOIX6rvZ83APRiK7AKPWnCnFqQaeIoCcH8O\nvE4B7pDyGFhWZvkZyoHbO8bGdISTtMFtO+GTz/+5HKEoii+wHBh0byWemSNAGRGpCXwHrMqJuQ+/\nA9+1EzZthWIulmj96UfYu0ONeefP79oYO/6EBd/CqCn2nbMITHwHer4H5Sq6NgfAiu+g7Svg5+9Y\n5vgOaNXb8f1D66B2a/vFrfQSfc15+AQg5lr27xkNoRSuAHHXjemEGIiDA1R+Ca7vgliddVe8AqHW\ncNg7TJ+8okDDmRD+K9zcok+ndFfwrwv7O4M1xb5MehQcbgZkpMzZ4NYK/TYFfQUBHeFEM0i/qa1T\noC0Eb4NbY+FyHUjeAXeyHFAr2BtKb4S7H8DtIc7TBLPZ5AEFJoD/Ykj5DhIHgE0jzHOffkHwnA6e\nSyH9Q7C8DmJgo1cvTlbczRvBJ8P+ueyaqSgewArgZxHJ5pxFJEFEku+9Xg94KIriQiqdysPvwDds\ndi1VEGDxfJj0KXw7D4o4akzggPg41THfuArDesM3i6Gog029zSsh4hK8Otw1OwGS4mHtbOj2nmOZ\nO9fgr8XQ+DnHMgfWQn0XCnJlJvq6tgO3mtX635nxyA8WA87YzQNCWkCUgaJPIe0g3kBmQz4fePw1\nOGKgOmCNgRBzGq7pdMieheHJebCnD6TpLMJUZSx4l4Mjr9qPDZs8odhL6iEck4/qLMOdLPuyoihQ\nbhwU7alWJUzV8R7nrwZFet/LHLFC/JJ/VuF/y9SGcocg/SxEtFJPbxrBszkU/Fn9eWKrQ7rB8xdu\nTSD/UTCVA2sdsE0y9kGiRc6yUBRgDnBGRKbYG15RlGL35FAUpT6giLheuevhd+BGD+lksHwxTBgN\nv212XFo23UnlvNY14M1u8PYL8OoQaNDMvlzMXVi1AD6a5bjhgh42LoJGHaFEeccy6+dAix6Os0vM\naeoBnjo5iH+DvhW4JV0tH5sZozFwUB1spIGTfyVrw/V9+o/VA9R+B84shDSNTbgM3Dyh4STYM0Q9\n6KXLrmegbFfYr/M0paJAnXmQfEUNp2TF3ReqTIOmd6DuFijeE1LD4ayD7CdHlBmlduo52wQSNDZb\n0y/A3XH8fcxQUiFycHY5twAotRZ8WoPNhWwrUyHwmw2+cyHxLUh4JfspTKf6nmAaA277QbaCtRZI\nLtVMyVkMvDHQE2iRKU2wnaIo/RVF6X9P5gXg5L1WklMAO0et9fPwO3BXWL0CxgyF5RuhooMaJwt/\ngP4v2b93NQyi78DGVXDpIvTob19OBD58DcpXhrpPuW5vUgLM/gS6D3UsY7XAHz/Csw5sATi5HcpV\nh4JFXLcF1Dzy4lWcy1jTs6/AfQLAw2BBsBI14OYJ/fKKCap2gbMrtWUz8CsN5dvCSZ0HSwAqdIF8\nheCczsNAALU/g9jTELZIn7ybFzRYBRE/QYQDHUWBgg2g+kKotQ5uLYUbBrOoivaDoPlw4XmIcnDE\nHcC9NBSfAYVeB88agAckroBIO6mSihsUHg35XEgqyCBfK/A/CUoAxD4OacuN6SvBYFoHpk/BNtt1\nOzKTsyyUXSJiErVNZEaa4HoRmSUis+7JfC9qC8laItJIRHQ0fHXM/z0HvmENDHsLfl0PVR1UCFy9\nDL4eCx85yDbYtVnNXLFaITEROtS1n9e9ZAZEXoNBBvtuZuWXyVDvGQh+3LHMvj+gaFnHlQkBDq6F\nehrhEz2rw7BDUEDjQ8Bix4GLQKyd2LgzStSAGwbyhAGqdoWzOuPBGdR9Tw2j6Gm6DKrjbDwZDoyB\ntFhteQB3L2iyCA4NgQSdh7nyF4OGa+DkYIjSWCEXaQf19sKlMXDdwAcLQKG2UGULRIyE6+MdhG28\nwP8NKPEjVDgOVdKg2AyImw2R72Y/uZkbKL7gOwX8lkPyhxDfDazXDegrYOoKbj/ljj25lIXyX/F/\ny4Fv3gCDXodf/oDHa91/7+NhMHUSbNsIo96BResgKMT+OCt/hvQ0yO8F7u7wROPsGRmhp2Dax/DV\nEvVIvqvE3oVlU+F1jUbIa2ZCRyfZKTab2vi4gYPmDhmMqAeRGs7lzhUoUt65jNVOCCWfF5gdbMo5\nwugKHKBsE4i/BjEGTryWqA++peCCgU3/wLpqA+RDBurEB9SEOp/B7hf0VxcsUB3q/gQXJkKCRpNf\nn8pQZwtc/giuG3iiAPB+HKrtg5hVENZXPXjlDEWBgDch5BJYbkB4Y0jXuRlsFI9GUOgY5Guo5n2n\nTQLR2RwkN3nEHPgD73up2aNOL2t/F+naXmT/nuz3kpNFSnmJFPcUKesjsm+n43FOHhEpg0jtoiI/\nTRdJiM8uk5Is0rG6yIq5+u1zxLdDRCYNcC5z47JI58IiqU56SJ7aJfLmY87Hib4p0quQiMVJv0ab\nTaSvj0hSrPOxvmkjEnbo/u8dWSEyo7NzvaxYrSKj/USSDPYhXf2GyO6vjOlcXi/ycx1jvSBTY0QW\nlRK5sU2/js0msud/InteVl/rJWKhyOZSIomh2rKJ50V2lBa59qP+8TOwJIqEdhY53Uwk/bY+HZtN\nJGqqyPlAkbhfjc9pBOsFkaQOIgmVRMzrdavd8xc58zdX9V85nS83rv8bK/D5s2FQf/jgE6hvpwPN\nhtVq7DQ9DdLNcNnBKiIxAXq3h8Yt4XAk9BoAvnY2Ub8aDsHV4Pk+ObP7VgT8MQ/6jnEu99cval1w\nTy/HMtuXQFON/ZBzu6BKY+ct1hLuqqERb40ytNER2Ssg5vM2vgI3maD443DTYKlQV8Io5dsAClww\nED/3LASNp8OO1/SvqBUF6v0I8efg/Nf65yrdU8393t8KksOcy/pUgrp/QfRaiPhK/ylHuFcPZTkE\ntIXQepB0QFtHUSDgXSizHm6PhNsfgM1A2QQjmELAey3knwyp70BKZ7DlsL6QXh6xFfij7cBF1LKy\nX02A9duhbj37ct9/9U8MWzHBkP6QksXRmM3w5gvwTCdYvNnxYZytf8DWNTB2Vs5bqM39FJ7rB0Wc\n1BxJjINfv4L2Dg4QgbrBuWsZNNNw4Gd2QlWNzdY7YRAY5FwG1IwX9ywO3MNL/ynJzLgSRglqAUm3\nIM5ASqGiQOPxsPdj/dklAOU6QWADOKTxQZsZdy9o8huc+xpuarQ/y0zZ16HCMNj3NKRo7Cd4V4RK\n0+DWArg4EENlVhU3KD4SSk2GsGfhzjT1/5P5BsSvcaznVReCjoCSANdqQqqd05u5hXsH8DkFpvqQ\nXB/SPgL5lz40Mshz4P8RNhsMHwQrfoFNux3XR/ntVzh6SK3Y91RLmDQNjoervTMzEIGR/dTDL+O/\nd+yYL5yBkX3hm2VQoFDO7L90GsJDoadG7vjv06F+OyhZwbHM8a0QWFatE+6Mszoc+G2dDtyant2B\nuxIDByjbAG4ZLEjklg8qtIRTi43plWujrqrP/2JMr9G3cHEx3DKQNOBTFhothX29IMFA7Lj8O1Du\nLdjfElI1DuF4loZauyD5LJzuClaDDq5QF6i4B6LnwJXuEPEcXOsC6U4aFrsVhMBpUPhLuPUiRA0F\nmwu/dz0o+cFzFHgfBdslMDcD6yJ017cxSp4D/w9IS4NXX4YTx2DDDihhr14McPwIDOillo4Nj4dV\nW6Dna1A0y6nOb8bC+VMwfam6aWmP6LvQvyOM/ApqOFjp60UEvnwbWnaDAk4OKaUmw4pv4eWRzsfb\nvgSa9XAukxQHN0Mh2EGJ2gyirkKRcs5lwPEKPJ8LfUVL1oQrOrvtZKbWq3BsrrHwQcYqfN8n+hof\nZ5C/CDz5Lex4FawGsjGKNoXqH8OuzmC2U7rVEcHvQ6leajglTeM4vHtBeHwduBeA4y0g3UC9EQDP\nENWJWyMg9TAgEDlIW8+nM5Q+oW5wXq8FqXuNzWsEUxnwWgTu34BtClieBJvOImJGyHPg/zJxcdCn\nu+rEV/0JhRyshPfvhhfbwo9L4OdV96+4M7NsAaxcCPPWZq8gmJIMnRvCsQPw7gvQ9gV4/hV9djpz\nKusWQnIidNU4lLF+LlRtAEHVHcuY02DvKmjqIKc9g/N7ILie9mGjm6FQTGMlD2rNk2wxcB+IduF4\nc/HqEBMOqQaOVgOUaqg65GsGHUeZFuBXBs4aTD2r0E0tI3vKQFwbIGQAlOoEB3poZ37cp/chlHgR\nTvaCVI3UOlM+qLwA/FvD0UaQHGrMRvM1MB9B9UxWSFwPyVnrMNnBrQgUWwL+E+FWF4ga9u+txgFM\nTcB9P5jeBUsPsLwIkovx8TwH/i9y7hw0aQCVq8PPyx075a2boFdnmLEQOnZxPN6SuTDpY1i4AQLt\n1FrZsRHOHIUXmoDFCkMn6rMzMgJ6Pql2/clKXDR8NxxGznS+mWgxw9Iv4X8fOJ/r0AZo+JxaH9wZ\nl4/BEx21bb95HkrqaPBssbMC9/SBNBdO5rl5QMlacO2QMT1FgZp91VW4UZ4cB4e+Nnb0X1Gg0RQ4\nNwMiDDT5yqufAAAgAElEQVT/VRSoPlaNOx98RX+sWlGg4kdQ+Gk40BiSNAp/KQoEjYOyI+BkO4jb\npt/GtNPg5g+4qWELzBDeAtJ0FvXy7XpvNR4Od/8HaVv1z20UxQRuPcHjHCg1wFwPLDnqi/APj1hP\nzIchVdANOAqssZvWk8Hvq0RKBYrM10jdW/ubSKVAkb1OUgVFRBb+IFKntMjF845l3nxBpBzqVcVH\n5IDGmCIi6ekivRqJzPnc/v2J/UQmvaM9zvr5IoNbast98IzIlp+15d6rKXJml7Zc/6IiUdecy9hs\nIq8ragpgZlISRAZ6a89hj9WDRbZMNK4Xf0NkUiGRtETjuutfFtk/zrhe5C6RxUVF4sOM6VlSRLa3\nEDnc31h6oYjItfkiW4uJxOzTJx+zReRgMZHrXxqby2YWSQsTiVsncqGKyNkCIvG/G7M1eZXIzXIi\nUT1ELNeN6bqC7YaI5ZfcSSMM1X/ldL7cuB4GBz4EWASstvuGWq0iYz8SCS4jcmC/81/kwrkidSqI\nHD3kXG7+DJE6ZUQuOcm3NZtFKnqqzjvIpL7u1cb5uCIiU0aK9G+T3bmJiBzfLdK+pEiCRo61iMiM\nYSKHNjuXuRYq8mKgSFqqc7mo6yI9/UUsZudyiTEifX21/8Ob00U+a5L9+1aryAA7jl0PR38RmW8w\nhzyDJR1Ejs03rhd3RWRWYZG4MOO6J78WWf2EiEXjvc9KerzIlnoiJz8wPufttSJ/BYrcXqdPPvWK\nyPF6Iue6iJh1/M3ZI2mnSGiwyLXeIpYY/XrWJJG40SI3CovEfy1iS3dtfgPkigM/r//6/96BA6WB\nzUALhyvw5zuKtHxKJDLS8W/ObBYZMVikZkWRC05W1CIic6eJ1C0rEnbRudzEYfdW3t4iI/uJHN6r\n7dh2bRB5upTI3Vt2bEwX6fG4yJ9LnI9hhB+Gisweri23aY7Ily9qy13YJzKqrrZcSrzI23727w30\nFkl1YTUcFSbyaQnjK1MRkTMrRBa2Mq4nInJggsjqTsb1bDaRzc+L7HnbuG7qHZE/q4qcm2RcN2av\nuhK/vkCfvDVV5NIAkSMVRZJOGp9PRMSaKHLjLZHzZUQS/jSmm35e5E5rkcjHRFK3uTa/TnLFgZ/T\nf+U5cFiG2rWimUMHPugdkbQ0x7+1mBiRzm1EOrYSiY52LCciMnuqSL3yIuGXncsd2SdSXlEdt1lj\n1ZrBresiLYqLHHTwRzprrMjEN11zUPZITRZ5sYjIjUvasl+8ILJlnrbc9vki372sLRd3S+S9QPv3\n3g9U7xvFZhOZ004kOsy4rjlNZEYlkchjLuimiiyoJHJ5jXHd1BiRZcEil1z4UE6KEFlXXuTSD8Z1\nE86IbC8rEv6t/r+n2z+JHCgicltHuM3hvBtVJx453Nhq3GYTSV4hcrOsSFQvEfNV121wQq448LP6\nr4fBgT+wTUxFUZ4FbovIUZz1iJvyneNaIxcvQMuGEFIJVq4HfweNEERg1hSY9z2s2AplneQ5nzkO\nb3SC6cvgs1mO0wozY7XCyJfhxQHwRLPs94/uguXT4fUxOT/8k8GOX9XOPCWc5IeDesjnxGZ9LdZu\n6NzANKeqtb/t4ekD6S5sZCoKePrC5e3asllxzwc1X4X9BrNDQN2IbT4Ntg8Ei8HsCc9C0GI57H1H\nrR9uBO/S8NQmiPwVwmYY0/WtCvV2w92lcKaHdhNjgMBeUO0vuDYWrrp4itL3GQg+CW4KRFSDhIX6\nUjgVBby6QNEzapXDuFqQNBJsOouE/ZfkZaHophHQSVGUMGAJ0FJRlGx5XZ988snf17Zt2/65sXUz\ntG4C7wyBL6c6drRmMwx9E5bMh2VboEx5xxZdOAO928Kn30O7rvp/kh8/U/O538hU9CjqNlw+C/Ex\nMKYnfDgbAh3kq7vCHzOgg47a0Of3QrEg8C+uLZuSAGVrasuZUxw78HL1IM1AvnNmglvAJRezF2r3\nh4tr1SJXRin7DBR9Ag4ZaJiQQeFa0HgGbO8IyTo632TGNwRqzoJLX0HoRGP57F6loeZmtSTtkYaQ\nfFFNUYwYCzYHmTU+j8PjB0Fi4GxtSNKRJpgVt4JQ5HMovgpip8CN5pCms567yQd83odCJ8B2F2Iq\nQcpkEIM15O+xbdu2+/xDrpADB64oShlFUbYqinJaUZRTiqIMtDeFoihTFUW5cK8vZu2c2fuAHwHu\nPbo4DqFkxWYTmTNLpEIxkR1bHT9PiYjExYp0fUbkpfYi8XaKUmXmcqhIg1IiKxc6l8vK0lkibUJE\norIUBfr8PZFa7iI9G4h88a6xMbU4d0BkRCvnRakyWD5R5Jex+sYdWEHk2lltuavHRD6uYf/epCdF\nLu7WN19Wbp8TmVjG9TDTxvdEtgxzTTc+QmRZY5GoU67pnxgnsraWSFqccd2U6yJ/VRc5NdT4z26z\niVybLrKrqMiZriK7FZEIBxlQmYn+VeR4UZHro0WsTkKUTue2iMR+L3I5UOTO+yLWBGP65tMicZ1E\nosqKpCxQx8sB5EYI5aT+K+t8QHGg1r3XvsB5oGoWmfbAunuvGwD7cmLzw5QHrr38iI6GF7vAkiWw\neQ881dyxbEQ4tG8MIZXh59+dd/a5cgl6PgPvfQLP6+j+ncGO9fDdRzBzHQRkadm2e/298MUBtba2\nkdWVFosnQMNOzvPIQZ1z01yo20F7zOR4iIuEEjp6ejoNofgZP5CTQZFKao50tIsHM+oNguNzIM2F\n+f1KQ7XesOl/xk5aZlB9NBRpCDu6qmUGjJC/JDTeDtG74fjr+muWgxqeKDUAKoyDmBWAwLVx2h3p\n/btB1eOQfBzON4AUg8XEQM1rL/gWlDmpdpu/WhUSl6llLvTgXg0K/A5+iyB1JsTWgfQNuft/xSg5\nWIGLSKSIHLv3OhE4C2R97O4ELLgnsx8opCiKiw1/H5KDPCKyXUScF7LesR3q14LyQbB2AwQ5if0e\nOQDtGsEr/eDz75zHsU8dha5NYcg46P66fqPPHIUPXoGpK6F8FqeXGK/2yAT1j3H6J7DIQE9GZ1w8\nBucPQjsdtl46os4fXEdbNuIklH4MTBofCgDpqVDAQUjGqwCkJmiPYQ9FgQot4NJfrukXKg9BreHY\nj67pV30dClSAfRqHp+yhKFBvGrj7wN5XjdfqyBcAT26ClAg4/JKxDxFrMlz75J+vbSkQbqeLTlY8\nikPwagh8Fy60hMjP9R8yyox7MSi2AIothqTFcLc5pBmoGePRBAruBu+xYPkWkhuAZfWDceS5FANX\nFKU8aoJG1jhVKSBzBbZrqNl4LvFQOHCnWCww9iN4pQd8/wN8ORk8PR3Lr10JPTrAlzOgn90Q1D/s\n2AQvt4Hx06BrL/023bgKb3eEj2ZA7UbZ7+/dqFa7y+cJ3n7Qewi0y1Hru39YNA5eHOa8tGwGO3+B\np7rr2zgNP64v/g1gTlY78tgjJytwgOCWrjtwgAbvw8Hv1JOiRlEUaPEjXFwGV/80rm9ygyZLICkM\njmrUr7GHuy/UXwMocOINMMfo07MlgfdjkK8UKO6q/u3ZEPGptq6iQJFXofIhiP8T7nxn3O4MvJ6C\nosvBpw9Ed4OormDWeZJTUcCzM3j9AflGQNrHkFwbzMuMfxjmBCcOe9sB+GT6P5cjFEXxBZYDg+6t\nxLOJ2JnVRXsfghi405hUs0YiHdo4zwMXUVMNhw8SaVJb+yCPiMjyhSI1iors13G6MjPxsSKdqovM\nddBMIC1NpGEBkfreIqvmiaSmGBvfGZdPiLxYXCQlSVvWahV5tYzIFZ25vz+8IfLnNH2yB5eLTOti\n/97SQSKbJ+sbxx5Rl0W+fixn6Za/9xA5rPNnsce1v0TmlRBJciEdUkQk9a7I75VFzrlog80icm64\nyPYQkXiDMXmbRSQlTOTiAJE93iKXB4lYnDQCuU/X6no8PNtYySLxX4hcLyIS3V/EcsOgvk3EvEYk\nsb5IYlWR9J/VU6JOIDdi4Ef1X/bmAzyAP4H3HMwxE+ie6etzQDFXbX74V+DPdYHV66CYkzBR2GV4\npjGEh8Hvm6FWXceyIjB9EnwxGpZthfpN9NuSnASfD4V6zaDPEPsyn70D3r6w9Q481wc8HcSKXWHR\neHhhKOTXUfHv/F7wLqA2OdaDkRV4erLjqoP5/VwPoQAEBAFWuH7Y9TEajoA941yLhQOUagFV+sBf\nfV17jPcsDC3/hLCZcH6ycX3FDSp/AcEfwoHmcGuVugq9MAxSNYqFKW6QvzwET4cnIiA9Ek7UhUQd\n76diUoti5QaKF/gNh+LnQfGDW9UhbgzYdP5OFAXcnwXvfeA5BcwzIakqWH4G+Rd6c2aQsywUBZgD\nnBGRKQ5mWA28ck++IRArIrdcNffhd+CDh2bvR5mZ31fA0w3hxf/BklUQ4KQ8q9UKHw1Se17+vgcq\nVdNvR2ICvN5eLWr1wbf2wxKLv1Nzvn87Dd4ulFV1RvgZOL4NnnXSFzMzGeETPVgtkBQLZZ00TM5M\nehJ4Ovj5vP0dh1f0Uu05OGOgd2VWitaEoLaw30HTaj3UGwupd+DkNNf0fctB03VwaRac/tS1D4JS\nveGJdXB2IBxtBxGT4cJg/foeAVD5Fyg9Bs60g4jxIAY2SHMDUwAU+hKKHlHL1cZ1g6Tx+nPAFQXc\nW4P3TvCcDbIEzBXA+iVIXO7bm7MYeGOgJ9BCUZSj9652iqL0VxSlP4CIrAMuK4pyEZgFvJUzex+C\nUInTRxpHpKSIDHlb5PEgkUMHHMtlEBMt8kZ3kVc7i8TqPEW2b7tI2AU1bNLtSZHRbziu87FtjUjL\nEiIRGqc8XWXquyLLv9EnazaLvFpW5LqO3ooiIleOiQyurN+WDV+LLHnP/r2ds0QWvqZ/LHuE7xOZ\nXC1nY8RdFZkSIBKvUZjLGbEXRZZWErm2xfUxUiJF1lcXOTbM9bBQ9E6RLSaRLYhszS8Sf8T4GKkR\nIqdaiZx6WiT5tGt25AbmsyJxvUTuBIgkjhax3jE+hvWoiPllkbQAEfMItZiV5FII5aD+K6fz5cb1\n8K/A7RF6Hp5pBLcjYccRx63UMjh+BFrVVUvGzlgKBXV007FYoH8X6NoEeraAx+rApzPtPw2cPQof\n9YXJK6G0jm42547AUgObRYc3w5410KGfPvmDa9V0wJI6UgJBrRVeyc5mrCOchVC8/SElhyfsSteD\nlBi4Y7CmdWYKlIGab8Cuj10fo2AwNJkJW3tArEYpV0fkLwYttsGtrXDkHeMbcmKD82/wd/1SWyqc\n6WN8Re9ZGqr9CUV7QWgzuDYCrC4euMoJ7lWgwE/gfwBstyG6EiS+D1YDh6BMtcB9EXgcBpLB/BhY\nhuaOfXknMf9FLBb4ahK0fAr6vQs/LXPc0AHUP/KffoCX2sCYL2DCFMfH8rOybrlaz/vuLbh+Az6Y\nbN95XwuDMa/C6BlQs6H2uDF3YEQXKKzjZCSAOR2mvgtvT9EX+wb4Yxq0elWfLEDoHqjUWL+8Mwfu\nVQiSdWZPOMJkUsMoZ3/P2TgNR8LFNXBH50lBe5RsAfW/gA0dIEWjM44jPAtD880QewIOvGosz1ts\nUKgZ+NUBd39AgaQTcPQZ4x8GigkCe0O1k2rvyzOPQczKB5Ou5xYMfj+A/3EgHWKqQcI7YL2ifwyl\nPLhPBY9QMOkoFaGHPAf+L3H8mNrMYcsm2LkfevV1nh6XnAzv9IYfp8LaXfBcN/1zicDkj/5phBwb\nA2Pezi539RL0bgHdBkDrF7THtVhg1EvQuge00mnP8ilQIggaO0+T/5uIsxB+ChrrsCeD0N1Q2cAK\n3N0TChS1f8/bP+cOHKBa55zFwQHyF4InR8H+L3LmpCr1geAesPE5Yw0gMpOvIDTbAMnX4fh7YNG5\n+jW5Q5WZUO8wNI2GZolQZS4knoCjrSHVhdIBHsUhaCGUXwA3xsDFDpBmoGdnbuJWBnynQsBZwAdS\nWkLKi2Ddo/93phQB0zO5Y0+eA89lUlPho9HQoTUMeAfWbYQgjTDFpVBo20B9vWG/ehrTCHOmQNgF\nNY/b3QNKlIGiWTrHh4VC7+bQ7wN4SWdo47vhakuzN8c7l4uKhIQYuHMNfpkE707VXwTrj++hTT/t\n1mkZxNxUNzBLGHiPosLV1Zw9vP0hOReKFFVoAbfOQLzB+iJZqT0Aok7C2UU5G+eJT8G3LGzv43pe\nsrsPNP1Dzdve3ljNFzeKmzeU7AtNboB/MzhYB24tdc0ev+ZQ9aj679kGcOMTsP6L7dCcYSoOfl+A\nzzFwawIpr6id6M2LQHK4KW6ER8yBP/CNSs1NheqVRV7sInJDRx6pzSayYLbIc0+LzJ/p2qbRml9F\nyiLyXEORnZtEEuzUULl0VqRZKZFls/WPu26hyPPBIrFR2rIjO4m09xcZ1EJkzof650iKE+nuL3LX\nwMbd/hUin7fXLy8iMr2byIGl9u8lRokMKWRsPEf8MURkl86NW2fcPCQyLVAkwWAuclbMKSKrnhQ5\nMCpn49hsIhe/FfmjmMjtLSIJ50UOdBSxutD0IO6gyN7KIqdeFknXKKfsjLRwkbBXRM5XEomel+O6\nJDnGZhExrxZJelokoYRI6jgR622nKuTGJuYe/VdO58uN6+FfgX86AZaugBIlnMtFXIXn28Ls6TB+\nMvTub6x0qwjM+grGDoJ5f8CqvdCkFfhmqaESegr6tIT3JsILr+kb+9wR+GYwTPoNCjpJc8zg4jF1\nBX5kG6SkqKEXPfz1E9RsBYU1+mNmxugGJqh53p6+9u95FVRPYuqth+GMqp3gyJycx2iL14Wab8Km\n/jkbyz0/tP4d4k7A8Qmuj6MoEDwQ6i1WGx3vbQ531kO4k+N9jijwBNQ7Ah6F4VADiDLQqzMz+cqq\nIZVScyFmDlysAfG/P5j4OKj57O4dwXszeP0JEg5JlcAyGGwH/715H7EV+MPvwJ/XKOsqAnNnQdO6\n0KQZbNkH1XXmM2eQlgbv94VVi2DVPmjZ3r7cuePw2jMw/CvorLM7/e3rMHUEDJ8OIY9ry5vT4e6N\ne18I/DoZFn2mrWe1wrrp8Ow7+uzK4NpZqNrcmE5qgnpgxx4mN6jcKnfCKOWbqjHnawdyPtaTH0J8\nOJxZmLNxvAKh0Q9weREc/ThnDi6wJZR7ST1sIxY4PwbMLuQ2u3lDpalQdTaEDYEzz0GqC+EZAJ/G\nELQDik+CW2PgcmNI2uHaWLmF2+OQ/0fwuQAUB8tLaiNj6zwQF+qaO+MRa2r88DtwZ1wJg06tYOFc\nWLcN3h8FHh7GxrgdCd1bQFIirNgFpcral9u7Fb4eBaOnwrMv6xv7biT0fxoatNG/aRl+Tq2jYnID\nL194bRy86ODUZ2Z2r4Ai5eGxp/TNAxB7C87vhpD6+nXAuQMHiLoMSXeNjWkPRYE6r8Gh2Tkfyy0f\ntJ0P296HxBua4k7xLgFtt8HV3+DwB6478YQzEP49fy/nrIlw9n3X7SrUFOqcBL/6cOwJuDrOcW1w\nZygK+HWAkKMQMACu9YYrHSDluOu25QamIuA+AjwugNtYsK0Ec1mwDAHJQcppZvJW4P8BNhv88D00\nrwdPt4FNu6HqY8bH2bcThvSFpq1h+q/g7WNf7ufpMKi7eny+rU5HHHMX3mwFbV+G3gb+Uy6coDqE\n7u/DyuvwymjwcmBXBlYLLBwDnd8zFjY6/idUf1rdqDWCsxAKgG8gJLqYcpeVOr3h9HJI0zieH3sF\n1vVz7kyL1YZab8FGDTk9eBWFNlvh5iY4OMS18Tz8IXg4BLYH7xA1bBAxG06967p9Jk8oMxpqHYbE\nI3CkOkSvd20sxQ38e0HFc+DXBu6OhhvPQ2ouPBHlBMUNTO3BYw14HAI8wfpR7oz9iDnwB75Rqbmp\nkJWdO0Qa1hHp10fkvI7mA/ZISxMZP0KkZgmRTWudy334pkibaiJXNJogZyYuWqR7bZGpHxjbSL18\nSqR9gMjZg/p1REQ2zBYZ0dz4pu03L4lsMbARm8GY6iIxNx3fn9FJ5OhK4+M64ufnRA5q2Gk1i8yu\nJXJSoyGHJU1kbXeRI1Nyx7bUGJE19UX2vqUWg8oJNpvI1Z9ENpcWOfi8SKrzTTtdRP0hcjBY5HRn\nkeQcnhK2JonEfCdyuZxIRAuRxD9zr8drLkBubGJu03/ldL7cuB6dFXhYGPzvRejbEwYPg5lzoVIV\n4+OcPw0dGsCFs7D5GLRy0Owg6g70aQ2R12DZXigXrG/8xHh4uy3UbQ7vTNC/Ik5Nhk9egre/gipP\n6NMBtTb34rHQ5zNjq2+rBU5sgloGD0CIwK1Q8HFygCo3V+AAdV+HwxphFJM7tJsFW4ZBipNmBm75\noMlEtX1a+Mac2+ZZCFpvgujjcHg42Myuj6UoUKYXNL8IPiGwsybcWpMz+wLaQ51T4FsXLrSBq++B\n+bZrY5m8odA7UP4CFOgLdwdDxBOQsAyX6og/jDxiK/CH34EnJMCYUdD4CXjscTh+Fl7UWeM6MzYb\n/PgtdGkOfd6GeaugiIPDKOdOQJf6UKcRzFwFfgX0zZGcCO+2h6p1YejXxmz87j0Irgnt+ujXAbU3\nZnBtqKLjFGhmLh6AwqUhwEDGCqjdeFAcd+QB8CsKCbnowCu2BZ8iEKHRw7FkfajyAmzVaGZQMAja\nL4U/e0KMznrVzshXAJ7ZoDZj2NIKUl10kBm4eULVSVBnKZweBCdeB0sOKjya8kPZD6HqTvUD+GRV\nuPYhWFzcaFY8oEAvKHsSAj6G2MkQXhXiF7jWLPlhIs+B5zI1KsON63DwBIwa41qVv5vXoUdb+P0X\nWLsX/ve6Y+e6+hfo2xaGToT3J2q3LcsgNgrG9oegajBymjHnvWEhXDwB7880ppecAMs+h1dcSGk7\nuh5qtTOulxQDPv7OZXJ7Be7mDpXawTYdDQqajYdL6yFil3O5Uk2h0URY3QlSc+HkqIev2swh8ClY\nXw+ij6hH5s9Ncq1FG0DAU9D03sbh0Rfgjospgn/bWAzKfQuPHQHzTThZEW5+rq+rvT0UE/h2gtJ7\noOiPYN4NN8tCzFAwX8yZrQ+KPAeeyyz7HeYsgFIGV4qgptbNmQ6D+0GDJrBqJwSF2JeNiYa3usM3\nY2HOeujUQ/88YeehR0MoWho+dFDwyhG7/4DvhsHIuWr3HiOs/g5qt4byOmt+Z+bmBajb0bheSix4\naxQDK1AM0lx0Co6o8xrcOgHXNXKA8xeEVlNg/ZvavSmrvw7l28H67sbqkzhCMUGt8VD3a/irDezt\nDqdGwIVvXB/T3Q9qzIag9+HCUDjaAZIv5MxOz3IQNAeq7IKko6ojj5zq+ilMRQHvZlD4Byh2UO0K\ndLsR3GkLKWserfBKXhphLvOERqVBR+zbDS2fgFW/wkefw5CPHPfG3LoBWtdQj8uvOwLVdDY2ANi/\nFXo3hddHwtAvjDnvE3tgfB/4YpW6cjfCldOwYgr01ZEjnk33xL0DPE8a102OVQtWOcOvGNy1swK7\newl2uNiyy90TnhoJW3Wswqt0hYLl4IAOx/nUV4DAzhyk72Wl7AvQYCbcXKl+fXY8pOXwiaTIM9Dw\nJPg3h4NPwsUP9NdTcYRXZQhZChX/gPQzEFoBbk8Ai0ZDZGe4B0GhL6DkVfB+GeInwM1giP8crLn4\nVPZvkYMVuKIocxVFuaUoit0O0YqiNFcUJS5TrfAPc2ruw+/AjXIrEt7qDa+9BANHwOqtUM3BAZqk\nRPhgAHzQH6b8BJ98A146ek1msHIuDOsOX/4CXXWeyszg0ikY+Tx8tBCqG4xfW8zwZW/oMx6KuNAP\ndfsCaNrL2IdNBnpCKP6lIdZOkSWTO2wa73qKXJ3XIPIo3NDoLqMo0HYmHPseIjQOoZjcod1StV7K\n8W9dsysrNgucHs0/+d3JcFSjP6seTPmg/DBoeAJSr8PeKhC5OOcpkT61oexMCNoEaRcgNARuDIL0\nK66PqeQHn1eg2D4osgIsoRDXC+JegLTVIDnY7P03yVkIZR6glRWwXURq37s0iiJp83/HgZvNMP0b\naFwdihaH/eegq5PNzkN7oG1tSE2BjSegcUv9c9lsMHkk/DARFuyABi2M2XozHIa0g0HfwJMulMH8\ndRL4BUD7N4zrWi2wcxE003mSNCt6QigF/x975x1eRbW18d+kJ6SRQOiQAAJBeu8EEAQUBUSxY8GG\n2LFX1GvBhnI/G1gAla4UpVcJvbeEHiAhhfSeU9f3xz4xISQnp4Xizfs8+1l75qw9s3OSvLNn7VUa\nQNb5S4mlZmPw8Cp/dW4LPH2gz8uwYXLlukGNYOh0WHon5J63rutTEwb/CIemwd6PHZtbaRhzwasm\neIUqn2XNHRLmuobEAbzrQ5tZ0HYenP0UdveDnN3OX9enDTT6Ga47pAj4ZGc4dycUOlHeDsCrM4T8\nCMFzwetGKJgCaQ0h91kw7HP+AeRKOEHgIrIZqGxDxU7vC+u49glcBFb8CcP7wtoVsDwa3vkY/CsI\nNMnKhDeehVceh9emwBc/Q2CQ7ffLyYK3HoX9W2HOdoiwM9NhZio8OwTueRFutDGiszTiDsEfU+H5\nGfZ74gDsXwVhEdDAznkXQ18EYS2s6/j4K6Ium1ZW0yCiD8RtcezeAJ0fUStwW2pmRtwInSbCkjGV\nV6kPaAIjN8HRH2H3e47PDxR5D9wGt6TBqEK48Rhc9zyc+Ql23g96F2yaAgT3hm67oOEjEDsSjtyi\ngnechWcDqPcxtIwD325wdhScux1yf3du5ewWDL6PQM1oqLkFtEDIHgUZ7aHgM/uKOlQVqnYTU4Be\nmqYd0DRtuaZpdtpNL8W1S+AisHolRPWAt16Fl96GRasq9g03mWDmt9C7Feh1MG89DBtl3z23b4AR\n7aFmGMxYAzVr2Tc+PQU+ewYG3g53OLAaKzadPPQRhFUQ8l8ZNs6E/uMcGwuWVLI2PDiCKzCjNO0D\npyvxELEGTx8Y8hFseBWb0rr2eAX86sB6G2pJ+jdQJH5iLux4wzUrQzdP8G8K7T+DEcngGQRr2kLS\nX8Vqm5EAACAASURBVM5fG9Tqvt790PUkBA+GIyMgZiTk7XP+2u6BUPt5aHkKgu+CrC/gdGMVkWmI\nc+7aHs3B/10IPQ0B08B4BHLHQP4NoP9OVeu5EqhaAt8LNBKR9sA0wMmE91yDkZhms8i6NSIDeop0\nihRZOK/iOpXF2LxeJKqdyMj+Iof2WdctjdnfiHz0qkhRkciHL4j0ri+ycbnt40sjLlbklgiRb992\nPHpt9rsirw51fHxuhsh9QUo6ipmPiaz/unK9aTeKHC7nu0rYL/KBHfU3y4PJKDKjh8jub23TL8oS\n+b6FyMEfbdMvuCAyt73Ilkn2fddFNn6vKetF/goX2fWgiM7G+qy2wlggkjBVZHs9FX2Zu9+11y86\nIpLyrMiJUJH4G0VyFomYHUiDWx5MeSL6hSL5d4pkB4nkDRDRfS1ishL1Wwq4IhLzz4rbhg+Qt+8q\naeXdDwgHDtl4vzggxKk5OzO4qtslBL5pg8jgviLtW4jM/VXEWEnO4jOnRR66TaRzE5GlC+wMaz8u\n0sJXpLm3yKDrRCaMFkl3oACriMjev0UGh4ks/cmx8SIi+zeJvDJM5EK849dYO0Pk6/GOjxcRmTZK\nZNfCyvV+eVgk+vtLz5uMIq8EieQ6GSaecljkk1oi2TbmPk89IvJVLZFEG9MUFKaLzO8ssmmimnNl\nKEoTWVhHJHaqbSH1+hyRPY+LrLhO5Pwi14ekG/NFEj4X2VZX5NiDIrnbXXt9U4FI9myRc31ETtYV\nufCaiO6Y665vLhDR/y6Sf7eFzPuL6P4rYqr49+0SAl9me7OXwIE6gGbpdwPOODNfuSYI3GwWWbVK\nZPwDIm2aifw6S1Vdt4b0NJGpH4u0DBH57D2RggLr+mVhMokM6yjSRFPFHfo1r3yVXxFWzRW5obbI\nttWOjRcROXtUZHSYyJ61jl/DoBd5tIlI7BbHryEi8p/eIsf+rlxv3Rciqz8q/7OfxogcXOzcPERE\nNrwtMucW28nvxBKR2R1E0mysyl6UKbL+QZFVt4rosirXzz4usrKXyJookVwb846kbhZZ31Zkc1+R\nTDtz4NgCY75I8nSRfeEih7uLpP3mWOEIayg6IpI+WSS+jkhSF5HsL0SMThbPKA1zoYh+iUjBvSK6\ncBF9dxHjhyLmoxepuYTAl9reyt4PmAMkAnogHngIeAx4zPL5k8BhYD+wFejhzHzlmiDwxX+ItLte\n5LdfRfSV/OFdSBF56yWR8BCRF58SOe/ganXycyLhboq8GyMS7i6ydpl91zCbRWZ9IjK8kcjxA/bP\nIT1ZJHqpSOYFkbubiiy38fW/Iqz9QeTtQc5dQ0TklRYiiTYkEdv5i8gPd5T/2cbPReY85PxcDEUi\n/xcpcmS+7WNiZot8V08k9ZBt+kadSPSTInObi6QfVOcKkkX0eeXrm4wiR6aILKglcuJ72x4uZqPI\nmekiK+uJ7L5HJP+sbXOzB2ajSMYfIjFRInvri5x/X0TvgmRZF93DIFKwWiRtnMi5YJHkQSK5P4qY\nbHj42XwPnYhptYhhgoiuvoiulYjhFRHTTtcQ+BLbm7P3c0W74iRd6RdqNFb+T5CUKPLqcyJNaoq8\nMEHknIP/ABlpImMHKNJuFyIypK3ImH4i428ViV5n+3X0OpFPnxUZ21Yk2cGHyOdPivTRRO65TmTG\n67aPMxou/b6MBpEnmokc3uTYXErjyWCRXBvKwp3ZKfJhh/I/S48TebO2mpezOLdV5LN6IgU2zKkY\nsb+KfFtX5MIBkQ2Pi5xZWfmYE7+IzKolcuxnkQVNRNaOsK6feVhkeSeR9cNE8s/bNi9DrkjsmyLL\nQ0RiXhMxlFPOzxXI3y9y6iGR3cFK5rnYTi6iTCz5C0QujBI5FyhyYbRIwe8iJhf+TGaTiGmniOE1\nEcNE1xD4Ytvb1UDgxfaYyw5N03yATYA34AUsEZFXy+iI1fklxMOXH8OC3+CucfD0i1Cvvv2TMRjg\nl29g2vsw8GaY+BqEVxByXxlOx8Kr90KbrvDcx+Bvh4tiMXRFMKI2FOapwg5frocO/WwbO/15Fdwz\n6nmI3QI7lkCDFrBpNry/yf65lIZBB69cB5+cqTwIqCAL3mgIn+WW77XyWSe49Qto3t+5OQGsfVkF\nywyxo/jzsXmw7hGgEALD4Z7jlY9NPwgrosCco/JuD1wM9a1UQzcb4PAHcPz/oMsUaHKf8hqpDIXx\nEPs6pK6ByP9Aw3vU/VwNQyqkfg8F24A0qPkABI0Fj0oCteyFOQvyF4FpCRg2gmdf8B4JXiPAva7L\nbqNpGiLisJ+1pmkif9ihPwqn7ucKXDE3QhEpAgaISAegHTBA07Q+Ng3esxuemQD9OoKvH+yMhQ+/\ncIy8N62Coe1h7TKYsx4+/dEx8haBOf+FB/vBmEfhjW8cI2+ATYsUWYKqzjNpKCSdqXzcgfWweR4M\nsrgJ7l0JSz6Hrx+HLrc4NpfSyE5SYQi2RHD6BYN3DciuoPpNu9Fw6Hfn5wTQ/x1I2glb7AhsC44A\nTQdihPzzcHZ55WM8/YAildvDVACb7wWTlYo3bp7Q7m0YtBbifoC1nSBlbcnn2fvL9wn3bQSdZkH3\nPyFzHfzdFOI+dS4jYbk/T22o/zo0Wwxhb0PeBjgaAWfvhNxVrsth4hYMAQ9D8FIITQCf+0G/HjIi\nIbM35H8CRifzu7gKVetG6HJcUT9wkX8K2nkB7kDFSRiKimD2TOjbHe4aAw0bw65j8O4UCKtj/81j\nD8H4kfDWRHjlI/hlNbR0ICkUwIVEeGIYLJsNM7fA7XYWVC4Nsxm+fEZFTHr5QM06MOAO1beGvCz4\n4kF4egYEhqpzCcfUA8Bsgl/fhO/srJdZFulnIbSJ7fphLeBCBf+YbUfBoT+gMBtOrHNuXp6+MGYx\n7J8BMfMr1zeb4K8RYLYkuzIWwt82VME5/LEKk/cMUilViy7Air7qetZQsx1E/Q2t34Z9T0D0cMjc\nC1ujYMewihNpBXeG9r9Cp79UpOXfEXDiTdC7OKeI5gGBw6DJPGh1Gvz7Q/JbcLQJJL0KRUdddy+3\nQPAZC0FzoFYK+L0N5jjIioLc0VD0AhhXgzhQCs4VqE5mZTs0TXPTNG0/kAJsEJGYS5Ti4uC1l6B5\nI1gwF155A2JPwYuvQGio/TfduxMeGAl3DIao4bD6MAy+xXHCXbMI7ugIbbvDzGgIryRK0RqMRnik\nK+TnwOMfw+wYWJoMr/8MoZW8an73NHS9CbqUShGbbAlZd7O8toc48IZSGmlnIdSOAKKwFnChglqF\n3gGgy4HJdWBGBUWk7YF/Pbh9Cax6EhIryViouUHfadDmCQhtr1bKuXHw503WSbzrF3DTDug3B3p+\nC80fhsxDsLQtZMVWck8NGoyGIUegzhCI7q/SuOYchMPPWB8b2AHaz4Xu2xV5b24JsU9B4Vnr4xyB\nRwiEPgHX7YCIVYAJ4u+GM50h/UPQu6j2JIDmBd5DIOBrCI0H39dBCwbdu5AbBvlDQfcFmGIvX7j9\nNbYCv2I28IsmoWlBwCrgFRHZWOq8vO3vC+07QKcuRI0eTVRUlP03EIEtG+DLD+D0CZjwItz9sH2J\nq8oiLQV+/Bg2LYUPfoH2diakKovCfHh7LBTmwuT5EGLHW0X0Qpj5GkzbBz6l6meO9lKru45D4fGv\noU64c3Nc9j7oC+C2D2zTX/+5soXfXCaDYPQ0WPqCekUXszJNfOii9LPHLSQ+bhsENrJtjJjh2K+w\n+SlocjMM+A48K6lDWgyzCY5/C/vfgRaPQbvXwaOSvysxwZqGoEtWx5ontJkG4Y/Zdk9dEpyZCudn\nKPt42BgI6uv4IqQyiBEKoyF3IeQuAo8w8L8NAsaAt9PR4BXcMwuM68C4SjUEPIaA103g1he0Wmzc\nuJGNGzf+M2Ty5MnO28BteIH7R/+OK28DvyoIHEDTtDeBQhH5tNQ5kfx8x4o4gCLuNX8q4s7KgKde\nhdF3g5eX4xMtKoSZU+HHz+DuJ+CRl8HPSoFfW5B5AV6+GcKvh5e+t6/IcMpZeL47vLkEWnUvOR+7\nFV7pDc/9AlH3ODe/Yvz8CDTpDAMet00/ZiWsnQJPr7/4fPIR+HYQFKSrB4xvTXjPiRSmZbFtCsTM\ngXv/Vit9W2EogE1PQOoeGLoIatqRL6YgEXY+Axn7oMc31jc309bDtkHgEWixpxcBJggdpGzfPja+\nKekz4cIsSPpeXafeI1B3HHjameLBHogZCrdCnoXM3QIUkfuPBu/2VfMQEQHzMTCuBLfNIGtBawba\nIHAbBFpf0Gq4ZhNznh36Y688gV9JF8FaQLCl7wv8DQy6xK3HEeTkiPz8vcg9I0QGdRBZMr/yqM3K\nYDaLLPtNJKqxyJOjROKOO3e9YiScFLmzucj0N+2PxsvJEHmsjciyMqHtukKRCa1Eohe4Zo7F+HSI\nyAE7UgnkpYtMCig/kjEvVWRqN5EXNJFX/Su+htkssuNrkcJs2+9rNotseE1kzgCRQjvTBpjNIoe/\nF5lRS+SEHf7lxYj/U7kZ7phYcTCPsUgkfYtI5h6RnCMieadEkv4U2TVGZEVNkX0PieTE2DfnrGiR\n2PtFNgeJHLlTJGN91RccNptECraLpEwSSRooEl9fJPUhkbyFrvX9vuS+ehFTtIhxsoi+n4iuhojh\nQde4Ec61vTl7P1e0K0ngbVHJXfYDB4EXy/1C7cG+PSLPPKr8we8ZJbJpnWv+iPdsEbm9u8ioTiI7\nNjp/vWLs3iAyqqHIYhtzepRGYb7Ic71Evn3u0p9x1qsiH452yRQvwqstRRIO2zdmcnORxArGGPWK\nxCe5Wf89LX5UZMG99t3XbBJZ+6zID21EchzwxU/ZLTIrQiT6BRGDnZG8+jyRmE9EFoWK7Bgvkhtn\n+1hdmsixd0VWhonsuEUkPdrOe2eIJEwT2dVWZEdzkfNfiRQ6WY3e5nsfF8n+UiT5RpGz/iJJ/UWy\nPhLRHazah4k5T8Qc6xoCn2N7+58mcJu/0MpQvNru31mkTRORT95XgT2uwMlYkadvF+nbQOSPmY6H\n05dFYYHI1BdEhtcT2WVHgNC5Y6oZ9CJvDBOZct+lczq6Q+Te2iIZtiUAshkmo8gHfUUKc+0b9/M9\nIlt/qPhzs1nk49YiR1dVrKPLF/kyUmTfbPvubTaLbP9Y5JvGIml2rGiLUZghsuU5kTkRImeW2j++\nKF3kwOsii0JEdj4qknfG9rGGfJG4r0XWNhXZf59Iwg/2BfaYzSLZ20XOTBLZXUvkUFeRxE9Fis7Z\n/3M4AlO+SP6fIulPiiREiCR1E8keJ1Lws4ixCiJNRVxD4L/Z3q4GAr9qbODlocJAHrMZtm2FpQtg\n3mzoEwUPPgYDBjtWZaYs9myF7z+F3dEqqGfsI+Bn46ZWZYjZBZPHQbM28NLXEGyHvfLRDnAhHjpF\nqXqPb/5+sb08NR4m9YKJ30FXF3h2lEbSMfhiOEw5Zd+4jV9Bcgzc+W3FOrtmwr5f4dHVVu5/AH6+\nAR7bDiHN7JvD4Vmw6SUY+Qc0cKCMXMIa2PoUBDaHXl9CoJ3316XD0c/g1HfQ6HZo/RrUsNGbR0yQ\nugLOT4fMvyFsFDR4GIJ72W5vFiNkr4eM+ZD5B/i0gtCxEDIGvJz0TLLp/qL8vA3rwLAB9BtBCwCv\nAap5DgB35+fhEhv4L3bo33vlbeDXDoGLwI7tsGg+/L4AgmvCo4/DraOhbj3nb2YywZolirjTUmD8\n8zDmAdcRt0EPP74Pf3wHL3wFg8faNz5mO0waBPpC8PGDuecvDhTKy4KX+sAND8LoF1wz59LYtQC2\n/QpP25nC+MwOmPc4vGwlP7VRDx9EwPjlUN9KPdJtX8GBX2B8tCoYYQ9Or4C/7odhP0Hzm+0bC+qB\neXgqHJgCrSdAh1fAw87NdV0aHP0UTn2vPFYa3QlBdtRf1SVD4mw4/4M6bvAQ1L8fvO2IZjTrIWct\npM+HzKVQ80YI6AKBN4F3y6rzZCkNETAdAf0GC6FvArda4Hs7eLQA957g1tzuubiEwGfboX9fNYFb\nhaZpIrt2wsJ5sGiB8kYZMxbG3AGRLnJfKiyAhTPhh88hKAQeexFuHAXuNoQ824qTh2Dy/VC7Abw2\nHWo58MB5cTDstUTxeXrDwLvhpR/VsUEPbw2FxtfD43aEk9uDP95ScpQNRYVLw6CDV0Lgw1TwskJ4\n6z+ClBi4a1bFOiLwy81QvxMMcqBqTuIO2PQiNB0MXV9V9TDtRV4C7HgBLuyEnlOhiQMxBEWpcHY6\nnPlGRV2GPwENbgf3SoK1iiEC2dsUkaf8rupkNn3N/p/FrIO8jZDzB+T8pfyyA4YrMvePAjcb5+Ms\nxAzGg2DeCaZ1YNoGFIJ7L0Xm7r3AvQto1h+YLiFwK39+l+jfX03gVqFpmsj115WQ9vVtXEdOx47A\nvJ9h8wpo0kwRd5feriW/7Az46SPY+ifcOwlGPOjY9bcvh9dvUgE5nl7g7gFdh8Fb89Q/82f3Q1Ee\nvLqw8geP2WyfmSk1TvlyL34Het0HXcfYP/+Zd0PX+6G1lfqfhdnwbR+49f+gqZW8L/lpMPsGaHsP\n9H7R/rnkxsOa8aDLgCEzIbS1Wl0bcsHHjsCw82th/3/AwwzXvwwNhtn/uzUbIflPReRZ+6DxOIh4\nHGrYYaIx5oEhHXztiJAtDyJQdFgRee5yKNyvIjIDboLAG8Erwrnr2wtzvCJy0zYwbgXzYXBrDT6D\nQbse3LoBF6/SXULgM+3QH1dN4FahaZqI2ew6Us1Ih8VzFHGnJsNt96mAnggHE1dVhPxc+O1L+G0q\nDLoNHnkL6jRw7Fox2+G1m8AvEB56D67vDXXD1XciArPfgv1r4IP1yrRiDXtXwKpv4dUltt//12dh\nzTRAIHIg9BkHPe8uie60BWunQHocjP3Gul7MUlj2HDx7ALyt+NbnJMDPUdBtIvR41vZ5FEMEDn0P\nW1+HLi9BfhzELYG7YsHbjvw1ZiOcmQ+HP1K/jzavQJPbHVzZn4Qz38O5nyG4EzSdALWH2L4qdzWM\nmZC7GnL/AtN+lcDLLwr8Bqjm6WBJP0chhWDaA+xQzbwDyAWtm2pu/dHcb3CewH+2Q/+BagK3ikqz\nEdoCgwHWLYf5M2HLehh0E9wxDvoOcq2ZBFQWwYXfqlV3t0Hw+GRo7MTDYfkP8MOr8MIP0GvExZ8Z\n9PB/E9XG5UuzIKi29WtlJMGkTvDCXLjejgyA0bNg1gTQWSIlPbzh09NQ045Npwsn4Kv+8G5C5av/\n+Q+oyMxRX1vXyz6nSLznC9DtSdvnctE14mDlPZC+XZFuoxth+FL7FwwicH4FHP5QBfRc/yI0f8Ax\n8jUVQeJCSFsGaash7GaoNxZCB4N7FWQktAUioD8KBRugcCMUbFQBPH5R4DsAfPuDl41Rry6dVzLI\nLguZu6N5vus8gf9kh/6DFxO4pmk/AjcBF0SkbQX3+AoYBhQAD4iIU8VL/50ErtdD9EZYtwqWzIZm\nLRVpj7jdvgr0tsJohKU/w/R3oWVHmPAetGjn+PV0RfDtC8rm/d4SaFymUHNOOrw3Rq3KX/4F/CqJ\nNjSZ4N0hENkX7nzHvrkkHIF3uoKhUCWNemoRtB9W+biy+LAN3DkDIipJOVCYBV+0gzE/QAsr0YwA\nmXEwMwr6vg6dH7V/TgAbHlWV6MUEbl7Q63No5+ADASAlWq3IM/ZA5HNw3cPg7UDOHlCblskLIWke\n5B2BsFstZD5I5W+5UhABfYwi9IKNYE4ELRG8e4J3DyW9Oiib+mWES0woP9qh/9AlBN4XyANmlUfg\nmqYNByaKyHBN07oDX4qIUzk4/j0Enp0Fa1bA8iWwfhW0iITht8LIMRBup9uXrcjKgCWzYO/fingm\nfgDtnMyJsnM1fPk0dL0Bxr8P/sEXf34uFt4aAX1ugwc/sO0tYuEHsH8VTF6n7Of2wGyCh70BDR6a\nDn0fsG98Mf58A0wGuPXjynWPr4aF4+G5Q+BbyQM34yTMHAD934COj9q3ei7KhJ/CwN0L0NTqV0wQ\nOR76f2ufmagsMg/CmV/hzHdQ5wYIfwDqDnXMvAJQdB6SFkDyPMg/AQ3HQWg/qDkQPOxIF1AVELNy\nE9RtA912JY0nFYl79wSvHorY3RtUqZeLSwh8hh364y81oWiaFg4sq4DAv0Ul7ZtnOT4K9BeRFIfn\nfE0T+LmzsHKpIu29O6FXf0XaN94MdVyXKP4iiMDBnTD3G1i3GPrfBHdPhA49nPvjTDoD/30eTuyH\np6dC7xGXXm/3KphyH4yfAkMesO26hzfB52Nhym5V6MERjNOgzVB4cUXJOV0BbP0ZBkyw7Rrn9qjN\nzDeO2vY9/fEEGIrgDhveabPOwMKRENIChn8PPsGVDgEsNuw/LblIRD2s4tfAuZVqQ7PbO9BsjMpe\n6Cj02RA/H878DPmnocm9ED4OghxMXQwqC2H6akibDznbIaArhAyF0KFQo+3lcQWsDOZc0O0CvYXQ\n3c1g3g0encCzk5IeHcE9wmXzdQmBT7dD/xG7CXwZ8KGIbLUcrwVeFpE9Ds/5miLwtDTYtAE2rYeN\n66FZM6hbW5H2gCHg72RSKWvIz4O/foO530JeNox9HEY9ACGV2J4rg64QfpsCC7+CO56DOyeBdxnb\nqUEPS76GRR/D6wugjW11Lzi6DT4cBS/OgzYOVr4pzIWnwuDLZKhRajV84RR8Phg+Om3bdURgWj8Y\n9h5cF1W5vi4PZo+CDmOhy/jK9Y1FsG4SnFoOI+dC/W62zauiuZ5bCbveVrnCu74DTUc5R+QAOcfg\n7Cw4Mwt86qpVebNHnTOHGPMgayNkrIT0FWAuUkQeMhSCB4KXg+YbV0MEzOfBsBeM+8C4V/UlTxG5\nZ0e1UvdoAW6tQLPf3u8SAv++4s83HlOtGJP/dIjAPxKRLZbjtcBLIrLX4Tlf9QT+1zJF1pvWw5k4\n6NMP+g+EqIHQpq1rIi8rgsmkojI3L4cF30GX/nDXE9DzBufvKwKbF6tVd8suMPEzqFPOzv6etfDV\nU1AvAiZNh1o2erMc2Qwf3wbPzoJOVtz3KsO+ZbD6S3h57cXn43bBL0/Am7ttv9a2GXDwd3jMhuo3\nAGnH4cdBEPUGdLMx1erR32HlE9DjRej+vHOkKwJn/1JEbjYqIg8f4bgZpBhmE1xYD4nLoONU5x8M\nxRCBwpMlZC5n1FwD+kJAPwjse3kiL+2BORUMFkLXzoF5E5hPg1s4uLUB9zZKurWxBPdUbNZyCYF/\nZ4f+Yw6ZUDaKyFzL8f+ACWXoQBgwSJF2p87gWcWbNwYDbN8IKxfBmsVQuy6MfRiGjIK6DpogSsNk\ngs3LYOUvkHgUnv4Sugy6VC/lHHz9PJzYC09OVV4otr5qHlwPn4yFF+ZAhxucm++siaqIw00vXXz+\n8EpY8wU8t8r2axmK4L2m8PhKqG/jJm/6KfhpEPR+AXo+ZduY7LOw+C7lEjhiJtQIs32O5UEEziyD\nM/MgeQM0vx9aPARBThTvuBwwG6BgH+RshlxLcw9WhB7YF/z7gu91V4fJpTREB+bjyvfbdLhEShL4\n9gatNmitQYtUkuagebqGwK1kfLhE/3G7Cbz0JmYPYGr1JqYroNNB9BpF2uuXQeNmMPQ2uHG048WN\nyyIvG5b8AAv+q4o13PkMDBwDHmVWc3odzP8MFnwOo5+CO18CbzsKT+xbDV/cCy8tcNxsUgyzCaaO\nhNs/hEZlbLY7foMDy+DROfZdc82HkBIL99oR8pZ5Fn4cCN0nQB8b0wSYDPD3W5CyHZoOh45PWmpa\nOonMGDjxE5yaDYHXQYuHIXwMeFah+c5VEDMUxioiz9kM+jNgPgp+XVTztUjPhlcfqYMyt0hsqRaj\nGvHgNgrNc67zBF5JqMJF+k9c4oUyB+iPSpWdArwNeAKIZW2vadp/gaFAPvCgM+YT+F8lcBE4dRyi\n16lKPQc2Q0SLEtKu70Kf1rPHYf40WPUr9BiqiLtN90v1RGDbX/D1cxDRBiZ8rswmtsJkgiVT4cBa\nuPMNiOzt/Nz3/wV/vAOTyylRtm4aJB+Fe/7PvmsWZMLnXeGxFVD7OtvHZScoEu/4AETZETaeFgNb\n3oLEbdD9NWj/iMXrxEmYDRD/Fxz/EVI2KxJv8SDU7uE6k8jlgCEJCvZAwS4o3K0kbiWEXqM7+F4P\nHo2uTlIHS/3MdDS3hs4TeCXhBxfpT6gO5LEKlxJ40nnYvE6RdvQ69cfYZ5BqUUOgtgOFka0hNRE+\neERlHxz5KNz2BISVY7/Oz4WVs2DRfyE8Uul2s9FmPW+K2tAMrqUKGnt4wjM/Qr2mrvkZPrtJhc73\ne/DSz5ZOVnbhkQ7kJFn/KRxbAY+tsW8vITcJ/hgPgXVg6BfgY4dPf/IeiH4T0mOg19tw/X3O27KL\nUZAIJ2dD1l5Ij4b6N0GDEVB3kP0Jr640RMCQAAW7FaFLOuQvUZGQ3m3Au+3Fzd1Gj5/LAJeYUP5r\nh/7EagK3CocJXAROn4TdO+D0MfhrAWSkQq8BKgKzzyBoWsW2P70OVs+BG8aCTzkmkLPH4Pf/g1W/\nQOeBMOYp6NDP9jmtmgmfPwyh9dQ/111vw81Pum5T98JpeKcbfHEOvMshod+ehtpNYbADoewmI0zr\nA13ugz52Bs3ocmH1i3BiOdwyA5oPsW98QjREvwH5ydB7MrQY45y/d1nknIDzyyDxT0jfDWH9FJk3\nuAn8XLCHcqVgTAPdoYub/gi41YSgm1WUqGcr8GwJHi3Bve5lX7G7hMCn2aH/VDWBW4XNBJ6RDnt2\nwp4dirT37lRpYLt0h6gboFNXaNOhaj1WbIHJBNtXwMJpyt97xHgY+TjUsdNkc3QnvNAf9EXqdf3t\nRdB7pGvnOv81MOrg7s/K//yb26HrWOjiQHIrgAvHYFpveGYH1HIg0OrUGlg6HprdCEM+BZ9A28eK\nwNm1sPcryD0CLe+FVvdDsGW/48JOSN8HkTZ6vlQEfRYkrlRknrgCajSBJrdCSDcI7QWeVRAVq7CE\nWAAAIABJREFUfDkhZjCcAeMxMBy2yKNgOAaiV2ReTOjebcCjMbg3BbeqWbW7hMC/skP/6WoCt4pL\nCFwEEhPh8EE4dFAlpFr7J6SmQIcu0Lm7Iu3O3V2TI9wVMJng4FbYsBgST0HmebXaHnjHpf7etmDf\nBnh9mErTCoAGPUfAu3YkqKoMySdgcm/48AAEV/A9vtsZ7v0Gmjrhb73xczj9N9w3Fzwd+C6KsmH1\nJEXm966A2pH2jReBtP1wdBYc+00ReKtximzPLoXWT0Cvr1xj0zYbIXUbpK+BtM2QuQv8r4PQPlCr\nL4T2Bd+r5G/WFTBlXEzobplg3A6mU4C3InL3Zkp6WKR7BLg1BM0x05ZLCPxLO/SfqSZwq1DJZWYo\nsj5sae7u0LY9tGkHHTtB23bQqrXrE1M5g8IC2LkWNi6Gv5dBnYYQNRKiRsF1DkbKxR2CuR/D+l/B\n1x8CQlQOFn0hBNWCn4+7Zu4i8NFgaD8chj9fsd7TNeE/JyDAiQroZhMseETZtsf9rnKtOILT66BR\nL8fHg/JaObcSYn6G87+DBrh5Q8Mb4Yb5rk8kZdZD5h5lM0/brKRXCNQdDsGRENQJAtqC+zVmQ68M\nIiCpYDytyNxUSnoZwLwHtLrg1hi0Jkq6NQGtWDYCt/LftlxC4FPt0H+2msCtQtM0kYfvV2Tdtp2S\ndVy82egqpJyHHWtg0xLYtR4iOyvS7n8L1A937JoisGcNLPwM4g7CLRPh5scUYVcVon+BFZ/Bu7sq\nzpuSnwkvN4Fp2RU/jGJWQk4K9Bhn/X4mI8y9D/LT4YHF1os+XA5kHIEl3cBYUHLO3Q/aPgutHoUA\nJ/NuVwQxQ04MZO+BrL8hZx/kHQW/phDYURF6YEcI7ACeV8/GocshBpDzYD4H5rMgFmk+B3IWvIqA\nDEXkNFJSawRaezT3W50n8C/s0H+umsCt4rL5gdsLETh9FPZGW9pmyM2GYbdBp77Q5yZV3cdRFObD\npnmwyPLXdNvzqgKPVxWnE005DTMehjunQLOuFeud3Qs/PQjvHLCisxtmjIZ3ToF7JcFXJiPMe0Ct\nxB9cdmVJ/OgM2PwIeNSAmm2gVicoOK+KPqTtAe+a0GAINBwM9aLAyw7bu70w65WNPmcf5Oy1yANQ\nZzBoBqgRCX6RJfLfTOzFEAGyQOKBeCUlHrQQNI9JzhN4BVs+5eq/UE3gVnHVEHhhARw7CPuiS0jb\nPxA69YGOfZRs2sq5TdK0RFW5J3opHPgbbrwb+o2GzoMvz25+6ll4PwpGvAw3PG5dd/dCOLEF7qpk\nufLlAOj5MHS7t/L7m02w6HEoTIMh70LdtnBoHjTuBUGXMde0sVCVPKtRjt+zmCHjICSsVi11BzQe\nDsHhENpVtRqNq/b3JSYoOAUFRyA/VrWCWCg4Cu4BJYQe1EnVyvRpBt7hl6882hWES0won9qhP6ma\nwK3ishO4CCSfh9gDqh21yMRzMHQUhIZYSLu382H1InDqEGxZqlrCSeg+FHrfomTAZVxNpSfAe/3h\nxqdh2DOV6//6lAqvH1pJSbMjy2Hpq/DKfttIzWyGXTNg9evQaRzs/AqCGsKEffb5fF8uGAsUiadu\nhrRdkL4LEAjtUkLooV3B18lQflsgArqEEkI3p0H+LtCdAt058AwD76bg09RC6k3Btxl4NQDPelZz\njFwrcAmBf2KH/ovVBG4VVUbgZjMkxsPpE3D6OGSmwa4NcPSgsvtGti9prdpDs1bO52Axm+HcCTi8\nHc4ehY1zlHdDn1sUabfvqwJxLjeSTsInw2Hgo3DzpMr1T26DWY/CuOnQrJI0DiIwpSsMexPa3Wr7\nnLLPw09DID1WBds06AIPb6rcFHOlIQIFCYrIiwk9fTc0iAL0ENgaAiOVDIgEr8v0kBYT6BOg6DQU\nnQLdadX3MEF+NJjSwaMueDUGz0aquo5XI9X3bqw+8whz2DvkcsElBD7FDv2XqgncKpwicINBRV8m\nxiuSPn0c4iyEffY01AyBpi0g4jpo3R6aNlOEXdtFecSzM+DwDjiyAw5tVzIgGNr0gA59VWbD8NZX\nLjzZbIY138CCd+DeTyDqgcrHiMCEQCjKh3f2QpMOlY85FQ0/jIHnt0EtG1MDmM0wpT7kW5K0aW5Q\nrxOMjwbPK1RWzFGIGfJOQ26M2qTMiVUy96gqxFBM6CEdlRuhX1NVoPhy1sI068FwHgzxoLc0wzkl\nvQSK9iiSdw8Bj3qXNs+G4BEC7mHgFqb8vK/A37VLCNyGeiP/6L9cTeBWUSGBi0B6OiQnQVI8xJ+F\nhHNKFvdTUyCsLnTuBsH+iqyLCTuiuQr0cQV0RXDmOMTFwulYOBUD52Mh+SxEdlV5T9r0UDL0KvGg\nSYiB7x5R/cemQ8PWto1Lj4eXmymXOy8/GPetqlRfGTZNg63T4fmt1osVFyNxL3zTWa2+xaxc+IyF\n4F9HZSXs+CDUqEJPnMsBMUNhQgmhG1PURmXBaSiKB89aUKMp+EaAX4Qi9hoR4FMfvBuAuxMukw7N\n1wjGC2BKAmOZ5l6oKvCYLqgmBeBe20LoFunTBDRfcAsFt1pKaqGW41D1mZNwCYF/ZIf+K9UEbhXq\nC30fkpIgKdFC2ImQkgx+fnB9Wwj2g0ZNoGHji2W9Bpdm+nMF1v4Oh3Yqsj4dA8nx0CACmrWGiEho\nGgmRHSC81dXlmw4QHwPrf4To2TDmbRj8uH0br/uWwrTR6pW8GG/vhvDO1seJwG/jwaSDO7+v3MtE\nRHmk+ASpDIKaZikcvAt2fg2xS6DdXdD8BgiPAl8nPH6uRohJlVDLPw2FcVAQp4hdy4e8/aBLBA9/\n8G6oyNy7AfhY+r4Nwas2eNZRdm+3y1uXUs1fB6bUEkI3p4KWAeYUlVvFbGml+7hBjesBHWg1QQu2\nyFKNmuAeClogEKx0CAJqgKa5hsA/tEP/1WoCtwpN00Refxnq1VeRlfXqQ716qu97mVcgxZj+gXrF\nbxqpSLtRM/C8Av8ktkJXAFsXwJrv4UIcDHwIhj8FwQ68DXx7j0oj6+UH9SLhjo8hcqBtr8sGHSyd\nBMfWwn2/QCML6YvY/7pdkA5Hl0LsfIjfAiHNIXwgRAyExn3B+wrXiKxqiBkMaYrkdefV5qXuPBQl\ngHseFJ0EfQoYU5VnSjGZe9YBrzrQaDJ4XkUPPRGQfEXoZIFkghTLMs3TAJy36GUpiR604WheS50n\n8P/Yof/6/zCBa5rWCJgFhAECfC9lMhFcNW6E1xoyUyB2C5zcBeu+hxY9YPCj0Pkm+4saF8Ogg8dr\nqJwjzyyBFn0du86eOfDHM9DvGRj0MnzTBxp2gVu+cswN06RXK/Mz6yFuPSTugjrtFKGH94ParcG/\naovpXrUQMxgzwHBBEbrB0uqMB3cXmRCvBogeKEJzC3KewN+3Q/+Ncgs6DAWmAu7ADCljVdc0LQpY\nAhTXIlwkdt21zByuIIHXBeqKyH5N0/yBPcBIEYktpVNN4JXBbIaEo4qwY7ZAbDTkpEOrntD9Fugy\nHGqXU6rNXsyaANnJMHGR82SYGQ+Ln4OUI5B1Ajy8IKI/3LfI+SAeQyHEb1WEnhcH8evBUAChkRDa\n+mIZFO7aTITVuKJwiQnFjuzI2puXFHRwB44BN6BeE3YBd5XhtCjgeRG5xdF5lkalyzFN054GZotI\npituWAwRSQaSLf08TdNigfpArNWB/6sQgew0lRAr6RRkJELMJji2DfyCoHUfVcRh9CRo1Np1mRcN\nOvj9LUg+7hryBqjZCB5YAJs+hVWvK9I9sRo+bQUP/gX1LqlGZTs8faHpINWKUZihXBLTY1U+8HMb\nlCxIhcadwbMG+DcC/4aqBZTqV2WkZTWuPji3XuwGnBSRMwCaps0FbuVSTnPZ66At79N1gF2apu0F\nfgRWuXpZbKkj1xHY4crrXlMwGiErVZk/MlNUZGQxWRdLN3eo1wzqN4OItnDDA/DUdAipoix2J3fA\nDw9BvZbw2K/qQeEqaBpkxqnKNu6eKpAkOx6mtoN67aDlcGg2EOq2gQAnc0v7hkDD3qqVhj4Psk9B\n/nnIS4C8eEiKhuPxJcduHlArHDwDwKc2+NQC39rgbZE+tSznQ5Rft2eg6wpFVOPywzlmawDElzpO\nAMqW3xKgl6ZpB1Cr9EkiEuPoDSv9SxOR1zVNexMYAjwA/FfTtPnADyJyytEbF8NiPlkIPCMieWU/\nf+edd/7pR0VFERUV5ewtqxYioCuE3KxSLbOkn58LucmQkQKZFxRZZ6RAXhYEhULNOlC3CdSqpci6\n7xhF2PWaQeBl2HhKj4edC2HnfPAPhZFvQbc7qsaG7OmnPEma3wBNekLDziAaJOyEUxvg8HxYeI+y\nc9dupdLFFsuajcG/HvjVctwM4uUPtdurVh5EQJcFhckqvL4orUTmn4P0vVCYqs5pWWDIBEOOSn7l\nFazyfZeWfkEqx4pnALj7K0+Sf1qAkp5+yj7t7qdcBd39/hVRklWBjRs3snHjRtde1AqBb4yDjWcc\nHf0P9gKNRKRA07RhwGLA4erYNtvANU3rADyIKsi5HugBrBWRSuKprV7TE/gTWCHlJHJ0uQ3cbAa9\nXvlu63VK6izSUARFhSrvia5Q9f9pBWDQq2ow+blQkFfSCkv1zWbl/ubuDv7BKnAnsGZJPyBYJbmq\nGaIKG4fUUYQdUgcCQy+v22Fehsr7nXQCUk6qvlEPx9ZDp5HQ/XZoPejKRIeWRUE6XIiF1KOQGqtI\nNXkX5CVBURb41YaAeuBfV5G6fz0ICVdBP95BpVqwkl4BVWf7FjMY8sCQpQo6GLKV1GeD5IAxz9Jy\nS/XzwJQHhlzwKABTmebmCW6lCL2GP2ieKr+Jm68K+nEr07x81TjNW6XF1bwsstSxp4+6juapjv+R\npfpuniU6lOpfhQ8Vl9jA37ZDf/IlNvAewDsiMtRy/CpgLruRWeaecUBnEclwaM6VEaSmac8A9wPp\nwAzgDxExaJrmBpwQEQfKqYCmaRowE0gXkecq0BF5diIYDSqysnQzGlR4e2G2Ile9vnzp5QP5qRaS\nNoC3t8rq5+1jkd4QGAzegK+fqgDvY2mlj/1qgL8f+PlX3HxrqCRXjhRqcAYiqjpPQTbkZ6lW3C+W\n+kJIPaGIOuWkCsape11Jq9McGkRCeAe1qXitwGRQEZu5SZCXrEg9NwncjJATpwhenw26bNXXZSuC\n9awBI+ZAs5uu9E9gHSIqUtJcitClEMxFYCpSsrzmVgRmnfLJNustUnfxOS+zuq7oLWlc9Zf2fTzB\nnG05ZwCKJSWk7ldLuQFqnoCHJeS+WHoq6RMMFKGcM0rp4GF5GHioB6umt+hYzhX3NUvfo4aawz/n\ni3Uj0DzucZ7A37RD/71LCNwDtYk5CEgEdnLpJmYd4IKIiKZp3YD5IhLu6JxtMdaFAKNF5GzpkyJi\n1jRthKM3BnoD9wIHNU3bZzn3qoisvEir+XWKqIubh+fFxz5e4OWlfLG9yvQ9vVQwj4+PhbC9/p3u\nZKnnYGJLqBGsml/QxbJGMASFQdvBMPgJRdiBtf8d34W7JwQ2VM1WmE2gzwWPayBDn6apSFR3b/Cs\neaVnUwIxlZC6GEAzqmhNiqXh4mPNAJhKfV66bzl2M6lxmEo1y2dS3NdA05WcEwNQBNol1lcHfy4n\nhooYNU2bCKxCPVV+EJFYTdMes3z+HTAGeELTNCNQANzpzHSv/kCeq3h+Vw0cCYapRjX+ZXCJCeV1\nO/T/c+UDeaq3y/8NqCbvalTDNbjG1ovVBF6NalSjGsWoJnAXIzZW2bB9fFQCK19fZfuuXnVWoxrV\ncDWqCdzFuH00FBVBs2awZxd06gi7oi1k7qekX42Svq8ftGihPC9qBCiXqxr+4F+mHxgEAQEQEKS8\nUGr4X1sPBRGY2E4F8dRrDnWbQf3mln5T5T3zb4RRpzYhr3Tx42rYDhGgCKS4FZb00YNWAOgsx+VI\nN2/QUlUfnRqDxZumuO9WNl7G0bm65jKXC9fmJqbBAAUFyme7PGnUQ04m5OdBXq6S+XnKh7u4XycM\nYvaoYsS52crfu0aAIvOAINWubw/6fAgOhZq1SlpwKARb+kE1XRe2bg9EVHRm0klIPKlk8XFKHLTp\nDcG1oUVPaNkTIjpc3VkTy4OhCJIPqvzgiXvg/B5IOwq3/Qxt77g8czDpofCCCuYpSCklU1R63H7f\nXp55VCXEDOY8MOWCOdfiWpgD5vxSLa+kL/kq6Mh8RuX+NltcG8v2fduCcROKdL1B81F5vzWfkr53\nG9DiAR/lo/6PtOjjDR51wK1Q9fEGvCyfl+7XQ3Pv5vwmph1RLdonV34T89ok8KqA0Qh5OYrMs7OU\nLMyD9GTISldl1zLTyvTToHU7OH8CatevuIU1UKR/uVb4JhMkHocTO+DYdji+DZJPQY/RENEOet8J\noU7W9Kwq5CZDzFKIWaJ8lQtSoX4naNAZ6neGuu1cu/rW50J2nPIZz4mDnDNK5iep8mOGHPAJA786\n4FsXfOuU9Gs0gGa3u24ujkDMYMwGQzoYs8CUCaYsdc6YXdI3ZavPfWqDbp8i638Iu9ASKBQAbgEQ\n0BXM8eBWo6Rppfpu/qrghJumSNjNDzQ/Czn7WY59LZ/5ogi26hc5LvFCsaGq4D/6n1YTuFVcE26E\nBoMKhU9NrLiFhMLJvdCwefkt1MlcH7agMFclvto+H3b+AY3aQO+7oO+94GtDlZyqhFEPe+fAru/g\nQgy0GArXj4SWw8DXRflX8i/AhQOWtl9Vds86oSr9BIZDYAQERZT0A8IhoCH41ros5PMPjAWgvwC6\nFNAVyxRwM0PRcTBkKLIulsZsS87vEAjpqYomuAeBRxC4ByvpEVxyzjPEEqZvIWv3AAtBX4G3SBfD\nJQT+gh36n1UTuFVcEwRuK7IzVOX5su38SRWq3+tGCA6BFl2gZWeVrMqriuo/GnRwYJUi8oMrYNQb\nMOixyx82b9TBjh9g/UdQ93ro+zQ0HwgeTv7cOQlwfhtc2FtC2IYCCGsPYR2UrBUJQU3BL+zyvBmZ\njVCUpIoeF8ZbZIKS3n6QtVkRthjAuw54hSnpbZE1wsHDFzxDFQkXS4/g6uRZFriEwJ+3Q//zagK3\nin8VgVtDfg7EHYETe+H4Hji+WxF740ho2QVadIZ2fdSxq8nm7EH4dRKkn4O7P4HOzgTX2oHYlbD4\naajdAoa8BY27OX4tfR6c3QSnV8PpNWq1HXkLBIeXkHZg46olahHQpUPuSdVyLNLdDdLXgS5VkbFv\nQ/BrqGRx36+RMtN411FJra6lzfSrCC4h8HKTelSg/0U1gVvF/wyBl4eiAjh1QBH6sd1wdj/kZkDX\n4dBtOHQY6DrThwgcWAnrp0NYE7j7s6rbmBWBDZ/Bpqlw32/QvJ9j18lLgaNLIOY3SNoD9btCxGBo\nOhjqdqzCZFUCuXGQth/yz0DmzhLC1jQIaF7SAi3SvzH41KteKTsDsx60DFVWjQyQDCCzRGp10Twm\nOE/gz9qhP7WawK3if5rAy0IE4o/BruWwczkc2wGRPaH/WOh5KwS5oEp7fhZ8ehPUbQHjpztefq08\nmM2QeAB+HA24wVMbVWEHu65hglNrYM90OL0O2twBrUdB437gVQUlwoxFkHkE0g9A+n5F2hkHwCsI\nQjtAWHe1yi8mbJ9Q18/h3wgpUoWOzalgvgDkgpxXNTElwyJLFT2WDPDuDG4xoIUAIagixyGljiPR\nPMY6T+DP2KH/ZTWBW8VlJ/BNKyEjFVq2hWaRKlPh1Yr8HNi/DmKiYe0P0P1WuGkCtOjm3Ct4UT58\neZuyyz61wLkUtwWZsOMniPkTzuxQlXfcPeGtOAiqb/t1dLmwbyZs/RR8Q6HLI9D2blWf05XQ50Li\nZkjYACk71eo66DpF1rU6KBnavpqoy4M5H0zJFzdjErgJyCFF1MWkLUXgVhvcwpT0agNuBtBCwS1U\nyX9aiDpHYKV/1y4xoTxlh/60agK3Ck3TRMY/DC1bqmr0TZtB82ZQq4oy6S1fAKsWwbFDEH8aGkYo\nMm/VDlq0Vf0GTa6M37c1ZKfB2p9g+TcQEALDJ0DUPY5vghr1MPNJCKoLY+woElgWp7fAV31Kjt08\n4PZvoOd428abzXDgV1j1Clw/Gjo/qFwKXQVDASRthYT1irTTD0FYV2g4ABoNhLDOauPwfxliAuMF\nMCaAIaFEGuJVhkTjFkXWGMC9HrjXtTRL36sJuAeWkLVbbdCCquT/1yUEPtEO/f9WE7hVaJom8t13\nkJYKMYdVoM6uzepVulkLaHYdNC8jg4Ndc3OdDk4fVWR+/JCSxw5BwwYQFAwde0OHXtCuu8oFXhb5\nuXBgO7RoB7XquGZOlcFkgr2rYMNsiNsND0+FLg7mu844D2+0h5fWQHhHx+e05gNY9Z4yR3jVgP+k\nqUIClSF+J/z5jCKQm7+Cxj0cn0Np6LLh+O9wdg3EL4Va7aHhQEXa9Xr+7xG2GEAfD/ozoIsrkW6A\nfjMYksA9BDwbquZRWjYCz7rgURe0ylfIVQ2XEPiTduj/XzWBW0WFJpT0dDh1Ak4eV/JUsTwBHTqr\n4KzItirIJrIttGoD/i7a8EtLgQPbYP9W2LcFju2H8JbQNFIFA/n4qs8T4tQK8r0f4db7XXNve7Bv\nFUyfCI2uh4e/VJuT9mLmk/D3zzAtCfwcNFfoC+HNusoMMuB5uPVT6/omI2z8CHZ+DUP+Ax3H2f/G\nc2IJRL+h3ARrtYYa9SHzmCr2cHYtNB4IkXdDxFDwDnDs57qWYNZB0UkoPK6aMRX0uxVZG5IUCXuF\ng1cEeEeovndT8GoEHvVUKPs1AJcQ+AQ79L++lMA1TRsKTEXlA59RXjUeTdO+Aoah8oE/ICL7yurY\nPIdrksArggikJMHRIxB7SLWYg3AiFsLqlZB6xy7QpgPUb+T8qkGvg5i9sHwOLJqhyrEVw9sH5u2C\n5m2cu4fDcyuCxZ/An1/CyBfh1hfs25g0GuFhLxX5+MhP0HWM/d/X5u/gxDoIqAVD3rBu+9YXwG93\nqdX6Xb9CDQc3ZuP/hgWDVRh8adw4A1qMBp+rqDCCK6FPg/zDUHSkhKwLj4E+EXzCwacF+LYAv0jw\nDQfvcLWKdrvGUixUgP9n76zDo7i+Pv6ZECO4E9zdHYIEdyhuxQpUkBangrTUKLQFSqFAKVZKcYcC\nQYK7BoIFlwQIcc/unvePCYWSlZndpcDv7fd57rO7mXPuvRvCd86ce8QpBP6BDvlfUnXkSYPakacJ\nasPiE6TuyNMKGCoirRRFqQnMFBG7Hy//twjcEoxGuBmkknlgAESFwfbVaqhZlVpQuZb6Wr6qWhjL\nXiQnw9dDYPPvags3FxfInhHqtIL67aBOC0jvxM7uWhFyA9Z+A9EPYcQqfYWuhuaGqIfgkQ4KVFKJ\nPHdxbbomE0wqBO9vgbwVbOzxAqzsC7nKQOffHGvrdnsfrG6S0gnGBdLnhT6n1dZf/wswJULsZYg5\nnzIC1FdTHGSoooYvpi2lknXakipRu7wGvU1fMpxC4O/rkJ+bisBrA5Oe64n5MYCITHlOZi6wV0RW\npny+DDQQkYd27fn/BYGbgwjcuw1njsLpo+rr5QAoWlIl9LqNoHo9+/zXK+fCN0Ohkg9MWw4Ht8CB\nzXBmP5SpAW36QL12apPjfwuGZJjTH0LvwLhNaps1LfiiFlw/pr53SQOlG8I4P226V3bD+jHw8enU\n10Tg0WW4sgPO/gH3TkK2YjDmin2HxCJwazcc/BKi70HWwurBZLo80PuE2vD4TYTJANEBEHEUIo5B\n0lWIOQNpi0D6CpC+fMprBfBwwhPlvwVTBBhvqgWxnn813oJ0X4FHe91TOoXA39UhPz8VgXcGmovI\noJTPbwM15bnYFkVRNgPfisjhlM+7gHEicsqePf//zSxQFMhfSB3tUtrSJSRA4FmV0P23wISBaiRK\n3ebg0wyq+miL7Oj2PpSurFqgOfNCx/fUER8Lx/zgxA746SNo2AU6DoHiFV/mN1Xh6gZDl8Li4TDJ\nFz7bDlk0kFrW/CqBu7hC06HQ+Wvtax5dDLX6mb/2UzV4GAiImlLv4gYjztlH3vePw/7xEHkHfD6D\nsj0g7Aps6Qmdtr5Z5J1wH8JTyDriKESehrQFIXMtyFIHMn8E6UqrnehfZ4iodVkM1yD5GhiC1Peu\nrmD4CzCBS2FIUwjSFAaXIuDWOOWzxie8l7Jvy5f8H4B/sL3a/8CLNxm7rdT/vxa4FiQnw/njcHCH\nOq5fgur1VTL3aQZFStpv8TwJgc0LYONc8C6sEnmDji+/5KsIrP0K/JfABD/IVdi6/OZv1IPM+Aj4\nKVh7hmN8FEwsAJOCIL0Z18XpZbD2XTU2HAVqDIDOv+r7LoZE2DcZzvwGLWZAmS7Oy8D8t/qMxj+A\nR7vg4S41cSXquErWmWtCllqQqTq4vQK3m1aYEiD5CiQGgukBGI6rRG0IAsUdXIs/G25P3xdWE3Gc\n/Pt1igWuMcIVQFmQygKvBXz+nAvlE8D0/EFmigvFX0RWpHz+z4XyryEiDA7vgkM74c51iHkErXtB\ny56Qt5B9cxoMcHAjrJsNty9B20HQ/j3IkdepW0+FbbPg1EYYsxE8Nfj9J1aGHtOhtK+2+Q//Bhe3\nwqB1lmUWtoUr29TiVUOPgrcNP/nzCDkHG/qomZBt5kN6J4RqisDd3XDmRyjeBcr0d3zOF5EcDaH7\n4aEfPPKD+GDI2QhyNlFf0xd/Pd0gxjiVqJMCIemiSthJgWC4C25FwL0seNVMCStMIWuXf/ew2CkE\nPkCH/G+pCNwV9RCzMfAAOI71Q8xawIz/DjFfBUTUUMJtf8DOVVColErmTbuojR7swY2LsH4OlPeB\nZj2du19zmNNXjckeNM+27LapEBECPX/UNvfj62o0iXdZ89eDA+CXRlC6uepKGW7GT24OJgMc/A6O\nzYCm30PFPo4TniERri6HM9PV+tqVR0DJXuDqJDdF1DUI2QEPVkHEGchSXSXsXE0hSxXJLcZNAAAg\nAElEQVRQXlLdFnthCIOEsxB/5tlwywQu0eBeBjzKqq/uZcC9OCivxwGpUwj8HR3yC82GEbbkWRjh\nbyLyraIo7wGIyLwUmZ+BFkAs0F9ENP7xm9nDa0uQvOYE/jySk+DQDpXMD/0FVepDq17g205t8fa6\nIi4KPq4EfWZAtXbWZe+chTldYcpVx9c1JMOMqlB/JNToB8ZkNcXeFpJiYdMHkPAY2s6HTDprqbyI\nuMdwYS6cnwM5KkGlEVCgqXMs4OgbcHuVOuIfQKHukK8FZK8Hri+hbou9SA6FuJOQcPwZWRvDwLMi\npK38bHiUee3DDZ1C4DoeupRF/yXyWIVFAo+KgsH9oUEj8G2iZmG+Lo+dsdGwZz1sWw6Pb0LzntBl\nqNqR53XE5YMwowtMOQOZrRz2GQ0wJBNMD4G0Dia/HJoLt45Az8Xa/90SY+D31pClCHRY4JivOykW\njn0DIfshaymoNByyWXhS0IOY23BnNdxaCbG3oUAnKNgVctZ/edUR9UCMEH8RYo48G0nBkN4HMlWE\ntFVUsnYvypvY4MEpBN5Ph/zi/wjcKiwSeFwcbFkP+3aD/y7VndGg8bPhraNQkjWIwKNgyGXnfLev\nwO/TwH8dtOoDPUdC7gLO2ZszsXI83L8EI9ZYJ9Qva0K3H6BEXcsytmAywZQy0GUuFPfVppMQBUtb\nQY7S0H6e/bVoRODKatg3GvLWhfpTIaODreWMiXBjhXoIGbwd8neAgt0gV4NXXz7WlACRhyDuKET7\nQ+xx1Uedvvazkbbs6+fCsRNOIXAdSdPK0v8I3Co0uVBE4EYQ7N2lEvqBvZAzF3TqDrXqQJ0G4Gan\nj+7hfWhXASrUgM4DoWFbcLfjMfLRfVgxAzYtBJ/W0GcsFH1F2ZnmYEiGyfWgx1QobaU+99L3IU9Z\naKKjZNuLCNwGWz+D0ae1Wd8JkbCkBeSuCG3n2E/eoRdh9zBIeAKNZkF+O+uQP0VcMFz6Ba7Mh6yV\noOyHkLfpq02YESNEn4aIXRC+G6KOQrrykKs9eJWD9LXUXpb/NoyhkHQKkk+BVzdwLfpSlnEKgffW\nIf/7fwRuFXb5wI1GOH8Wjh+EdX/A7evQtA206gi+zSCtzmJFCfHgtw5WL4DrgWpdk84DoEgpffMA\nREfA2l9gxUxo1g26DlN7YjqKqCeQ0UEXza5f4PwOGLnBsoz/PLhxDN5ZaP86c5pCtd5QQ4OpEx8B\ni5tBvhrQZpZ9brLEaDg8EQL/gDqToOJ7jlnGj4/DxZ/g7lYo0gPKDoPMpe2fz1HEXYPwnRCxGyL8\nwd0bsjSBzI0hcwO1D+a/iefJOumk+t4UAe6Vwa0qZBj8ehP42zrkl/1H4FbhlEPM+3fhrw2wbT2c\nPwUNmkLLDtC0tVpVUA9uXYO1v8H6xVCwuGqVt+yqFrDSg4R4WDcH/vgWOn8IPceqdVPsQWQoDCkH\nH6+GcvXsmwMgMQ6GF4JJhyynyt88AYsHwRdn7VvjQQDMbQ4Tb9lOlTeZYFVvtXZKi6n2kffjC7Cx\nJxSsBz6fg1cOe3atRqbc3gTnv4P4ECgzFEq8Ax6voKaKCESegEcb4NF68CoAXnkgS2OVtD28/8W9\nGCDxPMQfgoTD4BIPyXvBvQq4V1UJ270quBZ7+T51iUdx8XKcwHvpkP/j/zmBK4qyEGgNPBKR8mau\nOzcK5Uko7NwMW9fB+dNQpzZ06QcNWqgZYlqRnAz7tqpkfv8qdBoEXT7QX0cl5A78NBxuXIBRs6F6\nU336T3HGD6b1hAmb1C499mL1BIh5Av3nmL+enADDssKscHCzo0LdnwMgW2G1qJUtHPoJzv0J7x2w\nrzPQ5bWw/X1o/COU1/Fc/CLu+8PhUZC5BBTvCgXa/fsHkqZkCN8PD9erxO2aHnJ2UEemav/egaMx\nHBKOqoQdfxgSToBbQUhbBzx9IG0tNf77Ze5HBLgDchpMZ9RXOQNKORT3nY4TuI7oXWX5fwReD4gB\nlv4rBP48oqNg62pYsQAe3IHO/aDbO1BQ5+PdtQCY/yWc2g99RkHXwfqJ/NAWmDEMytSEYT9CdjsO\nTU/+BdP7wqStUKK6fn1Q47yH5IF3F0GDvuZlfu4E7T+H/Kn+uawj+hF8UxI+u2Y+M/N5PAyEefVh\n8FHIrtPFlBgDByfB5TXQaT3ktrMBRMRVODIWQs9B7e+gaJd/N9JJjPBoJzxeD4/WglcxyPmWStrp\n7XDf2QNjFMTug5jdkHwdkvzBszqk9Ukh7VqQ5iU+hYiA3AHjSTCeALkNaXYCHqBUBqUKuFRW31MI\nxcXFcQLvoUP+z//nBA6gKEohYPO/TuDP48oFWPkbrF+mdt/pPhCadwBPHW4NR4k8IQ6WfAVbfoOR\ns6BhV/3f49gmmDUIvtgORe1owmAyQm9X1Ufccyq0GJ6atKa3hEZDoGIbfXMfmgfBF6HzT9blDEkw\npxbUfB9qaqgsFBcKN3fCnf1wew+EXwNXLxh8E9Ll1LdHgMggOPUt3NoElcdA+Q+dl9CjBTHX4M4i\nuLsUPPNAkUGQoyV4OhgtowWmRDViJWaXStoJAeBVA9I3hnSNwKsaKC8xssb0IIWsT4Ip5ZU0kKY6\npKkGLtXAtQoo5sNdneID765DfsV/BP56EPhTJCbCzg0qmV84DQOGQbd31VriWnHtgkrkJ/2h7xjo\nPkSfjzzoPEzurHae/+B7/e6DQ2vhlyHwlR8U0mklx0fDu1nVbEd3L6jeEd59obTr0vcgX0VopKPy\nPcCvb0HlrlDNxjPqjs8g+Dz03aTN4t0zFo7/qFqsoIbEddsJhRvZ1r22Em5uhKRIdUReV33ceXyh\n+SpIa6fPXC8MMXB/NdxZCLFXId/bUKA/ZPwXIpUSbkDEZkg8BNHbwaOUStjpm0C6OuDykjoUiQEM\nAZB8CJIOqa+enmpRqzTVnpG2kkfzk49TCFyH3aSsevUE/tpXI/z888//fu/r64tv7dpqWODL6Evp\n4QFtu6njVhAsmwVtykLrHjBwrNoP0xaKl4NpK1UiXzsPepaHzxZAVV9teyhWAWYfg696wMctYcJK\nyJhV+3fw6aRmNi79BIYv0Redkhir3jBMBrWTzqFlULk11H7OLMlaAMLvap8T1P0E+UP3+dblHpyF\n07/D0BPa3RV1J8GlVRB1W/2cvaw28gaIuALXV6tkAoAC1b6AGhO16TuK8DNwaxYEr4ds9aHYKMjV\n6uVmPIoJYk9A+CaI2ATJjyBzG8jWG/LNhzQvqcSxKQqSj6pEnXwYko+BSz5w9wGP5pB+MqQppstN\n5e/vj7+/v3P3+frGdJjFm2eBL18KX34GXXtB995Q2gkZdNYQ+hAWT4fVv0Ljt+Ddj6GQjnKXBzbD\nd4PBpxUMm6q9oYPRAPM/hsMb4cuNUKiMvn0vHAnhD2DUCu06D6/DqBLqIVTWvDB0BRR/oc7O4aVw\ncScMWqZ93huHYM0wGGuj5MP8plCxG9TUURIuMQp+qwUx1wEF3loJJTTWkjbEw6JcaoEpJQ0Ubg8t\n1mpf2x6IwMOdcPk7iL4OpT6E/L3A8yWWvDXGQdQelbAjNoNrVsjcTh3pa7ycRB5TvGrVJ+yGhD3g\nngGUJHDzUUnbrXZKt3nnwSkWeGcd8mtevQX+5uXL9uwDa7apYWZvNYP6VWH2DHhkVzVG28ieC0ZP\ngR3XIE8B6F4HRvWCaxe16ddrCysuAAp0Lwv7N2nTS+OqulB6T4CRvnB4s7599/oabp6Fgyu162TJ\nA50nw4j16lPOi+QNqgX+5I6+vVzeCaWaWZe5cxweX4WqOlLhDImwsiMU9IVOm8C7BhRvq1334Mdg\ncleTb9wzgu8C7WvrhckAd1aAXxU4OwoK9YfWQVB81MshbzFCuB9c7gsXm0LI9+BZCkrvh/IXIf+3\nkKG288hbDJB4BCK/hpBGcC8nRE5SC11lmQpZt0LW/ZDhW/Bo4zh5i1GNQjH8DKaPQE8VKqvz6hiv\nA0TklQ3gT9Syi4nAXdTKXM9fF6swGET2+Im820ckf2aRji1FVi0XiY+3rucIoiNF5k0RaVNeZHx/\nkdAQ7bqn/EU6FhP5tJvIk4fa9S4eEemaT2T7In17vXJMpG9OkbBgfXomk8iQ3CIh11JfexgkMraQ\nvvl+qCVyeZd1mYXtRA7O0rFHo8ia7iIrO4oYDfr2E3ZVZFllkU0dROJCRTY2Ebn1l745tCI5TuTa\nLyJbiojsrityf7O695cBk0kk+rRI0EiRI94ip6qJ3Jshkqjz318rku+LhM8XCXlP5HYmkfsVRZ6M\nFIndImKMcu5apmgRg59I0uciCU1F4jKIxJcWSRwoYvxTxHRVUvjCET4S6ah9OLqeM8Yrd6FYg65D\nzNhY2LIBtm+Bo7uh9yDoPxi8X1Jd7dhomPclbFwEH3wBXd6DNBqsmYR4+PVz2LUKxs1W+2VqQfAN\nGNsQ+n4FTXTENS/7DO5cgE826AuDm98fClWBZi+kzScnwte1YJLGVPi4cJhUAL55rJauNYfgAPi1\nGXxyA9w0HJqJwI6REHwS3t6pTecpbmwFv35QazJUeP/lhQaakuHqfLg+HTKVgVLjILvPy1kr/hY8\nXg6PloExHnK9DTl7gZeTww3FBImnIWaLOpJvQLoWkL4NpGsKaZx46GuKAMM+kPMgG0AuqyGDLnXB\nxQdc6oDyTyveKS6UDjrk1796F8r/DoE/j+tXYcEsWPsHNGwOgz6CanbXTLeOaxfg68FqGOBnc6B8\nDW16F47A+M7QdQT0GKWNSG4HqiQ+eglUb6FtneREGFsD2o6ERhZiu83h2Cq1E8+Ybdp1zCFwO5xb\nBz2sHGD+0QPyVIaGY7XNeWo+HPsJ+h+AtDrikAMWqa3XOm+GXHbGh2vBAz84ORzS5oFqP0AWHY0q\ntEJMELoD7v4MaQS8CkHOtyFjbefelEzxELsLYjdBzFZIkxHStVVJO20d59UClzgwHITkPWDYA8ZL\n4Fob3FqCWw1wqQqK9XBOpxD4WzrkN2gncEVRsgIrgYLALaCriESYkbsFRAFGIFlErBPKq34EsPlI\n4wgiI0R++VGkamGRFjVF1i4XSUpybE5zMJlENi0VaZhbZPJ7IhFPtOkF3xbpU0FkykCRZI37unBI\npEt2kUvHtO/vxlmRfrn0uVJiwkQGphdJjNOuYw5bJols/MTy9UdXRSZlF4nX+MgdEiAyJbdI2HV9\n+zgzV2ROPpHQy/r09CDymsiediLri4rc2aj+XTgbSREit2aIHCgucriyyL2FIgYH/41ehDFRJHKz\nyK1eIuczidzvL/JkukjiVeetYTKIJBwRiZskElVfJCydSFRd9XPSPhFTgu4pcYYLpZ32oWc9YCow\nNuX9OGCKBbmbQFbN8zryhV/2cJjAn8JgENm2QaRDQ5GaxUUWzHg5fvLIcJGvh4j45hLZvU6bTmyU\nyJg2Ih82EokM06ZzeKNI15wiV09p39vyz0TmD9YuLyIyt4/IpX36dF7EvLdETq6wfH3rxyJ/TdA2\nl9EgMremyPF5+vZw8ieRXwqKhAXp09OK6Lsi/p1FVmYTCZgiYtBPPrbXuCgSOFhkdxaRc91Fwg85\n9wZhShaJ8hO5M0AkIKvIVR+Rx7NEkpzoPzc+EYlbLhLWSyQku8ijCiJxE0SStouYYhye3ikE3lb7\n0Engl4FcKe9zA5ctyN0Esmmd93/ThWINF87CjC/g/EkYPlGthWJvuVmLa5yAL/pBJR8Y/ZPtQlVG\nI8wZAzv/gAnLoIaGmiiLPoWVU2HCGvDR8NwX8RCGl4bpFyGLxsSkZR+pXelbjdYmbw6TisAH2yC3\nGX9scgJ84Q1jLkAmDWcVh2fApQ3Qf4/2PIDj38PZX6DbHsikIY7fFuKCYV8HiH+oJuAkR4EpCdIX\nheYHwMvJxaRC/SF4CTzZDvnehXzvqRmazoAIxJyAyCUQuQbcCkDm7pC5K7g72O3o6fyG85C4DRK2\nqu/dfcGjNXi2gjROWOM5OMWFoiPBWNmiy4USLiJZUt4rQNjTzy/I3QAiUV0o80TEaqfv/38E/hRn\njsO0z+DOTRg1Gdp3d25yUGw0fDkA7l2H79ZAXhvd3wG+7AM7focCpaBxV6jcEMrWBA8Lh3T9ikNw\nEBQsC51GQoNu1hsU//ahWoSqzzRt3+HAEgjYAYOXa5N/EfFR8Jk3fB9lvgDUhU2w/0cY7G97rvCb\nMLc6vHsEsmmMwz/yNVxYAt33QAYnpaIbE2BdIUh4Lmw1Rx1occg58z/FkwNwZSLE34WSX0CeLs5L\n8DGEQ+gyeDQfJAly91NJ28MJZV7FpIYTxq4BuQGmCymE3RrcG9j0YzsCpxB4ax3yW1M1NfZDta5f\nxGfAkucJW1GUMBFJlaGnKIq3iAQripID8AOGicgBi5tw5JHjZQ+c5UKxhoO7RdrVEmlSXmSHk/2W\nJpPI8hkiTXOK7N+sTeftciI+iNRLI9Ikg0gDN5H7N8zLHt8m0tJVpBki7dKJtPFU3SuW8PiOSN8s\nIlGh2vZy57zI2JLaZM0h6IDI1OqWry/rJXJwtu15TCaRRU1E9n+nfe1Tc0WWVBeJfqBdRyvOfi2y\nVBFZisjyDCJxOkJCbeHJYZHDTUR2FRa5vVDEmOyceU0mkagDIkG9RU5kErnWQyRyr3P+3k0Gkfj9\nIqHDRG7nEblbTiTsc5GEgJdzDmABOMOF0sry2FsTmVTs2dCzHqoLJXfKe28suFBe0JkEjLIm8+Yl\n8sTFQYNq8OsciI93fD6fRrDhMIz7Br6fAB+9rdZBcQYUBXp8BNPWw5QPYPanYDBY1xk8VXW5mIxq\nCnr9DuBdyLxs+QbPSncmJ0LmXFC8quW5s+eHmh1hm42CUk+RpzQ8uavWSLEH985B3ormryXHQ+AW\nKN/R9jxnlkB8GNQZqW3dW3vgwOfQfg2kd6JLw2SA05MhYCZkKKYmwdSaC2ktFM0yGcEQq23u8ONw\ntCWc7g55ukHDK2o9FEfbsiWHQfAMOF8WbgwCr0pQMQiKLYeMvvZHrIgR4vdB6FC4mx+eDAWXnJB7\nN+QLgCyTwKPc69OrViusJO74ZoXPiz8bOrEJeBoG1hdI1TlFURQvRVEypLxPBzQDAqxN+uYRuJcX\nTJ0Fu7ZDhSIw/Tu1ybEjUBRo0ga2nwHf5jCgJXw7GuI0/uezhYp14PdTcPE4fNQKIsMsy9ZsDumz\nqsQsJnj/W8v/CTy91KqDLi6qi2L6Ichuw5f81jjYMUcbKadxhXzl4M4527LmEBoEeSyE0F3eAfmq\nQEYNWYihl6H9Am2FvaLvw8Ze0G4ZZHJi/9GYO7C1IYTsgw6noeFGKDMKClmoPxp9Hfzqw+VZNua9\nAeeGwclOkLs9NLoGBQc63pot4RYEfQjn6kLsSSg8DyoEgvdIx9qqJV2DR+MhqDBE/gCuecDbH/Ke\ngyzjwf1fKnX7svDyMjGnAE0VRbkKNEr5jKIoeRRF2Zoikxs4oCjKWeAYsEVEdlqb9M0jcICatWHl\nJtiwEy6cV4l88ngIfezYvC4u0LEPbLug1kBpVQ7273DOnrPmhFk7oEo9GOoLYY8s76H3J5DNG94e\nC+PbQ0yqcNFnaP0uVG8FtVvDxhm29+FdHMo3gT2LtO27UFW4becTyd0zkNtCu7Fzq6BiF23zNJui\nxonbgjEJ1nWBasOgcGPt+7SFe36woToUaAMt/SBdXshUGqp8l/rmKgJX58L2WlCgC5S1ENtuTIRL\nX8GeGuCRRyXuQu877ueOOQeXesHpqmolwfK7oNgyyFjPfmvYGA0RC+FWPbjlAxIL+TdD7k2Q+VNw\nK+HYnl8nmHQMHRCRMBFpIiIlRKSZpMSAi8gDSfG8i8gNEamUMsqJyLdaJn5tB1p94Deuiwx/XyR/\nFpHRQ0WCneT33LddxLewyIieIqFO8nOaTCK/ThTpUVrksYV9mkwiCfHq66yPRD6sJ5JgI9Y34rFI\nr9wiFw/Z3sOVwyLDimvzT/ovEFk2wracOYwvIPLYjP8+KV7k00wiUTrKEGjBjmEiq9o6N1X9wjyR\nRd4iIYdty8beE9ndQmRrVZGIQMtyIX4if5UQOdhOJOam43s0mUTC94icb66m0N/5TiQ5wsE5jSIx\ne0Tu9xG5nEnkTnuRqPUipkTH9/uSgDN84E21D0fXc8Z4My3wF1G4CEz/BY5fhOw5oH45+G4SxMQ4\nNm/95rA1AHLlhVblYe3ilJZODkBRYOAX0LSnaok/vm9exsNTfR38I2TPBz+8qxbwsoRM2eGD2TCj\nPyTaOBsoXkt1z9w4ZXu/3qUgyI4IC0MSRIdAFjOhYjcOQME6kCGX/nkt4eKfcH0btF3qnJZeInBi\nMpz5Djrsh1w2WtXdWgHbqkD2WtDiiGqhv4j4YDjWA04NhArTwGcjpCvk2B5D/4KzNeHa+5C9M9S4\nCfnH2t/M2BgNj2fBlRrwaDR4VIKiVyH/BsjwFigvsdTt64A3rJjV60/g07+HkR/Cgwe2ZXN7w7iJ\nsPs03AyC2iXhj4VqnLW98EoH46bCwu1wcAeM7KaGCDqK/uOhzQD4oD4E37Ys5+ICHy+G2HBYO936\nnD4doWoL2PqzdTlFgXq94KCG8MDcxeFhkG25FxF2W43tNue3vr5P9X87C2HXYNdI6LgWPJ1Qz9pk\nhP1D4OZ66HgIMllp65YUDceGwPkvoOFWqDAptf9aTHB9LvhVAK/C0CwQ8rRzbI8RR+BEPbgyBvJ9\nAtUugfdAcLGjVylA4nW4NwIuFoKYA5BvJhQ6CdlGgKsdnY3eVPxH4E5Gj7fVhsPVysHo4RAcbFsn\nf0GY+wcsWQ9/LoLGVWDfLsf2UbYyTFkEGTND1+oQFOjYfKD6uLsMUy3xBzcty7m5w9BZsHIK3Dhv\nfc62Q2HdVOt+cwCfHnB4hUpW1pAhhxoNE2Pl4NUcQm9A9iLmrwXtg6IN9M1nCSKweRD4TIBcFiJe\n9MCQADu7qc0e3toHXlYOWWPuwBYfEDdodRqyVUstE/8Q9raARwfAdz+U/0Zt+WYvYq/A2U5wrivk\nHQB1zkGODvY9dYhA9G643g6u1gLFA0qdgcKrIL2Pfp+5KU69Wf3bkASQS06aS8d4DfD6E3ju3DD1\nRzgdqP5BVS0LY0ZASIht3So1YPN+GDURRr8PPVrDFQeI18MTvpgPA8ZB3waw9U/753qKbsOh5xj4\nqh88umdZzrswDJoG3/aCpATLcnmKQ/U2sMnGgWbeUhAbBXNs1FFWFMhlhxX+5CZkM0PgSfFw/wwU\nqqNvPku4uAISI6HKe47PlRgJW1qqZNhmm1oj3BIeHYPNtaFEf6g5HVzNJFuF7ILtlSFbTai5BDJa\nONDVtLcQCPwAjvtAphpQ9yrk7W9fPW9TMoQuh8sV4N5HkKkNlL0NeaeAux2RO0mX4fFwuFVArVb4\nb0CSwLQFDH0g2RuMU5w0r47xGuD1J/CnyJ0bpk2HUxdVX3CVMjBuFDyyEM3xFIoCbTvBoUBo0AQ+\nHQI/fgFJSfbvpWN/WOAHP42Hrz90bC6AToOhTksY38G6/7pZX8hfEhZ+an2+bhNUN0pMuI2FBfb/\nDn7zrIvlKgaP9BL4DchmJvv09lHwLg8eOho+W0JiNPiNgRY/m8/01IPkWNjzLmQrD03/hDRWXBE3\nVoJfG/CZC+VGpLZUTQY49xkc6Qu1f4eKX9ofz22MhxvfweGykCYt+FyBwuPU93phSoZHi+BcKXj4\nK+T9EUoFQPZ3wUXnU4EkQfQquN8Q7vuCSzrIfwo8zTyFOAumZDBtB8M7z0hbqQ5ugeC6xElr6Biv\nAd4cAn8Kb2/4YSacCIDkJOjSGn6aZptE3d3h/RHw8zI4exza1ICLZ+3fR+lKsPoUPLgF/XwhxIr1\nrAW9xkHeYjDtXcsHpYoCw+fBvlVw2opLKHcRqN0BNvxoWUZEdY0gsGQEbJtpWTZXcQi5pulr/I0K\nb0FFMzVarjvRfXLgKzVcsICDdbZNBvirO6TxgrozLd8MRODMZDg+FlruhgJmuv+EHoVt5eDJSWhx\nGnI7EM4Yuhf2VYD4+1DrFJT8Edzt6GTzPHGHLoOii6DsXsjYVL+bJPkOPBkPtwpC1C+Q8X0odAey\nfQ1uTqg18yJEwHAU4odBbB4wzgalPLidA7eDkGYYKE5M1nrDLPBXHipoM6zHFoKuinRpJVK1hIif\nxq4qJpPIqsUiFXKITJsokuhAaJTRKDLva5FBTUSuBdg/j4hIfKzIO5VFVvxgXe7EDpEe+UQirZSt\nDbkp0jOrSKSFtPmIhyI9PUS68Gwc32Bedv8ikblva/kGtvGzr0jgNsfneXxJZFp2kWgHq+WZTCK7\n3hVZ10zEYKWkb3K8yJ4eIhtriMSmrGk0iNzfLnJxqsj+jiJrvUX+QMS/vWOhjEnhImcHivjlEwm2\nUhrBFoxJIg9/EzldWORiI5FIBypLxh4Xud1F5FZxkUcfiiRaCZN0BgxXROInikQVFYkuIZIwWcRo\nvZokzggjrKd9OLqeM8abZ4G/iKLFYdVW+PpHGDsMerSHm9et6ygKdOmrZl5eOA2tq8OFM/at7+IC\n734KHd6B95qolQjthacXfLMB/pwGx6wkEFVrBo16wervLMvkKgQ+XWD99+avP76lRuekcQOvTNDj\nGyhd38JcxdSwQEdhNKg+W0f93yLw1zCo+xmkd7Cf5Ilv4eFxaLVa/V2YgzERdnZWrd9W/s8ONqMC\nwb8FnPsU7q6DhGDIUQ8abLA/lDF4HfiXVSNZGlyE3HZEq4jAoxVwsZ7q6y66BMrshowW/n2tzRO9\nE242grudwcsH8p2GHDPB3QF/viWYHkHiTxBTA+LqA5HgtQLSXQaPCeDihGJbtvCfBf4vW+DPIyFB\n5MdvRQpnE/nyM5EYDTWGTSaR1UtVa3zu9yLJDhQP2rtRxDeHyEkHa2if3C1S30XkoBXrKyZSpEcu\nketnLcuE3BQZU1Mk3szvITxEZM1kkX2/i4ytaH0/j26IjCygaetW8eCCyFclHED4RQMAACAASURB\nVJ/n2naRJY2sW8xaELhE5LeCItH3LcsYkkT+ai+yo5P5wlLHh4osd1Ut7z89RCJ1NIwwJovE3REJ\nOyJyY5bIjpwiO/OJPDmg+6v8jahTIqd9RE5WFonwt28OU7JI+J8i1yqLXC0rErZUxPQSGqGIqE8q\niX4iEV1EQkuKxL4tkrxd3YNO4AwL3Ef7cHQ9Z4w33wJ/Hh4eMOJjOHAWbt2A3h1hz3brOooCnXvD\nznNw7gj0awFhofat79sOpvwJozvDIRvrWkPVRlChLnzSHr7qDXfN+J/TZYTu4+E3K23IchWCTDng\n0KrU1zLngk4TwKe7ao1HPEwt87dsHogItp5IpAX3z0LeSo7NIQJ7JkK1wZYtZi247QcHxkD7bZDe\nQn1tkxH29AYxQuPlqQ8iTckQH57SVswF8raFjCW1rR8wFLZ5wN5ScKQxXBwGLp7QIACy1tX/fZIe\nwpVBENBKLQ9b5QRk0nnWYEqAJ3PhakkImw05J0Ox85Clt/Nap/291kOI/Q7CSkDMKHDzhSzHwOt3\ncG0OioNFvOzFG2aB/28R+FPkzQcLlsPwsTDmPRg3WG16bA25vGHWSihfDdpXgwANWYrmULMxzNgI\nE/qC3xr75gAYNVd1z/j9Af0rwKhmcPPiP2VavQcPb8IpK+6WpoNg1wLL19O4QhlfuLjHsoybB3hl\nhigbET+24AwCv7UPEsKhlI7mhS8i4gacng6tV0O2MuZlxAT+70BiGDRdDWleyEBMjoZdbSApElqc\nAK+8UMl26Yq/kaermnRjilNHmvTQ4By460xEMsSoxH28DLhmhBqX1YQePeGFYoTQxXCxJMSfhXxL\nocgByNjGOVmtf69jgqRdENkFnpQE41XI+AdkOQteg8HFzuxRZ+I/An+NUL8x7DkHsTHQuBKcPGpd\nPk0aGDcFPvke+reAtXaGJlWsDXN2wNQPYYcZ61cLCpRUiVNEjfs+uRtO+P1TxtUN+k+BBWMsZ5tW\nbaWS/J2L5q8DlGsCAX6WrwNkzQcRZtL+9eD+WcvlZbXi4HdQZ4z9YYMmA2zrBQWaQV4LPmGTCdZU\nhbAAaL4BXF9oQhD/ELY3hHQFoNF6yFwW2t9WS8xqhWcBULwAFzWEr+xMcLNB3qYEONcUjpeCI3nh\nQDo4lAFC10Llg1D0B3DVcQMQgYiNEFgBnvwGhZdDvrmQzsGonlT7joXo2RDeKcXabgjZbkPG38Ct\npuMlZ0VA7HxqTrVXHeM1wP82gQNkygw/L4XxU6DfW/DteNshh606w5/7YM43MGmofXHepSrB/N3w\nyydwyI7O7i4uUCzFWlUUGDMfug5PLVenA3hlhN1Lzc+TxhUa9Yddv1leq0JTCNhlOXwRIHNeCHMg\nVFLEcQs85Bw8PAcVe9s/x9Gv1ASdKh+mvhZ1E05OhoUZIDwQWm4Btxfio+OC4fBgyNcG6sx/5lbR\nQ0LBW2BvTSg0AtwyQboikL+fbT3FHZIeQPwV9dUUBx4Foc5jSKfzUDF6H1ypAw8mQr5pUGK/mn3p\nTBiDIeIzCC4EibvAa4RzrW1TKJimg1QEedvx+eA/C9zpOHwINm90fJ42nWDPWbUnZuvatjMyi5eB\n9cch+C70agRP7HAfFC4Nk5ep/TGv2BHlUqM5ZMwKlepB6B3zMooCA6fB0gmQEGdepvE7sO93temD\nOXiXgIIV4aGV6J2s+SDcAQs88oG614wOxOwenAo1PwI3O9ty3T8M5+ZCi8X/dA0EH4RV5WFlGTj1\nJRjioe4sSPeCbzwxHP5qDpkrQeXP7Ug1N0DAx3BmMNRaB6U/g9p7ofpmba4KxQVyvwekrOviCeX/\n0ucuiTsH11rBrX6QYwiUPgOZWjnQ2MGQ+safcBCe9IPgMiARkPMwZF8PnvWdY20b90JiD0goBtwC\nZSYodhhJZufXMV4DvP4Erijw6Rjo1hHuO/gInzM3LNsMfT+AyaNh3TLr8hkzwdz10Kw99PCBezf1\nr1mhNnz8C4xsCyF39en2HAerbsH45bBxDtyw0JyjdG0YMBWLf1XeRaFQRTi63vx1RQF3Twg6Znkv\nOYuqPS7tRcgFNXzQ3v/A4bcgaDtUf98+/cQo+OttaDrPTJceBSKuqv0uxaBa1UVfqFVuiIMdbSFP\nY6gyXv/6SeFw+n2IOAONT0H2FGs3Y0XwKmRb3xADgYPh5veQwQdwgQKfare8DZFwYxjc+kgl7LJX\nINvbjvm4xQT3M8K9NHDXA+6lg7uu8LgBuBYF7yDIMhvc9LevSb3WY0j+HhJKQtIwcKkDaW+Cy0xQ\nGjrPV/+SCFxRlC6KolxUFMWoKIrFSm6KorRQFOWyoijXFEUZZ2ve15/Aa9eBE+ehXHmoVQnmzHKs\nuqCiwNsDYcJU+PFz+HK09TZnLi4waAz0HQ69G8CNy/rXbNQJeoyA4a0gJlK7nocneGWAHHlhwDcw\nbYDl796wp/WGxs3egwu7LV8vWgOuH7d83SszPNKZjfk8HgRA1kL265//A6p/AJ52PnrvGQoFm0Kx\n9qmveftAk5X8bdlmrwIezzUMNyXDrs6QoQjU+kH/TSjuHuyqp7oN6m4Djxz69MP2wZEKqg+89nko\nuxJyD4ACn9jWFYHHy+FMaTX9vfhayDnUOQ2SFRfweJppmgQSBy7ZwPs+ZJoAaezIGn0ef1vb3SG+\nuNog2X0xeAaA2zBQUjV1dxwvzwIPADoA+y0JKIqSBvgZaAGUAXooimL1Dv36EziApydM+AJ2HYD1\na8C3DpxzIA0eoFQ52HwcLp2Dvq0hwkbdkF5D4KOvoG9DCLTDHdJrJBQpC01zWHZ1WEPrgZCrIPhZ\n8HXbQuXmcGglxFmwoovZIPCMOR2LQnl0FXLY2bnFkASHZkBlG4W3LOHaBgg+Br4WSgsYk+D091By\ngFopsESfZ9fEBP791LC2Br/pt/QiA8HPBwr3gyo/6HN3mJIh6BsI6AmlfoJyC9WDTo88UHK+7VC7\nuMsQ2ATuT4VS66DoPHBzkFSfR/w+SLj3jMyUTJDrBLg6mFwl8ZA4H6KrQfLH4OKjWtseiyGNA09x\nmtbWMfRMK3JZRK7aEKsBBInILRFJBlYAZiyOZ3gzCPwpSpaCHXth4HvQrjl8MtqxxsZZssLSv6BE\nWWhbA65YidQAeKsPTJgNg1rAaZ1NDhQFJi4GV3donA3+nKnPGlcU6P0ZLPoE4u1oVOGVEUr5wBkL\n8emFq8Ld82BINn89Y06IdoDAH1+FnHYS+NVtkKM0ZLVQntYaEqNhxxBovhjcLDyhHBylWty+86Dn\ndSjzrvpzETj8EcTehcYr9fepfHwYdjeECl9B6dH6dBNC4GhjeHIIap+DHG206xrj4c54uFAPsrSD\niichQy1961tD/AG43wgeDYBMI8C9POAKObaAqwN9SE0hED8RIgtC8mZI+z14HNVmbYsTavTDq/aB\n5wWe97PeS/mZRbxSAtfr7wFUl0bfd9RiVkYjNKgCAXY23QW11vikH+GjCdDVF3bYODBt1hGmLIUh\nb8EhG6F3L8LTU/WHJyfCrLHQIjd83hdCLBxQvoiilaBiQ9igsav8i6jxFhxP1Qw7ZW/pIUdhuGvB\nz54hB0Q70HP08TXIYacv9MwSqNzXPt2j30DhppDXQkedS0vh9nZo9rtqXXvlfhZZcmE2RFyG5pvN\nl4u1hvub4UB7qLUECuuMmgk7DAerQfbGUGMzuOtoQhy+Dy63h/ggqHQO8nzkvKSY+FNwvyk87AsZ\nekOBS5CxD2RZANlWgocdCUgAxgCIfQeiSqvhgBkOQPrNarihNWtbRK1OmNQMkq0aqtphJWzQPwo+\nf/BsvAhFUfwURQkwM8xUPTP/jXTv91WlgAJpgCCgEOAGnAVKp0pttYU/l4oUyS7yy0xtPR6t4fQx\nEZ+iIkt/ti178oCIbwGRgzv0rRH2SKSWm0g11FFdEfFbpV3/7hWRztlFosL0rSsiEvZApHdmkSQL\nxbvm9hfx+8X8tbgokffS6V9TRCQhWmSUp1r4Sy9iHot8mUkkPlK/bliQyMxsItFWeqQGLhYJNVOE\n7J6/yMJcIlG39a8b9JvIulwij4/q0zOZUlLqc4iEbNGna0wUCRonctBbJFSnri0k3RO520fkkrdI\nxCLnpNWbTCIJe0SimoqEe4vEfS1itFB4LZVuvIhhgUhiGZHECiKGxSKmBOek0lfQPuxZD9gLVLFw\nrRaw/bnPnwDjrM33Ki1w3f4es+jeG/yOwKpl0L2tY53pK9eAVXvh959h+kTrcdFV68KMFfBJLzhv\nJXrjRWTJoR5KgmrxTV4GTTR2ZwfIVwLqvAWrp2nX+Xttb7WRw0V/89eLVIN7FsIrPdOrxagS7fDf\nP74G2YupT096cf5PKNEaPK00V7CEvaOhxmgzUSfPoXRfyFbunz+LC4FdPaHxYsig0yVwbSHcWg2N\n90H2mtr1jHFwti/c+RV8jkCu1tp1Yy/BqZoQdwmqn4NsGnXFCCEzIcxCspkpHh59BUEVwTUvFL8C\nmfo5llYvAok74UldiPwA3PpCppuQ9lP1ANSq7mMwfAFJhcC0Dlx/ArezkKav2k3IGfh3XCiWHitO\nAsUVRSmkKIo70A3YZG2iV0nguv09FlGkGGw/CKXLQb1KsFena+N55MkPy/fBro3w7WjrJF6xNny1\nGD56C27ZOp94Dj4tIW16Vd9WizRz6DURts6DMA1diV5E9fZwwoKbqGBlCDps/pqipPjB7bhBvgr3\nya1d8Pg8VDOT/GQNJgPs7AGlB0KBFvp0b6+Bs+Oh+kztNVEAYu/A0WYqodY9Auk0Vt0TgXuz4Ux9\nyDsYym0Ad40RLnEX4JIPRKyDtC9kx4pA5Eq4VgoSzkHRE5D7G0iTQft3MrfXhO3wpA5EDYd0QyHH\nRfDsZZt8Tdch/n1IagDyANz2gttWcGns/APNlxdG2EFRlLuoVvZWRVH+Svl5HkVRtgKIiAEYCuwA\nAoGVIjZ6xTnyyOHg40on4NfnPr8NzEr1SLNggT7XyF4/kVJ5RCZ/JpLkwKNe+BORDjVExr9v+9F/\nza8iLYqIPA7RNnfEE5HHD1R3Sps8Iid269/fnOEiPw/Tr3cnUOTr1uZ/p7GRIv29LH/fWR1FbpzQ\nv6b/TJEd3+jXexgoMr2UWndbD4zJIgvKilxZr3/NI5+IbGyif837O0RW5hR5ckafXmSgyLb8Itd/\n0vd3nhAscraFyInqIrFXtOsZE0TuTRQ5nV3k4bzUdcvjzopc9xG5Vkkkxl/7vJZgMonEbxV5XEPk\nURmRuBUiJo2/W8MZkdjuIlHZROLHixgfWhXHGS6UstqHo+s5Y7yikl8A3AfyP/c5P6oV/g98/t0U\n+H4atG6Db5s2+Pr6Wp/Vt4lajfCrT6FHK1iwCjLbES+aOSss8YN328KYfvDdQvXA0xw6DYRH9+H9\nFrBwr9r42BoyZX32fvwi+LIvLD0LmXSEeHX/BL7vC08eQDYL1fTMIV8puHMeHlyFvC9YiV4ZIX02\neHwTcpmxAuMjIc5WmzYzCAmEPBX0611YC0Wb6a97EvgnZCwAxXV65G5tgSu/Q9fT+tZ8dBgO9IKG\nGyCrjlIBYcfhSDsoNxUK9rEt/7eeP9yZBhmrQaGJ2qNjog/DrYHgWQLKngV3Mw+8pgjI3B+y9LOv\n3+bziN8NcdPBdBvSTwTPTrbDMEXAeACSpoDxHLiPgLTzQUlt/fv7++Pv7+/YHlOt79zpXjpe1Z0D\ncAWuox5iumPpEDMxUWTiBJHqVUW2brJ6B/4HkpNFxg8XqV1S5PpV7XovIi5WpG8zkSGdrXfuMZlE\n3vYRqZ1JJMRKfWlz+HmsyMwR+vf282CRpRP1683qI7Jzrvlr37UUOWmhDvnsLiLHVupf75eWIgGb\n9evNriFybZc+HUOiyKwCIvd0HiBG3RVZWkjkwUF9ek/OiqzMIXJPYzeopwjZKbI5u8gDHX/TJpPI\n7Z9F9uQSeeynXc8QI3L7I5Ez3iJPVjt+2G8LiRdEQlqJ3C0qErtOW3cik0kkaaNITG2R6OIiib+K\nmBJ0LYszLPDS2oej6zljvDIfuGj197i7wxeTYeZMGDFETatPthCr/DxcXeHL6fDeCGhbDw7utW+j\nab1g3ibVqp4w0HJNbEWBX3dBYgI0zQfDO8KpA9Z96E8xYBIcWKdWHNSDtkPhr3mQZKHGiSWUbQgX\nLPw+8pWFexbi4b2yQGyYvrUAwm5D1oL6dKJDIPQqFKqnT+/icshaAvLqOEAUURsal35XzcrUiqjr\nsLsl1JgNeXX4y++tgpNvQ6314K0xwsyUCBcHwd25UPMwZG+iTS/mLJytCuIO5S5C1s4vLxHGEAKh\n70FIQ/BsCnkDwauDdatbBBK3Q3h1SPpTtbjTXQL3gc47mNSDN6wa4Su9e2i6Iz6P0FCRDq1EGtUR\nuXvH2s34n9i/W6R0TpGl87XrvIiEeJFe9UW+/si6BfPDWJFyqKNGepEmBUTuXLc9/751Ir1KiyTr\n9Nt/2kxk11J9Og9vigzIZf57+C8Smd3LvN6qj0U26/Rlm0wio9OLxEXo0zv+q8jybvp0jAaRX0qK\n3NyjT+/ycpFl5fV1+EmMFFlbXuTqQn1rBc0W2ZpHJOKcdp2EYJGjtUVOdxBJjtamYzKJ3J8lciS7\nyMNl+vaoF8YYkfDJIrezijwZJWLQGOKauF8krJ5IaCmR+NWO9REVJ1ngJbQPR9dzxnizMjGzZYM1\nm6FVO6hXHbZrrEBWrxFsPgBzvocJI+2rpeLhCbM3wJFdsPAHy3KN2kPalIw/QzJkzaEOm3t8C3IV\ngDU6k3TaDYONM7VZ+k+RsxC4p4X7Zuq6WLPA09lhgcdHqP7ktDprmFzeDKW15j+k4Mp6SJsFCvpq\n14kPhQMjofEC7R1+xAT7+kCuulC8v/a1rv4EwRuhwQHIpOFMwBgH1z4H/wKQtSlUWgOu6W3rJYfB\npQ7wcBFUPAw5e2nfox6IQMxquF8Ski6C9wnI+j2ksXHmlHwKIlpCVB/wHABZA8Czs3ObR9iLV5uJ\nqR+v+g5i845oCYcOiBTPJzJ+nPY+luFhIv07iXzU1/5O9A/uiDTIJ7LpD/PXk5NFqnqKVHIXqZFO\nJOyx9rlvXxFpnU2NUNEKo1Gkf1GRwMPadUREfu4nsn126p8nxIocXmFex/9Xkd8G6Fvn7hmRb8vr\n00mKE/k8g0jsE+06JpPIgsoiV3X4lEVEdvQR2Tdcn86Zr0Q21Vb97Vpx/TeRTQVEYmwkBj3cIBIw\nQGRfUZHtaUS2I3K+j/Z1Ig6IHC8gcn2EGnHyspBwSeR2A5FbtUXiD2nTSQoUiegs8thbJPZn3T5u\nW8AZFngx7cPR9ZwxXoNbnp2oUxcOnYbzZ2HIQG0JPJmzwC9/QHQkDOwICQn61/XOD/O2weQhsGxW\n6uuurtCwPXQaAC26wvfDtVvHBUpAm0EwZ4z2/bi4qL7wjTot93INIdBMYTQPL6jdzbxOhuxqgwg9\niHwAeXR24bm+B7wrg1dW27JPcWOHWvypmI4EmNs74f4+qPWldp27f8GlOdBoTeo2axZ11kLAePD1\nU7v4WMOV0XB/IcRfB4xq555yi22vISa49z1c7gxF50CRH9WWbc6GKQFCJ8HdupChIxQ4AJ51bOiE\nQ/iHED4IXKtDtiDwGvJqfNy28IZZ4G8ugQPkyAHrt0GBfNCsNly7YlvHwwPmrgKvdNC/HcTbkVlY\nsjwM/wq++hAmDILHLyTUTFsB4+fAxz/D1XOw3ko3nBfRdzyc2w9nLVadTI1m/SHqib7EnlI+cO2I\ndnkAj/T6S8qG3QZ3L9tyzyNoD5TtpE/n4gqo/bH2x/DkWNj7PjScC+4a3BKgHlru7wcNV6Zu9mAJ\nIX5w6gOovxUyaCjmVWXrs0xHFy8o/o3tQ0djLFzoAhHHodIpyKrjJvZ/7Z13eFTV1offPSmkQZCQ\nEGoISAm9RkBFFLFgAdQrCjZQPwvFq16VKs1yRfSKolIUUQQRLIjSBCFI70iJdEJNDwRSSVnfHydc\nEWfO2QOBmXjP+zzzEJjFPnsmyTpr1l5r/dwh+xdIaAb5OyFqG1w10LzUUIogaxIkNgQpgLC5EPxy\niZScl2I78CuMwwFDX4MXhsAdHWG1huPz84MJMyA8Eh7uamhmukvvflC/Kcz5BG6Kgidug1U//zna\nDgyCsXPgg8GwV7PjMjAYBrwLX4/Tj9yDQ6FyVVj5tf7+I+pAfjZkOJnK43JvFdwXdTid5L4Kz/4l\nUMuN6Xmpv8OBnyHmfv3/s+1DiLodamtWjxRkw9Ie0HI4RGoObUpbC+t6wbXfwVUtre1F4Mg0cEQY\n8mk+gRBp8ZryjsGWjkaXZKPpUO7impn/vI8iyNsKWQsgcyqkDIF9leF4N4h4B6p/C341LPb1KyS3\ngZyZEL4YKn0MPm4M5fIUtgP3EA/1hckz4LH7YPYMa3tfX3hvGkTXg163wmk3Rrue47EXDGHhgrOw\najE8cSvsucBRRzeEl8bDm0+5HtV6IR3vgeQEWOeGTFSn3hCn8brPoRTUbQsHNur/n4ty4InuOfDs\nNEN9p5pL0ZK/snUKNH9M/xDyzHHY+Ba0GaJ/jU0jIPIGiOmnZ39qO6zqDtd8AeEaDl+KYUc/SP0Z\nrt8KDd6Fhu+ZN+mc3gib20FET4j5rPRSJtmL4XArSHwQkp6Fk28CBVBnP4RYHCwXHoW0ByDjIagw\nCMLjwP8SdFCvNGWsjPDv48DB6MKctxxeGwpjR1tHsA4HvDUJmraCB262FnW4kGu7/DGgydcX3pwG\nDZ3ke29/EEJC4UuT6pUL9/XoCJg2Uj8Kb34TpB6F427MZLk6FvabiDhcSGCo0Y3pDqcTIdQNB37o\nV4i6Vj/XXpgHO6ZDyyf0r7F2JDR9EsprRqtHFsDBb6CNRjoDIOcEbH0FWo2Hqrdb2xcXwNaH4cwu\naL8MylWGqH5QzUSoN3k2/NYV6k+AqJdLt7Y7+Dbwj4Hi00C+kauu+au5UIMUwsm3Ia0n+DWAyN0Q\n1PPyii9cDuwI3MPENIYl62DRjzDgcWtFeYcDxrwPt9wFj98JeW4IRFSpbpQI+gdAhfJQ1cXHSqWM\nOeBfjoMjmjnk63sYc8PXztez9/GFjg/Acjei8IuJwPPcjMAz3YzAD66AOp307Xd/D5Et4SpNsYf0\n3+HAXGirN36e/JPw6/9Bp8/AX2OYU1E+/HqvoXlZ6wFreymCrU8DDmi3CPwspi6KwKHRsP8laLEE\nwrtrvQy3yFkN+ZkYE5/9ocLjEGByEJ2/HY63h9xFUOkLCB1l5O9dUbgXzoxyr/T1SmE7cC+gSiT8\nGAcB5eCJ+62duFIwcBjUqA0De7lXJz5qEsxeB+/OgSEPQ4qLnHL1aOgzxEil6PzgXkwUfuNDsPxL\nfftzDlzX3j/IkDfTTQWB+ymUg3HuOfAtk6Hlk/r2q4cazjtAcz7O6oFQuwdUv9HaVgQ29ofAqtBE\nIz0jYijU5yRA8ylGztvUvsgQNj6zHdqsh/KlnJooPgtJg+HI/VBtIlTsB47yEPFvF/vJh4wRcKIz\nVHgKqi4F/6tN1s+B08MhrUPJbBMv8YLnYztwLyE4GN4YbzjnvvdCvkW7ucMBb38G2Wfg1f76Tu2G\nrkbapF1n+MfT8PKDrkWSew6E7NPw42d6a1/fA4oK9KPwq1sZOfk9mvPJK1Yxouqk/Xr2SrkXhRcX\nQVYqVKiiZ5+dDicPQXXN/Hf6XkiLhwaaQ6tOrIXkTdCiv579obmQvBauceHALmTfJENGrcPnetUw\nu4ZC5lZoNxd8Asxtiwtg+8OQvRcaTYNyl6g7eSG58XCgHeTthKu3QYW7jAPL6J2GE7+QM7PgSHPI\n3wY1t0GFJ8zTJXk/QWoTI/oO/w1CXihFJfn9UDSllNZy4+EF/H0dOBhzVD6ZDf7l4LEe1nXf/v4w\n8TvYug4mvO7+9Z4aZlSezBjv/HlfXxj6CUwYBOnJ1uu5G4UrBZ0fhc0udC+d0bY7HHEho+aMqLb6\nB5ln0qDOdfqHi0c3QLMH9e13zYZmj+rVY4vAylegw2jwtXCWYHRornrWSJ240tI8n5RVsH0EdPoB\n/DRSLfvegcS50GGBtX1xPmy7HwozofVPet2Y7pA+E448BWFPQ9Q88Cu54SpfI++dtwZOjoWUp+B4\nJzhYHlIehNCnIHKuIfbgisLDkNEdMl+A0ElQ6WvwKYVKGQA5BYX/goJ2wEVMyXS6phsPN1BK/UMp\ntUspVaSUchmhKKUSlFLblVJblVKWB1R/bwcORsngpK8gpDw82t1aBLl8BZi2AD4bD4Ofcu9aDgeM\n+Qy+GAvxm53bNGgBd/WFz9/UW/O67hAZBVs0B1217w5Lp+p/gihfCQ652KszMo9DvmbZZXaqUUao\nS8Iq/XSLFMPmydDE5KDvfA4vNfQuYzT1Kde/AnUfgKoaw7Syj8HK+43Iu7xJCuEcCVPhwAdw7c/G\ngaUZRTmwpZtRb93ye+s0izsUF8CR5+HEcKg5ASr9n/Mo+uQ7kDEEzkyGvBUg2VDlJ6j4vOuoWwog\nazyktQa/NhCxwxhwVRpIIRR9BAUNgEzw2wk+L5fS2m483GMH0AOwqnMWoJOItBSRWKtF//4OHAwn\n/vEMY2pfixpwwCJlEFEV3v0CvpoMd7aGVUtdTyG8kMqR8MI7MLKvUV7ojMeHQ9w3sEsj1eFwQOyt\nMNdJ16czajQEP384pCn0XKupayFjZ5QLgTxNB56VCiGaCjFgROA12urZHltvNOBEas4ZX/8WRN+h\nN+f72DJI3ABtX7O2LS6AbUOhwQCoplFTfvw7iB9mOO8gi1rq3GOwoi74hkLzWeDQ7PzUoSAZ9t4M\neXsgZhMEmRxSVh6PcaCJ8WdILwgxaRY6uwsS20PeFqi8EcoPK72uy+JFUNgcir8F35/BdwqoUkwn\nXaYyQhHZLSK6JWLapTv/Gw4cjPTFVwuhqBja14NbYuHziZDiIpXR6XaIjqXdVQAAF3tJREFU7Qg7\nt8CT3SC2Grz/mnUuHaBrb6hSAz57y/nzQcHw5GiY8LJepNy5N+xcDUkJ1rZKQdu7YMOP1rYANZu6\nl0IpF6IfgWel6Tvw4mI4vglqajrwXbOhsWbjTvIWyNgNMQ9q7KMQVv0TYkeBn0bH4G+vQ3YyNNKo\naknfAAcmQweTrszCM5A0BzbdCStqGWmMZjPBUYraK1nrIL4NlO8E9X4CX5MD3cJ0SOwHRALlQAVA\n2LvObaUIMsdCUico/xSETQPf6NLZc/E+yH8cCp8DnzfBdyk43BzRoIPnc+ACLFVKbVJKWZ7Oe78D\nn+1CcPViCAiACdOMkrttG+HVF6FZNZg51bn9g08a+fPcHEhLho/fNP60QikYOhG+eh8OuJjs1/VR\no/191U/W6wUGwy2Pwg8fWdsCxLrhwKvUgdMpkHtGzz7gMkXg6fshIBRCIqxtpRji50AjTTHojeOg\n9T/1cuXxUyCgMtTpYW2bugF2fwzXTbUWbM5NgtX3Qt1noaKLrsxd/eGXyrCjL6SVHFy3W+e+IpEr\nRCB1Euy/G6I+guqjzA8Ss+PgYAsoVx+i9xozT8LeAl8n36OCvZB0nVFKWHUjlH/SJL3iRvgq2ZA/\nFHLag4oB3+3guPvy1ZebOOy4fBiZ9cfjQpRSS5RSO5w83Bmrea2ItARuB/oppcxzeJ6epmU5Hezu\nO0TGv6s1jUyL/HyRWkEi4YhUcYi0ihJJcaG1l5woUq+cSG1l/Ll7h3vXmjNR5KFYkUIXGoCrfhJ5\nIEZvmuLxAyI9KovkZlvbFpwV6VlRJF1zquHg1iJ7NKcZTuotsma6nu38kSI/Dtez3TxdZPo/9GyP\nrBb5sLGe7alDIu9XEsnLtLbNTRf5NEIkVWNWd0G2yDf1RQ7OtrYtzBdZ0kFk5yhzuxOzRBYHiizE\neKxua722LsWFIgefE9ndRSTXQqGquEAkeaTInqoiZxZZ2BaJnPqPyOEwkcwPrGd658wRSW4sUmTx\nc1xcLHJ2tsiZmiI5vUSKjpnbSylNI6ys/7iY6wHLgVaatiOAF81svD8C/+Aj+HQyDH2ldAr//f3h\ntruNiMnHB3r1gXAXUV9EJERWh+pRUCcaNsS5d617noSAIJjxnvPnO3SFSlVgwTTrtarVgZh28MtM\na1tfP2h1K2zUiO7BSKMc3aln63YErjn/4tjGy5M+2fQfaPo4lLNokAHYOArq3guVNfLqG1+G8FiI\n1vgUsGUABERAo2HmdpH/gOCWgAMcAVDrGeu1dSjKgT33Gkr0db+BgHqubQtPwsE74OwRqLMFQm51\nbVtwDFL7QM4cqLoWKvR3HdEXpUJGTzgzDCpOMW/0KYqH3C5wdgwEfAmBM8BRSpUrVlyZFIrTjw9K\nqSClDPFPpVQwcAvG4adLvN+B16oFv6yElSvgqcdd11i7Q59+UC8GFqyFWZ/CDyZDoD5bAAu2waQf\nYcJo2OrGBD+HA4ZPgTULIPkves3Gx8B+Y2HKCMjNtl6vxwD4YYLejSz2btioWT8e1RxSDunZVqhi\n1HfrIAIVNA+YUvfqHWAWF+mnT3IzIH46tH7O2jYjHvbOhNjR1rbHF8PReXCNxsHy/kmQtsqYiWJV\n9/x7SZBS/y1AQaSbExmdUZAGuzqDIwRiFoCvyY0sLx72xkJAY6g+ybx1PnsRHG4Dvo0g8lfwM7kp\n5H4Lqc3ApyaEbwX/9s7tJBvyxkDuDeB7NwRtAd+Oeq+ztLh8ZYQ9lFJHgXbAfKXUwpJ/r6aUOveL\nGgmsVEptA9YDP4nIz+b79YJUielHmnNkZYncdZvIPXeJZGukEXSJ3y7SNFxk9XJr26U/iFxXQyTN\nRcrFFROGiAx/2PXzr/UVmTPBep2iIpERPUTi11rbnkoReSRCT6Jt60KR17tY24mIfP+qyNyRerbv\ndxaJX2xtV1QoMiRIJPukte3R9SJTO+ldf9MHIsv+pWf7yxMiW/9jbZebLjKrusjxX6xtU1aKfB8h\ncnqfte2+t0SWNRLJLxGx0JVOMyP3gMjm+iIJg6xTG6fmiewIF0mfZm5XXCCSMkRkf3WR7Dhz28JU\nkfSeIkn1RfItRB/yl4mk1xE501+kKMnc1gWURgqlov7jUq9XGg/vj8DPERwM384z6rTvuAVOllLh\nfkxT+GgW9OsF+51IjJ1P57vhvr7wzmD30jmPDYINSyF+k/Pne70In4+GPIvZ5A4H1GsFS76wvmZo\nOFxVDfa7uOb5VK0HiZoVTv5BcFZzhnp2hp4oQ/pB4/AyqKK17b6FUFWjU1MENr8P9e+xtj2xGo4s\nhSbPWttueAXqPQHVbjK3y02G+DeNyNuqNvzoDEj4CNotBv+S9+tSm3WyNsOO66DqQIh603X0LwLJ\nb8CxZyD6R6j0qOs1C47D0ZsgbyNEbYGgG1zb5i4sibprQMQ28Hch+lB8GrKegaxHIGQ8hHwADs3O\n3cuB56tQ3KLsOHAw6rmnfgFtY+Gh+12XALrLdTfB8LHwf93gjEWX4bPDDJGGOW607gaXh6dHw7vP\nO3f80Y2gSXuY76Ia5nw6PwS/znZdY34+TW+E7cus7SpHQWYSnNUY5OWOA889CcEaDjxpO0Q21Vtz\n/0Ko39Xa7ugKo+qkmsZc8fWjjNGyvhZVKinr4Nh8aPK8uZ0IrOsLoS2gqkkOGSBtJewaBrELINCi\nLlyXzBUQfxvU+RCqmoy/LcqGwz0hcx7U3wDB17iwy4CkgXDwagi+BWosdF6JAoZiT/oASBsIV82G\n0HGgXDQfnV0Ep5oa5YcVd4L/ne69zsuB7cAvMw4HvPUO3NAJ7uwMqRpSajrc8xBc0wle6mMeXfv5\nwZufw3tD4XiC/vp39THmoCz7zvnzvQfBV+OsB0VF1oZajWCDxqzwZjfBDg0H7uML4dF6M1H8gyDf\nnQhcY2hU4g6oqnFwmJ1qiDfU0piv/dsn0MxiPgdA4ho4tRdiTCJPMHLvq5+F2LfB30Kged9EyEuB\nZiPN7XKOwYae0OJjqNDI3FaXjEWw6z5oMBfCTEohC1Jg/73gqARXx4HfeQpDxTmQOhSOdIR9YbC/\nMmR+AGFDIWyYaxWegn2Q2AEKk6DaRih33vdJiqDoKBSshtzJkF4NzvSGkE+h/GRwuCl6fbmwHfgV\nQCl4aQjc0Q26dYEMN5XSXTFiPJw4AlMs5nbXawx9X4IhffQ7NH184Pl34f2XjY7QC2nSDqpGwy8a\nqjpdHoFfplvbNe4Ie9fDWQ3tz6r19dIo/kFwVuPAtajQaPgJ0PjFTNqu58AP/Ay1O4GvRVdfbgYc\n+AmaaLTNrx8FbYdY14jvnmTMLKnby9wuczdsfxWu/dJcjKEoD9b1gLrPQaSmKpAVGYtg9yPQ+AcI\nvda1Xf4hiL8OgttAzY+NipfzkUI49SHkroTiDEAguAdUNqmiyZoJJzoY9d8Rs8HnvHRY7iRILwcn\nG0LmrZD9NEgeXLUL/G++pJdc6tgO/AqhFLz6miHi0P0WOHXq0tcMCICPvoHJ42DdCnPbPi8ajnjG\nBP31YztDncbwtYvqhYcGwZf/tr4pXH8fbFkKpy1uXEEVoFYT2LPOem+6DrycZgol9xQEVrRucAFI\n1Eyh7FsI9TTSJ7u+hDpdITDM4rpr4eRuiHnM3C43BbaMhA4fmkf0RWdhTW9oNgYqNHBtJ2LMAA+u\nA/VLaYbHf533XAg1ERnO2QHx10OVAVDjNeevx6cCVJnMf6vdVABEjHO+3tkEONocTg6HyKVQ4Zm/\nrul/O1AOyAGyAT+4aj04SnmiYmlgO/AriFLw+ttwTQe4uwukpFz6mjWijDkoAx+EZBO9SB8feGMa\nfDQaDrmhgjNwLMybYqRTLiT2FqOGe41F+V9IRWhzq5ELt0I3Dx5ZH5I0I3CdFEp2hl7+Oz8LTp+A\nyiZlaGDc1PYvhnoWCjci8NsUaK6h0HMu920VfW8cBFc/DJWamNvtGAmB1aCexRC0Ax8YY2RbTy2d\njsI/Rd4mzvvMKth9M9R6GyIHuLbL3QwnXoSAToADQu4B/xLBjNxlkDEIEm+Ew2FwPBqKz6VMXLS2\nSx5IGMY8lXIQ8Az4WHy/PYXtwK8wSsHY8UZuukltWLXi0ht+Ot4CDz8L/SzEIKLrw7Ovwqhn9EUg\nohtCTBv41klbvFLw0GD41UWe/Hy6PAZ7NOTQmt8MqYet7ao1NMQarAgIgRCLyBaMCLyGhpBvym6I\nuctaQi1xK9S+ESrWMrdL2gKh0VCrk7ld8mY4mwmN+ljYbYQTy6DVCHO7lDVw4DNo96m5U06Ngz1v\nGDPAfTXG1FrxJ+ftor4a4OQ82HcP1J0OYSYzYTK/hUO3QdXxUGsJVOwP4W+ct85oyHwb8uJK0iv+\nUHMv+Di5WYtAzjRIuxYCXwafVkY0HzTmIl/sFcDWxPQASsHiX42P611vhHrVYNRQ2GNRFmhGvyHQ\nsCl8aPHD1rs/hATBd5/qr91nKHz1H+fNOzfcA1uWwAELFfuWN8Ga7+CkRSVOvbaw/lvrw9HKtWC3\nRdoIjPxzskaknnPSeFiRshutH8OEOAjWmJOyayaEN7dumtk8Dq6+3zz6FoG1L0CLUeBv0gBTlA9r\nnoTYKUbHpSvyUmDHMGgzHYJLYchTxnLY/7y1806bDQlPQf35EHqLcxsRSHkLEp+H6J8h9B7jsLLK\nePCL+sMu/AvgXG6/HFQc4vwAsjgTTvWCrHEQtgxC+kPoPAhd7lwgwluwI3AP4esLQ0YZzjw5Cd4b\nC21iYLMbmo/n43DAcyPg6ymwzWTsq8MB/cfAhOGQqXmYGt0IWt0A3010/jrufBJ+cPLc+fgHQOtb\nYZ3F0KqgChARDQkW42XDasDpVEOH0wy/AENI2Iq8TL267pTdEG6SLz7HoTiobVJ3DCDF8PtsiOlp\nbpd1HBIWQ+O+5nZHF0F+OtS3mDm+cyxUqAc1TcrgRGDj41C5I1QphbnYp7fCjp5Qb6K58075HA6+\nCA2XQ4iLTlcphmMDIHsD1F0HgS4+ORXnQupgoDrGZEI/CH3hr3Znt0NGH1AVofIG8Cs533BEgq/G\npzJPYjtwa3TVKdym+33GLGzjItDvn9CqzcWvFx4Jr34ALz1iTCR0RcMW0OU++GC4/tqPDYOZ45yL\nKN/xBCybBTkWEwLbd4c131tfq0F72GMxAsDhA5VqQJpFusUvUK9ePDdTrwIldQ9EWDjw4iI4vApq\nW7RVH1trzDyJsMhV//YxxPSGcib7k2JYPwTajjGfBnh6P/w+HmLfN7/mgYmQlwiNR5rb6ZCbAL/d\nCQ0/gqtMbmopMyBhMDRZAoENndtIARx+FHJ3QK2pfy4nPJ+C43C0I1AMUTugwj+h0pt/jaazvobE\nzlDuXqj4sfnME2/EduBa6KpTuEetKKhew8iHBwdC8xaXfkjU9R/QpDWMG2xuN2AMLPmGuC8+0Vu3\nXjOjdPAHJw1B4dWhRSdYajG4KrYr7Fpp7ejrt3PpwOPi4s67brT1TBT/QCjQdOCBmg7cKgJP2g4h\nkRBidOj9ac/n8/vX0MhCCb4wD3ZOgRYmh3gAB74xZnBHm3RyisD6ftBkEIS4zs3Hzf8cdr0K18zQ\nG2lrxtl02HobRA2CKve5tkv9GhL+ZTjvIBfOuzgXDt5rDLC6ehH4/PH9+tN7nLsBjlxjHGZWnWk4\n5bB/G8OrziFFkPEynBwEkUugfO9Le52ewnbg1oh76hTu8cowGDYalq6DkS/DyuWXvuaICbDoW1hr\nUs0RWgn6jyHundH6h6h9hsGXY53np7s9DT98bL5WcCg0uhY2LTS/ToP2sNd5KeGfflEjoiHVwoHr\nRuB5Gg68uAjS9kO4C3GDcySsgOg/Ik2nDry4CH6fY50+2T0TIlrDVSbXLC6EjcMh9g3zACBhNuQm\nQiOTYVlFZ4mbNQiavG5eWqhDUS78dheEd4NaJjegtG/h0HPQeDEENXax1mnYf7sx5Kru9+D4c7fk\nf9/jM99Bcn+I+BDCBjt/P4oyIOl2yN9SUo3S4uJenzdgO3AP0+tReGEQNIiBT2bBEw/A7vhLW7Ni\nJXhjCrzSB85kura7p2Ra4k8z9NZt2Bo+XG6UDl5I65shNwviLWTX2neHNXPNbao3gOxTcMriwDO8\nNqQmmNvoRuA5JXXgZpw8AkFhhsqPGQkrrPPfR1caUXqYiWMWga3joaXFdMI9n0NwNahh0mRyNhM2\nvgDtJpo37OwcDn6hUMdSXMWc4kLY+SAE1oGrTfRU03+Ag89Co4UQ7KI5qjAN9nWGgBioPd3IZTuj\n6BSkvgqRE6F8N+c2Z7fDibbg3wwiF4GP5vhgb8V24AalpE5xaVx/I4weB29YzGHW4YbbjcfPJjln\nHx+4vivM13TgALVc1MM6HNC9H+y2OIRt3w0yEs0jdYcDrukBqUfM16rZ1HoeiI8f1GxhPVK2fDhU\nijK3yT0J9TUO9ApyrB14+m5o+oi5zZmjUK4iRLmoxDjH4Z+so+/jC41DywiTuuv8DEicD9XuuvRU\nXvoCKMqCRlNNZm5nQcJLEDMfQkwOC4+9BOW7QM2PXLfFg9FNGf0bBLg4pirOheQecNUYCBtnyL+V\ndcpYGaGS0hBJuNiLK7UcQ3Fii4vnveQ+Z2NjUxYQkYu+U16Mv7mU65UG3nDLdPkGePrNsbGx+d+h\nLPobT5UROlWnsLGxsbHRx6MpFBsbGxubi8frq1CUUmOUUr8ppbYppX5RStX09J7MUEq9rZT6vWTP\n3ymlvGTQsWsuW2NVKaOUuk0ptVsptU8p9Yqn92OFUmqqUipZKWUqTOtNKKVqKqWWl/w87FRKDfT0\nnsxQSgUopdaX+Id4pZRJic7fD6+PwJVS5UXkTMnXA4DmIqIxas4zKKW6AL+ISLFS6t8AIjLIw9sy\nRSnVEONcfRImh8qeRCnlA+wBbgaOAxuBB0Xkd49uzASl1PVAFvCFiGhKDnkWpVQkECki25RSIcBm\noLuXv89BIpKjlPIFVgH/EpFVnt7XlcDrI/BzzruEECDNU3vRQUSWiMi5IqP1QCnpZF0+LmtjVekR\nC+wXkQQRKQBmAS6Kk70DEVkJlJJ465VBRJJEZFvJ11nA74CL/nrvQETOzbnwx5hZW0oKL96P1ztw\nAKXU60qpI8CjwL89vR836AtoaJ/ZaFAdOHre34+V/JvNZUIpVRtoiRGIeC1KKYdSahuQDCwXkUvs\n3Cs7eEMZIUqpJYAzeY4hIvKjiAwFhiqlBgH/ASyGOF9erPZbYjMUOCsiFgNNrgw6e/ZyvDvX9zej\nJH3yDfBcSSTutZR84m1Rct60WCnVSUTiPLytK4JXOHAR0Z2vORMviGit9quUegzoCnS+IhvSwI33\n2Fs5Dpx/gF0TIwq3KWWUUn7At8CXImIxp8F7EJFMpdR8oA0Q5+HtXBG8PoWilDq/17wbsNVTe9FB\nKXUb8BLQTUQ0Bmd7Hd7azLAJqKeUqq2U8gd6AvM8vKe/HUopBXwKxIvIe57ejxVKqcpKqYolXwcC\nXfByH1GalIUqlG+ABkARcAB4RkRKQfzy8qCU2odxmHLuIGWtiDzrwS1ZopTqAbwPVAYyga0iYiE+\neeVRSt0OvIdxUPWpiHh1yZhS6ivgBiAMSAFeFZHPPLsrc5RS12GMed7OH2mrwSKyyHO7co1Sqinw\nOUYw6gCmi8jbnt3VlcPrHbiNjY2NjXO8PoViY2NjY+Mc24Hb2NjYlFFsB25jY2NTRrEduI2NjU0Z\nxXbgNjY2NmUU24Hb2NjYlFFsB25jY2NTRrEduI2NjU0ZxXbgNmUCpVTbEpGMckqp4BKxgUae3peN\njSexOzFtygxKqTFAABAIHBWRtzy8JRsbj2I7cJsyQ8mUvE1ALtBe7B9em/9x7BSKTVmiMhCMocwU\n6OG92Nh4HDsCtykzKKXmYcyErwNUFZEBHt6SjY1H8QpBBxsbK5RSjwD5IjJLKeUA1vwvKa/Y2DjD\njsBtbGxsyih2DtzGxsamjGI7cBsbG5syiu3AbWxsbMootgO3sbGxKaPYDtzGxsamjGI7cBsbG5sy\niu3AbWxsbMootgO3sbGxKaP8P3ujzW7g1gNZAAAAAElFTkSuQmCC\n", - "text": [ - "<matplotlib.figure.Figure at 0x10b5b2ed0>" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.4-2, Page No:136" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "%matplotlib inline\n", - "\n", - "#Variable Decleration\n", - "V_dot=0.053*10**-3 #Vloumetric Flow rate in m^3/s\n", - "D_inlet=0.0107 #Diameter of the nozzle in m\n", - "D_outlet=0.0046 #Diameter of the nozzle at the outlet in m\n", - "delta_x=0.0991 #Length of the pipe in m\n", - "\n", - "#Calcualtions\n", - "u_inlet=(4*V_dot)/(pi*D_inlet**2) #Velocity at the inlet in m/s\n", - "u_outlet=(4*V_dot)/(pi*D_outlet**2) #Velocity at the outlet in m/s\n", - "a_x=(u_outlet**2-u_inlet**2)/(2*delta_x) #Axial Acceleration in m/s^2\n", - "\n", - "#Result\n", - "print \"The magnitude of acceleration is\",round(a_x,1),\"m/s^2\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The magnitude of acceleration is 49.6 m/s^2\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.4-3, Page No:138" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "x=[-2,-1,0,1,2]\n", - "y=[-3,-2,-1,0,1,2,3]\n", - "\n", - "#Calcualtions\n", - "a_x=0.4+0.64*x[4]\n", - "a_y=-1.2+0.64*y[6]\n", - "\n", - "#Plotting\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "\n", - "Y, X = np.mgrid[-1:5:100j, -3:3:100j]\n", - "U = 0.4+0.64*X\n", - "V = -1.2+0.64*Y\n", - "speed = np.sqrt(U*U + V*V)\n", - "\n", - "plt.streamplot(X, Y, U, V, color=U, linewidth=1, cmap=plt.cm.autumn)\n", - "plt.colorbar()\n", - "plt.ylabel('y')\n", - "plt.xlabel('x')\n", - "plt.show()\n", - "\n", - "#Result\n", - "print \"The acceleration at x=2 and y=3 are a_x=\",round(a_x,2),\"m/s^2 and a_y=\",round(a_y,3),\"m/s^2\"\n", - "\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEPCAYAAABbbZ8rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4FNXXgN9JJ3QSegih916kG0CqdAVBFBCUYgUrVmwI\nIohiAWmCihSlCojSW+id0DuEBBLS+272fH8M/IBkdnZmdxH4nrzPM09C5txz7y7J2TvnnqKICLnk\nkksuuTx8eNzvBeSSSy655OIcuQY8l1xyyeUhJdeA55JLLrk8pOQa8FxyySWXh5RcA55LLrnk8pCS\na8BzySWXXB5SvO7n5IqiXAASgSzAIiKN7+d6cskll1weJu6rAQcECBWR2Pu8jlxyySWXh44HwYWi\n3O8F5JJLLrk8jNxvAy7AOkVR9iqK8sJ9XksuueSSy0PF/XahNBeRSEVRigJrFUU5ISJb7/Oacskl\nl1weCu6rAReRyJtfoxVFWQo0Bv5nwBVFyS3UkksuuRhGRJx2yTpjb1yZzx3cNxeKoij+iqLkv/l9\nXqA9cCS7nIhoX+npSLsWyEej7cs4ujauQRqWQeJi9eXeHoR89pq+THIi8mhxxrw0TF9u0zJkYCPE\nZtOX+/gpZNlU51/bndf6OcjEvpr3xowZc/vfX7RDDv6trys+ChlZzPGcaycgi99wz/qv7EWm1NBe\ns9nLkob8GIDEn9OXO70AWdLM8f+TgWvM6JeRpQFI8nnX3wtLArK9KnL5J9d12SzI2d7I6S5IVob9\n34u0w8ipUkjsdB1dNiR+InKxNJK+z76c9RoS0wqJfRzJircvl7kMSSiKpE8y/H/gDsRm/HoQuJ8+\n8OLAVkVRDgK7gJUi8q/h0b6+8PtSWPYH/DLbuRWEdoCOPeDdEaD3C/DOV/DXfDi6375M3vzwwvuw\nc73+nC27QlI8HHDgKeowAP75RV/GKBUawNl9juUCysCNy/oy3n5gSXesKz0R8hQwtj5HXN4BZZq6\nR9eZpVCsHhQsZ19GBA6Mg/rvguLiBktscPUvqP4B5A1xXdfR/lCkNQQNdVFXFlwYALYkKP8nePho\ny6XtgkuPQbFJUNjOMZVY4cZLkDQXSoWBb31tOcs+uNEIfFpBoRXgUVBDVyakvQ5pr4H/CvB93fX/\nAzOIiesB4L4ZcBE5LyJ1b141RWScaSWBgbBoJXz8LmzZ6NxC3vsSThyBJfPsyxQJhLfGw4fDICvL\nvlyfYRAfA3s225fx8ICnX4ffJ+mvq2F7iDwHV07ryxkhqCrEXYWUBH25gGCIuaQvY9iAJ4HfA2jA\nj86Ems/ry1z6GxAIftz1+c7NBLFAxVdc13X2I7AmQuVvXNMjWXDxObBGQ/kl4OGrLZeyAS53hZKz\noWBfbRlbElzrBtazUGobeAVry6X9CrEdocBkyP8ZKBqmx3YRUlqB7TTk2w9eTZx7fa6Qa8D/Y6pU\nhTkLYFBfOHnC/Pg8eeC7efDxKLh03r7cE4PAzx9+n2ZfxtuH0CEvwZT39Hf0jw+Aozvhgs56vbyg\n7dOwxg27cE8vKFsbzh/IcSs0NPT2PwLKQKyDHbiXD1gzwebgGTI9EXzzm1+rFtkM+F1rNkP8WYg5\nDBV66Msd/BLquWH3nRoBR98ntM9n4OHpmq5riyHqN6j9h/3dshHEBpdfhswrUGE5eOTRFAtt7AsR\nfaH0H5DfzgeZ5QpcbQleQVB8JXhofGCLFZLeheRPochG8OtlR9caSG4M3k+A/3LwKOLkC3QRm4nr\nQcAtPsp7dAEiERFiiF9mi9QqLxIdbUw+O3N/FHmiuYjVal/m9DGR1mVFonTWlJUl8mJHkXWL9ef7\ndYLI+GH6MqcPigyspup0lV9HiyyfpC9zdL3IV10d63o7RCQ9RV9mzgCR/X8aX589kqJEvqnqnvdg\ny7si2z7Ul4nYIrK4uUiWxbW5bDaRTd1Ewie4pkdEJOGAyIZg9atLa8oSOTtU5FQfEWuyfbnY30SO\nlRdJ2WNfJu2QyJkyInE/qK9VC2uMSFQbkRuDRLJi7azJIpL0jsiNaiKZW42/Fg1Uc+aivckwfrk6\nnzuuB38H3vExiI52LPfsc9CzD3zwJmRkmJ/nmWHg7QPTvrQvU7EadHsGxo20L+PhAU+/Bt+/B1ar\nfbnOA2H9Qoi9bl+mQm1193zYDZGVparA2b36MoVLQ8Rxx7pS4sDq4D1OigLffMbXZ4/LO6FQWfV9\ndQWbFcLnQJU++nL7xkGVgeDhYoDW5cWQdBqqvOqanoxo2N8Dqk6AAnWd1yMCF16B1KNQfiZ45tWW\ni5kKkaOh3Arwb6gtk/IPXHkMik6EQi9qP6lkHoGoRuDTAArPBI/COWWyIiChDVgPQqHN4N3C+dfn\nLnJdKG6mRy/o1A7i4hzLfvQ5pCXDa8/ruzC08PCASXNh9jdwWMfQDX8fwvfBlr/tyzTrAIElYcUc\n+zJFikGbPrDkR/syigLtB8C/bnCjGDnIDCgDsVccv3fefo4NeHqie3zgl9zk/z7/NxQoC4E17ctE\nH4Abh6DqANfmyoiFfa/CIzPB045/2Qg2CxzsDSX7QcmnnNcjAhdHQfJeqPo3eNpxbV0bD9ETocJm\n8KuhLRM/CyIHQqklUMDOh2HqYrjeBgp9BoUngKLhPspcB/ENwbs9FFwNHkWde23u5iEz4PfdTeLw\nkcZmE3lzlEjzR0QSEx0/R6WkiLRtJDLhU8eyWiyfL9K6skiKziPmljUibcuJpOq4EY7sEmlfWl/m\nwgmRTkVF0nRkoiNEuhTSlzGC1SLS118kJUFf7oUAkfhr+jJvlRWJPq8v81kNkYgjZlaozYxWIqf+\ncV3P0m4ih2fqy6zpI3LAgZvJCDsGi+x+yXU94S+L7OksYtNx6znCZhO58KbI4QYiljj7MhHviByv\nLpJpxz1os4lcf1/kbAWRjJPaMlkWkej+IpeDRDL22tFjFUn+WCSmpEjGevOvR3Pe1SKWAe5xoaQa\nv1ydzx3Xg78DVxSYMAnq1IUeXSA1VV/e3x9+Ww6/zoQlC83P160v1GkMY9+0L9OyA9RuDFM/ty9T\nszHUagILvrMvU7YK1GwKq3V22IGloNojsG2Z47XroXOQeRfuCiV0xw48ywJX90GZR1zTkxwJEVuh\nis4uNv4UXNkA1V0Mz4taD1HroK75oKq7uDwTYtZCnd+1d7BGEIHL70PCOqj2L3gV0pCxQcRLkLwe\nKm4G71I5ZWwZEPkMpK6H4B3gU/n2vaxoSFsJsSPhSgFIXQYl9qiuk+xkXYeEjmDZCIX2gU8b517X\n/9YeD9bBYB0BHs+6put/Ok1cDwAPvgEH1Yh/9yMEl4Xnn3Ps4y5REn5fAaNfge06IX32+OR72PQ3\nrF9pX2b0ZPhjBpwOty/z8lj4ZSIk6rh/+r0BC77Wj+r4L90ogcFwww2hhO4w4FGHoVAI+GnEC5sh\nfC5UehJ8dHzy+ydArZf1ZRxhTYXdQ6HRVPB2IQInLgxOvQf1l4O3C6/96iSIXwnV1oKXRlSHzQIR\n70D6MaiwHrwCc8pkxcGVgYANymwAr5uuDhG4WhUigiCmHyR/C2RCqdPgVSKnnoytEF0fvNpBwXXg\nWdL51wVgWwWWWoAfeB8Bj8dc03eLXAN+j/DwgBmzoUA+eLYPWCz68jXrwKdfQbfWsPxPc3MVKAiT\nf4V50yDmmrZMsZLwyicwfZx94xtSBdr0hHk6cbt1W0K+QrB1uX2ZFj3g+C6IuWr8NWhR3oABL2Jg\nB+7lq2/ARSAjGfxcDCN0R/y3iBr7XUsn9jvpMpxbCrVdjNU+8S0UbQGlOzuvI+0KhL8FtX6GfFWc\n13Ppc4icC9XWgbeGYbalw9knIfUYlPsbPDU+bDPPw9lm4FUKSv52d8ihooBfR0ABSQY8Id9L4JXN\nMIsNkiZAbG8oNAPyvQ2KCwfEEgfWQWB9BbzmgtePoLgpXBUeujDCh8eAgxobPWWqmkzz/AD9pBqA\nvgOhdj14rjd0eRQ2rzd+uNm4JVSvDe8OsT/mqWFqos3Sn+3rGTYGFv8I165o31cUGPQeLNZxtfj5\nQ/cRsPkPY2u3R8WGagy3HkHVIT1ZX6ZkNX09malQoaXrsc9xF6FcqGs6Lm2CwLpQopF9mf2ToNar\n4OdC7HHMXjj2LdT9ynkdWWmwpycU7wrFXEgiuvwlXP8Naq8F72Ia8yTBqcdVg1xxKXhqxIKn7oGz\nzaHIi1Dq65xuHBGg9M2cci/AGwq8dbeMLRZie0DaUii6G/w6Of+aACwrwdIAyAfeh8HDRReMFrk7\n8HuMjw/M+xOir8PLQx0nlHz5nWr4w7bAM92hTghs2WBsrlc/huuRMP8n7fuenjDmJ/j2PYi1E+pY\nrDT0eB6mf2x/nmZdIPI8hO+yL9OoA/w903x0zZ0EVYODqyEtyb5M3sJw6ZC+noRI1UjbIz0RrjmR\nVJWd8CVQsp5rOo7MgtIt7SflpEbDiV+ghgvVjG0W2DEEGk6EPBoG0wgicGgo+FeAiu84v5YrX0PU\nTKi1AXw0XBnWWDjZDvwqQPl52klBiSvgQmcoPRUCNZ5KbGlwfQCkzIcS+8CzOOTprCb03CJzD1xv\nAJ4VoOhm+xmaRpBYSHsWMl4Dz7ng9T0obghR1ZzLxPUA8PAZcAA/P1i0HE6dgLde0zdqdRvejiFO\nSYGYaNWgG8HHB76eB5M/gLN2DFLVutD1GZioc+g58B3YsgLO24mx9vKC3iNhgU56fa2WquE968C4\n6uHpBcG19A8yjWRjOgojdIf/O/k6pMZC0arO60iPg7MrocYz9mUOTYFKvSGfxuGdUcK/Av/SUK6/\n8zrOTYakcKg72/kM0MsTIPIHqL0BfDVeT+phCK8P+VtC2Z+0D0djvoOI4RCyCgp0z3nfchkiWqoZ\nlqW3gW8tKHEAAm7WIxKB5B/gxuNQcBIUmgyKC5mjluWQUguUIpD3MHi2dF6XEVww4IqilFEUZaOi\nKOGKohxVFEUzCUBRlCmKopxWFOWQoiiu7VDudxiMw7AePeLjRZo3EPngHfvZYCIirRuKBHiIBHqK\nfDpaX6cWMyeKVPUR2W4n7CklSaRlMZGpOqGLcyeIjNLJckxJFOkcIHLlrH2Z2R+I/DjK2JrtMf1F\nkRVf278ffVHkpdL6Oqb2Edm1wP79C3tExjdwbn23CF8mMruDazr2fSeyvK/9++kJIj8FiMSdcX6O\n+BMiCwJEki44r+PaPyJrSoikXHRuvCVO5GArkS3eImnn775ns4okhYmcHyqyWxE50Un7b8WWJRL1\nicjJKiIZ57TnSdkmcqWLSOx4bR1ZCSJRfUSu9xGxuPCeiojYYkRSnxZJqihi2WJoCO4II4w1fmWf\nDygB1L35fT7gJFAtm0xnYPXN7x8Bdrqy5odzB36LggVh+T+wZhVMnWJfrvuTULUGrAmDP+bCutXm\n5un/IlgyYVA7GNQh527cP5+6E//+I3jnGUjQaPHZ52XY8hcMaQnpaTnv++eHyg1geDPI0LgP0O5Z\n2PA7WB0c4OpRrj4c18nsLFwKEq/rz+EoCsUdO/BLOyDYhQPM9CTY/C7UHGhf5ug0CG4PhSo4N4fY\nYMcLUPsjyFfWOR3JZ2D/s9BwIfibcDNkpcD1BXC4LewIhMQtUGUe+IWo960JcKYv7C+sukyip6sR\nJFVW59zh29LgfG9I2gHlw8BHo1Jj3Ay43BMKjIDC7+TUkXEIIhqqGZcBc8HLyfcUwLLk5q67OOQ9\nBF73eNd9Jy7swEUkSkQO3vw+GTgOZH8U6gbMvSmzCyikKEpxZ5f7cBtwgIAAWLkWZv8AP3ytLfPq\n27D1EDRoDLMWw6uDIPyw8Tn88kDhQNXfvn0ddK0LE9+9W6b7QNVV8/cCaF8Ols2527Xjlwd888Dh\n7fBkVTih4caoWBvirsGgunBd49AzqDKULA97jVfdzUFiNOxeCtfOa9/39IKCxdXqhfZ40A14agzM\nqQWWZChUXlvGmgYHJkPD0c6v8dR01f9d5SXnxlsSIfxdqPoJBLQyN3ZfTTg1CBI2AFngWxaK9b59\nX/GAlDCwpaiX4gOlPtJYQzScbgOKH5RfljPcUDIh8kW48TWEbIP82SJsRCBxFkQ+BoXGQNFp4OFn\n7rXcwhYNSQMh80vw+wP8vgbF3zldzuImH7iiKCFAPdRS2XdSGrjTR3kFCMJJHn4DDlC8BCxbD9O/\ng1lTc95XlNs7hkZNYewUeK4XXIsyPke5m8kLYlMPL2tkq3kcUBzy5AVbFqQkwgfPwcls/up8BdVf\n+KhLMLgZLJl+9/0CAerXK2dgQC04EpZzHe0GwFoXYsJjI9Svn7W3v9N35Ad3FEboqgG/lcAT1Nj8\n2IQLMLceJF5S09jTYrTljs2FYg0hsLZza0y5AucWQtOZzkXbiA32PAveARAy3Pz4SjP4nxVRvKH4\nkLvve+aHoG9ubiIU9QrIVhI2/RScagr520LIbznLylqvw8V2qt+73E7wrXz3fVsKRA+ChK+h1BbI\n78IZQMafEF9bTan33wRezZ3X5Qo6YYObtsLH429f9lAUJR/wJ/DazZ14DpFs/3b6SPT/hwEHCCoD\ny9fD11/A/Ln6sj37wuAXYUh3SLNjxLJTra76h1okEFq1h069774fWEItXuXtDb5+8Os21a1yJ943\nD3MUBXx8IX+2Aj9pN/+vxQapSfBm55yhko/2Uet6J8cbW3d29q9Sv8ZcgqlDtGUcxYI73IEnuRYD\nHnUUilaHPBqZg3qkRsOc+pB0FRDw8IYUjTj+LAvsmwSNPnBufSIQ9iIUfxQK26kZ4ojjn0BmLNTV\ncf3pkREDku/mbleBotl+H+PWwNnhEDJbjfHO3wq8Am7fT94Op1pB8dFQ6vOcLpG0A3C+Efi3hDLL\nwTNbQlHmcYh4BBAovRt8qjn3OmzXIakPpH4A+RdD3omgaJe4/U/Q2XGHNoOP37p9aaEoijewGPhN\nRLTSpyOAMnf8O+jmz5ziwTfgZsLmQsrD0rXwyWhYukhfdtgoKF8ZRg10HIoI0O1peHMcrD8LZ4/B\nqgV33y8epBruYR9C+UoQeTGnDr+84OMHxUvDqInQLtsfXWqi+iHh4QH1W8MvR9Td/p0UKKL63Lc4\nERMeF3V7B27NhG0LIEzjfSpRUS1qZY88hdDdNGSmQj4nw+kALoVB8Vrmx/kUgLrDwCuPGmGRla5t\nwE8ugHyloaSTKfrn/4Cks1DnXceyWkQshgs/QxOdTjh6XPsTTo+Eepug5loI6AH+d0TrxPwJpwdC\n1eVQbBDUOAAhM27fj1sE53pCyFwI1EhwyopXGzkUnwjFPs/ZfCHhd4h4CgqOhKJzwcNOZUM9RCBj\n0c1ddwgUOgDezczrcTeuRaEowCzgmIjYy95bAQy4Kd8EiBcRO9mCRtb7AESb6J4Kj3xFv0a3FocP\nilQqJrJ6hb5cerpIj+Yi498zqX+PSNOiIlcvad8/tEOkbQmRhGw1kI/vF4mLFtm/WaR7WZGM9Lvv\nb/tLZN4Ekc1LRQbWsB9ZE7ZcZFQLc2sWEdmzQuQJRJ7OKzKkuMjCj0WiNCIO1nwrMkenGNPKsSJ/\nvmv//tLRIn9/YX59t1jQX2S3g8JTesxtJrL5A5FFHUROLb37ni1LZE51kQtOFshKixH5vYTItTDn\nxscfElkRKBJrp9iTI64vE9lcTCTRTm3wa7+L7Copknww5z2bTSTiS5FT3URSNO7fiVWj6FlWmkjk\nMJEzFUXSHIzX1R0pkviESFw1kcydzuvJBu6IQok0fmWfD2iB6nA5CBy4eXUChgHD7pD7HjgDHALq\nu7RmVwbf6wsQafuoSN/eImlp5v439+4SaVpTZNNafbmY6yLNyossmmNO/9SxIgNa22808Plwkc90\nGja8/rjI/Mna92w2kedqi+z8W/t+ZobIk0VFIkyGalmtIokxIucOiLxWzb7cnqUiE3VCHtdMEpmv\nE8644CWRjd+ZW9udTCgvEhXu3NjoYyLflhCxZmrfP71U5Lf6+mGnemwZJLLjFefGpseIrC4ncnGe\nc+NFRMIHiyTYMf6XJouEhYikaFQLtFlEzg4XOVRbJP2y+Xkzzoicqydy5Ult424Em00k5XeRyFIi\nyZ+I2Ez+TTvALQb8qvHL1fnccT34LpSVa9THra6dIMFBT8c7adAYJv4AI56GndvsywUUhTkrYezb\nsHOLcf0vvKOG2v1sJ/LllXGweQUc2qF9f8Q4mDtOPfDMjqJAnzdgoZ3EHm8fCO0L638zvl5Q3TH5\nA6BMDYi5eNvnnh1Hh5iOfOBpLhxiJl+H1BvOJ/AcmgW1B4Gnd857IrBnHDR+z7lkmYi1cHUDNBhr\nfqzNCkfehqDeEPy0+fG3qD4LCmSr9CcCFz6Bq1Oh3mbwz3bYmJUMJ3tAxjmovhV8TQY93JgIF5pA\nweeg1CLtuimOyIqCuF6QPBaKLIO8H6mRLw8auZmYbsbPD+YtgBo1oU0ruGqioFOzVvDjPBjcCw7s\nsS9XqZraF3NEH4hwUInvFp6e8OWvEGXH0BUoBK9PgrEjtH3sFWtB044wb6L2+LZ94dJxOH1Q+367\ngbDuF+dS6728IagGXLCju1ApuBKuRtRocS/DCC/tUMvHOtOBJysTjv4Cte0czl7eAJmJULGned2W\nFNg1CppNc67S4ME3Ifkq1HDC+OshAmdfh+ilUG8L+GWLJc+MhGOPgncJqLISvBz8v4gNMs9A4p9w\n7S04FQDR70Cp36HIK+Y/+EQgdR5E1wGvGlB0H/jo1KVxBtsRyHKx0fMtcg34PcDTEyZPgaf6waPN\n4ISJOhuh7WDyLOjfRT/2u+VjMH0xFDeRUh0UAu9/a/9+x77w6Rz7xuiFT+FcuLYR9vaBXq/a34VX\nqq8eiB7TCDU0QvkGcM5OZcLLh9VIjRV2YqW8fcHqwIDncdaA73Q+/vv0CihaE4pU1L6/9yto+I52\nR3RH7P0IAppCGScKMp37GSJXQ7P5rrdquxPJgpPPQ+IuqLsRfLLlg6SGw9GmUKQXlJ+hRuU44kIj\nOF8TIp+DuIlqQaoy6yBfO/Pry7oKsd0heTwUWQ0FPgfFhQ5F2ZEosA4F62OAgddmhNxqhPcIRYG3\nR8Nn46B7O9hlxzWhRYeuMO476NsRTusY/0bNjddJMYKi5AwlvJOSZWH8Yvu7mq5D4fJxiNaICFEU\n6Pg87F3j3Noq6BjwjTcjFpZ/DtfO5rzvZSCM0NmO9K4k8Hh4wSN24rsid0PSNajqRKzy9T1wZh40\n/sL82JidcOgdaLEcfEyGRephy4RjfSHjEtT+F7yzhaTGb1DdJsFjofT7xnfOAW/f3GEmAwrk7QZ5\nW5tbmwikLIDouuBd9+auW6PBg7NIGmSNA0tNoAB4nwBPJ5Opcug2cT0APDwG/BZ9+8F30+Gp7rD6\nL+PjuveB98dB73Zw4dy9W587yV8IareEJXZihVv1hlU/QqaD5gpa1O0IoRpp5unJcPBmrLg1E354\nOucTgm8+yKfTw7BwGedcKFlWsGQ4l8ADULkHVLCzQ945DmoN1vaN62GzwJYh0GQS5DHZtzHtKmx/\nEhrPgoJOxknbI/mQWle71krwylaZ79ovcLwflJsJgSY+sMQKKYdBPAFf1UddzOSHljUCrnWF+C+g\nyL9Q4FPXilndtT6BrPlgqQq2feC9C7wmgqLRMNnpOUxcDwAPnwEHaN8J/lwJrwyFOTONj+s7EEa+\nDx+/AREOKu49KDzxGvw9S/uws2gQVKwPO1eY1xsQBLXa5vz5niWqIUUBLx84txsOZWvg7OkF18/Y\n131+h3MulKjDqvvF341/kAAx4XB1B9Sy4xvX4+AEyBsEFU0ePGalw9aeUPFFKN3V/LyOKNAIqs+/\nO3tSBC5+AhfGQJ1NUOhR4/oskXC2HaTuhgonwKcC+LcGX4OJSiKQ9DNE1APfRlBqL/joPH2aJSsM\n0lqAbR54/Qref4LiQr0Ve+QacDczfBhEaaS8N2wM/2yBSeNg/GfGD/MGDYcmLeCptnDdRCr9/aJE\nCDRoD6tnad9vOwDWu6Hd2i0KlYRWz0GN1lD3cfhoG9TM5v/09tP3gWc46UK5uAPKuqEDfXZ2fQkN\nXgVvk3U14k/AkcnQYqq5wzsROPAW5C0L1Z1M9jGLLRNODYYbK6HeDvA3seNP3ginGkK+UCi/BnzK\nQNmdUGqBw6EAWC/Dtc6QOAVKrIXCY9y367ZdgLSn1Mt7OHitAA+TdWPMkGvA3UypUhDaCg7sz3mv\nYiVYtx3+WgojX3TcoecWw9+AJ56Bfu0g9oZ713sv6PMGLP5Gu0Jgs54Qvk0tguUOarWD56dDk77g\nXxAqN1ejVu5ELwrFlgWZaeDrRHaeqxUItYg/D+dWQd0XzY0TG2x5ARqMgfxlzY09OQVuHIRHfna+\ntrcZrPFwtDNYbqg7b61GDlqIDa6OhaivIXgulBhzu0a4Z3710h0vkDQLIuqDb3MotRt867j0Um7r\nToCM0ZDSADxqQt6T4P2scwfQpuY1cT0APPgG/KMx8NVE6NYB/tRI+y5eAtZshvNn4Z3XjNc2Gfkh\ntOkM/TtAoon48vtBlYZQshxs1ujtmScfNOkOm+a7d86AMvabG+sVs7pVB8UZw3VpJwQ3MT9Ojz0T\noc5Q8DN5gHhiDvgGQnWThj9yHRwdB81/BS8nPsTMknYRDrZQd9w1loKnwTktMXCqMySsgeBpkN9k\nU2DLJYgaAInToeQGKPyBWlTLVcQKmdMgpYpaJyXvEfD98L+rSpgbhWIORVE8FUU5oCiK/RPJrt3U\nkrHvvQWffpQzrjp/ftUnnhgHvdpBnEY97pwTw3vjoUFTeLYzpDjoA3m/6fMmLJqo7SpqOwDWOSjg\nZZaAYPvJPHo78PA1aiKPo96b2Um+DikxUMyNh33JUXBiPjQYaXLcFdjxDjQaa67SYNJZ2N4fWiyA\nfCHm5ozdCXs1DpX1SNwP+x+DksOhwhTtDjua6wyDY/XBvy5U3Qg+pY3PKQLx0+FCA/CuBiW3gY8T\ndWu0yFwDqf3BuhDy/A15ZoOHC52SnCF3B26a14BjOHpL6tSFrbth43ro9yQkZzO4Pj4w7Vdo2AQ6\nt4QrBg5WwPnDAAAgAElEQVQpFQU+/RYqVoXnTFQmvB880hlesBOXXTtUNZgXjrpvviI3d+CaMep2\nDLgIrP4EENi30Nx8l3Y6n8Bjj73fQK2hkNdEvXwR2PIi1HoZilQ3Ps6SBJu6Q62PoESouXXG7oYd\n3SDoKeNjYlbDgQ5QcTyUftnYE4+I6i450xPK/gBlxpvrEG+5CJfbQ/wMCN4Ige8Ziy13hPUoJHSE\n5FfBsx/k2QCeLvZCdZZcA24cRVGCUFsMzSRnjdycFC8OazZA4cLQpjlczFbxz8MDPpsI/QdDp+Zw\nzIBB8/CACdOhXCV49wXINLlz/K/w8ICG7bT/UD09oUlX2ODGXXie/KqrJEnjjMBeT8yDSyD2gvr9\n35+byxK9dgIqakTFOEt6PBycAfVGmBt3ZhEknoP6Jg4fxQZhA6FoU6hs0uUStwd2dIH6s6FEZ8fy\nAFemwbEhUGcFFH/C2BhrPJzpBbELoPouKGQiMsZmhesfwoWGkLctlN0BvjWNj7er9zokj4CENuDT\nGQofBb8e/825gT1yDbgpJgNvYcaj5OsLU2fCs89BaBMI06hz8vIbMGY8dG4OM39wrNPTEz7/DlKT\n4bWn1bre/wXOpMHb47GBsGnezRBAN1GikrYbxcsXCmQrF2vJgAUv3d6Zx0fAORNZoidWQ0k3HYAB\n7P8BKnaBgiYOINNvwPaREDoTPE1EURz5DNKioNH35oxP3N6bxnsWlOziWF5scPoduPQ1NNwKhQwe\n+Cbvg5N91OiSqlvBN0RnDoHkNRD7HVx7BS62gFP+EDcZymyCgNHmdu2ac6RD6pcQVx3IA4VPQJ5X\n3Re54gq5BtwYiqJ0Aa6LyAH0dt9h27UGwysjYfocGDkMftGIBX/yaXjrI3j7ZahXQW30cGi//drf\n3t7w3ULViL892FiNcFfYvhI+M+nz1KNMNTW2++B69+ksUFTbgPvkgWun7v7ZtRNqaOGtKAFLGuz5\n3dg8WVaI2AfBTtbnzk5mCuydAk1Mtkvb/jpUfApKmDhIvbgUrm6GVovVDkBGid8POx6HutOhpIHd\ncFY6HH0a4rdDwzDwt1Mu4E5EIHIqhHeE4s9D2Sk5u+5kx5YIET3g+hsQ9z2kbVfT3ytGgp+TzSvu\nXE/KAohvCNadUGgH5PsaPIo4Hvtf8ZAZcDfmjZumGdBNUZTOgB9QQFGUX0RkwJ1CH3dsD02aQdNm\nhLZuTWho6O2b7TpAyBLo1w3Cj8DYSXenwr/0BmzdCP+ugnEfweRxqitixUaok60lGqi7+2lLYFAn\n+GAEjJ127x7n6reGr1+Bnf9Akw7u0dlmAGz4BRq4SV9AsHYkiufN9zjLevv7oDowKR7CZsPpzfDE\nJDVj0wiRh6FgGfMdeOxxaCYENYdAEweil/5RDXFfE+cIcUdh+1Botxr8SxofF38QwjpD3WlQqrtj\n+cwbcPJNdQdefx14GqjiZ02Cs8PUeii1t0Oeyo7HgNp5p/BbEHszA1PJA6V+cxxS6IjMXZAwSt19\nF5wKvq43Kt60aRObNm1yWc9duGCYFUWZDTyOujHVPNlVFCUU1fPgDcSISKjzM8J9r/l9sw7vo8Bf\nmvV5L14UadlEpPvjIjEx2oWA42JFerYX6dFO/f5ODuwVKZlHpDAiAR4iTaqLJCVp67lFUqJIj0dE\nPh3pfN1oI4StFnminEhainv0xUeL9CkokuJkvebsLB8rsuBt7Xsj/EXSNN7H9ZNFFr5qbp7tP4gs\nHGx+fVpYM0S+DxK5utv4mIwkkXn1RC46qB1/J+k3RP6oIHL6F3Prizso8leISMQyY/LJZ0Q2VRY5\n9qZIlsHGJslHRPZVETn9vIg11fjabFki0VNEjhYROVVa5LiHyPkmrv0NWC6I3OgncrWUSPLP6hz3\nCNWcuVgP/IjxK/t8QEvURsZH7OgvBIQDQTf/HejKeuUBqweu/dkXHAzrt0DVavBIPdih4VctVBgW\nrYKqNaB1Iwi7o6533QZQsrS6k/b0hLp11BK1euTLD3P+hp2bYNKHzr8iRzTtBNUaw+xP3aOvYCDU\nCoXti92jz94OHOxHojhTidCdGZjhv0NAVShpomTpjg8hoCYEG4yFtllh01MQ3AMqPmt8nvjDsKUD\n1JlgbOcdtxN2toCQkVDtK2MhjdfnwtHWEPQeVJwBngb7S2acgXOhEL8AKoRB2c3gWQRKznDuKdSW\nBAnvw/X64FUZip+CvIPufSKOq7jgQhGRrUCcjvangcUicuWmvJ2O28Z5IN5NEdksIt3sCnh7w/iv\n4JsfoE9PmDwxp4/aywvGTYZefaHzo9CzPaxZqcaEv/Q6FCgIG/dBQjwM6gEpKfqLKlgYfvkXLp6C\nqU5UoTPKyG9g5Sw4o1Pq1gxtbh5muoMAnebGdg14kvlCVu4y4LYsCPsSmppoVhy1C07Nh1Z2GnNo\nsbazWm63oU5r8uwkHFWNd70pUKa3Y/mopbCvK9SaCWUNRNJkpcKJ4XBtLtTaBMUGOBwCgGRBzAw4\n0wQK9IIKW8CviloLpeI189EmkgXJv8G1KmCLgOKHoMDHzvXNNDznNbD97VjOkC4Tl3kqAUUURdmo\nKMpeRVFMfPprcz994Obp0hVq7YZPP1SrEU6bAwEBd8t8+LlaqGrBLxC2VTX0gUXVA83qtWDucnjj\nBejdFn5dCQGB9ucLKAoffAP9W4F/Xhj4mvtfU0AJGDoWvhwK07bnbGJslgadYNYouH4RipmIwNCi\niE5nHnuhhOmJEGiiyFCSGxN4Ti5RMy6DDdbKyMqEdc9Dq8mQR+f34BapkbCuO9zYB73PGa/tnRAO\nm9tD3clQpo9j+fPfwLmvoNEaKGigDGvqKTjyJOSrBdVW5KxOaI/0U3B+sBr9USEM/LL5yc3ullPX\nQezr4BUCAX+5t4SsFnIGsiaCbSF4vOAmnfZvbdoDm/a6pN0bqA+0BfyBHYqi7BSR084qfCB24KYo\nW1YNI6xYGVrW164LPulHyOMPGelgyYSY61C2nHrP2xu+/RlatIG3h8HlC/rzFS8Fc9errdMWmah8\naIZuz6uV/9a4oSiVrx80ehw2mWy3pkWRIGg5SPte6VpqpEl2vP0hX0DOn9vj0k6o0Mb1BB4R2D4O\nmr1r/JF/75dqnZPKffXl4o7CxqfgjxC4sQeqvwr5DH44JhyDze2gzkQIdjCPZMHxt+HyDGgWZsx4\nX1sE+5pD0EtQ/Tdjxluy1ISe482gSB+osi6n8TZD5nGI6gIxw6HwJ1B8+b013ra9YOkNlqZAUfA+\nCV4T3KNbZ8cd2hA+Hn77coLLwL8ikiYiN4AtgGuxs6460e/lpS5Ph7+WiZQrJvLtxJwHLe+/IRLo\nI1LEU6RGaZGoyJzjZ08RaVRaJNxAh+0Lp0ValBZZ4UJDWj3Oh4t0CRSJjnBd14mdIsMq3dsD2E/q\ni5zXaK77fWeRw38Z17NqtMiaj1xfz5m/RX6qafyQ7MYxkZ8CRRIvOdD7u8hsRGZ7qF/n5hGJ2W9s\njvjjIivKiFz41bGsJUVkR3eRvf1FMuMcy2eli5x8WWR7eZHEfcbWIyKSekIkvKnI8UdF0kw2xc6O\nNVok+iWR84EicV+L2DJc06eHzSaSuUYks51IRhkR62QR292H6LjjEHO/8UtrPiAE+4eYVYF1gCfq\nDvwIUN2VNT98O/A76dIdNu6CpYtUl0rsHTVQXnpd9Ym26wzPDoGOjeFwtoqGz70CY76B/u0gbKP+\nXGUrwux/YPwb8O9S97+WkOrQfTh8+6rruio3VnehJ3e5rsseej5wM6VkL+503f8dexoWdoFy7Yw9\n9osNdn4Mj3wM+cvoywZ3hVLt7xibBYUN1P5IOAnr2kKtCVD2GX3Z9GuwLRS8C0C92eDtIJwy7Tzs\nawEZEdBoH+TXCInNjmRB5EQ40RwC+kOVDeDnZD3trHSInwiXqwEeUOYEFBp1bxJxxAqW+ZBaHzLf\nBI8h4H0WPEeCYtBVZGo+E1c2FEWZD4QBVRRFuawoymBFUYYpijIMQEROAGuAw8AuYIaIHHNtvQ/A\nTlv3E9EIGRkio18XqRYssivs9s83bxBJuRmit3yRSNVAkWULc44P2yhSr5jICo172QnfL9KkmMjm\n1cbWZob0NJF+lUS2rXBd1+fdRZ4pJmLJdF2XFl+1Fjm2TmPeOiKXDO5QrRaR9/KJpMQ6lrXHiaUi\n4/OIfI76vRH2fy8yv6WxsDybTWTDIJE/qor87CWyrJ7jMQknRRaXFjkzx7Fs4jGRf8qJHPvI+BPT\nqZEiF782Lp9yTOTUMyLHW4uknTU2RgubTSThT5FT5UWujRDJOO68LodzJYtkTBFJChFJaSViWeXw\n9eKOHfge45er87njuu9G2uEbaoa/lom0bSTyvYZLRUTk8H6RBiEiZ07mvHfskEjjIJFZ3zqeZ3+Y\nSM/aIrs2mlufEfauF3kyWCTFQay6I34YLtIVkffbimSkuWdtdzK5k8ihlTl//n45kesGH82v7Bf5\nsppz89uyRNa+edt4j/cTOWEgtjrhosj3ASIxx4zNc2SKyB+1RDKTRC6uELngYI6EUyKLg0TOzHas\n+/ICkVVFRS78bGwttzBquG0WkcvjRXYEikT8YDyOXIvU3SLnWoicqS2SpPHB7S6yokXSx4gkFRVJ\n7SVi3WF4qFsM+G7j14NgwB9uF0p2unSH2Ytg+SJ4tkfOsrK16sG241BB48CmWm1YvA1+mwpfvqdf\np6ReUxj9LbzZBw6aaK5shAZtoG4ozHIx/vyWe+PYVni/NaS5uVyuPReKmW48F3ZAiJPuk6SrsP9H\n1U0GalU8m4NCZCKwbgTUfw0CDES9RGyAA2Oh/XLwzqe6U8rqxG/HH4W1raH2x1DhOW2ZrHSI3gSb\nW8DevlBrCpQd5Hgtd2LkkDYlHA41g7i1UHcPlHrRXGncW1guQ8SzcLk7FBoE5fdDPjcWHbtF1gW1\nGmFaB5Cr4L8V8iwGTzfXh3fEQ5ZK///LgAMEh8DKrVC2PLSpD/uy+YH1kniCyqpGPPIivDUQLBod\ncG7ROBS++AVe7QHHNLoFucJLk2Dd73DSTtd4I0TdbNxszYTTe2C8wap1RtELIzSayONK/HeBIHgt\nEopUUVPLLalqbLYeJxZA0iVo/I5j/Ynn4cAX0OZ3KFBOX1ZscGoqrKwDFQdDRY3em5d+gU2NYFVB\n2NER4rZDlTFQxkFkilnECpe/gCOhUOJ5qLkW/ELM67Elw/WP4Fxd8A6BCieh8BDjNceNYj0IiU9D\nXAPAH/xWgt908KhiXIckgs1N5z25BvwBwMcHxk6Gsd9A/64wdbL+jvpOCgfAuBmQGA9Du+o3emjR\nET6aBi8+DmfC3bN2gEKBqhFf+JXz1QVjLqtGFuCR7vDMWPetD7R34JYM9X32MljUKSPZtRZqKdch\nKRJevgidf4IyLezLpsbAplHQ3kClwcxkWN0DgrpC6TbaMiIQswt2vwSLisDuF6FIfahjJ6s28Qgk\nHFSfEmwZ4F0Eqro5yzflCBxqAgmboe4+KDHUfBalZMGN2XCuK2Seg/IHodhnrtdCuRObDTI3QHwH\nSHgcvOpBkfOQbzx4mqgpYzsC1hFgKQu2Oe5ZW64Bf4Do3AP+2QVL5sOAnsY69YAaQ/7jEihZBp5p\nDTeu25d9rCe8NQmGtoeLTsfj56Rdf0iIhiVTnBvfaQS89jO0ekpt+FCpofvWBpC/6G33xS3SEqFk\nDWNGIzkaTm+E4i4k8IRNgIYvQr5iUHcIFAy2L7tpFFTtByUdVDwUgQ2DoGgDqKMTEXT4Y/inGZya\nBpYEtZ1Y81/ty1f+ADwLAR7g4QcVX3ffbtZmgfOfwckRUGI41FgDfjrvhT2S1sPJBnDjZyg5AYJ+\nA28HUTqOSP8TbgTBjXJwowrEhMANX0jsA75PQZFz4P8WeBh8apMMyJoPlpZg7QRKCfA+Cl5TXVvn\n//SbuB4AHnwD7mqDhbLlYNU2qFIdujWDA7uNjfPygrHT4dHO0Kc5XDxrX/bxp+HFT+D5xyDion05\nMygKjJoG876AKCd09noLWvWFxwbDJjd2rb9FlkUNGbyTjCRIizc2/uJOCG7sfAJPYgQc+xMaGwi7\nPLcGMhKh+WeOZfeNheQICHXQib7qq+AfzP9K2ecpCQWrasumRsCmR6F4dyhQA8QCIW7KHEw6BHsf\ngYQwqD5fdZuY3XWnn4Sz3eDSC1D8A6i0BfKaqCWjh1dVsF1Tu8vbToFcAq+WUCQK8gxWS9UawXYR\n0j8ASw2wzQLPUeB9HjzHgGKiJZwjcg24m2lUFzY5iNF2hI8PfPAFvDcOBnSBGd8Yc6koCoz8BJ5/\nE/q1hKM6Puknn4cRH8HwNnD9qmvrvUVQJXhiJEx52bgLKDu12kLsVbjsWrhpDrQaG6cnGq+D4soB\nJsDOr6HOIPB3kPWZmQz/DIe6L4GPg7jhc8vh6DToZKC2tyUFLDbwLarupMvbKWsRfxg2NIUy/aDh\nDGi+ARouAt9i2vJGsWXCuU/gQDsIegXqrAY/k7tl6w248iqcbgH5WkG141D4SfeVULbFQepysN3S\n5wVezaHQWmNlCMQG1jWQ2k3tTk8KeK4C73Xg0cs9TZRzrNnE9QDw4BvwT8fCC4NgwNMQGemark49\nYdUuWDIPhvSCeL3CYXfQbxh88iN88Ya+Ie01BHq+AMMfg9ho19Z6i75vQ+Q52OJkhUFPT2jVHzbp\nPN47g5YP3IwBP77G+QPMlBg4/As0fcOx7JYPIPhRKNdeXy72GGx8HjouhrwOGukmX4Y1raHGKOh2\nEkq2g/IDc8pFbYTNj0HtCVDtHdUw+gZC6V6O161H0kHY0xgSd0Pj/VDqOXNG15YJkZPh7OOqkax6\nDIq/6bjZg1GslyH+DYisANbTUGAm4A1KIBRc7th1ZIuBjK8guRKkvw9ePSDfJfCbDJ4mDjedIXcH\n7ma694SDx6BsCDSoBVO+ca3lWXA5WLZNjTjpUN+4S6VdD/htg+M/lMGjoe0TMKIdJBr8gNDD2wde\n/wm+fw2SE5zTEToANv8KWVmOZY2SeA2uZju4NRqBEr4arh643QzCLLu/h+pPQwEHj84RO+HEQmjj\noNJgehxsGALNJ0IJBz7ylCuq8a72MtQYCb6Foc3fUKDS3XJnZsO2vtBsmeMaKEaxZcKFiXCgPQS/\nDnVWgl+Q8fEiELsUDteAhHVQZjaU+R68i7pnfQBJX8O1m+U9ih+CInPA71nwGwyF/rHffUcELDsh\nbYBquG3HwH8+5N0LPoNB8XffGvV4yAz4fU/WcRhYfyfHj4t0aCtSv5ZI2Hb9qH4jrFosUrOoyPTJ\n7q0bYrOJfDVK5NlHRJIT3aNz0lCRySNcGP+0yCE3JmCMLCoy1FvNprzF7t9FZjylP+76aZG3/UVG\nIbJpsvl50xNFxgeKxJzSl7u4SWSCt8jBn/Xlsiwii9uLbLXTuOJOkq+IrO0lcniCfRmbTeTAByJL\ny4vEn3Cs0yjx+0S21hI5+IxIuhP1cpL3iRx9VORgTZG4f9y3ruxYTotkmcistSWLpE4Xia0nElNe\nJP1bkSw7jVscgDsSeTYZv1ydzx3Xg78Dv5OqVeHvtTD6fbUX5vBBEK0TIeKIzr1g5U44vBdGPKGG\nDroDRYE3JkFgSegUDFcvuK7zhfFwbj8cczJxqHIj2OSmrvUR4ZAar+6ats26/XNHO/D0JJj22O0q\nhsf+Mj/33p+gfFsIqKR9PzUa/noGFrRVozOqO9j9bn9XDZ1r5iDMMuUq/NUaAh+BWm9py2RlQtgA\niPwXOu6Agm543M/KgFMfwN6OUO5tqP0L+Dpw8dxJZgScGQQnHofA/lD7ABRy4E5yBa+K4FHYsZz1\nBCS/BjeCIXMV5B0PRU6D76vgYaKaJYBkgpx0br05dJm4HgAeLgMOqnHs/RSsC1NreT9SE2b86Lx7\noGx5mDgLSgRBl/pwaI/71jnhD/Vrl/LwalfYulo/OUiP/IWh50j4ZihYndDRoh/sWeGejMy/PlVD\nCG1WWDwaMlLVn9tsUEjnIG3laEi4wv9++y/sNNc82pIOOyZDy3e17x+bD9PKw4lFqlH2znc7Fl6L\n47/BmSXQeaH+oVpKpGq8qwyGum9ry2TEwYYOYE2BdhvBz8VDSoCEvRDWAJKOQvNDUPoZ477urBSI\nmAyHa4NPKahzEoq/4HpHebMk9IUbFSCuEcR3hLgmEF0A4luCkh8KH4CCy8Cnvbn64yJg2wHWF8FS\nGrI+d896cw34f0T+/DB2IqzcAEsWQuvGsMfJbCxfX/h4Crz7FQx5HOZ853zUx514ecGnc9VQua0r\n4d2+EBoA65w8kAx9CgKD4I+J5scWKg7VWsKuJc7NfYu4CNj3p3r4Bequet1k9fuEyNs/16Ld+9B7\nuhoNkr+E2sU+0UTEzsG5ULIelLBTQtmSqhpu280PuLzF7eu6the2jIKuyyCPzo4vNQpWtoHKA6Ge\nnS73yRfg3+ZQuC60/AO8XPTXZqXDyXdh7+NQ4X2ovxT8DCa4iA2i5sLuKpCwB2rug+AvwMtklyR3\n4VFSDQG07gXLP2DdBV5tochlyPs5eJqMV5ezkPUJWCqD9Tk1hNB7D3i56ZA+14D/x1SvCas3wYiR\n8HQPeHUo3LjhnK5OT8DiHbB4Dgzs6J6Y7ibtbh/WpSSpUSHlqzunS1HglR9h8SSIOGN+fOgA12PC\nbVnQuB9UbQMBIdD+DSh3s16FoyiUgqWgRlc1CmFMBExIh0IGD+GyrLD9S/u7b4A6Q6DhW+rO28ML\n8tvRnRIFK3tB258gUKc0bOo1+KsNVOoP9d/TlonZC1sGQMXh0HCyc/VGsnN+EqScghaHoVQ/47vu\n+M2wvxFcnQbV/4DqvzuXRu8ORCB9HaQfVz9UAfCDvF9B4aVqMpNhXbGQOQ1SmoOlB8gN8PodvI+D\n5/ughLhv3blhhPcBRYF+z8Ke42pHmuHPwq8zzD2e36JsBfgzDFJToGU5GNAB5kyBXVuc85H7+kGD\nUEABL29o0gZCXPCNliwHlRrA4Cqw22QfwIZd4fwBNc3eWQKC4YXfoONbUKIyPPklVL9Z3MhIFMqF\nOxJ4PE3E8R5bDAXKQHBz+zIJl9QCV8/uhg4/Qd1hOWWsGbCqN1QfDBV1wvnSrqs774p9ob6dHpuX\n/oJ/O0GN16GaG+q436L8O1DvT/DVeYK4k9TTEN4LTgyEMm9DvTAo6KYm0WaxxUHSNxBVFeJfhzw9\nwLsZ4Al+AyCPgdBPUDMuLUsgtScklQPrRvB5F7z2gdcU8Gjkvnj1u+Y1cWVDUZTZiqJcUxTliJZq\nRVH6K4pySFGUw4qibFcUpbary/3/YcBvUagQfDUFPvgcfp8NnZvBIScKTfn6wp/boGod2PovjH0D\nnu8KdQrDhlXm9fUcAsVKwYIDEHcNJr3qmoumy3D1UfnjHvBeJ7hu0CD7+EHTJ2GLG5oee2nEgacZ\niAO/6EQCj80GGz+DVjrNikXg7+HQaCQUrQa1B0P1fjll1r8MhWtCk48czGmF6sOhgR25Yz/A9mHQ\nbhWU7WHu9TjCw8uYcbLEwbl34UBTyP8IND4BxZ66N4bNCJYzcLUcZO6BIrPUMMJ8w9UDSt9+kO9H\n/bWJgHU7pA2H5FKQOQW8ukD+S+C/ELy7gMc9aBpx1xpMXDn5Geioo/0c0EpEagOfAdNdXe7/LwN+\nizr1YdV2eHYo9OsMb79kPGnnTr6bDz6+atx5cqLalae5E6U02/WG1RehQg2YvAqO7oLvRztvxIuH\ngF9etdLg/rUwqCKEbzc2NnQgnN/vuo9fqxphRhL4OSh65EwG5smVagGqCo/ZlwmfD0kR0NTOISPA\nwalwdQc8OsHxgVneUlDzlZw/FxvsfhOOfwePb4OijY29Bndis8DFKbCtCogXNAqH4HfMuSXuBV4V\noORpCJgHvi1uG2ufllDgV/sJPNbTkDwGEkIh/XnwCIa8+yHvJvAZAkrB/+oVuGTARWQrYNfQiMgO\nEbmVzLELMBHEr83/TwMO6iN6/8Gw/Zj6R/dIZXhjOCQlOR57iwpVIbSz+ovo5aU+1p12surgrW7z\n+QrCt2sgbDUs/NY5XUVK3i4kpQCNOkEZg0WhqjSFC/vhnAulakE7E9PRDjzLCpf3QlkHyTJ3IgKb\nv4BHdZoVp8bAutfh8Zn23TKXN0PYJ9BjOfg4WVnPmqY2N47ZA13CoEB55/Q4iwhcXwFhNSFmFTTc\nABU+Ax+DrpZ7jaLA/7F33uFRFd8b/9xsekIagQQCBAi9Swm9SJEiQvyJIooVVOpXAWkiCqioYEcU\nEBXBioUgvYdOaKGHFnpJSCC97+78/piN2bTN3ZIQIO/zzDO3nLkzC5t355458x6Nyk1B+jhImw93\n2kF8JxCJ4PYZuJ4Ep7fALrBkx1oUSm8Rcxiw1tqHlHJM0V2Atw/M/RZ69IWXBsHShZKMK3iCpxc8\n8QxMKUICFGDSbNgUCp8tA40dDO8DY2fAM6Msf1X1qghfb4YxXeQCzxCVfsEceFaC7CxZ2wkYNA48\nitjhlh+KAl2fh+1LIcgKhUJLttLfPA61uoKrijjhHFwMkzslG5nwV++ZA02GQtUiBJgSL8Oqp+HR\nX8DbwjyQ6XGw738ycUTvjcVrpdgaSUfgzHjIioEGX4KvqTf1MgJ9PNxpKnNX2gWCJgh0V0B3FkQM\nOPYDt3fAsZd1uiZCD1ixHyTPs2zzGFNQFOVh4GXAxIKOOtz/BJ6DPgPkbLxTY0l+8bdlVIh3MZsG\nghrAvutQ2RDG1bglvP4khIfBB4vlD4ElqOgHX26B0V3A2RUeH6m+rUYDs9dD445weCPMew3mHwUH\nlaTSeShMawfPfwL2FvoUHZzBM9/Mb8QK8DERFnZpH1Qwc7a4/UPoPLno6I5z6+QC54hjhd/PSoXQ\nEAieBDVNuGBMIeEcrO0HdYdA6xnmxStbi4wbEDUdYtdA0LsQ8Io6IaiyAMULhBb0Z0B3BrIBFHB6\nHlhWbHMAACAASURBVCp8pV5CtjCILBDbQR8K+pWg2Eg90UTcQ9gxCCt0eVI9DAuX3wF9hBBWa23c\nvy6UwlC7jpxtuxjidPU6qORbvD+4slEMbmAd+GMv+AdIDXBrsvFUrgZfbIZls2GdmbskW/WSxN8h\nRLpP/vhQfVu/2hDQACLMjGIxhr0TROfb/eZXz/TGmUt7oZYZ/u/rByHuNDQvIqt7ZjKsGQH9F4Kj\nW8H7QsD6l6FSM2j1hvp+jXFzN6zsLDfwtJlVeuStTYOz78HuLlKrpOMZqD6y9Mhbn25d++wzkDhd\nup3++/NyBe9w8FxiGXnrk0G3HLTPQrY/6N4BpYZUJ3RYYd14c2DCZdKtKcx4JreYC0VRagD/AEOF\nEBbEARdE2Sfwme/ALRu9HgGMmgBVAuQsds43sGAuDO4B5yLVP8PJGd76Al4YDyN6w+/fWL4oGFAb\nPt8EC6bCluWWPWPkPFj9NVw9rb5NF4MbxVIUlRPTFC6auYC5+3PoOKHot4St06BWd6hdxMx670cy\nauGRhZa5u6L+hA0h8PASaGQj/e7iIPRwdRlsqy93YLbfBPU+AodSWMgTekhaL7XBz3Y2v70uFpLn\nQXQwxHQDkQ5eS0FxBFzBax04mDlT1sdA1neQ9iikBMgZt9JZJnFw2AuayaAUocNuCawLI/wN2APU\nVxTlqqIoLyuK8pqiKDnxrO8A3sC3iqJEKIqiUknP1HjLgGiVSXGZUa8K4eclxOjXhDhXjICRWpw8\nJsTXc+VxdrYQi78UoqmvEO9PEiLZTPGpS2eFGNRCiPFPCpGUYPmYzh0V4jE/IXb+a1n70C+FmNhF\nCJ1OnX1qghDPewiRfNuy/jLThBjprN4++ZYQkz3Vjy/mlBCzqwmRkVL4/St7hPikihBpRYz/3Goh\nvqoqRNI19WPMgV4vRMQcIZYGCBEbYX57SxG3Q4jtrYXYESzEbRuItalFdqwQ0R8LcaK2EJEPCRH7\nnRDaIv7dTSF2iBCxzwqRtl4IvZHIWcKzQmSsU/8c7VkhMuYIkdJBiERPIVIHC5H1mxB6039fks6s\n5JuV6ou1/dmiKMIWW8ZLCIqiyP+XmBj49mtYvAA6dYFxE6GtjbNV34qGj6bC+WMw6i3o/X/qZ22Z\nGTB3POzdBJ8sh4YPWTaGyAPw8XAY+ym0MtNfq9PB3GehdR/o+aK6Nt+8BA27wMNFZFA3Bb0eRtjD\nQp26f6cTq2DHPBi1Ud3zl78IvnWh+7SC97SZsPAh6DYDGj9V8P7t0/BzF3hiJVQzM2RRp4U9r8PN\nHdBvLbhbmVKsMKRfg7htoEsBbTKkXYTrvwEKNPsGqg4ueVeNEJC6F+K+haRV4BkCviPBNdjyxXkh\nLGsrBGgPgTYMdEsMOy0HgkMIaB5WnbVHURSEEBYHwSuKIkSoGfYhWNWfTXC3fjkAZ2Qs5BHgFPBh\nob+IxkhJEWL+V0LUqynEo48IsTpU/YxOLcK3C9G7sRAv9Bbigpkz/rW/CdHZV4jfv7FcnvbIDiFC\nKglxbKf5baMihBhaSYj4GHX2h9cI8XY78/vJwQhHIbIy1NmuekuINe+os71zSYiZPkKkxRd+f+s7\nQvw2oPB/4/R4IRbUE+LI9+r6MkZmshArHxVi6ytCZFjxNlUcLn0nxL92Qqx2FuJfRYh/EWJjgBCZ\nFr4NmQNtshDRC4Q495QQJ+sIEf2JENmWybdaBX2WEJmbhEgaLURsgBBx9YRImSlE9l4h9Jb9TWOL\nGfgK9cXa/mxR7poPXAiRATwshGgBNAMeVhTFRFpxwM0NRo2Fk+fg1REwZxa0awxLv4fMTJNNVSO4\nC6yKgE694Mn28Nl0SE9T17bv07BsD+zbBG8NkZt/zEXzzvD2r/DO/8FpM5URa7eA7i/A9+PV2Td7\nBG5dhBtnzR8nmOcHT46BWiqjpnZ8Am1eARevgvdiTsKV3dBvfsHZnl4HK5+BWr2h+cvq+spB6k34\nuyu4VoYu88GpBH3OAUPAvgLoMwAhhaa6HgVHlaGgliDtJFwYA4dqQPx6qPgyNDwDfhPA3kz5Vkuh\nT5FJjhOHQpwfpLwNdtXAazNUPCNDCu3blW6UT36Ui1mphxAihxkdAQ2gLm28vT0MeBzCDsLc+fDv\nX9C8Fnz2oWU7LvPDwQGGT4DVR+HSOejTGDb/q65tYF348Beo4AXPtYIzR8zvv1VPmPQDvNUfoooI\njysKQ2ZA5G6I2FS8rcYeOj4DOy1czKz+UK62tynotHB4OQSqWMBKjoEjv0CnQqJG9DoIHQYNB4FH\nIZvYtk+TSn49Pi2+H2PcPgnL20PQ49Dje/M0WsyBEHBzDWxpDQ41wM4FNK7QYik4lgCJ6rMg7nc4\n0RVO9QJ7H2h+FBqsAO/epUOUuhhIWQy3+kN8V8hYDI6dwOcE+OwDtyky8XFZwT0mZnVXp//IH5Aj\nQDIwp9BXGrU4cUyI154XoqaPEFPHCXHlsvq2xWHXJiF61hfip3nmtVv3qxA9fIX4a4FlLpVty4V4\noooQlyPNa3dwrRCv1BYiI7V424sRQoyuYZkralJ1IeIuFW93NUKI9xuqe+a6qUKsGFX4vT1fCvFd\n58LHmp0hxIqnhUiNVddPDq5sEWJRJSEil5nXzlzEHxVie08h1tcX4sZq+Rl2tBXiwJO27yv9khBX\n5ghxwE+IEw8LEbdcCF2W7fspClnnhEicK0R0RyGueAoRO1iIlN+E0BbhErMRsIUL5U/1xdr+bFHu\n6o4AIYQeaKEoiiewQVGUbkKIMGObGTNm/HfcrVs3unXrVvjDGjeFBT/Btauw4Et47TmoWR1GT4TG\nRehHq0XHnrDmGGSZ6abpMwQatISpT8GhMHhrIbibEf/a7UnISIM3e8EX26Gqyq3brfpCndbw+3vw\nQjHx4TVbgKsXRO6Axt3Ujw0KF7QqDBf3Qk0Vi85pCXBoCYzcU/BewmUImwXDd0uZhAJjcYKQ34rv\nwxiRS2HXROjzB1R/2Ly2apEeDafmwo1foOHbUPs1uZsToMM224kzCT3c2QjXv4HE3VBtBDTaBq4q\nJRas6ltAVgSkr4D0UNDFgetA8HgbnNUvQpqLsLAwwsLCbPvQMuIaUYsyE4WiKMp0IF0I8YnRNWHx\n+BITYNki+O5LaNAERk2ELj3ujlJbRjp8+gYc2gYfLof6Lcxr/+8COLgBxnwFlVVGRcRHw9im8P4W\nqFmMauXqT+HaSRjxg3njmtEMhv8M1Yp5/rLnIagzdCgmlnrrh3D7Ajz5Xd7rQsDSvlCzC3QtQpfb\nHAgBB+bAuV+hz29Q0UJ9dlPQpsPpz+HUpxD0EjSdBo5mSAioRVYcRP8I1xeAvRcEjAK/p0FTyMYm\nW0JkQ/oOSAmVxSEQ3DuCawg4tr0rfmybRKH8YYb94LsfhXLXZuCKovgCWiFEgqIoLkAvYKbNOvD0\ngjGT4JXX4Z9fYfrrUllw5Jsw8CnpRy8tOLvAtIWw7hf49i3oNhAGvqr+x2TACLklfEpP+GQ7+PgX\n38bbH4Z9BotGwvs7C5+15qDjMzC1JWSkSpVDtVC7iHlpH/QwoRIIkJUGO7+E17YUvHf0F0iJhk5F\n5KI0B7os2PgaxB2HxzeAu4p/S3MgBFz6DY5MhYptoO9+qGCh/oox0s7C/qZyxq7xADsnyIqVOyb9\nh0Lj36BCCWlk50CfAqkbJGGnrgXHOuAeAgEbwbHB3ZOxtSXKxnxWNe7mImYVYKuiKEeQ4YSrhBCF\n/PVaCScnGPKSFDGY/B78vAja1YEfv4FUG+SHNAd9n4Vxn8Pf82HGs1KLRS0GTYDuz8KUXpCkMuNQ\n12cBBTYsMG3nXQXqtoFDZgTBgjoCT4mTC5P+xbzKH/gBAtuDf+N87WNhy9sQYkJpUC0yE+GfRyHj\nNgzebnvyjt0DG9pD5GfQYRl0+cs25A3gEgSaCjJ2POsGZFySs+w2x6HhEvCwIn7bFLS34M73ED0M\nLlSFxEXg0gECj0GNcPCZCk4N7w/yhvIoFLUQQhwXQrQUQrQQQjQTQswt0Q7t7KDXo7AiDBYtl9El\nnWrBnGlyE09pIbA+LA4HF3d4uRWcO6q+7bPTIbgfTO0NqYnF29vZwYiF8Me7cKeY3JPth5gfjaKG\nwC+HGzLwmEg1psuGsLnQvZB0aavfgKZDIcAK5USApKvwWyfwrg8DVxSunWIpki9C+BjYORjqjZaz\nbr8utnt+yimIfEO+hWGHFIQKgLanwL0EfNyZURD7KZzvDKfrQfJGcOkHta5AtQ3gNRIcAmzfb1lA\nOYHfA2gZDDM/h9B9Mk1aj4Yw+RWIOlN8W1vAyQWmLIKX34XXe8LK79RpqSgKDPsIGrWHaf3UZZiv\n0RgeeQ0WF5Pyq9VAiNoPd66r+wygjsCj9kBt0+H9RPwqd13WyJcc4fQauLoPulnp9751BH7rAI1f\nhB7zbJO3EiArEfZPhpWtwbUWDDgDtZ+zjf9XnwU3/4DwrnCgJzh4Q+vdMqu8vSc8tAMcbBQ3LgSk\nHYLo6XC2KUR1hMyzUPktaBQDgX+A5xOgKSQu/37DPRZG+GASeA4Cg+D9+RB2VqoLPtkZhg+EAyqz\n21iL3s/CNzvhz69g5lB1LhVFgZFfQvUG8O5AyFQRh/3ENLh8FA6sKtrGyRWCn4A9v6ofv1c1GeNt\nCpf2QqCJrDV6PWz7qODsOzMZVo6CxxeBoxVZ3i9tgj8fgW6fQ5sJtnnV12shcgH8VR8yYuHx49B0\ngvXZ6AHSrsCpt+FQCFxdCIFjoOtlqDsLPFtC7Q+g+SZwqWXlZ8iGpK1w+X9wsjVceUYmLAlYCA1v\nQLWF4NFX+trvBdgqGKN8Bn4PomIlGDcDdl+CLr1h/PMw7jnYuEJqjJQkajYwuFTc4N1B6jbu2NnB\nG4sgoC58NVzqm5uCkwu8tgC+G2N61t7pedj5k/o/hsxkyDTxPJ0WLh+AmiYy8FzcAU4eUKd73uvr\np0KdnlDHghR2OYhYBGtehZBQqD/I8ucY49p6WNEcLi6HR9ZBlx9k+jVrIPQQsx72DYBtD0l9lAaf\nQPBW8H8yN+wQoMab4GGhO0mXCnf+gajnIcIfrk4BB38IWgb1T0OVOeDW4e7uhFQDoQdxGnQ/gXY0\nZLcGrY0SXNxjBF5mwggLg6IoQpw6CQ1KeZFEp5M7Lxd9CMkJ8PIECHleRpOUJDYug2/GwysfQr9h\nxX9mbTZ89KTUiJ78u9xZaQrzXoKWfaFjIQJQIGfD44PgjX+gpgpBrqWvQM1g6FJEeOC1I/Dj0zC9\nGJnbjHy5NC/thl+fhHEnwcWC0Duhh7BpcPovGLwWfOqa/4z8uHMSDrwJSVEQ/AnUeMz672RmHFz5\nAS4ulHKxtUZBtSFgb0P/fFYsJG6E+D8gKQzc24F3CHgPAEerUzKWDvTRoNsPunDQHAexA/ABu2BQ\n2oISDMpDKHZu1ocRmiHLr7xw98MIyz6B16kOzs7QfyA8FiJVCDU28mEWByHgwA5YPBdOHIShY2DI\nyOKz+FiDy5Ew8ykIag7jF8jFTlPIzoT3BoJnZRi3xHS4oF5v+j7AX+9AWiI8ryJf569jZRKHHoUk\n/wXYuQAuhcNzPxb/rBxoM2HeQ9BzFjS1YNaszYTVL8o0ak/+C66+5j/DGGm34MC7EPUPtJsB9YfJ\nBMvW4vRMOP85VAmBWiPB24ZRJOkX4HYoxIVC6jGo+iJUCAavfjJWvCxDpIDukIGwDaRNqiRrTTA4\ndAC7lqAUzL1pkzjwJWbYv1hO4CahKIoQej0ciYDVK2FVKMREQ7/HJJk/3ANcSnhWnINzJ+GHT2Fz\nKAwYCi+Og+pW+iGLQkYazPsfHN8FM/6E2k2Lt5/RF6o1hNHfWkcE0VHweX/44BjYFxO29+dE8KgM\nvYuIz176AtTuCJ1eVd//tjkQFwmDfjD/c6Tfgb9CwM0PHlsKDlZ8N7QZcOxLODIX6j0HraeDsw3F\nphKPgks1yzRQrn0OcX+Be0twawGuDSAjClJPSqGqrGioOBB8Q8Cr+93PVl8UhBa0pyA7HLT7QXMH\ndOtB0xQ0bSVha9qCEqTqu2ATAjdjrqG8VJDAFUXpA3yB1HZaLIT4ON99X+BnwB+5D+cTYdbPRr4x\nlHkCzz++SxdhlYHMHTXg4wX9BsIjj4JPKaiqRV+HZV/B6cNQsSK8OBEatSqZvv5zqXwE/V42/SVO\nS4bpvaBBexj+mXUkPqsjDHgLWjxq2i50usyW03964fdn1oPhf0NAMT9AObh5HBZ2h3FHwNPMMLX4\nC/BHP6j7GHT/2HI/rhBwfjnsmwK+LaD9x+BVz7JnlRSufQUX35S7IbEHtIAClZ+BKiPBox0opfSW\nqhZCgP6qJOvs/QbSjgC7AHBoCw7Bcgenppkhg4/5sAmBm7EZWXk5L4EriqIBzgA9gevAAWCIECLS\nyGYG4CSEmGog8zOAnxCimGiAwnGPZEc1Qs1aMPYNWW7HwcY1sHoFTBoLzVvCoyGS0GvULJn+/QNg\n4sdSKvbv7+D1EAisBy9Ngg6P2NZX/8hzUL81LH4Lej4jFyOLgmsFmLkO3uoOP0+H5963vN9Oz8Ou\npcUTuIOz3EFZGJLjwCcQqqjcpq7XwV+vQJ8PzCfva/th1yxo8z9oNcq8tsaI3ge7x0tFw+4/QkA3\ny59VEtCmwu2NcHu7jCJRAAQ4B0GL/SUrR2su9AmQeQCy9kPmfrDLBnFYkrV9MLhNl+nV7MqYS8e6\n8MBg4LwQ4hKAoii/AwMB43yNN5Hy2QAewG1LyRvuxRl4UUhLg7DNsDYUNqwG/6ow4Ano0x+atCi5\nRdDsLFj/ByyZK/vo9SQMHQcaOxnil5EuZx/+pbRglBgLC0dLbfBBFsZPp8bD+Frw2UVwM7GIuHW+\n3Gk54N2C946vhrAvYawKWVuAnV/AiVB4bWvxfnpjRK6AVa/BwB+gfn/17YyRdBl2TQVtItR7Euo/\nX3YiMTJjIW413AqFO9vAsy1UDoGbn0DWNXBtCs3DpKb43YI+C7KPGsg6XBK27jo4tgQnw8zasQ3Y\n1yjRYASbzMC/K97uP/tXCszABwG9hRCvGM6HAm2FEGONbOyArUA9oALwlBDC4uzi994MvCi4ukK/\nAbLodBC+B/aEwSuDQKuFPiHQNwTadratDoqDIzz2HPQfCrs3wJQhMH+6/KLaO0giyMqA7bHgbeWC\nmhp4VoLhX8C0LuDkBo+9bv4z3LyhcS8I/xO6m/BfK0ByEQmnL5qRgf7OJdj8PozZYx557/0C9syF\nZ9datlMzMwkOfATHF0KLsdB6IjiUsAiUGqRehOiVEB0qv0NOnuD3JDRZIjf0AChpcHsVNF1X8sJV\nxhACsqMgIxzS98tadwOcvcCpLTh1AY83waGR3HR0r8HEfDHsjCyWtf4PbwFHhBDdFEUJAjYpitJc\nCGGGrkYu7sF/YRXQaKBDZ1kmvA1nTsK6UHhvEly5AD0elYTe7RFwKybKQy0UBTr1gZ13YHgPOLQj\nNz67WbvSIe8c+FSFmVvg7S5SnKrXcPOf0el5WPOxaQK3d5ZRH4Xh4l7o8Wbx/QgBf78GXd+ESip9\nzXodbBgPUZvg5d3gXVNdO+P2J76Hve9Czd7w3DFwv4tbw4WApKNwM1SSdsYN8B8AQW9CpZ6gKWQR\nsvpEWUoa2ljI2C9LejhkHAA7d3AOBpe2UOEJcG4FdmXgh88WMEHB3erJkoOZqwuYXAeM5UKrA9fy\n2XQAPgAQQkQpinIRqA8ctGS4ZZ/A358BHTtDcDuZUs1cKIqUk23QBMa9DdevwsZ/YekCeONFGPQM\nNG8NPR6DSn7Wj1dRYP4aeOohuHIe7BS4fAJmvQxD34TaJSBdWhgqB8KMzfDOw+DoYhC2MgPN+sDi\nYRATBX5FCDIVtZVer4MrB6GWCg3wQ8sg5RZ0naBuXFlp8M+zkJEAw3abHyd+eRPsmCAjSkJWg18J\nLUAXB70WYndC7Cq4+Y9cdKzyODT9Gnza351FSH06pB2GtP2QFi5r7R2o+Cg41gTvUZK47W0sAlaW\nYJ1H+SBQV1GUmsANYDAwJJ/NaeQi525FUfyQ5H3B0g7LPoFnZMCsd+DYEWjYWJJ5x87QoRP4WjCr\nDagOL42WJTEBtq+DjaEw+02o3wR6hUCvgVAr3+aPzAy4dB5q1pUKh6bg7AILN8LjTcAvAJbshH8W\nwMju0KgNPDcRHupc8puTqtaFdzbAjJ5yq3y7x9W3tXeAEcvybrDJj6II/MYJ8KwKbsUsqiXfgi0f\nw7PL1CsN/jVYvq4P+l0mcVCLuEjYMQ3Sr0L7WRA0sPQV9LRpEL0RrofCjdXgVhNqD4G2q6FC49Id\nj9BB+mlIPwJpOyVZZ54Bp0bg1hY8+oH/DHCqV3bWA0oDVhC4EEKrKMoYYAMyjPB7IUSkoiivGe4v\nBGYDPyqKchS5E36SEEJdKslCcO8sYqanw8H9sHunLOF7oecjUNkH2hncJdUDLf8jyMyEvVth00pZ\nhJBE7OkDMdchPk5uhPlpA3Tupe6ZZwxKg/UNGYEyM2DNUvjlU2j0EHQfBF0eL/mNSRciYFYfGLtE\nZuuxFY6tgbBv4X/53iXVbuBZOgS8qsOAOer7TLgMnmYshqXFwq6ZEPkHtH8LWo22zUYctci8Lcn6\n+gqI2QoVgyEgBKoOALcapTeOrOuQEg4p+2VJPQgOflAxBJyrg2swuLQouzHjKmCTRcxvzLAfVb6R\nxyRMRqFotXDyOOzdAXt3yuLgCO0755YGjcxbFMuBXg/r/oLpoyHhdq42iL0DHLwlk0VYA70edq6E\n3+dC/C0YPAH6vWg6TNBanNkL370KL80zP3VaUTi1GdZ/BOM3573+9wTwbwQdhxXd9uRqCH0DJh6z\nTqyqKGgz4dA82PcxNHoGOr0DLqWUfT3lElxZKTfr3Pwb/HpJ0q7SD5ysCPXL+R4WK7GQBMkHIT0S\nkrdI4hZZ4B4M7m1l7dYGHErp36OUYBMC/9oM+zHlBG4SZoURCgFR52DfrlxCj78DTzwFtWrL6JNm\nrcDRjNlXZia8OhDCt8vZs4cHONvJxcruA6FLX6jgadmHy8Gx3fDbXDi5Fx4fBY+PBq8SWvA8GQZf\nPAUTV0I9lREipnBuF/wzBSbvynv93XrwqokNPBlJ8HETeOYnqGvjXJRCwJm/IWwy+DaBh+dAxfq2\n7aOwPuOPwZVQuBoKadeh2mNQ43Go0gPsbfTDfPljuPIBeHaBio+BT0+py50eCUnhkLxf1hmXwL0F\nePeACo0kYTvVun+SLhQBmxD4PDPsx5YTuElYlRMT4OYNOLgHwndA+E64eF4uWLbtDK3ay4XN2GjY\ntxO2rYOIAzD7axg0NPcZWi2Mfgo2hcJHi+HhfrBtFWwJhUM7oUV76D8YOvSGylZEMlw+Db9/Ctv/\nhp5D4OkJ6pMYm4Mj6+GbF2DKOqjd0rpnXT4Ma96HUf/kXkuJg+lB8OmdonW3/xotU5sNNiPoVg2u\nH4DD8yH2CHT/FGpaoWRYHPRauLVLzrSvhgKKJOwaIVCpg+00x40R8yucHgYiAxQHw05MwCkQvLtL\nvROPYHBrmlfB8AGBTQj8KzPs/1dO4CZhNYHnR1IiHNgjyXztP7kJHOw0MnLC2QV+WQcduuZtp9PB\nknnw5EvgYTTjTk2Gnethz1rYvhJq1JX5LruFQG0LFRTjbsLf82Dn71CvNTw1ERq0sfwzF4b9K2Dx\nSHh7M9RoYvlzrp+A74bAjOO5146vhq1fwutFbOC5sAuWDoZJJ8DVRkl+E6/C1rfgwhboMRuaPVcy\nBJqdBtc3wcUVcGU11HgYfJpJ0vZqYvsZbtYdSNwPCftlnbgX7O4YdmDag5M/NF4FHmYmyb5PYRMC\nV6Hh9p/96+UEbhI2J/D8iDwBT3aHhDu5ut8N60LbrtCmsyzVaqr7w8zOhsM7IGwlhIWCo7Mk84dD\noKkFCoppybDue/j7c/CvJYk8uK9lPv3CsOtX+HkivBsGVSyUW711Hr7sCx+cy722cpqMWhjwXkH7\n7AxYPBA6vgbN/s+yPo2RlQK7PoaD30DrUdBxEjiZiJqxBBm34fJquBQK17dApdZQ63EIHAAVAm3X\njy4DEo9A/H64Ew66a5AUAZ6twKsteAbLcrChjCDx6QcNl4GmhNZN9FkygXJZgsgAcQ24BuJqbi2u\nglIdxeFb6wn8CzPs3ygncJMocQIHSIiHoY/CsYMydPDbX+DAztyi0cCwCTBsnPpnCgFnjsC2UFkq\nVYGAatAlBFr3ME9XXJsN25fD8rny+Mk3ofsz4GiDTClbFsM/78GMHVDJAjK6cw0+ag9zruZe+7w7\n9HoTmvQraL96OkRHwvC/LB8zyLeloz/BtulQqzt0nw2e1YtvpxZJl+DqJrjwK8QegoCeUCsEajwK\nzjZY+BN6SDkH8eG5hJ18EtzrS1lZ77bgEwwVGhaMBz8zClyDoNp462f8+kyZ/zLzLGSchcxzuceO\nNaBBuBWfMQsSHgfHfuDyNNgV8+8mskB/XRK0uCqFr/RX5bneQNIiEZxbgOIESnWgmqyV6kAdFE0T\n6wn8czPsx5UTuEmUCoGDnD1PGwu168GI8bnXhYDLUZCVCfUaF92+OFy/ADv/hR2hcDYC2vSUZN7h\nURmmqAZCwOHNksgvn4Kn34ReL4GblYuo276HVR/C9B3gbWZmmeQ4eKchfB4rz/U6mOAN718qGAN+\n/Rh83ROmHJEx4pbi/FbYOlEuDPb+DAJMpGtTCyEg7hhEhcKFUEi5BnUGQe2+krwdrIySSY+BO/vh\ndjjc3g8OdpB6RhK1d7AsXi1tk5ItP4QOMq9AuoGY089B9g3IPixrx0AZ6+1cz6iuCw5VrYv/Fjq4\n5QA4A3opXGXfDjQBgBZ0BoLWGQhafxvcgkHRS0K2q55b5xwrlU2OySYulE/NsJ9QTuAmUWoEXppI\niIPdaySZH9oKDVpJMu8yEPxVzoKjjsA/c+Hweuj5Egx8A3ytEMv69yOpPvj2dvAoKJRfJDJSzF4b\n1gAAIABJREFU4M0q8LVBxuHaUVg8GGbky8Cj18Gn7aHjq9DBgm39ALFnYN1EiDkB/T+HBgOsm4Hq\ntXBjdy5pAwQ9DkEhUKWDzHJkCbJTIf6QJOrbBtLWJssZdUWj4lxZ3fMyb8CZsVApBHwfA4dCQliF\ngKwYSDsrS/ZZyDgnSTvzAthXAhcDObvUA+c6UkPcKVAuhloLXQxoL4L2miRm7VVZ61aAYpyS0A40\nTcCpuyRlTXWwq2ao/a3WTrEJgX9ihv2b5QRuEvclgRsjIw0ObJaz88NrwdsPOoVAxxAIalY8Qd26\nDCu/gC0/QfBj8H9vQk2V2tv58ed0iFgF07aZViA0hjYbxrjCAkM0RHYmxF+FynXy2m39DE6shrFb\nzCfdtNuwZSYc/RW6ToH2Y83bgVkUNjwPt09Iwq4dAr5NzR+bXgcJpyA2HGL3y9rBERztoKLBDeLb\nFtzrWP5jk34R9tSVvm59Frg1AKfq4FQFdCmQdk6Stp0TuNaTxbOhlJh1ridrTQnM7I0RNwyyj0ki\ntjcQsn11SJsK+kuACzg/DRW+ALuSU020CYHPNcN+YjmBm8R9T+DG0Ong5B7YFQq7Q+V5pxBZmnYy\nne8yJR7WLoDV86BWc3hiEjTtZh5pCAG/TIBze2DKJnBRsRgoBMzpAhO3F724GncBPgmGCfugUp3C\nbQqDNgv2zYew2dD0KegxA9zNeDso9vmZ5v0QCAEpVyFuvyyx+yHuELhWhUptoVKwLD7NQWPFD4wu\nA9KiIPWsLMmn4fZP5O7xVuRuSd+B4NvPQNp1waEMaYHnIOFxmbzB8zdw7FLi3dmEwM3YFKxMKidw\nk3igCNwYQsClk5LMd4VC9CV4bY7MymMK2Zmw7WfY9CNotPDYOGj3RPHJjo37/XEk3IiEieukfoq1\nn2P+I9CgF/ScpL5N5GpYNx5860GfueBXSgJgxshMhFsH4NZ+WWLC5dhqdICKLSVp+7YGJ0uSLusg\n9TKknIXks7m1IxC/A1xqgls9WdzrwaW3ITsW7FwgcCrUeqvsZdwpDPpEw4Jj6WzPtwmBf1y83X/2\nk8sJ3CQeWALPj1tXQaeFKipzcOr1cHgNhM6BO9eh/zjo/rKUllXTdtGLUqhq2CKrhk12JmyZC72m\nqPsRuXoI/h0v1RO7jYe6j1jXv1rosiD2GNyOgOhdELNfzrYrtYTKweDXFvyCwd2KhASXf4Zrf0qy\nTr0Ezn7gXhcqGEjavZ48dg0s6H+P6ANpkdB0BXhYufnqPoZNCPwjM+ynlBO4SSiKIsTxY+DnL/NP\n2ioG+kHC2X2wci5E7oBHRkLfMTKDvSnotDIrjzkLmtYg8TqsnQZnNkCfWdDmJfVvDeZCCEiIguj9\nEB0u69hj4Fkb6j4qa7+24NPY8oXMwhC7A7LiDGQdZF78dna8nH0Xpgt+NyD0kPoLuPQBTQl+R0QG\niAQZPigSgARQkoA78jjnGglAbRSH2dYT+Idm2E8tJ3CTUBRFiIcawa0YSEyU8rF+/lDZT5ZqNaCS\nt+HcX+p5V/aTyY3LyT4vbpyFVZ/Bnj+g4xB47A2ocpeT9WamQthc2DUP2o+A7pPB2caLXKmxcPMA\nxJ+Wsd3R+2W4XpW24B8M/m3BryU42ngD0P0MXQJc9QacwfUx8JwETvkyIgkhCVifIEsO4eoTcklZ\nn++aowBx2XA/AdCD4g2KF+Ala8dqhmgVwzmehuNAFE0n6wn8AzPspz3ABK4oSnVgKVAZuUKzSORT\nIsjjQsnOhlu3JJnHRBtIPQFuXIbYGFliomWdkgwVfSWh120A7k7gayB5XyOy9/UDb58Hi+wTb8H2\nZbD2I6jfGfpPhLo2ELYyB0LAgZ9g/dtQuyv0my0TIFuL7HSIiYAb++F6uKzT46BKGwjqBb71JWm7\nWxGH/qBACBDpoIuXvmx9oiRufYJM8pA0ltyFVTvAHuyqyt2b/5E2YOctExe71UYSspc8VzwNtVfu\nNY3RueIFOJvlsrKJC8WMXODK2wUJXFGUPsAXSD3wxaIIr7qiKG2AvcicmP8UZqNqDHeRwP0BfyHE\nEUVR3IFDQIgQItLIxjIfeFYWxN6SZH47Fm7dgDgDyd+Klsc5dWoKNG8DZEhCzymV/KGi0bGvH3j5\nmP5CCQGHd8Gyr+B4OGy+XHYV4DJSYfsPsO4z8A6A/pPgof6l82MmBPw7AVo8BYEqsvYUh9hT8O9z\nMmmDbyOoGixLQFupRPggJSTIgRAyw44uAbQJubXxsV0GaKPleWEFDXg2BpGaS7A5dcZiQAs4yFhy\n10HgOhgcaksbO69S1xa3CYEXogBRpP30AkmNNcAZZMad68ABYIgxpxnZbQLSgB+FEH9bPObiCFJR\nlP8By4QQ8ZZ2omogihIKzBNCbDG6VvKLmJmZkshv34I4A6nHxUiVwrgYuG049qoIZw9AxcqS2Cv6\nga+B5NNS4OIZiIyQsd0ZaeDiBgdTSnbstoBOC/v/htVzZLqyfhOg41Cp5XKvIDMZYk+AXwtwKEFN\n9XsJR5rKbfIaL7D3Kljbe8nNRHYu8lqB4mmagK9UAn0SeIwCr1lgd/ddUDYh8Flm2L9TgMDbA+8K\nIfoYzqcAiHxLo4qivAFkAW2A1dYQuJpVGj/ggKIoh4EfgA22ZlVDDrmHACvEFyyEkxME1JClOGRl\n5pJ6TomLhmPhELFbSs8KvbTNSIV+1aCiP/j4yVLRD6rWlIqGPn7gY7hXwfvuzdQ19tB+MLR7Ck5t\ng9VzJaFPXnd3xmMJnCpAtVJ2A5V1NI+wemejSfjMB6eW4GBGbP+9AOuYLQAwEgbiGtDW2EBRlABg\nINAdSeBW9Vjs/7AQYpqiKNOBR4AXga8VRVmOzPcWZU3nAAb3yV/A60KIAlPWGTNm/HfcrVs3unXr\nZm2XlsPRCarWkMUYr02T5L3kU/h2FmRlQL3mMD/UQPTRcCeH8G9AxBaIN1yPj4HMdPCuLHdi+vhB\nUFOpl+FtIHlvP/AyHLt7lQzZKwo07i5LRqrtn1+O0kVJkjeA+1Ml+3wVCAsLIywszLYPNUGnYRch\n7JKlrf/DF8AUIYRQFEUBrPpjVu0DVxSlBfAS0AfYCrQDNgshJlrcuaI4AKuBdaIQIcdSjQOPuQnz\nPoQVv8LeqLy63+bgxhV4ZxgE1IKZKuOoMzMkkd8xlLQEiL0sr8XHQHx07nFWOnhVhqadITtJEru3\nv6zzH7uVENmXQx10GXDpB6g+BBxtpH1ejiJhExfKu2bYzyzgQmkHzDByoUwF9MYLmYqiXCCXtH2R\nfvBXhBD/WjRmFT7w14HngdvAYmCFECJbURQ74JwQIsiijuWvz0/AbSFEoVqt8h90Gjg4gL29zElp\nby/PHRzkjNjRruC9PMf24OggXQXGz3FwkL+XVy7AL9/BuhVyE4sQEHEdKpZSDLS5yDKQfcItSLgJ\nCTGyxEfnHicYjnu+DMPN0Mcsh22RdAo2NZXx27VHQL3J6kWsSgNCADq5MzSnNj5GB0IrFQKFtqBt\nTq1oAT2gLXg/51gjgGzDdW1BG3SgUYBMw3kRNvYOQGpeG3Sg1Eexn2Q9gU83w/69AgRuj1zE7AHc\nAPZTyCKmkf2PwCprolDUvGf5AP8nhLhsfFEIoVcU5TFLOwY6AkOBY4qiRBiuTRVCrM9j5eQk3ROp\nqTKUUKuVtU4rowu0hus513JstIba3h6ykvPdN9xLTpRZevKjTWVwsDcifQdwdYedlwvaljYcncEv\nUJbioNeX/HjuBvR6QC/FpISukForjzG6VsBOK5+jaPPey/8cirDJY6sHTXbB9pm3pCtDlwbnvoTz\nX4JTZajYGRy9Cj5LCLDPynuNQvpz0hZyX5vXzgkQmUWTs9CBqyEtm6IBNHnrnGPXCiCyCrfJqZ0q\nIInXPve6sQ0acHIDsg2unSJsFFfDj4FGPuu/6zmytBpZKz5576MBxYp0hsaw4oVfCKFVFGUMsMEw\nsO+FEJGKorxmuL/QJmM0QtnfyFPS40tLhYWfwfyPpYBUdjacjpeze53RD4FOK0MJy5EXr3rCokRY\n9yHEXYTkaEkOOm1ewtTrpHiUPin33PheThs3bymNmv+e3kCoQgdulUAfJ//47TT5ant57FIRlORc\nMspjZ7Bx8gBNRq6NsV3Os+xdwF6X1yaPnb3MP+moFLTJToArCwwE6CBtPZtBlUfBqVJBe+zkhAFN\nwXv5+7azN7Kzz0u6xuPP/yzjc2F3X+2BsIkLZZoZ9h88wBt51KBUfeCJCfDVbAj9DcIvypl7OUxj\n81fwxyQIGAxDX5UJjRVySdSYNDWGaxpjEspHSHYa+VaVY1vAzsjmXvDtp16E9UFg7w4N3oagMSWT\ntKEcgI0I/C0z7GeXE7hJlDkxq4x0WDQXDuyAZZtt99zsLEhNgrQkWWuzoaGNExnbGlu/hmNr4LkF\nUDFQClc52ECn+36C0MGVn6Hq/4HD3Y+TBuDWPPDsC073WfgfNiLwqWbYf1hO4CZRZghcCFizHGaO\nlZt2hIBT6XLHZ2oSpBhKahKkJco653pqYu691CQ5c4y/kkvWqUmgy5ap0dw8wNUDAoLgA4vXNUoe\n2xfCzu9hxHLwrSmvfd4Teo6HpoXkwiyHxFZD+jeNqyz2hlrjknvN2V0mZzC+bpfPRuMM9m7yup2L\ntFf7RhKhAcURfJ6DqrPB3rfkPm8pwyYEPsUM+4/KCdwkSozAs7Ig2UCwyTlkm5hLxClJcoEzJQnO\nnoQje2Ub47F4OEm/rJsHuHvI2r8aOCnyOKe4e+a1cfOQIYquRudOLveGSwBg27dSR2XiVqhsFIB0\neisseQHeOQ6uhaT9KgncPiuLTx3wqmWbTD0licTjckFTmwa6dHmsy3esZIAuteB1XRroDdecBGTf\nNmyVT5MLkZocMjeQvLsvIAwkbyiKE6QsMQzG4Ipybg5ej4NjLSNbl3x1TnsXyrIsgU0IfLIZ9h+X\nE7hJFCDwzExIMpBuTp2SKGvjkmR0DSDumiTkHNLW6aCCJ1QwEKt/VXDRyGPjUsFTxmifOASH9sCd\nW3I3pmIH+26AT6V7h3htge2LYPX7MHFbXvLOwa+jIDsDXvihdMYTtQHCv4D4KEi8Am6VJZl7B+UW\nn7rgXVsuWN6vEDpJ7Pocok+X+iV6w7UcotfGQfR4ZOidRrbVeINra7l1Xp8mBaz0abntnB1Ad9Pw\nzHQ5e1dyCN1A8i7+gNZA8EbXc44VF3DwNCzkuua1yznHUNu5AS5YkqvTJgRuxq4WZW45gZuEoihC\nNArKJWydDjwNxOvhAf5VwNVenhsXD8+8516eBkI2ELOzeSpngJx9HwmHb2bDjvUQHi3FrR4U7FgM\nq2bBm1vBrwj/aUYKzGoKQ+aXvitFr4XEqxB/XhJ6fBTcOS/DUC+ukpnlveqAV5ChGB27Vn4wfoiz\no+FEVUm+viOh8gRw8FffPkciVuT8SBiIHgPxi7S894TRdXstUtc73/WcY9LA2QX015Bx3gr/kToG\nosdF5gIlWx7nXMMVlEYo9iOsJ/A3zbD/pJzATUJRFCHOnc0lbEuItySQE1/+oGDnD7DyXek28atr\n2vZuuFKKgxCQGi0TOSScN9RGx1VbQNZt8DAQu3HtXk1GvtwPEAISV0CFR0DjfrdHYxoim/9+GDAQ\nPYaiGF8zHOOHYv+M9QQ+wQz7T8sJ3CTKzCLmg4ydP8LK6XLm7a8yAcSvoyAzDV5aUqJDsxky4iHp\nAiSeh8SovHXGbahQEwK7yJhwjyCoEGSoa1mXwLgcNoVNXCjjzbD/rJzATaKcwO8ydi2Ffb/B0C/A\nv776dhkp8P1g6DoamhTjSjm+Aup0BxcT2jPaLLB3VN+/LZGdBkkXIeUCJJ2D5ChIOg9JUZB6Vfp/\nPYLAow5UbAxuAeBeR5J8WQkdfEBgEwIvVNSjCPvP7z6BP0B+gHIQdxV8AtTtvtv9M/w5FSZvMY+8\nQYbC9ZwAS1+AaSZcKULA2U3wzyjoOxtav1D42Fa8DEnXoNVwaPxE6Wp+O7hKYq7YuOA9fTakXJFk\nnhwFGVfh1jZ5nHIBHNxl/kv3IKhgIHWPOvLc0dd8d6A2CezvocXY5Klg5w+uYwy7QO8B3GPzxfIZ\neEkiOQEiD8PpQ3DqIHToAwNeKv1xxFyEv2fDvn/gve0Q2MS0/Z5f4PeJkrwDGlre7++jQJsJQ783\nbXf1IISOldokj8+DGsF572uz4MwqOLQYru2HpoMlmVctwxnahYD0m5BiIPeUKDmD112B5NNSu8Qt\nSM7W3YLyHjsHFPS767NghwdUHgz15svdnWUF6WGy1viBprJMo6bYQWwg6GNAUxM8fwaH1qaeYjVs\nMgN/3Qz7L+/+DLycwG2FlCQ4EyGJOvIgRB6C2BtQrwU0ag0NW0HLrlBFReIIWyH6Avz9AYSHQp+R\n8Ng4qFDRdJu9v8FvE2DSJqhWyKzTHGQkw+xmMPgbaNzXtK1eD4eWwbqp0KCvnJFXKER7JuEKRCyB\nwz+Asze0Hg7NngGXe0yuNSseUqMg5XzeOuMmiKvgUgtcg8Ctjqw1znDhf3KG6OAFjf8Er053+1NI\n3JkImeGguyUJW58KGl9wiAElR1DNHjS1wOlZcGwLdpXBzk/WFoQMFgabEPhYM+znlRO4SZRZAk9N\ngdNH4ORBOHFQ1hW8wMVOEnXD1pK0azaQ2h+ljZvn4a8P4OAq6DMK+r8BFVSEPO77A355AyZvgmrF\nzNLV4sxWWPaidKWY8nPnID0RNr8HB3+CR2ZAu1dBU8gfuF4PF7bAoe8hOx4qVILmwyCwa5nebKIK\nujRIuwCp5yEtSpakfZB5hDzv+A5+UGU4eLQElyBwDiobM3ORBdqbcKcWcrxOSMlXX9DUk6na9DGG\nEgdKBUnmro0BO1AM5K5UBsUv7znuRbqebELgY8yw/7qcwE2i1AhcCClktXwJ7Dqb9wuSngaRR+XM\nOoewb1yCOk2gSWto1ErWQY3ufmjh9bOwbj7s/AX6joH+r4O7ypnpgRWwdBRM2gjVm9p2XL+NBF1W\n8a4UY8REwu7P4Ooe6D8PgroXbZt2G078DEcWgzYdmr8MzV6ECvdR9vlr8+DcOLnLUp8F7g+BvSc4\n14LsG5B2HjIuGK4FgUdrcK4oj53rGMi9YumF4eqTINZTErbrG+D8LNgV4r8XehB3QH8LRAxgmMUL\nw3lOnXPf2R/5Y+AHVDaqm6PYP209gY82w35+OYGbRKkQeHISjBgM+3bIjUKL/5RZdU4cguMH4fJ5\nqN8Umj8EjVtB49ZQpzE43qWoiMJw9TT8/j4c3gCDp0Gvl6S2ilqE/w2/Tobxf0FgC9uPLyMZ5gbD\nU/Ogfs+89+5cAu/AwolFCDgVCuvGQ0Br6PspeJlwQQkBNw7A0e8h8k+o1hFaDIc6/QqfxRcFXTbE\nHoTKwWUnBjxmOcT8DFVeBp8+0qWSH0IPWTclmWddg8xTkHEeMqJkjcglc+c64NoInKpJYSuHqrZ/\nc9FFg8aMjUJqoE8GJVYSOzG5Nb4o9iOtJ/BRZth/U5DAFUXpg0ybpgEWG2fjMbL5CuiLDGB/UQgR\nkd9G9RgeWALPyIAlX8MXH0BKsiEBAFC7FnTuAU1bQ5NWkrydymis75VI+P09OLIZBrwOA8ZKjRVz\nsH8FfD8Spq6HmoWQd2YaRJ+1ntjPboFfXoIpRq4UIeDrDjKMsM/7Rc8Os9Nh51zY+xW0/x90nlh8\nJEpWqiTxI4vBToHAjtB0GHgXsxEJZNjg+oGQdgOq9YYa/aB6b3C5h4WfhADtnVwyz4wCkQIZu+Wx\nLkHqoTgFSUJ3DJLHjnXAKVBuoS/jsIkLZaQZ9t/mJXBFUTTIjDw9gevAAfJl5FEUpR8wRgjRT1GU\ntsCXQoh2Fo/5gSDw7Gw4fQKOHYSjhnLmpCGFml66PvR6ucNy9GR460Pr+yxJXD4pifvoVggZB/3H\nyMwp5uLgSvjuVZiyDmoVEdGx6Ws4tRleD7VuzADLR8qIkmeMXCkpsbCoJ9TvA/0+Mv2KH38Z1k2A\nG4eh32fQcKA6l8CdM3D8ezi1FHzqQ5NhUG+QDBE0hZSrcGUdXFkLN7aBdyOo3lcSeqWW976v3Ri6\nFMi6IMk8KwoyDSTv6A7pa8E+AByCJLE71DGqaxv0S+4+bELgI8ywX1CAwNsD7xrlxJwCIIT4yMhm\nAbBNCPGH4fw00FUIEWPRmO87Atdq4fQpOHIQIg5KOddNoVCjFjRvDU1bybpRc3B1lcR94giEbYC1\nf0PH7jB9Tsl8IGtx4Ths/FH6uEPGQ//R4GLhotXBf+G7V2DyWqjdqnAbbTZMrgsjf4c6Fk8ScpGR\nDB83hacWQMM+uddTb0sSr9Md+n9SPClHbYGtM+XCcc854NtAXf+6bLiwGo4vhpt7of5gaDocKrcs\nvk9dJtzcJcn8ylrwqQ2ulaBaP6jSC5zusSgYcyCyIPuyJPbs87LOOg/ZUZB9ETx7AglgHwT2dSTR\n5xxrSk8vyCYE/qoZ9osKEPggoLcQ4hXD+VCgrTCKbVEUZRXwoRBij+F8MzBZCHHIojHf0wSu1cLZ\n05KsjxyS9cljUK0GtGgNLVpBq2Bo3Azc7tLqvF5vfdqqqGOwbBac2AVDpkC/4ZYTN8Ch1bBoGExa\nA0EmYnN3/ww7voep2yzvKz/ObIFf87lSANLuwHePQM1OMOBzFYSaDQfnw64PoPmL0Hm6eYqDydfg\n5BI5M3fzgyZDod6zMjRRVfsLcH09XF8LMTvAu7kk84B+4N2sbGj2lAaEHrTXQHdBErr2PGijZMk+\nL99S7OuAayeDlnkQaOrI2q6KTd9ibELgrxR9P+wGhN3MPZ95uACBPwH0UUHgHwkhdhvONwOThBCH\nLRrzPUPgOh2cOwuHD8KhgxBxSGabj7suyfqh1rJu9hBUuMtbmLMyYc8GWPerjFhZts+y55yLkMQd\nuQ+emgiPjQBnK1NyHdkA374Ak1ZBkImsP3o9vN0Mnv4EmvUp2s4S/DFCEvAz+aJS0uJhcW+oHgwh\n89SRYEoMbJ0KFzbAwx9Cs6HmkYLQw/UdcGoRXF4Lgf2g0XAI6Kb+Odp0iNkO19bCtTWgy4Bqj0L1\nPuDfExzuod2TtoQQoL8tyVx/BXSRoIsC3XlZ65NAU1vO1jVB4NgENAFgFwRKoNnx4TYh8OFm2C8u\nQODtgBlGLpSpgN54IdPgQgkTQvxuOL/PXSiTxkvSPhoBvpWgZWtZWrWGFi2lvGxZgE4Hh7ZL0t66\nAoIaQ58h0HOQ1A03B2cPSeI+cwAGT4JHX7WeuAEOr4N5L8C0NVCnmJRtR1bD32/DrAjbzyaLcqWA\njANf3Bfq94CeM9W/vVwPh/VjZd7MPvOgShFuIZPjugNnf4FTiyE7GRq+DA1elIqEaiGE3HEZvRWi\nV0DcHvBpA1X6yeLR8MGZnRcHfbKcueeQut0t0B8B/XkQN0GpBnZ1JKHbBcljTR1QaiGlZPPCJgQ+\nzAz77wsQuD1yEbMHcAPYj+lFzHbAF/f3IuacD3PJ2qeM6W8LAScOSNLetBwq+kvS7j3Ysh2XkQfg\nn6/h2BZ4erJ0lTjZSPcjYgN89RxM/Rfqqfi+fNAZeoyGdk/bpv/8OLv1/9k77/Coquf/vzaFhN57\n71WQrhTpHelNwQYCViyoWBFsgKKAnaJSRJooIr33XgSkhtBCCzWkZzfZ9++PCx8D2XJvdiP6/fl+\nnvOwu3dmztllM3vunJn3wJqP4LH5aQt8EqNhajsoUAW6TDTvxOWEfVNh7VtQ60mo+wJkSUfmiASX\ndxuO/PhcKHQ/3DPYOMAMsFg1mBwHkWvgwhJjYIPC7QxnXrC50RrtP6SF7OA8ddOZh4Pz5gi6DOwD\n8oCtLNjK3fy3NrbAdr478P4W5L93mUbYjr/SCL+TNMpmsw0GkDTxpsyXQFsM4vMn0hs+gX+DA/8n\nru/4IVj0EyyZDZVqQKVq0O4hKG3yMO1OHNwOP4w0Din7vg4dB0CIizzf9OKPFTChHwxbAJUaeJcP\n2wo/DoHhW40O8RmFn58yGjH0mpL2WlIMTOsAectB18nW8rETo2Drh3BwGjQYDvc+ZezM0wNHHJyY\nD2HfwY2jUO5RqDgAclkk+IKbu/PDfznz4EDjx6lge2NkM5Hi+B+MH2rOgW46d4WDLSe2oDd8d+AW\nqIpsP/xXyOMR/ygHfvaU4bAXz4Koq9CuN3R8GKqayGBwhz+3wvcj4dQheOQN6NAfMvk553zfKhj/\nELz2K1Q2yZ3x6YNQvR20slDVkB4kRsOn1aHHRKjYJu11exxM62gU73T/3npRzZWDsGoIJFyGFl9A\niSa+rTfqKBz7HsKmQY7yhiMv3ROC07mLdkTD5dVwaQlELjEaFxe46czzNTGe/wfT8EsI5XEL8lP/\nc+Ae8bc58LhYyJI1rSO+cgmWzzN22yePQuvuhtOu09i3zJJ9m4wd99kweORNaPeY/x03GKGYcX3g\n1V+gSmNzOhF/wuhWMO4kZPJyF/DHb3BiOzR4DJaPSV8vzGOrYG5/GOqGK8UeDzM6QfZC0H2q9TsC\nCY7Nh7VDocj90PQTyFHc+jpTw+mAM4vh6BSI3AxlekGlgZC3dvp/zCWI3m848ktL4cYfkOcBKNIO\n8reHLKV9W/P/B/CLA3/Ugvz0/xy4R/wtDvzwAXiwEXw2BTr1NBoiL/8VFs4yemD2fgwatYYGrayV\nzyclGgebWVLtzvZsgCnvAQ5o9wi0fRSCM6jCbf9amPkGPDoGqlrYeX77KBSpDJ3e8C67YTKc2gGt\nh8LXXeC9I+lb68+DjdvinpNdX3ckwI9dIHMe6DkjfWEdRzxsHwN7v4K6r0CdFyHID2GquHNwbCpc\nXGR0ky/3JJTuCyFeWB+9wX4drqyGq4vgylIIzgP52hvOPHcjCPiHVgffRfjFgT9iQX7Gfw7cIzLc\ngYcdgQ73Q3SUEceuVAE2r4L7mkGnh6BFx9sdsFmkpMAjDY0GypNWwK51MHkkREZA/7e8uOvaAAAg\nAElEQVSgfT8I8g+FpkscWAeje8KwuVC9mXm9K6fh7VrwaThkNdHPcvXnEBkG7d+Aj+rAx+fTt15v\noRQwut0vGARBAdBpsjVuk9SIOgl7xxkpgw+Mg9Id/ZMVIidEroPj38G5xcbOudwAKNTc91xnOSF6\nj+HILy+BuEOQp5nh0PO1g8wu7igclwAbBFvMgPoXwy8OvJ8F+R//c+AekaEO/NhhaFcf4mJuTQaj\nJkDXfpDTx6q68W/AzM8hJRkqV4P4aBjwNrTtm/GMhX9ugFHd4bU5UMMDg58rTB8CmTJDnzT8O66x\n7GOIuQwPvguvFoQv4qyv9xaOrYQFL8DzW93TziYnwZzuEJgJesz2rc3a6RWwfgjkKANNxkNuk/0+\nzSDpGpz6CY5PAfsNKNsfyj4OWX0M3dyC/QpcWW44dF0x2AjztIc87SBHAyNT5lhXiNkIVTZB5nQe\nrv/L4BcH3teC/My778DvKpmDzWb73mazRdpstgN/y4ROJ2zfBP06wgNVDOcdEmrEnwMCDYIkX533\npmUwfRwkxoPDDokOmHcYOj6W8c774EbDeb86y7rzjr5sVF62edG8jiMRgkMhJKvxOCXZ2pypUaEV\nVGoJS15xLxMUAr3ng1JgXk/DoacXJVtD3/1QogXMbQCbhoE9Jv32UiMkD1R8DtrvhQd+Npo07Hwc\nNrWHs/MNOlhfkCkfFOkL1X+E6ouhwiSDbCp8KGwtAH/2gKilkHwVDtaH2F2+zXflfTjbCa59Agnb\njBS//6uQhfEPwN1m4/kBIx8y4yDBgb3w3mtQtxQMexqq1oDZy2H9QZjyM7w7Fh57Cor60C1Hgkkf\nwjPtDcKm4BAIzQzHDsC5k357O25xaLPhvF/5Ce5t6V3+TmycbuR85y5sXseRaPzo2WwQmt0o0PEF\nrT+AsBVwbIV7maAQ6DkPbIHGbtyRmP75AjNBraHQ7wDER8KMynBkpvF/6Q/YbMbBZr2vodHvUPwh\nOP45LC4O+14xUgp9niMQctwHpd+D2rug7mHIXtn4kQNIiYaD98Pp143D1/Qg10DI0Q8cZyDyKQjL\nCxHN4cq7ELcKnLHudR27QD78H/3d+Jc58LseQrHZbKWA3yWl6SLgUwglPAxWLoKZkwzq2K4PGaOy\nn5sVSMau+9uRcOY41GgAzbvcjKvKiH+26g5ZM7C8//AW+LALvDwDarmJIXtCYiw8Xxre2wKFLeQi\nz3kZcheD1i/DGyXhlQ2Qt6T1+VMjbCXMfxJe3A+hHqpsUxww/2Gwx0LvX407AV9xYauxE8+SDep/\nCPlq+m7TFWKOwanv4fQ0yFoGSj8JxXr6r5tOxFtwfgwEZjW6+9iCjB6cgZkhV0fI2Q5ytU1/fDwl\nChK2QMJGYyT+ATkbQ3AVCG0MIY2MlmpKgcvZjerJ3CuNrjoZCL+EUCzUrdlm3/0Qyv8tB37+HPwy\nB+bPgnMR8MRgaN0OatX3f/myBBsWw7fvQWICDH4HWvfwnbgqNU7epLwt6+FH5/A2mPU+dH4eaqfz\nZmbxOKN458W51vQWvAP5SkOj/vDlg9D1Iyjqhx/IXwYZn293N1kpt5CSDL/0MzryPPQbZPID3YAz\nBY58DzvfgdJdod4HRmebjIDTAReXwMnvgETIXgqKD4Bc9f76vl5ebHTZyW2h/+WNNRB/ALLWhCzV\nIejmgXTSWbixDKKWQPRqCK0EudobI2vt9B+2psSDfSfYN0HiRkjaatDPZqoMzsUYHXRyQ+5VEFQ9\nfXOYgF8ceC8L8nP/c+BeHfi77777v+dNmzaladOmtwtduwoL58PPs+DPfdChC/R4CBo3y5iYswQb\nl8JXww261aeGQ4uu/nXcAGvnwbhn4OVvoGkP1zJHd8DwjjB0KtRrn755ku0wpCy8ssA9raw7TO0P\n5RoZDvzjhtBtjPHcVyRGw/h7oNtkqNDas2xKskFmdWkP9PrdO8e3WSRdh53D4fgcqDMCqgzO2O48\nCefh3DQ4852xUy4+AIo+DNtrQPINqLPJ6H3pLzjtELMJbiyF5NNGZ/nsbSF7e8jeGoJ8oK1QMtj3\nQ+wHkPIbcKuxsQ2CWkD2TwxH7mN2zrp161i3bt3/no8cOdJ3B97Tgvy8/xx4+nbgsbGwaCGs+B1W\nLYHmbaDHw9CyLYT6sQQ9NSRY9Rt89R4UKAK9B0Czzv533MnJMPlNWDcP3p8PFdz80R7dCe92hJe+\nh/odvNu9dArylUi73nU/wOZZ8JaHuLM7TH4YqneE+g/DF+2g6fNwTzp/SO6E2VAKGLvmRU9AdAT0\nWgSZ/MgvcnU/bBoC9iho9AUUNlkQlV7ICVc3QMR3cOlXCEwCko1deL3dRof6jID9FEQvhZglELse\nQqtDjvbGCK2RvjvYqHZgXw0EGcyCAYXBGY9x9BYDwQ0huDFkagxBtfC1649fduBu9kou5X/+z4Gb\nd+B2O6xYBnNmwfIlcH9DeOxxaNUuY+ljnU5Y+St89b7RYf7Z4dCiU8YwykVdhpF9jJ3e8FmQ082t\n+7FdMLwDvDgF7nvQu92EGHihGgydAxVTEVk5nfBKVXjiS7inhfX1ftUV7n8EanWDyb3h3q5Q10MQ\ncdVow7k+8Lx7mdRY/AoEBkBbEw02nCmweCBcPw69F0OIH78TEoTPha2vQPnecM9LkLWo/+y7w94H\njUKeWwjICtXnGvnfGQlnouHEY5ZC9BLjkDJfF8jSArK0hECTDKCJvwJxENwIAu7oe5pyHhwbwbHJ\n+DclHLL0gcAiENQYAu8Dm7UzAb848O4W5OfffQd+t9MIZwFbgAo2my3CZrOlpZJZuwaeHgilCsO4\nsfBAEzgUDr8tgW69Ms55O52wdB50vhcmjoaXPoBfdkFLk228wKjG/H26uayGI7tgUB2oXB8+Xure\neYftMZz3C5PMOW+AH9+E6i1vd94AuxdCaDaoZjHl8BaSE/86PMyc0wh9eEKhqrDvZ/P2WwyHA3OM\nzBRvCAiEjlMgb0WY3Q6SvKzFCmw2KNcb+hwxfhh+qwH7RxtdejISUWsBGwRkNg4cbQHwR0fY0xoi\nf/Y9HdEdAkIhRxsoOh4qH4Ny6yFTJbgxGU4Ug4hmRkph0kHP3+3QrhDaDwJLpf2bCSwCob0h+xeQ\n5w/IGwGZegB2SBoBMQUhth4kDgXHAnBeyZj3eif+ZVkoSPrHDkCqX1P67BPpzBn9LUhOlpbOl9pX\nlbrXk9YulpxO63Z2b5A6V5SGdpcS4j3LrvhJ6pRfWj/fs1zYHql3AWnTL+bXcXiz9ERhKeba7a87\nndK43tLWeeZt3YlPmkqHVhuP5w2Vln/iWd6eIA3LKcVcMj/HseXSxyWkhBvm5J0p0pKnpB/ukxKi\nzM9jBTfCpJUdpZ/LS2cWZ8wckmS/JiUn3P5acrx0foa0s4m0Lr909GUp5mDGreFOpMRKMYuki89I\n4SWl8BLSxcFS7CIpJcZ/8zjjJcd6KfEDKbaNdCOHFFNZcgyVkmdIzlNpVAx35qO/6Wp++DqfP8Zd\nD6F4wt/KRpiSAr/Pgc8/gFy54cV3oHEb66GSmBvw+euw/nd4/Qto3tW9rD0Jxr1gkFt9NBdKVXEv\nG74PPnoEnhgJjTzYTA1HErxcEx56DxrcEdw7uA4mDoZxB9NPGTvqfuj1GZS9Hxa/ZxwodnrPs87U\nXlCpDdxngTl/wc1GhV0mmZOXYMUQuBYGXWdDqAlagPQgYgnseBFyVID64yFHuYyZxx3iw+D893B+\nGmQuC8UehwK9IfBvah8ogf0IxC2BlCOQOBtC7ofQ9pC5PQSV91+oUcng3A/a+NcgBAIag60xBDTF\nFlDZ9xBKFwvyC8yHUGw2Wx5gDlASOAX0khTlRjYQ2AWcleTxNvtuF/LcfSQnwy8/QsuqMP1rGDEB\n5m+CB9pa//KtWwg9qhnhl5//9Oy8L52FZ5rA9UsweYsX570fXmsDjw4377wBfv4IilSA+10E9n4d\nDZ1f9Y3v25EqhBKaw3sIBeCerrD/V2vztB0LYcvNhVLA+H9r/TkUrQ1zW0LCNWvzmUXx9tDlABRs\nDIvug91vg8NDUYu/kaU8lBsFjc5A6Tfh2kLYURyOPQnR2/xXkOQONhuEVIY8QyH/ZCh6DrI9DY5D\ncKk5XCgH156HhKXgTPBxriAIrAVBL0DwzxB8EYJXga05aBukjPXPe3JaGNbwOrBSUgVg9c3n7vAC\ncAgzgZq7fQvg9ZYmo+BwSHOnSg+Ul7o3ljauSl+oRJIuX5Be6Sk9WF7auc67/O61UsfC0rRR3ucM\n3y91LyStnWNtTacOSI/mk66cTXvtxF5pYBHJnmjN5p34tIV09ubt+7YfpTkveteJj5Jey24+JHIL\nVkMpkvHZrhkqTa0pxV+xNp9VxJ2Tdr4i/VpMOvlT+r9LviLpvHRmlLSjnLSrinT2M8l++e9fh9Mp\nJe2TokZJFxtLZ7JJUb2luC+k5PAMmRJ/hFAeND+szAccAQrefFwIOOJGrhiwCmiGkdzh0e7/fztw\nhwNm/wDta8G8H2DURJi3Hhq1sL7jluCXH+D5blCsDMzdB3U8ULdKMGscvNMH3pkGj77uec6TB+G1\n1vDMOGhqocIgJQV+Hg19P4K8LrIlfhsDHV8yyv19waVwg/wKjJ349TPedTLnhDKN4NBSa3OVbw3l\nWsNKEzS3t2CzGfzfpVrDnOYQf9nanFaQpQjU+QQazILDH8PqpnB9f8bN5w6ZCkPx16HOMSj7NcTu\nhZ3l4HBPiFr1V4l9RsNmg0zVIefrUHADFDkDId0heTdcbwBXK0HMy2BfBcrgw2AryLhDzIL6q3Fx\nJOCuLHUc8Com9/gZzK70D4LDAXOnw/gPoXgp+OBrqOdD0cmZcHh3MMREwftToPK9nuXjY2HMYDh1\nGKZsg8KlPMufOgSvtYKnP4XmFvtSLv4KLkdASxdx5ovhsH8lDJpozaYrJN8RQkkwmflR+yE4tRlq\n9bY2X9uxML05hK+Esq3M6dhs8MAoI0tlTnPotRqyFrA2rxUUaARtdkH4JFjTEkr0gurvGQRXfyds\nNsjVxBjJUXBpFpx/C05fhHxPGCPER9oDKwjMDYE9IbSnkeuevBfsSyB2OKQchOCmENoFMrWAAB84\niXyFD1Enm822EmN3fSfeum0KSTabLc1MNputI3BJ0l6bzdbU1KS+3HJk9MAfIZSkJGnaRKl2KalH\nS2nrBt/sORzSd59I9+WVvh9rPPeGM2FSz2rS5695z0iRpNOHpe6FpRUzrK8v8pT0UF4p4ojr6xOf\nkma+ad2uKzyfU4q9md1yYps0qp45veiL0hs5jawUqwhbJn1mMZQiGbf0G4dL31WRYi64lrHHSUem\n+y/8kXhF2vG0NL+AFDZRSkn2j11fELtHOvWstDuPdKS1dHWulOJjKM1XpFyWEmZKca9I0XmlmGpS\nwmuSY53ktJs2gz9CKO3dj7X10bvl/hpW5sMIoRS6+bgwLkIowEdABHASuIDR9Hi6R7u+vOGMHj45\n8MREaeo3Uq0SUq/W0o7N6bd1C4f2St1rS0+0lM6YjONtWCS1yC/N+cqcYzh1WOpSRFptMeYtGfaH\nt5HmfOj6+tUL0ss1pOsXrdt2hadCpKSbP0jnD0nDK5rX/byRdHBR+ub97Ulp4aD06W4eKf3WXYo5\nl/Za7Dlp9j3S2oFSsnnH4RXX9korm0ob20tX/PA99AdS4qUrP0qHm0l78kunX5TifExHjP5Gsh+7\n/TVnihT3reQ0+SPhTJYcW6WE4VJMHelGTimuu5T0nZTi4v8sFfziwNuZHxYd+MfAsJuPXwdGe5Fv\ngokY+F130l4/UKtISJAmfSX1aCP1aSvt2GLdRhqb8dK3o6SGBaRffjDniFNSpIkjpLZFpT88/NEm\nJkix0cbj00elrkWlJVPTt841M6TnqksON85nxhvSt0+lz/adcDqlJzHepyRdOyu9Vti8/tpPpdkD\n0jd3QpT0aXHp+Mr06W/7QPqhvBTj4oA3KVpa3FH6rbmUcDV99l3B6ZROz5QWF5V2PCLFnzdej5gu\nhY+zbi/ZxJ2cWSQclyLelMLuk8LqS1cnS8nR1mw47dLV56SIgtL5e43DS0e4ZN8sRSJda2beiadG\nykUpaaoU10u6kVuyt5Ycb0opmyTn7Xe/fnHgbc0Piw48D8bh5DFgBZDr5utFgMUu5JsAC73a9eUN\nZ/Sw5MATEqRvP5cqFZV6tJd2bjOvmxpxsbc76G3rpOblpdcHSJfc3Hrfiejr0pAOUv9GRoaKJ3z2\notS+sLRnvdStmLTo+/StO+qS1K+gdGyn6+uxUdKjeaWLJ9Jn/07YE4wd+C0kREtDsprXv3JCeid/\n+sMKYcukz0pKiRYdzS3sGC19X1aKdlEglpIsbR4qzSwvXT+aPvvu4IiRDrwuLcwr/TlcWpJVWpxZ\niv7TvI24MGljfunk+5LDj8VKTod043fpVBfpz1xSRH8pdrO1kJIzWUpYI10dLEXkly7mkyJtUmSo\ndK2F5ExK//pS7FLyBsnxhmSvISXlkRx9pOTpkjPSPw68tfnh63z+GHfdSXv9QL0hPl76erxUsYjU\n+0FptxsHZgZJSVL9ktJHw6Qb16U3BkoNikkrfzNv49h+qXM56eMhkt3LbbjTKbXOL9W3SfcFSD+O\nSf/ax/aVpgx1f/2XMdJnD6ff/p2IvSaNbvTXc6dTev9e97t/Vxh7r3R8ffrXsGCAtHBw+vV3jZW+\nKy3dOOX6+sHJ0g8FpIjV6Z/DHaKPScuKSL8j/W6T1lUznJ9ZxB6WDj4ibcwrnRgu2f14tyBJ9gvS\npTHSkfLS0crSpbGS3WLoLSVJisxq7MAjkSIDpMslpKRd/lmj86yUPEWyd5PsnfzjwFuZH/8EB/7v\nTSOMj4evxsG9ZWHjWpj9O8xeCLXqpN/mxE/hciRMGgctKhrkVcv+hJadzOkvmQ1vPwEDh8OrEyDY\nS+PdI3sgMc5IL5Tgx8/gcjoaA+9YApfOQ9+Rrq/bE2HReOjymnmbRzYYHOHukJxkNDS+BZsNrp6E\nJAuFLNW6wgGLRT2p0eZTuHIQTq5Jn37toVDzBfi5Kdw4mfZ6lSeh1WxY9TAcnZb+dbpCSjQ4Lt58\nIog5DEfeNq+ftRJUmQ61t0PSOdhWHsLfALufUiWDC0H+16DCUSg6ERL3w8V+cKEHxC01l46YcgDj\nHC4TEAoBhcB5A6IawPXGEP8lpFz0YsQDbEUhcAAEz4fg39JvJzX+ZVwo/z4HHhdnkFo93AO2bIR5\nS+CnBXCvj1zJF87BhPcNAiqHHYKywogvIbsJ5jWHAz5+GT5/E0ZOgQ6PmJvzl2+M3pmBwUZOdq78\nEHvD2rrjY+Crp6HPmxDqhkZ1/QwofS+UrmHe7vrvIcJDq9LUVZi3YLYa8xbu6QJXj6e/YjA0Jzzw\nNizqD0npbOdW8wWo/Qr83AyiwtNeL9oMOm+Ao9/AtpcM1kN/wJkAeR+A7NUgtJjRiDh8NOx40GiQ\nYBaZy0KlKVB3j8Ebvr0inHgL7Bf8s06bDbI2huLToMjPkLklXB0Op0rB1XfBccq9blB1yL0b8p2H\n/PGQ7xwUiIL80ZDlNXBsh2uV4XozSPgWnBmYp28W/znwDEJsLHz6MVQpCzu3w/ujYeYvUN1L/rUZ\nOJ3Qp4XRWcdmgyxZIeIkLDbBnHclEga2ghOHYc4uqGRyPX9sgt+/h9wF4OkPYe4RmHUASle2tvZp\nbxkNjGu66YOZkgILPoaunip3XeDETihT1/11Vw48s0UHXvgeuHIEzu21trbUKNsGSreE1RbuLu5E\njWeh3huwbiBEhaW9nrsCtFkK1w/Aqs5g9wPTYZ5GcP9aaHIAWkZA+wRouMPg/FhXGc7Ps/bDFloS\nKn4N9Q5AYCj8URVOPA9JEb6v9RYCc0Kup6DETiiyCFKuw5k6cK41xMwB5x0FObZgCK4FAXlvL1iz\nhUDIg5BzhuHcswwB+3q40RHiWoF9Cjiv+m/dVvCfA/czYmLgk9GG4967G5asgp/mwT1+as108jjc\nXxpOh0OrTvDKe/DhVzB7FbTyQte6fzv0qQu1G8NXiyCnyWKNC6dhWDdo2QeWRcIjr0LhO4oqzp+A\nOC+O4vBW2DgPBn7qXmbXIshfCqpYaESQEANXTkGxau5lHAmud+Bmi3nA+KOu2hX+9CGMAtDyUzi+\nGE6uTr+NewZDhYfht+Zw/Wja6yG5DSeetRgsaggxp9I/lzvkrgv1l8K90yHsfdjWAqL/tGYjpCiU\nfAfuPWTQwu6rAeGDIdFFiMgXhNSAAp9D6bOQ4wm4MQkiO8L1F8Hu4c7tTtgyQ0hXyDkLcq6BTIMh\neTnEloG4dmCfCq45nzIG/zIHftcPKr0eKhTLLz3ykHTIz5SZDof05WipWl7py1HGAaYVzJ0oNc4v\nrV5gTe/CaalLaWn2BPcy0dekh8p7zgW3J0mDqkjrPcg4ndJLtaStv1pb46F10vD6nmWOb5E+vEPm\n87bSgSXW5jq5RfqkqjUdl+tZKn1eyshKibskXQtLK5Nsl37v6ToH/BYOfS9NLSJdPeT6utMpHRgv\n/VRYupiBOd0pDunkl9Ly/NL+5w1q2fTAflk69aa0PY907HEp/ph3nfTCflyKels6V1S6WE+KmSSl\nWCy4ugVnjGT/SYrrIt3ILsV1lJJmeLSHPw4xm5gfvs7nj/HP34Gv2gDTf4LKHtj6rOLAHuhYDzav\nhsU74dnXIZPJdk5JifDWQFizEKZthOadzc8bGQHPNINeQ6D3ENcyyckwog/c1x6ae+A/mTsKCpeF\nxh6a+O1bZRxg1jN5CHsL3sInYIRQgnyMgQOUqG+wBV52EbqwgrJtoWQz+LkrfFMaFvdPKxMYDPlr\nwMLO4HATZ678BNw3Gha2gGsH01632aDaC9DoO1jVBY7P9G3d7hAQBKWehaaHIFM22FIZzk4xytCt\nIDgflPwQah2H0FJwoAGcHgoJh/y/5uCykPN9KHwacrwLiUvhfEm41h+SNlsLCdmyQfBDkOVXyH4W\ngnpD8mxIrgmOrpAyG5QBzI//sh34P9+BV6zkP1vx8TDqTejXFga8ADOXQ4nSnnUizxtxZIDzZ+Ch\nxgb/ySezoHRF83NHnjWcd8/n4KEX3ct9O8z4I33GAz3m6UOwfi48+7VnMqz5Y6DbMOt9O0/uMufA\nfQ2hgLG2Kp19D6PERULcGYhYA44411klAPXehNyVYPnj7p1hxUegwVhY2BKuugkHFG8H7dbA6Xmw\n923rjlWCQ2/AjX2e5TLlg4ofQc3FBvf3jvpwY7u1uQCCckPxd6FWuHFoGtYMTvSC+Awg3LIFGnzg\n+X6BwkcgqDJcGwBXmkD8WHBesmgvB2TqB1kWQfAuCOgMzmngKAqOnuD8GWTh4NcT/nPg/1BsXANN\nqkNiEqw6AD0f884+mBAPLavAiBdg6xroWR869IYJcyGbhVZul87B2Beg29Pw0Evu5ZZNh80LYcQc\nCHLDM5aSAp89CR2fhfzF3NsK2wnnj8EDD5lf5y2cO+TdgackQ+475s9T3EgvtIpqfoiD7/4KTq/l\nf39ZcZGud3w2G7SaDLHnYOsI9/YqPAwNx8PvreGKGyebpxo0mASRa2FDb0h240Tc7TyzVYItLeHY\nKHAmu18LQI7aUHcTFB8C+7rBwScgKdKzjisE5YCCL0HVcMhaH463gfAuEL/bui0zCCwIOV6FQoch\nxxhIPgjXKsCN7pC0xFw6YmrYckPg4xC8FIJPQEAbSJkEyRbuhD3hX+bA73qc22tMyldcvyYN6S/V\nKC4t/92a7g+fSxUzS+WCpXtzSlvSUdBx6ZzUubz0w2jPcge3SQ/ml056ifX/+oX0YqO/StjvxLdD\npB2LpI+6SQvHW19v9BVpQA6jtZwnbPtJmtjn9tcWjZQWvmN9TkeSNLKwFOWitN0snE7p0FxpQgFp\ndKA0CiMW7g5xkdKUUtLhmZ7tnlggzSwmXd7tXiY5QdrYT1pcx+AFvxOHPpL2DTPi2mnWcVra1Fxa\nf78UYzI+7bghHX1FWptPOvWZUaGYXqTES5GfS/uLSWHtpBg/UE94nfOGFD9RulZXulJMin1bSvax\nQtjp8E8MvKH54et8/hj/d3fgEiz8GRpVhdDMsPFPaN3RvL7DARPeM1ILHQ5IsEPu/NbWcPkCDGoG\nnfvD48Pcy105D293g2Hfee7Mc+kMzBgBL012HxZZ+i2M6glbF0BINmOnbAUnd0GpmkYRkye4i4Fb\nDaEABGWCii3h0ELrurdgs0HlnvDMaah7M0R1cJZ7+SwFoPNCWPcinPdQsFS6M9z/OSxrB5d3Ga85\nU27fbQeGQsPpULwrLK0PV/fcbqPMQIjaC+tbQMId+dlZSkCDlVC0D2y8H05+7T1WHJQDKnwCdTfC\nlWVwsBtcX+VZxx0CMkOB56HqccjZCU49BGcHQNz6tLJWYtge58wBmQdB7h2QczEoGq7XhaiWYJ8N\nSrRu0+YnZux/2Q78/6YDv3AOHu8Go9+B7+bBmC8hew5rNr78EKKuGp3As+UwnPgCCwdWVy7C4ObQ\n8TF4wkMOdlIiDOsKDw2Dhh7SFiWY8DR0exFKeDgXCAwCe4KR2/7FQJj5rvk1A4SbOMAE/+SBp0aV\nzvDnL+nTTY2gUGg+FrotgF3jPBf45LsH2kyF3R9B9Gn3cqW7QuPJsKw9XNgIK1rCqg63y9hscM+b\nUGccrG4DZ1KFhELyQeMlULAFrKoNl9beoRsAZYdAo01wZipsbQvxZ72/16yVoNYyKPwkhA2CQ90h\n8ZR3PVcICIH8T0HVMMjaAM4PgJNNIHaV8d1L2gunioPDj3nlYBT7ZJsAec9C5qfB8R3EFoPEIZBy\nFxpi/OfA7yKcTpg6Cbq1gMr3wNo/oH5D63a+Gw8TRkLx0vDaRzBpAfxxFV4fbU7/aqThvNv3hQFv\nupeTYPQgKFIaejzv2ebaWcYOvJeXgpWAmzvnkCxQtyP08jC/K5g5wAQPh5gWKzT3Gv0AACAASURB\nVElvoWJbiNgO8dfTp38nKnSGEs1gnYc7H4DS7aF4C1jUEewenH3JTtB4EqxoAZe3wOWtkOii2KRk\nD2ixFHa9DEcn/LVrtQVCleFQbxpsfxgOj0p78Jm9EjTeAnkawt6ucG6m912vzQb5OkPtg5D1XthT\nB06PhJR09qC0BUPuAVDuCOQeCBeeh5MN4GJ/SLkAFzqCHOmz7XHeUKNjT9aVkHUnkAviO0BsXbBP\nBKXze2UVGdcTM2Nwt2M4XmNSZnHsqNSuidSsvnTwgHm91EhOlsa+LdUtLP3qJTbqDlcjpe5VpIkj\nvcvOHCs9WlNKiPMsF3VZ6llQOrzdu81OQVJHmzRvdPoaEzxbRIr0EI9MipfO/CHNekma8bR0I9KI\nx6ekSHt/kT5pJJ37U4oyydyYGlM7S7unW9dzh4Tr0pfFpJNezi6cTmnNIGlhB/fsiCnJ0oo20vRM\n0lSk6aHS0UnubcZGSMtrSdsek5LvoFGNi5BWN5A2dpCS3JBQRe2SNlSR9vSQkm72tLw4R4ra6vm9\nJJyWDvaUtpWSLs/3vTmFM1m68rEUZpPCkMIySZFP+2bTytz2JQYf+I2cUvxjUrJ7dkT8EQOvZ374\nOp8/xr9/B+5wwKejoFUD6NgVVm6GKh4qCN0h6hr07wg7NsLivdDlYes2rl2GNx+D1g/BoOGeZbct\nh1mfwpgFEJrFs+zUEdDhKahUz7Nc7HVwCgZ9AT2GWe/xef08OJKMyk23654J79WCtV/BxinwciFY\nNR6eD4HJveDEFvioJswcaG1u8E82SmqE5oK2k2DrB5531zYbPPClsWvd4uYOJzkOEi4CNgjIBM5E\nOPSZe5tZi0HzDeCIhnUtITEVz0eWYtB0nbHj3tkTru9Mq5+zNjTYDZlLwqYacOYbOPQI/Nnbc8ZK\naAmoMhcqfAenhsOxRyHeh5xvWyAkbeSvmIEdor+B8938xwvjae7gdpDlZ8h2DAKqQcqz4KgEKR+D\n0pGF4w3/hVD+RuzZBU3rwqb1sH4XPPOC98M3Vzi0DzrVhXKV4ceVkN9dv1EPuHYZBrSAanVh4Fue\nZc8cg/cehQ/mQiEv/f92LINti6HXq97XsOQbaN4PHnzW/LpTI3wnlKnj2fHX6WmETlLskOKAkKzQ\n8AkoUdv4g5YTgkKg8WDr81d+EI6vBrufcnoByraD3KVgg5dQSmAwtJ0HJ3+Hg5PTXs+UAzr9Ad3C\noPbHkL0s3DgCf3qgMQjKCg1/hvyNYdV9cCOVIw0IhhpjofSzsL3D7YeXMQfBaTcORyuNhRoz4PgL\nIDs4rsB5F+u7E7mbQ+0/IFcjONwETr9skF2lB1laQY6nIOdzkHMIZG4F8cvhTAWImQmyeFCeHgQU\ngJBXIHgPBP0AOmI4ckdXcC723xoyyIHbbLY8Npttpc1mO2az2VbYbLZcbuTesNlsB2022wGbzfaT\nzWbz3Hn8bt8CeL2lcYXYWOnNoVLZgtLsH327TVwwS7qvmLTgp/TbuHZZ6lpdGv+m97XEREm9KkoL\nPNx+30J8jNS7pLRjuXfZxHipb0HptA+UAwvHSL+P9S730xDpyQBpUCZp6U0O87P7pedCpaeQXivk\nPs3RGyY2lw78kj5dd0i4Ln1bTDptIg302lFpSgEpYo132T8/lWZkkc6v8i57Ypr0a37p/NK012LC\npLU1pF19pGtbpGXBUviov66HvyOtySStxhhrs0oOC40s7JFS+ABpdyHp0vdGmzNf4XRKcculiEbS\nqXLSje8t9a/0C5w3pORJkr2+ZG/pnxBKbfPDynwYLdVeu/l4GC5aqgGlgBNAyM3nc4DHPNn99+3A\nV6+C+2obtLLbDkDvvtZDBWCEXt55Aca8Dd8ths6pCl7sdvMpU1FXDTbCxu1hyAee15KSAiMeh+a9\nobOJEMN3b0ONJlC3tXfZVT9AxfpQwgfKgYNroHB573JtXzM+n4BAaHGTEqDoPXBvN+Nxq1etV3/e\nQs2+ELYsfbruEJoLWk2E5QPA7qX8OncFaDMbdr4LUcc8y1Z9GVotgw0PwbkVnmVLPwoNf4EdTxgd\n61MjWzlovNU4QNz+gHFIeGJ0qoNIG2QuA4HZgEBwxsH2qkZ4xgyCC0CZKVBhIUR+CwcbQKyLsI0V\n2GyQpTUU3QD5J0PMj3C6AkR9a4SX/g7YckDgQAjeBkEmmEPNIONCKJ2AW6Ty04AuLmSiAQeQxWaz\nBQFZgHOe1/sP2Gl7/EW8hatXpYFPSOVKSEstEibdicgLUpfGUr/2RqFPaly9LHVrJC2Z791O1FWp\nR01p7Kvm7gImvCYNbua5a836X4zemAe3Sd0KSVFXvNtNdkhvtpQO+VCE4XRKA/NI1zw3jv0fXiwg\nfdn19teunTd24LHpJF6SjGKekXmsNRV2mOy1uPRxaaXJA7hDk6RZ5c31xYzcJM3OL0WY+F7GnJDW\nPyDtfeb2AhynU9rZVloaJC1FWpZJOvFZWn1HlHRpobSphLS5jHTDYncbZ4p06QdjNx4+QEryU4Nr\nSYrfLF16UjpfTIr5QnL6sW+nCeCPHXhN88PKfMD1VI9tqZ/fITcIiAEuATO82vXlDfs6gLbAESCM\nmx2b03ygTqc0b45UsrD00hApOp09EG9h5xapVlFp7Ii0t/knjkmNyxkt1byFAK5flXrWkj4eas55\nL/lR6lRaun7Zs1znwlLTTFKnAtKKGd7tStKamdLQxuZk3eFiuPRMEfPy3/SUdrhgQnwxhxR33be1\nfFlPCjPZsPjEamlaE3OyVkIpkrT5JWlhc3M/Jpe2SrMLSGdMVPvao6TNbaVNraSkm59V0mVpdQFp\nWYi0IttNJx4sJbhxsE6ndOEnaUN+6cRI69WYjigp4h3pQH7p0nj/hj+SdkiXO0nnCkvRn0opsf6z\n7QF+ceA13I+1ZdG7Bf8ad84HrAQOuBid7nTYwDUX85cFDgF5gSDgV6CvxzX78oZ9/LACgeMYcZ9g\n4A+gcpoPtOuDUo0q0lYfS3ydTmnq11K1/NIKF39k2zZItQpKM03Epm9cl7rXlb5+z5zzPrhTapFP\nCtvvfY1Ng6VGSA8ESr3LSifd0Jqm1nm6urTDx7uSLbOlsZ3Ny3/+oLTXRa/QN4pLV0/7tpa1o6QF\nz5iTTXFIX5aVTq0zJx++WJpUSkqKMWE7WVrSQVo/yNz/8+Ud0tJGUoQJiuEUh7RviLSikhEDv4XE\nSOnSMunYcMORL88mxYW7t5N4VtrbRtpRx+iTaRUJB6WwFtLhqlK0ibi/FSTtla70kM4VkG6MklJ8\n3Hx5gV8ceHXzw+IO/AhQ6ObjwsARFzK9gSmpnj8CfOXJ7t2MgdcDjks6JckBzAbSMtLUrgM79sJ9\n96d/poQEGDEUpn0NC7dAqztK6hf8BE91h3HT4WEvsenoKOjfGmo2gKfe9h5/v3IBXu0Kb02Ccvd4\nlo29g7j+0lmI8BKH3XUzXlynrWc5bzixC8qaKOC5BbuLhg6Q/nL61KjaFQ7+ahRmeUNAEDR8Cza+\nb852mfZQsTds9ZLmCTdj/D9B5BY4MMG7fL66UG887BgEEV7SIQOCoPoEowJzQyO4crN0PaQA5G8D\n5UdCixtQ6mXYdh9cckMzEFIUaiyFIgNgT2O4YJFyNrQKlF0Jhd6DM0/AqV5gP2Ne3xMy3Qt550H+\nNeDYDxfLQMwn4PwbGzRYRcbFwBcCj918/BiwwIXMEeA+m82W2Waz2YCWGDtyD+u9ezvwHsDkVM/7\nAV+k+UX0FWdOSc1qSS8OlOLuuJVzOqUJ70v3lZAOe9kdS1J0lNSzvvTec+Z2ZEmJ0hP3S5NMFPVI\n0tE9xu67abA0rJMUGeFd55UHjBCKr3ivibTPRLbLLYxuJB110VH+4/ul4z42OnA6pY/LSPMHSBOq\nSxE7Pcsn241mDmc2mbOfeF2aUkw6YzKUEn1Sml5IOr3YnPzVPdIvBaXTc83JR66QFheQTn3v+vq1\nLdLa4tKR11wTYt1CXJi0r5F0oJmUcMrc3KmREiedf1fan0e68J6UkmDdhifYj0rRr0qX8xoEVikm\nzncsAH/swKuZH1bmA/IAq4BjwAog183XiwCLU8m9BhzECL1MA4I92b2bO/CMT4VfuxJa14ee/eCz\niUavy1uw2+Hdl2HtUvh1K1TytjuOhifbQtXa8Pbn3nfeEowfZpBTDTDZbXzRFGPX98lSGP0bFPBA\nFwtwaAtcPgMPeGj8YAbOFEhKMHLAzSJbfgjOnPb1QpWsdaa/E6c2wZhiEB0Be6bClaMGV4gnBAZD\nwzfM78JDckHzibDqSe9ZKQDZS0Gr+bDpObhmosVZnprQdDnsHgKnZ3uXL9AKGq+HyIVw+FXSUKzm\nvh8a7IGYfbCzOSSed20nSzm4Zx3kagv76kDkD9YIqAKyQOERUGE3JPwBZ3tBzG/+I7EKrgDZPzZI\nrJyRBq1s7DDr/OAZiQzagUu6JqmlpAqSWktGnzhJ5yV1SCX3saSqku6R9JjkmbfATxRe6cI5oHiq\n58WBNAw+I0aM+N/jpk2b0rRpU++WJfj8Y5g4HibPhkZ36NyIggHdDYc+Y5l3bu/YGHiyHVSuCcO/\nNJe2OHMC7FwL0zabS6mLjIA1c2DqfihtMhVw3hjo8apBYOULzh+F6CuQzWRPT4BLYa5DKEmxvvGZ\n5CgKyQk3qw0FskG+Ct71qj8Gmz6Ac9uhaH3v8qXbQ1gT2DwMmn3lXb5QA6j/Eax6EB7cDpkLeJbP\nXQOarYR1rQ2HXKqvZ/nsleDeKbC7G+zuDvf+CEHZwOkwilQy5YPaSyD8Qzg0EEoNhTzN09qxBUKx\n1yB3Wzj2CFxbAGUnQSYLxWkhpaD0fIhdCZEvwPVvoOB4CPFTc5XAMpB9EmR5G+LHwLVKEPo4ZH4V\nAgubNrNu3TrWrVvnnzXdwj+kwtI0fLnl8PF2JQgIxzjEzIS7Q0yriI6WHusutawnnb0ZgkhJkTo8\nIK1ZIZ0+KTWqLL01xDvntSTFxkiPt5TeGeQ5M8Vul9YvNm7/t6yQmheSzp40t2anU3q1g/S9yVCL\nJJ06KD11j1HA4yvWTZXG97am80Y56aIL/uofn5Q2mjgI9oRLh6X3cklvIo3MaV5v51fSvK7e5W7h\nf6EUC4d3u96Wfm8gOW6GFxzeeGwOSr8WkcKnmrOfkiT90V/aUEOKDZe23yftbn+7zJUV0sZC0skP\nPBflpCTd7IdZULpiIi3WFZx26cpn0tF80sVXpOR09rj0hORzUsyL0uXcUvwIKeVMuszgjxBKZfPD\n1/n8Me5aCEVSMvAcsBwjUD9H0mGfjIYdhVb1IE9eWLQBit4MQaxbBbu3Q9/O0KYuPPYUfDDBe9l9\nXCw80R4q1IQR33jeSe9aD093gMHt4I2+MGY2FC1lbt2r58DFU9DPA+3snZgzBhr1ghAXYQyrsHqA\nCa7ZCCF9fTHvRP5KMGjjzdCJhS1Rjf5GH8uLJrvLhOSC5t/CKhMFPrdQayRkKQKbnoT978OcvODw\noJuzCjRfDed/hpPfe7cfkAmqT4HCfWFLNYjeC9fXQEKqg8W8raDuLri6FPZ3BIcLVsRbtkp+CJV+\nhZOvw+mXINniAaItGPK+BGUOQMoVOFEZbszwX1gFILAIZBsHeQ6DLQXiakDiIHCe9N8cZvEvYyO8\nq5WYkpZKqiipnKRRPhlb+Cu0bQIvvmHEu0NSUQhMGANJSUZzhng7dPTQCPgW4uOgfwcoXR6GjfYe\nBtmzyYhfb1kBBEHxcubWfeMqLJkKw6ZAsMnGypfOwPZF0Pk5c/LeEL7zn+XAAQpWgzajITibeZ3g\nUKj1LGz+wLxO6Q5Q9AHY+aE5eVsANJwEF5YYDjwg0KCW9YQclaDGp3DoXTgxybMsGCG64ECwOUFJ\nRhjlzLjbZUKKQs21kKUK7KwN0Ts8zH8/1NwLOOBgdbiRjuYPQYWgyA9QbD5c+xzOdYGkPd71rCCg\nIIS+B1mPga0AxNWBhMfB6SUTy5/IuCyUDMG/r5T+TqSkwMi34PUXYc5C6PPo7dfPnIItqbqLJCTA\n2y97tpkQDwM6QokyMMpD95vU2LziJpmTbvKBm0zrm/AyFK8IVe8zJw8w/zNo0x+yueTDMQ8Jku0Q\nccDowmMFnhx4ejnB70TDl42y8uunzOvUGAgXtkOkl2bBqfHAODj+E5xb511WTljV2ihnl8OI10eu\n9a6XvQI0WQuHP4Dwb7zLR3xlOPKAUCDFeJ4cd7tMQDCUHwvlPoN9HeHsl+53xoFZoeSXUGoKnHwC\nTj8PKekgDct8H5TaDjl7wsX2cHmwsTP3JwLyQcgHkC0cAspAfENIeBhSDvp3Hlf4z4H/jbh6Fbq3\nhx1bYf1OqHMH3WpiIrRtaDj5wkXgsUHw3Wz41MMfUEI8PPkgFCkBo6eYc95OJxzcZfzBhWSGbgPg\ni9+8621fAXvXw2CTuz+A6Kuwajp099Ac2QwunYJ+oTCkrOEIts6Fa55pF26DIyFtSzXw3w4cjN1t\npQfhkAWK2eDMUHcobLGwCw/NDU2+hjUmQymFWxnhicDMgBNOm+wklK0cNFkHR8fA8S88yzY8Dvf9\nARW/gLztjYPQzeWNH4w7UaAb1N5idK2P2eXZbs7WUG0/JF+HQzUhNh0d7m0BkL0fFDtiNGKIqAI3\nvvIfI+D/5skFIcMhazgEVIeEZuAYDM4//DtPavzLHPhdDcCbOlRwh727paqlpDdfkRwucmOjo42D\ny/L5pX173NtJjYR4qW8L6cV+5g44b2HkU1IVm/TpMCnKJA9IXIzUtZS0xQU7nSdMHyF99qQ1HVdI\ndkh9Q6VeGKNPoPTDEHO6Doc04l7XufB75kszB7ufM9FiWfXh36VJFmkCkmKN5saXLDb2WPmotP45\nc7KOeOnYFGluQWk60iUTzTZuIfaktLiUdNQF14k7JF2VttaUttWTEt00y3Ba+M5K0tV50p6CUsRb\nxoFnepG0XzrXVIqoLsWvS78db0iJkZI/lZIKS/ZOUsrt9QH44xCzrPnh63z+GHfdSXv9QF1h5jSp\nZD5pvgsuDkk6d1Z64F7phYFGdogZxMdLr/SXXnjYmvM+uFuqlVla6mYt7jD+JWlEP2s68bFSj/xS\nxNG019JDqTui6U0HbpOeLSUlmCgvlwy5p7K4vnZwmTShletrS4ZLiy12rbcnSF/XlaItki5tHS0t\n6GNNJ+Ga9ENR6exa8zpOp7S8mTQnn2S38OMUe0paUkY6Nt7aXMfflTaUlKL3mdfzBPsF6XgfKTF9\nmR//g9MpxcyVTpeQLvaR7D7a8zhXvJT8uZRUTLK3lVKMwjG/OPAy5sc/wYH/u0Iodju88Bz8tgCW\nroNuLgpY/twHbe6Hbn1g3EQIDvZuNzERnuwKSXYYO818U4grkTCkK4yaAW0tFNMc3AErfoIXxnmX\nTY11s6BmSyjmIi/6u9dg5bS0r3tCvZv0r5lC4a0VEGrywNCRCJncZL9kzgmJbmLg+crBlePW1hgc\nCnlKw9HfrenVfAZOr4WrR8zrhOaGpt8aoRRHnHd5MMJmrVZDkXaw5VHzZexZSxrhlItzIGyM+bnK\njoDyo2F3C7hs8TNxheBCUHYWhBT3Luttbdl6QrFDkKkKXKkHMR8Zh7D+hi0zBD4PwcchoAskPwzJ\nD3nXM4P/QigZtAM/d05q0kDq1kmKinL9y7xisREy+dVkCbMkJSRIfdtKT/d2HYpxh6QkqW9D6Yvh\n5nUkyZ4k9b1HWmax/N1hl/oUlw65uFW3J0m980vnwtJe84Tju4wd+KbZ1vSuRkhDi7q+dv6gNKKS\n62snt0pj61ibS5L2zZKmt/cudye2jZEWPWJdb+Wj0vrnrekkJ0rLGkl73rCmF39WWlVBOvqBNb2o\nbdL6ItKZL3zve5kRcIRLVzpLF8pK8SYYGn2B0y6l7PfPDryk+eHrfP4Y/44d+OZN0LAutGkH836F\nnDnTykz+BiZ/DTMWQBcTaYJgpBYO6m5UYn7+IwSZrGiU4MPnIG8BeOZd8+8DYMZYuKeR0TfTCtbM\nMnbelV30xdyxGIpXhiImUxdvITkJCpWHhr2t6bnLQAHPh5j5ysHlMOs5xBXaw+mN1g9H7x0MJ5fA\ndYu7/kbjIeYEnF9nXicwBJr8AqfmQPh083qZi0LDdXD2Rzg60rxezvpQdytc+x2ODTRasP2TEFQG\n8i6AXF9C9FC40gEcGZQOaAuGAC9UGGbxL9uB//Md+NdfQp/u8M0UeOPttFkhTie8+Qp8PQFGT4D6\nDczZveW8M2eBL2aad94Av/wA+7bCR9OtdZ45dQRmfgaPvW6ti5DTCbPHQB83hT4rvofW/c3bu4Xw\nnVDNRTm2NzgSXWeggGcHnjWv8W+cm8ITdwjNASUawbEl1vRCckLN52DbRxbnyw1VB8N6C6EUgND8\n0Ox32P0KXNpsQa8wNFgH5+fCkeHmf+Ayl4Bq88FxGfa3cV/QczcR2hYKHICQpnClAdx4HZweGkzf\nbfznwP2M7yfDui3Qtl3aa/Hx0LeH0dx49RYoU9acTbsdnuoJmULgy5/MxclvYesa+Owt+GIhZLVQ\nZOJ0wgcDYdAI742M78S2RUaculaLtNeuXYBDm6BxD2s2IX0VmADJHmLgIdmMpsSuOpbbbJC/vPU4\nOECVrv+vvfMOj6rM/vjnnRQSEkIavQVpERYQBKQLKAqsCrgW2EV0YUXBgqLIj6KwNmyAuCLWRUHs\noKCogHRW6R0S6SWEgJQE0jOT8/vjTtaQzEzm3gmZxH0/zzMPYe69555Mku+8c95TIMHCxPprR8PB\nRZBqsqov7lao0QU2jTd3XWRz6DYfNt4L6SbuGVIDOq+CU99A4kTvRTwgHFoshCrtYXtHyPzVnL9l\ngQqGKmOh+i5wJMPFv0H2/NKt5iwttICXMmt/gUYuhPn0aejXE8LDYdFSiPayEVNuLkwcbVRqvvWZ\nOfE+fhie+Cu8Nh/qNfT+OoCF7xiidsdIc9eJwCdTYbCbVfuKedD5dggJK36sJKxUYIL7XuBgfCKp\nFA7ZblZZBWEUs8T3h4NLjdW/GUKi4JqRsHEqXNgP297w/touM+HwAkheU/K5hanVG5qNhnW3ej+3\nEoxe4J1Xwunv4dDL3gucCoBGr0C98bCjO1ywUGlZFgTUhui5UHkcZE2DtO5gv4I53VbQAl7KVK5c\n/LmEfdCrI9zUD9796PKyeU/k5cH9d8PpZHhjvjnxTr8Eo/rDyEnQyWTY4XQSvP0MTHzP+wyXAnav\nMzoFdr29+DERWD7HWvgkIw2i6kBdC0OQ7bkQe5X743HXua/GrN8O0i20Dw2vDtVbwpGV5q+9qh/s\n+xDmtoLVJgqgKkVBt7dhzTBzoRSAJg9Dtevh50HOzore3jMWOq2A019C4pPmVqm1hkHzLyBhCCS/\nbc5fMzh+g0s+9EMJ7gKRmyHkHki7GdJHQX45Cf9cIQFXSt2plNqrlHIopdq6OaeeUmqV87w9SqlH\nS7Jb/gW8KKtWwh23wKRnYcJk72PJeXkwYpCxCn7/Swj2su8IGOGPp4ZC644w5CFz/orASyPhroeh\nUQtz1wIsmwd3jXUt/AkboE48NPcy7l+Yw1shN9taK9rcTMg87/542knIcbMCD68GSV42mypKq7sg\nYYG5a3a9C190M6oEHTnm9h7AeihFKWg70xDvHU+au7ZSDHT4CS6shYTHzAll5PXQZj1c+BGOjPZc\nHZnvoqrTGxypkDoNUvqDPcWaDRUAISMgKgGwwYXmkPU2xXqhlzVXbgW+GxgIrPVwTh7wuIi0ADoC\nDymlrvZktGIJ+Edz4J7BMHsODL7H++vy8uDBv0JujnnxBvjXP+H8bzB5lnkBWL0Ikg7DfSY6DRZw\ncCf8vARudPO9LpsD8deZ9wmsh0/A8yYmeB6rZjUGDtD0Vvh1MThMrGgb/hliWnr2tyQ6v+4Mpawz\nd50tELp8ASlL4aDJFXFQFLRfDqkbYN8j5kQ8tDE0+xCyEiDxNrC7+FlIHiS2hXMfuLdjPws5LjJH\ngptA3U0Q3AqSWkP6F977VhRbNIS/CVWXQc6ncLEn2Ndbt+crV6gboYgkiojHNBwRSRGRHc6v04EE\njIk9bqkYAi4Cz0yCqc/DT2ug+/XeX2u3w6ghRnfBfy/wPtxSwNKF8PWH8OYC88Kfeg5eGAlPf2Bs\nmJrl01fgjscgxMWGYXYmrPsKbhxa/Jg3HNoCjX0QcHebmOAs5nGXStjEWiohQFQcRNSFEyYyPKrU\ngb9thhbDjFWfmXmRBYREQ4/34T8ms1IAgiOh27ewZwqkmIxNB0VC+2VwcRvsHeXe90vbiq9cAyMh\nfokxnGFPZ8gusqGqguCqr+HMNDg+AvJd7C1kb4JjXYz2sUVRwRDzPNRcDOefgdODwOFDGCSwNVRd\nDaGPQ/ZgyBoC+W4mD11JykkMXCkVB7QBPDarKf8Cnp0NQ/8Gq1bAug0Qb2IqiN0OD90DF9NgzkLz\n4r1vJ0x9CmZ9DbEmJpoUMP1J6H0ntDLRabCA5MOweSn0f9D18fULoHkniPH4Bu0en1bgHjYxwXNH\nwrAYQ7w9hWA8EW8hGyUgCG54E7q9Yvw/w8LH/np9odp1sGWC+WurNIZOn0PCZLhkMkskqCq0Xwrp\ne2DPA8VFXASOPQ0JgyC/SNWjLQgazoIaDxgifrHIG19IPDTdaIREDnSD3GOXHw/vB/VXwNkXIXko\nOFyExUKug7rbjQ3KEy0hw4fqUKUgeCCEJYCtPmS2gpyXr0w1pzs8CPbqHJiS/vujuPtquVJqt4vH\nrWZcUEqFA18Bo50rcQ/+loOKS4+VUT26igy60+hVYga7XWTkvSIP32dUW5rl7BmRLg1EvjVZpVjA\nz8tE+tQXSb9o7frpo0Te8VDVN7anyNovrdlOPSMytKrnCUOeWD5TZL6HSsV5wz1P5ZnWTiRxuUjS\ndpG8bHP3TtklMr2+9erDlY+KrH7C2rXZ50Q+qS2S7GKYszcc+UDkh8YiPm+yHAAAFFpJREFU2RaG\n+eZdEtl8i0jiY8WbVjmyRfbeIbKzl0hemogjVyTlvcun9Zz/QWRTNZEzc4vbzs8XSXlNZFcNkbRl\nxY870kVODhM52EQkc6t7HzNXiyT3FDk3TMThplraDI4DIhm3iFxqIpL3fYmnUxqVmLHeP6zcD1gF\ntPVwPAhjyM1jXtnz5Ru+0g9AZPw480Jjt4uMGCIy4Ebzwi9ilMnf1V3kFZNl0QVkpov0ayiyruRf\nOpecSxH5c5Txb2GOJYj8raHIzFEit0cZU++tsHWJyJRe1q4VEfn+ZZEvxro//uXjIstfK/78ts9F\nXmou8kSgyJgAkceVyIHV5u6dny/yeiORkx6ExBMXk0TejBLJOG3t+qOLRD5vZK5xVWF2jRVZ08Na\n9z97usjWniJ7hhYX8Xy7yP4HRLa0EUm4TeQXRFKXX35Oxh6RLQ1Fkl9yPYrt4kqRXTVFTr3o+m8u\n9RNjtNq5192/gTouipx/QCS5vkjWT07fHCKZH5nvllhA3hKRS40NMbcfdHtaqQh4jPcPHwT8WjfH\nFDAXmOGtvfIfQnnRi2k4hXE44KG/Q0oyzF8EoRZGjj07GqpUhSdM9JQuzFvPQKtO0NVF8ZE3LHgD\neg2C6CJhGxE4lwzfvQOXLsJjXeHwLvP2j2y3Hj4Box90ZQ9591VquC7kCY+F3/YbmRniMHp3x3Uy\neW8FVw+ERAtFPWDExOMHw9bp1q5vcBtU72QtlALwp6kQGAHbR5nfBwgIg9bfQW4y7B16eXqiCoDG\nsyEoEFKdYYxTRXLeK7eAVhsh7Vs4fBc4isTzq/SEZpshdx8k3Q6OImGwqoMhbgOkfQwpI1wPcrBV\ngai3IepduHAfXHgYMqdB+r2Q7cVIOVcE9oOwPRDYFRw3gn0iiMm9CG+5cmmEA5VSJzCyS5YopX5w\nPl9bKbXEeVoXYAjQUym13fnwOBmm/Au4GRwOeGQ4JCfBp9+6ziEviflvw6a1MONjc28cBezZDN/P\nh7Gvm78WIOMibF4Gg1yknsXUNv7o8x3G49hea5uB+zf4JuAZ5/C4DR8YBBdPFX++SS/oMMyISQO0\nuAUCTW4MA1x9ByR7GCFWEu3Hwf6vIMviJJlOM+HoV3DKU0aYG1QAdJgPF7bAAQtvIgGVodViyDsL\ne4dcLuKnZ0PmVv6rLmlLwV5kryGoGjRdAbYw2N8dcosM8QiuC3Xfh8A6cLg9ZO8xns+/BDnbIbgR\nxP0HKtWEpDaQ5abIKeRmqLEL8pMgY5zxXMZTUEJI1y2qEgSPg6D1wFHIuxocn5d+NeeVy0L5WkTq\niUioiNQUkb7O55NF5M/Or9eLiE1ErhGRNs7Hj57s/nEEPD8fRt9vjFCzKt4b1sCMyfDuIqgSYf76\nvDz4cBo8MR2iq5m/HmDRu1CrMdR2USgTFvH7yrZKFPxrIzRqbc6+iLGBaTUDBbxLI3SXhTLgdQhx\njoJrd6+1+9dtD2d2wTkLFZ0AEfWhYW/YYfFNtlI0dHoLEl43n5UCEBgOnRcbAp5sYdMvIBRaLQLH\nRdg72JiZCRDWFqL6G6tgFQKSa+SCF8VWCeI+hMg7ILEjZGwtfrz2LKg2CY72hNRP4VR/SOoO+elG\nBkr0c1DtXTgzCM5PMT5RpU2C88N/t6MiQB01AgNgiHf6FPPfb2FUHQicbzzyp4K9F+Tv9s1mYcpJ\nFoq3/DEEPD8fxoyEI4fg8yUQZqGs/MRReO0ZmDEP4kx29StgzqvGCrqvxd7EuTnwxQwYMs71caUA\nMVL4Zm2Bqyx0YDuXZLxesT70f/bUjRCMNEJ3WSjBoXCnMye66Y3W7q9s0GyA9TAKQLtxsHs2ZF+w\ndn1cfwiqDDsmWru+cn3otBCOvQ1pFsJgASHQ6msj/W/P3UaRUpWO0GwhtE+FFusg8hY493HxUAoY\nv0u1xkO9mXCwD1xwMRYucig0WA5nRkHWOsABaYXGEVbuC3W2QfY6SG4Dl6ZB5ieQ58y0kbPOFXcg\n4Px9yZ4GmaVQJWrrBoFbwXYn2G8A+xO+2wQt4GVOfj48+iBkZFkX74x0GNYf+gyEbjdZ8+PIrzB3\nOjw921phDcCyj6FRK2hyjevj6alGccj0Na5X6N5w0Ln6tuojlJwHXtJczJYDIaSq+2pNb4gfCIle\nzqJ0RUQcXDUAdprojVKUDm/A0S/htMkCnwKir4P698Cm2yDbQmqjrRK0XAAhtSHx7t/TCJUNwttB\n/LfQdCGcfB7OfOjaRtTt0GQpnBgNp6cVD0nkp0BANmAHyYILL1ye1hdYC6rPAzkAZAO5kPaU078a\nEHMQYrMh+hBUXQlB/SDjUcj4p1FM5AsqAAJGQVAC2Lr6ZqsALeBlSH4+PDYKEvfB9FlGYysrNh6/\nD1q2heEuPm56a2PK/fDgM1C7gTUbDgfMfwWGeKjYXPUZdO4P8T6EPw5Z7EBYmJJW4CUJuFLWm1oV\nENcDzu2HiyYGMRel3QTY+SbkuPm0UBKVouG6t+Dnv4PdwoR3gDqDoN59sHkAOCyUttuCofEMUIGw\n7y/FC3KiB0KLtZA0GZJfdW2jcluI32jEs5PuvTyfPGcTEACqMhAM+Wlwukg7ibQxQEEsPh+yv4Pc\nQmEZZTPyxIO7QeQSiD4K9o2Q2hHspTBpXsWAbaDvdkALeJkhAmMehj27YOH3UKWKNTszn4eUkzD1\nbeur0q/eA3seDDbZJ6Uw676BiGi4prv7c378N/Sx0LiqML7Gv8F3AQffSuoBAoKhST/4dZF1G5GN\nIK4v7HrTuo36/SG2I2y3mJUC0GwyhMbBjuHWNuVsQRD/Kdgqw96BxUU8NB5a/Ad++xCOjXVd0Rlc\nG+p/BvmZcKQX2J0Nx6KfgasuQf29UPNjCL0B0j+A3wo12op4DiJnQdgIo6ISBWc6QrabitmA2hCx\nBEJGQmoPyHy1eCWpv6hgAu73XO8S8zJdkZ8vMuZhkR4dRdLSXJ/jDd8vFGlXVyQl2bqNlCSRrrEi\nB/ZYt5GfLzK8nciar92fc3i3yN11zA1cdnWfoZEiF0wOCC7K9D4iuzzkuJ8/ITK+tmcb308S+cHk\nOLqi7FsgMvdG32ycTxR5t5pIjsWCKxGRrLMiX9QSSVlr3YY9U2RNB5HEf1q3kZ8nsm+QyM7ehr2i\n5J0T2d1J5PDDxhgylzYcIqcmiiQ0FMna7fqcrI0iR1uKpAwRcWQUP+5wiJy9TyQpSiT9I88+24+I\nXOghcuF6Eft+z+eWAKWRB17Z+4ev9yuNR8VbgYvA2Mdgyyb45keIsJAtApCwG8aNgPe/hhq1rPvy\n4iMw6CFobKHTYAHb14ItALre5v6cnxfDnx803462MKcOQnx3iLTQFqAw4bEQ7CHLJyQCYkrol17r\nT5CV6psfjW4Gm4JMH3pwRDWDer0hweRA6MKExDhDKRbazhYQEAodFsHxD+CkxeZQKhDi50FwDdh7\nCziKhHUCo+Hq5cAFOHS7sdouZsMGNZ+HGs/C4V5w6Yfi54R0gHobAAVJnSC3yCcpmw1i5kC11XDp\nJTg/1P0UnoA4qLrCaC2b0RlyZrn+hFBWXKE0witFxRJwEXhuMmz82Rji4Go2pjecPwevTobJM6B1\nO+v+LF0AWdlwv8lWo0X56AW4dYT7vHN7HiycCT1Nzq4sysHN1trHFuXMASOE4Y5K4XDkF9fFPAVU\nrQfHfvHNj+AwIxPk4JKSz/VE+wmw9Tnr4gtQf4ARTtk1ybqNkJrQYTEcewtSLea5q0CjE2GlerBv\nIDiK5F0HhEHcHKPZ1YGbwO4mCydqCDT4BpKGw9mZxUM7tspQ/SOIGAEnO0PGd8VtBLeC6puBYDhz\nLeRuc+OzDUKGQ9h6yJsHmTdD/nGz33npUMFCKBVHwEVg3JOwZi0sXgaRkdbs5OXBP+6Ehk3gL0Os\n+5N6Hl54FEY+ba3TYAGJW+FoAvTx4MuGJcZA47pNrN8HfOtAWJiSYuA2G1QKgxwPRRu+xsALaDYQ\nfvUhnRAgpgXUvh72+Jje9qfxcPxzOGMxKwWgamtoNAa23Q5ZJ6zZUAHQ9N9QpTUk9ivehEoFQYOP\nIKyDs5jHTde/sM7Q6GfIXAWnHy6eNaIURD4ENb+BcxMh9dnisWxbGES/DxHPwtk+kPWO+zh/QDND\nxAN6Qfq1kPth6RfqlIQW8JLxZjrFZYjA+KdgzWr46muIirJ+82fGGOX1E0wOui3Kq2Phpr9AG5Ol\n4EWZ9zIMGgNBHla0P5TC5iX8nkLoKyUJOBhpgp42MsNijT92swOOi9L0Vji6EvIsZoEU0G4S7HjN\nNzuVYqDdW7BhmPWsFIAat0HcY7D1NrBbrVy0QYOXIPRqSOxbvCe4skGdaRA9BPZ3gWw3raqD46DO\nXLAfhaS+4HCxYg/tDLWXQs5K+O0WcLjoNFl5EFTfANkfwMX+kO+mClYFQsh4CFsBOa9DZn8jlbGs\n0ALuFd5MpzAQgQn/Byt+gh+W+ybeH78Pa5fD7E98iyX/sgJ++QkeL/4msHr1au/tnDgA21ZB//vd\nn3M+xRir1uNO834WxmF39kC59rKnTflbQEl54OB5qAM4UwmtrcIv8zk0Gmq1h0NLTdu5jNhWUKMj\n7HvPNzv1BkBMB9j5e4GPpde44RNQtS3sHGI9Jqxs0HA2VG4FiTeDvUi6pFJQcxzUnAQHejjL8F34\nHBABdRZDpZZwvBPkukj/DKwJ1ZdDUHNIaQe5212ccxVEroeAeLjQBnI9zBoNaAXhm4x/M/qW3Upc\nC3jJiBfTKf7LpAmwfCn8+JP3g4tdsXE9vDgB5i6GCIuxc4CsTJj8AEyeDeHFUxdN/bHOfw1uHwWV\nPeSvL5sHXQdCqIUc98IkJUBUbQi7PPRkWcBLWoGHepFKGNvYdwEHo6jH1zAKQPunYfsrYDc5OLko\n7d64LJRi6TVWClrMBnsq/OrDHouyQdwsCG8PCb0Ne0WJHQ71ZsOpSZC+wrXPKgCqz4Cox+F4N8hc\nXcwMKgiipkHkS3DmJkh3sTGsgiH8FajyHlwaBBlT3KcQqmAIeR7C1/tWeGYGLeClzA9LDPGOibFu\nI+k43H8XvDkXGjX1zZ83p0Cr6+D6fr7ZOXsKVn4Jdz7i/hwRWDoH+vzdt3tB6YVPwMsQioehDgXE\nNoGzPhTzFNB0ABz4Dhw+VvZVa2s8EjyMGfOG0gql2IKhzQI4vQCS5li3oxQ0mAlVukDCjcUbXAFE\n9oea4+H4YMjx8DOJfABqzYfkuyHVzesUdhfUWAMXp8L5kbgcyBDcByK3Qd56SOsFjiQP/luorraK\nFnCD0ppOwdIVEBvrmzNvvQYPjoFeHjszlkxGOqxfChMsNkEqzI51cMswiPTwvZ1NhqrVoGUplAln\np8OfevpuB6B285IFvHar37sOuqNOGyN90lci6kD97nDhkO+22j0NJ5b7bqfeAKPA55THZnIlExwD\n134Hh18Fuw9ZMkpBg+kQ0RNOTHZ9Tlh3aLITKpWwWR52A9RfC+dfhiw32TJBzaHmJnCchrQprs8J\nqAVVlxpintbPv+mDBVSwNEIlZb3LW/jmSq0CnhARl/lFSqly8j6n0WgqAiJiOdZiRW98uV9pUApJ\nwT7j9gXw94uj0Wj+d6iIeuOvNEKX0yk0Go1G4z1+DaFoNBqNxjrlPgtFKfWcUmqnUmqHUmqFUsqH\nSQRXHqXUq0qpBKfPC5VSPuQslg2mC6v8hFKqj1IqUSl1QCnlZupF+UEp9W+l1GmlVCmOjLmyKKXq\nKaVWOX8f9iilHvW3T55QSoUopTY69WGfUmqqv30qS8r9ClwpVUVELjm/fgRoLSL/8LNbblFK9QZW\niEi+UuolABHx0OTb/yil4jH21d/Bw6ayP1FKBQC/AjcCJ4HNwGARSfCrYx5QSnUD0oG5ImJhfFLZ\no5SqCdQUkR1KqXBgKzCgnL/OlUUkUykVCKwHnhSR9f72qywo9yvwAvF2Eg5YnERbNojIcpH/5kNt\nBOr60x9vMFVY5T86AAdF5KiI5AGfAf397JNHRGQdYHFmm38QkRQR2eH8Oh1IAGr71yvPiEhBsn0w\nEAC4SHT/Y1LuBRxAKfWCUuo4cC/wkr/9McEw4Ht/O/EHoQ5QuLtTkvM5zRVCKRUHtMFYiJRblFI2\npdQO4DSwSkT2+dunsqI8pBGilFoO1HRxaIKIfCsiE4GJSqn/A2YApVCaaJ2S/HWeMxHIFZFPytQ5\nN3jjczmnfMf6/mA4wydfAaOdK/Fyi/MT7zXO/aalSqkeIrLaz26VCeVCwEWkt5enfkI5WNGW5K9S\n6j6gH3BDmTjkBSZe4/LKSaDwBnY9jFW4ppRRSgUBC4CPReQbf/vjLSKSppRaArQDVvvZnTKh3IdQ\nlFKF63r7Ay7anJUflFJ9gLFAfxHxsSuSXyivxQxbgCZKqTilVDBwN7DYzz794VBKKeADYJ+IlELP\niCuLUipWKRXp/DoU6E0514jSpCJkoXwFNAMcwCFgpIic8a9X7lFKHcDYTCnYSPlFREb50aUSUUoN\nBN4AYoE0YLuI9PWvV8VRSvUFXsfYqPpARMp1yphS6lPgeiAGOAM8IyI+dKW68iilumK0ed7F72Gr\n8SLiY1OXK4NSqiXwEcZi1AbME5FX/etV2VHuBVyj0Wg0rin3IRSNRqPRuEYLuEaj0VRQtIBrNBpN\nBUULuEaj0VRQtIBrNBpNBUULuEaj0VRQtIBrNBpNBUULuEaj0VRQtIBrKgRKqfbOIRmVlFJhzmED\nzf3tl0bjT3QlpqbCoJR6DggBQoETIvKyn13SaPyKFnBNhcHZJW8LkAV0Ev3Lq/kfR4dQNBWJWCAM\nYzJTqJ990Wj8jl6BayoMSqnFGD3hrwJqicgjfnZJo/Er5WKgg0ZTEkqpoUCOiHymlLIBP/8vTV7R\naFyhV+AajUZTQdExcI1Go6mgaAHXaDSaCooWcI1Go6mgaAHXaDSaCooWcI1Go6mgaAHXaDSaCooW\ncI1Go6mgaAHXaDSaCsr/Ays+98FUSMgnAAAAAElFTkSuQmCC\n", - "text": [ - "<matplotlib.figure.Figure at 0x10bc1c050>" - ] - }, - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The acceleration at x=2 and y=3 are a_x= 1.68 m/s^2 and a_y= 0.72 m/s^2\n" - ] - } - ], - "prompt_number": 6 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter05.ipynb b/Fluid_Mechanics-Fundamentals_&_Applications/Chapter05.ipynb deleted file mode 100755 index e6b94086..00000000 --- a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter05.ipynb +++ /dev/null @@ -1,626 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:8bd11344481cd08353414df9b95ff36a77bcdb1a4b70dab675e71546fa1a4453" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 05:Mass, Bernoulli and Energy Equations" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 5.5-1, Page No:190" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Vairable Decleration\n", - "V=10#Volume of the bucket in Gal\n", - "r_in=1 #Radius of the hose in cm\n", - "r_e=0.4 #Radius of the hose at the nozzle exit in cm\n", - "t=50 #Time taken to fill the bucket in s\n", - "C_gl=3.7854 #Conversion factor gal to Lit\n", - "rho=1 #Denisty of water in kg/Lit\n", - "C_v=10**-3 #Conersion factor in m^3/lit\n", - "\n", - "#Calculations\n", - "\n", - "#Part (a)\n", - "V_dot=(V*C_gl)/t #Volume flow rate in Lit/s\n", - "m_dot=rho*V_dot #Mass flow rate in kg/s\n", - "\n", - "#Part(b)\n", - "A_e=pi*r_e**2*10**-4 #Cross-Sectional Area of the nozzle at exit in m^2\n", - "V_e=(V_dot*C_v)/A_e #Average Velocity of water at nozzle exit in m/s\n", - "\n", - "#Result\n", - "print \"The Volume Flow rate is\",round(V_dot,3),\"L/s and the mass flow rate is\",round(m_dot,3),\"kg/s\"\n", - "print \"The area of cross section at nozzle exit is\",round(A_e,5),\"m^2\"\n", - "print \"The Average Velocity of water is\",round(V_e,1),\"m/s\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Volume Flow rate is 0.757 L/s and the mass flow rate is 0.757 kg/s\n", - "The area of cross section at nozzle exit is 5e-05 m^2\n", - "The Average Velocity of water is 15.1 m/s\n" - ] - } - ], - "prompt_number": 24 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 5.5-2, Page No:191" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "h_o=1.2 #Original Height in m\n", - "h_2=0.6 #Water level drop in m\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "D_tank=0.9 #Diameter of the tank in m\n", - "D_jet=0.013 #Diameter at the jet in m\n", - "\n", - "#Calculations\n", - "#After carrying out the theroetical calculations and integration we arrive to obtain\n", - "t_min=((h_o**0.5-h_2**0.5)/((g/2)**0.5))*((D_tank/D_jet)**2) #Time required to reach a level 0.6m in s\n", - "t=t_min/60 #Converting time from sec to min\n", - "\n", - "#Result\n", - "print \"The time it takes to half empty the tank is\",round(t,1),\"min\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The time it takes to half empty the tank is 11.6 min\n" - ] - } - ], - "prompt_number": 34 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 5.5-3, Page No:195" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "##Note:The symbols in the textbook are cumbersome to code hence a different one has been used in this coding\n", - "\n", - "#Variable Decleration\n", - "h=50 #Elevation difference in m\n", - "m_dot=5000 #Mass flow rate at which the water is to be supplied in kg/s\n", - "W_dot_out=1862 #Electric Power generated in kWh\n", - "n_generator=0.95 #Efficiency of the generator in fraction\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "C=10**-3 #Conversion factor in kJ/kg/m^2/s^2\n", - "\n", - "#Calculations\n", - "\n", - "#Part(a)\n", - "\n", - "#Calling e_mech_in-e_mech_out as del_e for convienence \n", - "del_e=g*h*C #Change in water's mechanical energy per unit mass in kJ/kg\n", - "delta_E_fluid=m_dot*del_e # Change in energy of the fluid in kW\n", - "\n", - "n_overall=W_dot_out/delta_E_fluid #Overall Efficiency in fraction\n", - "\n", - "#Part(b)\n", - "n_turbine_gen=n_overall/n_generator #Mechanical efficiency os the turbine in fraction\n", - "\n", - "#Part(c)\n", - "W_dot_shaft_out=n_turbine_gen*delta_E_fluid #Shaft power output in kW\n", - "\n", - "#Result\n", - "print \"The overall efficiency is\",round(n_overall,2)\n", - "print \"The mechanical efficiency of the turbine is\",round(n_turbine_gen,1)\n", - "print \"The shaft power output is\",round(W_dot_shaft_out,1),\"kW\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The overall efficiency is 0.76\n", - "The mechanical efficiency of the turbine is 0.8\n", - "The shaft power output is 1960.0 kW\n" - ] - } - ], - "prompt_number": 36 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 5.5-5, Page No:205" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "P1=400 #Pressure at upstream of the jet in kPa\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "rho=1000 #Density of water in kg/m^3\n", - "C1=1000 #Conversion factor in N/m^2.kPa\n", - "C2=1 #Conversion factor in kg.m/s^2.N\n", - "\n", - "#Calculations\n", - "#Applying the Bernoulli Equation\n", - "z2=(P1*C1*C2)/(rho*g) #maximun height the water jet reaches in m\n", - "\n", - "#Result\n", - "print \"The water jet rises up to\",round(z2,1),\"m\"\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The water jet rises up to 40.8 m\n" - ] - } - ], - "prompt_number": 39 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 5.5-6, Page No:206" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "h=5 #Height at which the water tank is filled in m\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "\n", - "#Calculations\n", - "z1=h #Decleration in terms of datum in m\n", - "#Applying the Bernoulli Equation\n", - "V2=(2*g*z1)**0.5 #Maximum velocity that the water jet can attain in m/s\n", - "\n", - "#Result\n", - "print \"The maximum velocity that the water jet can attain is\",round(V2,1),\"m/s\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The maximum velocity that the water jet can attain is 9.9 m/s\n" - ] - } - ], - "prompt_number": 40 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 5.5-7, Page No:207" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "P_atm=101.3 #Atmospheric pressure in kPa\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "rho=750 #Denisty of gasoline in kg/m^3\n", - "z1=0.75 #Location of point 2 w.r.t point 1\n", - "D=5*10**-3 #Diameter of the siphon pipe in m\n", - "V=4 #Volume of gasoline to be siphoned in Lit\n", - "z3=2.75 #Height of point 3 w.r.t to point 2 in m\n", - "C1=1 #conversion factor in N.s^2/kg.m\n", - "C2=10**-3 #Conversion factor in kPa.m^2/N\n", - "#Calculations\n", - "\n", - "#Part (a)\n", - "#Applying the Bernoulli Equation\n", - "V2=(2*g*z1)**0.5 #Velocity in m/s\n", - "A=(pi*D**2)/4 #Cross-Sectional Area in m^2\n", - "V_dot=V2*A*1000#Volume flow rate in L/s\n", - "delta_t=V/V_dot #Time required to siphon gasoline in s\n", - "\n", - "#Part(b)\n", - "#Applying Bernoulli Equations\n", - "P3=P_atm-(rho*g*z3*C1*C2) #Pressure at point 3 in kPa\n", - "\n", - "#result\n", - "print \"The time requires to siphon 4L gasoline is\",round(delta_t,1),\"s\"\n", - "print \"The pressure at point 3 is\",round(P3,1),\"kPa\"\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The time requires to siphon 4L gasoline is 53.1 s\n", - "The pressure at point 3 is 81.1 kPa\n" - ] - } - ], - "prompt_number": 45 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 5.5-8, Page No:208" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Declerations\n", - "g=9.81 #Acceleration due to Gravity in m/s^2\n", - "h3=0.12 #Difference in level in m\n", - "\n", - "#Calculations\n", - "#Applying Bernoulli Equations\n", - "V1=(2*g*h3)**0.5 #Velocity of Fluid in m/s\n", - "\n", - "#Result\n", - "print \"The velocity of fkuid is\",round(V1,2),\"m/s\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The velocity of fkuid is 1.53 m/s\n" - ] - } - ], - "prompt_number": 46 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 5.5-9, Page No:209" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "rho_hg=13600 #density of mercury in kg/m^3\n", - "rho_sw=1025 #density of sea-water in kg/m^3\n", - "rho_atm_air=1.2 #Density of air in kg/m^3\n", - "P_atm_air=762 #Atmospheric pressure 320km away from the eye in mm oh Hg\n", - "P_air=560 #Atmospheric pressure at the eye of the strom in mm og Hg\n", - "C=10**-3 #Conversion factor in m/mm\n", - "V_A=250 #Hurricane Wind Velocity in km/hr\n", - "C_k=1/3.6 #Conversion Factor from km/hr to m/s \n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "\n", - "#Calculations\n", - "\n", - "#part(a)\n", - "h3=(rho_hg*(P_atm_air-P_air)*C)/rho_sw #Pressure difference in m\n", - "\n", - "#Part(b)\n", - "#Applying Bernoulli Equations\n", - "h_air=(V_A**2*C_k**2)/(2*g) #Height of air column in m\n", - "rho_air=(P_air*rho_atm_air)/P_atm_air #Density of Air in the hurricane in kg/m^3\n", - "h_dynamic=(rho_air*h_air)/rho_sw #Sea-Water column equivalent to air-column in m\n", - "h2=h3+h_dynamic #Total storm surge at point 2 in m\n", - "\n", - "#Result\n", - "print \"The pressure difference between point's 1 and 3 in terms of sea-water column is\",round(h3,2),\"m\"\n", - "print \"The total Storm Surge at point2 is\",round(h2,2),\"m\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The pressure difference between point's 1 and 3 in terms of sea-water column is 2.68 m\n", - "The total Storm Surge at point2 is 2.89 m\n" - ] - } - ], - "prompt_number": 61 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 5.5-12, Page No:221" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V_dot=50 #Volumetric Flow rate in L/s\n", - "rho=1 #Density of water \n", - "n_motor=0.9 #efficiency of the electric motor in fraction\n", - "W_dot_electric=15 #Power of the electric motor in kW\n", - "P2=300 #Absolute pressure at the outlet in kPa\n", - "P1=100 #Absolute pressure at the inlet in kPa\n", - "c=4.18 #Specific heat of water in kJ/kg C\n", - "#Calculations\n", - "\n", - "#Part(a)\n", - "m_dot=rho*V_dot #Mass flow rate in kg/s\n", - "W_dot_pump=n_motor*W_dot_electric #Mechanical shaft power delivered in kW\n", - "delta_E_dot_mech_fluid=(m_dot*((P2-P1)/rho))/1000 #Increase in mechanical energy in kW\n", - "n_pump=delta_E_dot_mech_fluid/W_dot_pump #Efficiency in fraction\n", - "\n", - "#part (b)\n", - "E_dot_loss=W_dot_pump-delta_E_dot_mech_fluid #Lost mechanical energy in kW\n", - "delta_T=(E_dot_loss)/(m_dot*c) #Temperature rise of water due to mechanical inefficiency in degree C\n", - "\n", - "#Result\n", - "print \"The Mechanical efficiency of the pump is\",round(n_pump,3)\n", - "print \"The temperature rise of water due to mechanical inefficiency is\",round(delta_T,3),\"Degree Centigrade\"\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Mechanical efficiency of the pump is 0.741\n", - "The temperature rise of water due to mechanical inefficiency is 0.017 Degree Centigrade\n" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 5.5-13, Page No:222" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V_dot=100 #Discharge through the power plant in m^3/s\n", - "rho=1000 #Density of water in kg/m^3\n", - "z1=120 #Elevation from which the water flows in m\n", - "h_l=35 #Elevation of point 2 in m\n", - "n_turbine_gen=0.8 #Overall efficiency of the generator in fraction\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "C=10**-3 #Conversion Factor\n", - "\n", - "#Calculations\n", - "m_dot=rho*V_dot #mass flow rate through the turbine in kg/s\n", - "\n", - "#Applying Bernoullis principle and taking point 2 as reference point z2=0\n", - "h_turbine=z1-h_l #extracted turbine head in m\n", - "W_dot_turbine=m_dot*g*h_turbine*C #Turbine Power in kW\n", - "W_dot_electric=C*n_turbine_gen*W_dot_turbine #Electrical Power Generated by the actual Unit in MW\n", - "\n", - "#Result\n", - "print \"The electrical Power generated is\",round(W_dot_electric,1),\"MW\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The electrical Power generated is 66.7 MW\n" - ] - } - ], - "prompt_number": 15 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 5.5-14, Page No:223" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "void_fraction=0.5 #Void Fraction\n", - "l=12 #Dimension of the fan in cm\n", - "w=40 #Dimension of the fan in cm\n", - "h=40 #Dimension of the fan in cm\n", - "delta_t=1 #time in s\n", - "rho=1.2 #Ddensity of air in kg/m^3\n", - "D=0.05 #Diameter of opening in the case in m\n", - "alpha2=1.1 #kinetic correction factor\n", - "n_fan=0.3 #Efficiency of the fan-motor\n", - "#Calculations\n", - "#Part(a)\n", - "V=void_fraction*l*w*h #Volume in cm^3\n", - "V_dot=(V/delta_t)*10**-6 #Volumetric flow rate in m^3/s\n", - "m_dot=rho*V_dot #mass flow rate in kg/s\n", - "A=(pi*D**2)/4 #Area of the opening is the case in m^2\n", - "\n", - "#Notation has been changed to avoid conflict\n", - "Vel=V_dot/A #Velocity of the air thorught the opening in m/s\n", - "\n", - "#Applying Bernoullis principle\n", - "W_dot_fan=m_dot*alpha2*Vel**2*0.5 #Work done in W\n", - "W_dot_electric=W_dot_fan/n_fan #Electric Work done in W\n", - "\n", - "#Part(b)\n", - "#Applying Brnoullis principle\n", - "#Notation has been changed here\n", - "delta_P=(rho*W_dot_fan)/m_dot #Pressure rise across fan in Pa\n", - "\n", - "#Result\n", - "print \"Wattage of the fan to be purchased is\",round(W_dot_electric,4),\"W\"\n", - "print \"The pressure difference across the fan is\",round(delta_P,1),\"Pa\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Wattage of the fan to be purchased is 0.5049 W\n", - "The pressure difference across the fan is 15.8 Pa\n" - ] - } - ], - "prompt_number": 18 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 5.5-15, Page No:225" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "W_shaft=5 #Shaft Power in kW\n", - "n_pump=0.72 #Efficiency of the pump in fraction\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "h_l=4 #Head loss in m\n", - "z2=25 #Datum in m\n", - "rho=1000 #Density of water in kg/m^3\n", - "\n", - "#Calculations\n", - "W_dot_pump=n_pump*W_shaft #Useful mechanical power returned in kW\n", - "\n", - "#Applying Bernoullis Principle\n", - "m_dot=(W_dot_pump/(g*(z2+h_l)))*1000 #mass floe rate in kg/s\n", - "V_dot=(m_dot/rho) #Volumetric flow rate in m^3/s\n", - "delta_P=W_dot_pump/V_dot #Pressure difference in kPa\n", - "\n", - "#Result\n", - "print \"Discharge of water is\",round(V_dot,4),\"m^3/s\"\n", - "print \"The pressure difference across the pump is\",round(delta_P),\"kPa\"\n", - "#Answer in the coding is off by 1 kPa due to decimal point accuracy" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Discharge of water is 0.0127 m^3/s\n", - "The pressure difference across the pump is 284.0 kPa\n" - ] - } - ], - "prompt_number": 21 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter05_1.ipynb b/Fluid_Mechanics-Fundamentals_&_Applications/Chapter05_1.ipynb deleted file mode 100755 index e6b94086..00000000 --- a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter05_1.ipynb +++ /dev/null @@ -1,626 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:8bd11344481cd08353414df9b95ff36a77bcdb1a4b70dab675e71546fa1a4453" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 05:Mass, Bernoulli and Energy Equations" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 5.5-1, Page No:190" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Vairable Decleration\n", - "V=10#Volume of the bucket in Gal\n", - "r_in=1 #Radius of the hose in cm\n", - "r_e=0.4 #Radius of the hose at the nozzle exit in cm\n", - "t=50 #Time taken to fill the bucket in s\n", - "C_gl=3.7854 #Conversion factor gal to Lit\n", - "rho=1 #Denisty of water in kg/Lit\n", - "C_v=10**-3 #Conersion factor in m^3/lit\n", - "\n", - "#Calculations\n", - "\n", - "#Part (a)\n", - "V_dot=(V*C_gl)/t #Volume flow rate in Lit/s\n", - "m_dot=rho*V_dot #Mass flow rate in kg/s\n", - "\n", - "#Part(b)\n", - "A_e=pi*r_e**2*10**-4 #Cross-Sectional Area of the nozzle at exit in m^2\n", - "V_e=(V_dot*C_v)/A_e #Average Velocity of water at nozzle exit in m/s\n", - "\n", - "#Result\n", - "print \"The Volume Flow rate is\",round(V_dot,3),\"L/s and the mass flow rate is\",round(m_dot,3),\"kg/s\"\n", - "print \"The area of cross section at nozzle exit is\",round(A_e,5),\"m^2\"\n", - "print \"The Average Velocity of water is\",round(V_e,1),\"m/s\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Volume Flow rate is 0.757 L/s and the mass flow rate is 0.757 kg/s\n", - "The area of cross section at nozzle exit is 5e-05 m^2\n", - "The Average Velocity of water is 15.1 m/s\n" - ] - } - ], - "prompt_number": 24 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 5.5-2, Page No:191" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "h_o=1.2 #Original Height in m\n", - "h_2=0.6 #Water level drop in m\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "D_tank=0.9 #Diameter of the tank in m\n", - "D_jet=0.013 #Diameter at the jet in m\n", - "\n", - "#Calculations\n", - "#After carrying out the theroetical calculations and integration we arrive to obtain\n", - "t_min=((h_o**0.5-h_2**0.5)/((g/2)**0.5))*((D_tank/D_jet)**2) #Time required to reach a level 0.6m in s\n", - "t=t_min/60 #Converting time from sec to min\n", - "\n", - "#Result\n", - "print \"The time it takes to half empty the tank is\",round(t,1),\"min\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The time it takes to half empty the tank is 11.6 min\n" - ] - } - ], - "prompt_number": 34 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 5.5-3, Page No:195" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "##Note:The symbols in the textbook are cumbersome to code hence a different one has been used in this coding\n", - "\n", - "#Variable Decleration\n", - "h=50 #Elevation difference in m\n", - "m_dot=5000 #Mass flow rate at which the water is to be supplied in kg/s\n", - "W_dot_out=1862 #Electric Power generated in kWh\n", - "n_generator=0.95 #Efficiency of the generator in fraction\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "C=10**-3 #Conversion factor in kJ/kg/m^2/s^2\n", - "\n", - "#Calculations\n", - "\n", - "#Part(a)\n", - "\n", - "#Calling e_mech_in-e_mech_out as del_e for convienence \n", - "del_e=g*h*C #Change in water's mechanical energy per unit mass in kJ/kg\n", - "delta_E_fluid=m_dot*del_e # Change in energy of the fluid in kW\n", - "\n", - "n_overall=W_dot_out/delta_E_fluid #Overall Efficiency in fraction\n", - "\n", - "#Part(b)\n", - "n_turbine_gen=n_overall/n_generator #Mechanical efficiency os the turbine in fraction\n", - "\n", - "#Part(c)\n", - "W_dot_shaft_out=n_turbine_gen*delta_E_fluid #Shaft power output in kW\n", - "\n", - "#Result\n", - "print \"The overall efficiency is\",round(n_overall,2)\n", - "print \"The mechanical efficiency of the turbine is\",round(n_turbine_gen,1)\n", - "print \"The shaft power output is\",round(W_dot_shaft_out,1),\"kW\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The overall efficiency is 0.76\n", - "The mechanical efficiency of the turbine is 0.8\n", - "The shaft power output is 1960.0 kW\n" - ] - } - ], - "prompt_number": 36 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 5.5-5, Page No:205" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "P1=400 #Pressure at upstream of the jet in kPa\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "rho=1000 #Density of water in kg/m^3\n", - "C1=1000 #Conversion factor in N/m^2.kPa\n", - "C2=1 #Conversion factor in kg.m/s^2.N\n", - "\n", - "#Calculations\n", - "#Applying the Bernoulli Equation\n", - "z2=(P1*C1*C2)/(rho*g) #maximun height the water jet reaches in m\n", - "\n", - "#Result\n", - "print \"The water jet rises up to\",round(z2,1),\"m\"\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The water jet rises up to 40.8 m\n" - ] - } - ], - "prompt_number": 39 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 5.5-6, Page No:206" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "h=5 #Height at which the water tank is filled in m\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "\n", - "#Calculations\n", - "z1=h #Decleration in terms of datum in m\n", - "#Applying the Bernoulli Equation\n", - "V2=(2*g*z1)**0.5 #Maximum velocity that the water jet can attain in m/s\n", - "\n", - "#Result\n", - "print \"The maximum velocity that the water jet can attain is\",round(V2,1),\"m/s\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The maximum velocity that the water jet can attain is 9.9 m/s\n" - ] - } - ], - "prompt_number": 40 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 5.5-7, Page No:207" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "P_atm=101.3 #Atmospheric pressure in kPa\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "rho=750 #Denisty of gasoline in kg/m^3\n", - "z1=0.75 #Location of point 2 w.r.t point 1\n", - "D=5*10**-3 #Diameter of the siphon pipe in m\n", - "V=4 #Volume of gasoline to be siphoned in Lit\n", - "z3=2.75 #Height of point 3 w.r.t to point 2 in m\n", - "C1=1 #conversion factor in N.s^2/kg.m\n", - "C2=10**-3 #Conversion factor in kPa.m^2/N\n", - "#Calculations\n", - "\n", - "#Part (a)\n", - "#Applying the Bernoulli Equation\n", - "V2=(2*g*z1)**0.5 #Velocity in m/s\n", - "A=(pi*D**2)/4 #Cross-Sectional Area in m^2\n", - "V_dot=V2*A*1000#Volume flow rate in L/s\n", - "delta_t=V/V_dot #Time required to siphon gasoline in s\n", - "\n", - "#Part(b)\n", - "#Applying Bernoulli Equations\n", - "P3=P_atm-(rho*g*z3*C1*C2) #Pressure at point 3 in kPa\n", - "\n", - "#result\n", - "print \"The time requires to siphon 4L gasoline is\",round(delta_t,1),\"s\"\n", - "print \"The pressure at point 3 is\",round(P3,1),\"kPa\"\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The time requires to siphon 4L gasoline is 53.1 s\n", - "The pressure at point 3 is 81.1 kPa\n" - ] - } - ], - "prompt_number": 45 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 5.5-8, Page No:208" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Declerations\n", - "g=9.81 #Acceleration due to Gravity in m/s^2\n", - "h3=0.12 #Difference in level in m\n", - "\n", - "#Calculations\n", - "#Applying Bernoulli Equations\n", - "V1=(2*g*h3)**0.5 #Velocity of Fluid in m/s\n", - "\n", - "#Result\n", - "print \"The velocity of fkuid is\",round(V1,2),\"m/s\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The velocity of fkuid is 1.53 m/s\n" - ] - } - ], - "prompt_number": 46 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 5.5-9, Page No:209" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "rho_hg=13600 #density of mercury in kg/m^3\n", - "rho_sw=1025 #density of sea-water in kg/m^3\n", - "rho_atm_air=1.2 #Density of air in kg/m^3\n", - "P_atm_air=762 #Atmospheric pressure 320km away from the eye in mm oh Hg\n", - "P_air=560 #Atmospheric pressure at the eye of the strom in mm og Hg\n", - "C=10**-3 #Conversion factor in m/mm\n", - "V_A=250 #Hurricane Wind Velocity in km/hr\n", - "C_k=1/3.6 #Conversion Factor from km/hr to m/s \n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "\n", - "#Calculations\n", - "\n", - "#part(a)\n", - "h3=(rho_hg*(P_atm_air-P_air)*C)/rho_sw #Pressure difference in m\n", - "\n", - "#Part(b)\n", - "#Applying Bernoulli Equations\n", - "h_air=(V_A**2*C_k**2)/(2*g) #Height of air column in m\n", - "rho_air=(P_air*rho_atm_air)/P_atm_air #Density of Air in the hurricane in kg/m^3\n", - "h_dynamic=(rho_air*h_air)/rho_sw #Sea-Water column equivalent to air-column in m\n", - "h2=h3+h_dynamic #Total storm surge at point 2 in m\n", - "\n", - "#Result\n", - "print \"The pressure difference between point's 1 and 3 in terms of sea-water column is\",round(h3,2),\"m\"\n", - "print \"The total Storm Surge at point2 is\",round(h2,2),\"m\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The pressure difference between point's 1 and 3 in terms of sea-water column is 2.68 m\n", - "The total Storm Surge at point2 is 2.89 m\n" - ] - } - ], - "prompt_number": 61 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 5.5-12, Page No:221" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V_dot=50 #Volumetric Flow rate in L/s\n", - "rho=1 #Density of water \n", - "n_motor=0.9 #efficiency of the electric motor in fraction\n", - "W_dot_electric=15 #Power of the electric motor in kW\n", - "P2=300 #Absolute pressure at the outlet in kPa\n", - "P1=100 #Absolute pressure at the inlet in kPa\n", - "c=4.18 #Specific heat of water in kJ/kg C\n", - "#Calculations\n", - "\n", - "#Part(a)\n", - "m_dot=rho*V_dot #Mass flow rate in kg/s\n", - "W_dot_pump=n_motor*W_dot_electric #Mechanical shaft power delivered in kW\n", - "delta_E_dot_mech_fluid=(m_dot*((P2-P1)/rho))/1000 #Increase in mechanical energy in kW\n", - "n_pump=delta_E_dot_mech_fluid/W_dot_pump #Efficiency in fraction\n", - "\n", - "#part (b)\n", - "E_dot_loss=W_dot_pump-delta_E_dot_mech_fluid #Lost mechanical energy in kW\n", - "delta_T=(E_dot_loss)/(m_dot*c) #Temperature rise of water due to mechanical inefficiency in degree C\n", - "\n", - "#Result\n", - "print \"The Mechanical efficiency of the pump is\",round(n_pump,3)\n", - "print \"The temperature rise of water due to mechanical inefficiency is\",round(delta_T,3),\"Degree Centigrade\"\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Mechanical efficiency of the pump is 0.741\n", - "The temperature rise of water due to mechanical inefficiency is 0.017 Degree Centigrade\n" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 5.5-13, Page No:222" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V_dot=100 #Discharge through the power plant in m^3/s\n", - "rho=1000 #Density of water in kg/m^3\n", - "z1=120 #Elevation from which the water flows in m\n", - "h_l=35 #Elevation of point 2 in m\n", - "n_turbine_gen=0.8 #Overall efficiency of the generator in fraction\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "C=10**-3 #Conversion Factor\n", - "\n", - "#Calculations\n", - "m_dot=rho*V_dot #mass flow rate through the turbine in kg/s\n", - "\n", - "#Applying Bernoullis principle and taking point 2 as reference point z2=0\n", - "h_turbine=z1-h_l #extracted turbine head in m\n", - "W_dot_turbine=m_dot*g*h_turbine*C #Turbine Power in kW\n", - "W_dot_electric=C*n_turbine_gen*W_dot_turbine #Electrical Power Generated by the actual Unit in MW\n", - "\n", - "#Result\n", - "print \"The electrical Power generated is\",round(W_dot_electric,1),\"MW\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The electrical Power generated is 66.7 MW\n" - ] - } - ], - "prompt_number": 15 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 5.5-14, Page No:223" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "void_fraction=0.5 #Void Fraction\n", - "l=12 #Dimension of the fan in cm\n", - "w=40 #Dimension of the fan in cm\n", - "h=40 #Dimension of the fan in cm\n", - "delta_t=1 #time in s\n", - "rho=1.2 #Ddensity of air in kg/m^3\n", - "D=0.05 #Diameter of opening in the case in m\n", - "alpha2=1.1 #kinetic correction factor\n", - "n_fan=0.3 #Efficiency of the fan-motor\n", - "#Calculations\n", - "#Part(a)\n", - "V=void_fraction*l*w*h #Volume in cm^3\n", - "V_dot=(V/delta_t)*10**-6 #Volumetric flow rate in m^3/s\n", - "m_dot=rho*V_dot #mass flow rate in kg/s\n", - "A=(pi*D**2)/4 #Area of the opening is the case in m^2\n", - "\n", - "#Notation has been changed to avoid conflict\n", - "Vel=V_dot/A #Velocity of the air thorught the opening in m/s\n", - "\n", - "#Applying Bernoullis principle\n", - "W_dot_fan=m_dot*alpha2*Vel**2*0.5 #Work done in W\n", - "W_dot_electric=W_dot_fan/n_fan #Electric Work done in W\n", - "\n", - "#Part(b)\n", - "#Applying Brnoullis principle\n", - "#Notation has been changed here\n", - "delta_P=(rho*W_dot_fan)/m_dot #Pressure rise across fan in Pa\n", - "\n", - "#Result\n", - "print \"Wattage of the fan to be purchased is\",round(W_dot_electric,4),\"W\"\n", - "print \"The pressure difference across the fan is\",round(delta_P,1),\"Pa\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Wattage of the fan to be purchased is 0.5049 W\n", - "The pressure difference across the fan is 15.8 Pa\n" - ] - } - ], - "prompt_number": 18 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 5.5-15, Page No:225" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "W_shaft=5 #Shaft Power in kW\n", - "n_pump=0.72 #Efficiency of the pump in fraction\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "h_l=4 #Head loss in m\n", - "z2=25 #Datum in m\n", - "rho=1000 #Density of water in kg/m^3\n", - "\n", - "#Calculations\n", - "W_dot_pump=n_pump*W_shaft #Useful mechanical power returned in kW\n", - "\n", - "#Applying Bernoullis Principle\n", - "m_dot=(W_dot_pump/(g*(z2+h_l)))*1000 #mass floe rate in kg/s\n", - "V_dot=(m_dot/rho) #Volumetric flow rate in m^3/s\n", - "delta_P=W_dot_pump/V_dot #Pressure difference in kPa\n", - "\n", - "#Result\n", - "print \"Discharge of water is\",round(V_dot,4),\"m^3/s\"\n", - "print \"The pressure difference across the pump is\",round(delta_P),\"kPa\"\n", - "#Answer in the coding is off by 1 kPa due to decimal point accuracy" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Discharge of water is 0.0127 m^3/s\n", - "The pressure difference across the pump is 284.0 kPa\n" - ] - } - ], - "prompt_number": 21 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter06.ipynb b/Fluid_Mechanics-Fundamentals_&_Applications/Chapter06.ipynb deleted file mode 100755 index 9e5422ae..00000000 --- a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter06.ipynb +++ /dev/null @@ -1,453 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:82135d7c3c860b18d45a6212b67de54362fa2b4454d970c3f68f6f27e472d43e" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 06:Momentum Analysis of Flow Systems" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 6.6-1, Page No:248" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "import scipy.integrate\n", - "\n", - "#Variable Decleration\n", - "a=1 #Lower limit of the intergral to be carried out\n", - "b=0 #Upper limit of the intergral to be carried out\n", - "\n", - "#Intergration\n", - "\n", - "func = lambda y:-4*y**2 #Decleration of the variable and the function to be integrated\n", - "X=scipy.integrate.quadrature(func, a,b)\n", - "\n", - "#Result\n", - "\n", - "print \"The Momentum Flux correction factor becomes\",round(X[0],2)\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Momentum Flux correction factor becomes 1.33\n" - ] - } - ], - "prompt_number": 21 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 6.6-2, Page No:251" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "m_dot=14 #Mass flow rate in kg/s\n", - "rho=1000 #Density of water in kg/m^3\n", - "theta=pi/6 #Angle at which the pipe is deflected w.r.t the horizontal\n", - "A1=0.0113 #Cross-sectional Area at the inlet of the elbow in m^2\n", - "A2=7*10**-4 #Cross-sectional Area at the outlet of the elbow in m^2\n", - "C=10**-3 #Conversion factor\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "z2=0.3 #Elevational difference betweem inlet and outlet in m\n", - "z1=0 #Considering Datum in m\n", - "beta=1.03 #Momentum correction factor \n", - "\n", - "#Calculations\n", - "V1=m_dot/(rho*A1) #Velocity at the inlet of the elbow in m/s\n", - "V2=m_dot/(rho*A2) #Velocity at the outlet of the elbow in m/s\n", - "\n", - "#Part(a)\n", - "#Applying the Bernoulli Principle\n", - "#Simplfying the calculations in two steps\n", - "a=(V2**2-V1**2)/(2*g)\n", - "P1_gauge=(a+z2-z1)*g*rho*C #Gauge pressure at inlet in kPa\n", - "\n", - "#Part(b)\n", - "#Applying the momentum equation\n", - "#Anchoring forces required\n", - "F_rx=-(P1_gauge*1000*A1)+(beta*m_dot*((V2*cos(theta))-V1)) #N\n", - "F_rz=beta*m_dot*V2*sin(theta) #N\n", - "\n", - "#Result\n", - "print \"The gauge pressure at the inlet is\",round(P1_gauge,1),\"kPa\"\n", - "print \"The anchoring forces required to hold it in place are\",round(F_rx,),\"N and\",round(F_rz),\"N\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The gauge pressure at the inlet is 202.2 kPa\n", - "The anchoring forces required to hold it in place are -2053.0 N and 144.0 N\n" - ] - } - ], - "prompt_number": 51 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 6.6-3, Page No:253" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable decleration\n", - "beta=1.03 #Momentum Correction factor\n", - "m_dot=14 #mass flow rate in kg/s\n", - "V2=20 #Velocity at outlet in m/s\n", - "V1=1.24 #Velocity at inlet in m/s\n", - "P1_gauge=202200 #gauge pressure at inlet in N/m^2\n", - "A1=0.0113 #Area at the inlet in m^2\n", - "\n", - "#Calculations\n", - "#Applying the momentum equation\n", - "F_rx=-beta*m_dot*(V2+V1)-P1_gauge*A1 #Horiznotal force in N\n", - "\n", - "#Result\n", - "print \"The horizontal force is\",round(F_rx),\"N\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The horizontal force is -2591.0 N\n" - ] - } - ], - "prompt_number": 52 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 6.6-4, Page No:253" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "beta=1 #Momentum correction factor\n", - "m_dot=10 #Mass flow rate in kg/s\n", - "V1=20 #Velocity of flow of water in m/s\n", - "\n", - "#Calculations\n", - "#Applying the momentum equation\n", - "F_r=beta*m_dot*V1 #The force exerted in N\n", - "\n", - "#Result\n", - "print \"The force exerted is\",round(F_r),\"N\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The force exerted is 200.0 N\n" - ] - } - ], - "prompt_number": 53 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 6.6-5, Page No:254" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable decleration\n", - "W_s=11 #Wind speed in km/h\n", - "C=3.6**-1 #Conversion from km/h to m/s\n", - "D=9 #Diameter of the blade in m\n", - "rho1=1.22 #Density of air in kg/m^3\n", - "W_actual=0.4 #Actual power generated in kW\n", - "\n", - "#Calculations\n", - "#Part(a)\n", - "V1=W_s*C #Velocity in m/s\n", - "m_dot=(rho*V1*pi*D**2)/4 #Mass flow rate of air in kg/s\n", - "W_dot_max=0.5*m_dot*V1**2*10**-3 #Work done in kW\n", - "n_windturbine=W_actual/W_dot_max #Efficiency of the turbine-generator \n", - "\n", - "#Part(b)\n", - "V2=V1*((1-n_windturbine)**0.5) #Exit velocity in m/s\n", - "\n", - "#Applying momentun equation\n", - "F_r=m_dot*(V2-V1) #Force exerted in N\n", - "\n", - "#Result\n", - "print \"The efficiency of the turbine is\",round(n_windturbine,3)\n", - "print \"The horizontal force exerted is\",round(F_r,1),\"N\"\n", - "#Answer differs by 0.5 due to floating point accuracy in second part" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The efficiency of the turbine is 0.361\n", - "The horizontal force exerted is -145.5 N\n" - ] - } - ], - "prompt_number": 59 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 6.6-6, Page No:256" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V_gas=3000 #Velocity of the gas exiting in m/s\n", - "m_dot_gas=80 #mass flow rate of gas escaping in kg/s\n", - "m_spacecraft=12000 #mass of the spacecraft in kg\n", - "delta_t=5 #Time in s\n", - "#Calculations\n", - "#Part(a)\n", - "a_spacecraft=-(m_dot_gas*V_gas)/m_spacecraft #Acceleration of the spacecraft in m/s^2\n", - "\n", - "#Part(b)\n", - "dV=a_spacecraft*delta_t #Change in velocity of the spacecraft in m/s\n", - "\n", - "#PArt(c)\n", - "F_thrust=-(m_dot_gas*V_gas)/1000 #Thrust force exerted in kN\n", - "\n", - "#Result\n", - "print \"The acceleration of the spacecraft is\",round(a_spacecraft),\"m/s^2\"\n", - "print \"The change in velocity is\",round(dV),\"m/s\"\n", - "print \"The thrust force exerted is\",round(F_thrust),\"kN\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The acceleration of the spacecraft is -20.0 m/s^2\n", - "The change in velocity is -100.0 m/s\n", - "The thrust force exerted is -240.0 kN\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 6, - "metadata": {}, - "source": [ - "Example 6.6-7, Page No:257" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V_dot=70 #Volumertic Flow rate in L/min\n", - "D=0.02 #Inner diameter of the pipe in m\n", - "C=60*10**3 #Conversion factor\n", - "rho=997 #Density of water in kg/m^3\n", - "P1_gauge=90000 #Pressure at location in Pa\n", - "X=57 #Total weight of faucet in N\n", - "\n", - "#Calculations\n", - "V=((V_dot*4)/(pi*D**2))/C #Velocity of flow in m/s\n", - "m_dot=(rho*V_dot)/C #mass flow rate in kg/s\n", - "\n", - "#Applying the Momentum equation\n", - "F_rx=-(m_dot*V)-((P1_gauge*pi*D**2)/4) #X-component of force in N\n", - "F_rz=-m_dot*V+X #z-Component of force in N\n", - "\n", - "#Result\n", - "print \"The net force exerted on the flange in vector notation is Fr\",round(F_rx,2),\"i+\",round(F_rz,2),\"k N\"\n", - "#NOTE:The answer in the textbook differs due to decimal point accuracy difference in computation" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The net force exerted on the flange in vector notation is Fr -31.99 i+ 53.29 k N\n" - ] - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 6.6-9, Page NO:266" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "rho=1000 #Denisty of water in kg/m^3\n", - "D=0.10 #Diameter of the pipe in m\n", - "V=3 #Average velocity of water in m/s\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "m=12 #Mass of horizontal pipe section when filled with water in kg\n", - "r1=0.5 #Moment arm 1 in m\n", - "r2=2 #Moment arm 2 in m\n", - "\n", - "#Calculation\n", - "m_dot=rho*((pi*D**2)/4)*V #Mass flow rate in kg/s\n", - "W=m*g #Weight in N\n", - "\n", - "#Applying the momentum equation\n", - "M_A=r1*W-(r2*m_dot*V) #Momentum about point A in N.m\n", - "\n", - "#Setting M as zero and using the momentum equation\n", - "L=((2*r2*m_dot*V)/W)**0.5 #Length in m\n", - "\n", - "#Result\n", - "print \"The bending Moment at A is\",round(M_A,1),\"N.m and the length required is\",round(L,1),\"m\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The bending Moment at A is -82.5 N.m and the length required is 1.5 m\n" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 6.6-9, Page No:267" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V_dot_nozzle=5 #Volumertic flow rate in L/s\n", - "D_jet=0.01 #Diameter of the jet in m\n", - "C=10**-3 #Conversion Factor\n", - "n_dot=300 #R.P.M of the nozzle\n", - "r=0.6 #Radial arm in m\n", - "m_dot=20 #Mass flow rate in kg/s\n", - "s=60**-1 #Conversion factor\n", - "#Calculations\n", - "V_jet_r=(V_dot_nozzle*4)/(pi*D_jet**2)*C #Velocity relative to the rotating nozzle in m/s\n", - "w=(2*pi*n_dot)*s #Angular speed in rad/s\n", - "V_nozzle=r*w #Tangential Velocity in m/s\n", - "\n", - "#Applying thr relative velocity principle\n", - "V_jet=V_jet_r-V_nozzle #Velocity of the jet in m/s\n", - "\n", - "#Applying the momentum Equation and using the torque concept\n", - "T_shaft=r*m_dot*V_jet #Torque transmitted through the shaft in N.m\n", - "W_dot=w*T_shaft*C #Power generated in kW\n", - "\n", - "#Result\n", - "print \"The sprinkler-type turbine has the potential to produce\",round(W_dot,1),\"kW\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The sprinkler-type turbine has the potential to produce 16.9 kW\n" - ] - } - ], - "prompt_number": 33 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter06_1.ipynb b/Fluid_Mechanics-Fundamentals_&_Applications/Chapter06_1.ipynb deleted file mode 100755 index 9e5422ae..00000000 --- a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter06_1.ipynb +++ /dev/null @@ -1,453 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:82135d7c3c860b18d45a6212b67de54362fa2b4454d970c3f68f6f27e472d43e" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 06:Momentum Analysis of Flow Systems" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 6.6-1, Page No:248" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "import scipy.integrate\n", - "\n", - "#Variable Decleration\n", - "a=1 #Lower limit of the intergral to be carried out\n", - "b=0 #Upper limit of the intergral to be carried out\n", - "\n", - "#Intergration\n", - "\n", - "func = lambda y:-4*y**2 #Decleration of the variable and the function to be integrated\n", - "X=scipy.integrate.quadrature(func, a,b)\n", - "\n", - "#Result\n", - "\n", - "print \"The Momentum Flux correction factor becomes\",round(X[0],2)\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Momentum Flux correction factor becomes 1.33\n" - ] - } - ], - "prompt_number": 21 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 6.6-2, Page No:251" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "m_dot=14 #Mass flow rate in kg/s\n", - "rho=1000 #Density of water in kg/m^3\n", - "theta=pi/6 #Angle at which the pipe is deflected w.r.t the horizontal\n", - "A1=0.0113 #Cross-sectional Area at the inlet of the elbow in m^2\n", - "A2=7*10**-4 #Cross-sectional Area at the outlet of the elbow in m^2\n", - "C=10**-3 #Conversion factor\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "z2=0.3 #Elevational difference betweem inlet and outlet in m\n", - "z1=0 #Considering Datum in m\n", - "beta=1.03 #Momentum correction factor \n", - "\n", - "#Calculations\n", - "V1=m_dot/(rho*A1) #Velocity at the inlet of the elbow in m/s\n", - "V2=m_dot/(rho*A2) #Velocity at the outlet of the elbow in m/s\n", - "\n", - "#Part(a)\n", - "#Applying the Bernoulli Principle\n", - "#Simplfying the calculations in two steps\n", - "a=(V2**2-V1**2)/(2*g)\n", - "P1_gauge=(a+z2-z1)*g*rho*C #Gauge pressure at inlet in kPa\n", - "\n", - "#Part(b)\n", - "#Applying the momentum equation\n", - "#Anchoring forces required\n", - "F_rx=-(P1_gauge*1000*A1)+(beta*m_dot*((V2*cos(theta))-V1)) #N\n", - "F_rz=beta*m_dot*V2*sin(theta) #N\n", - "\n", - "#Result\n", - "print \"The gauge pressure at the inlet is\",round(P1_gauge,1),\"kPa\"\n", - "print \"The anchoring forces required to hold it in place are\",round(F_rx,),\"N and\",round(F_rz),\"N\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The gauge pressure at the inlet is 202.2 kPa\n", - "The anchoring forces required to hold it in place are -2053.0 N and 144.0 N\n" - ] - } - ], - "prompt_number": 51 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 6.6-3, Page No:253" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable decleration\n", - "beta=1.03 #Momentum Correction factor\n", - "m_dot=14 #mass flow rate in kg/s\n", - "V2=20 #Velocity at outlet in m/s\n", - "V1=1.24 #Velocity at inlet in m/s\n", - "P1_gauge=202200 #gauge pressure at inlet in N/m^2\n", - "A1=0.0113 #Area at the inlet in m^2\n", - "\n", - "#Calculations\n", - "#Applying the momentum equation\n", - "F_rx=-beta*m_dot*(V2+V1)-P1_gauge*A1 #Horiznotal force in N\n", - "\n", - "#Result\n", - "print \"The horizontal force is\",round(F_rx),\"N\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The horizontal force is -2591.0 N\n" - ] - } - ], - "prompt_number": 52 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 6.6-4, Page No:253" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "beta=1 #Momentum correction factor\n", - "m_dot=10 #Mass flow rate in kg/s\n", - "V1=20 #Velocity of flow of water in m/s\n", - "\n", - "#Calculations\n", - "#Applying the momentum equation\n", - "F_r=beta*m_dot*V1 #The force exerted in N\n", - "\n", - "#Result\n", - "print \"The force exerted is\",round(F_r),\"N\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The force exerted is 200.0 N\n" - ] - } - ], - "prompt_number": 53 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 6.6-5, Page No:254" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable decleration\n", - "W_s=11 #Wind speed in km/h\n", - "C=3.6**-1 #Conversion from km/h to m/s\n", - "D=9 #Diameter of the blade in m\n", - "rho1=1.22 #Density of air in kg/m^3\n", - "W_actual=0.4 #Actual power generated in kW\n", - "\n", - "#Calculations\n", - "#Part(a)\n", - "V1=W_s*C #Velocity in m/s\n", - "m_dot=(rho*V1*pi*D**2)/4 #Mass flow rate of air in kg/s\n", - "W_dot_max=0.5*m_dot*V1**2*10**-3 #Work done in kW\n", - "n_windturbine=W_actual/W_dot_max #Efficiency of the turbine-generator \n", - "\n", - "#Part(b)\n", - "V2=V1*((1-n_windturbine)**0.5) #Exit velocity in m/s\n", - "\n", - "#Applying momentun equation\n", - "F_r=m_dot*(V2-V1) #Force exerted in N\n", - "\n", - "#Result\n", - "print \"The efficiency of the turbine is\",round(n_windturbine,3)\n", - "print \"The horizontal force exerted is\",round(F_r,1),\"N\"\n", - "#Answer differs by 0.5 due to floating point accuracy in second part" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The efficiency of the turbine is 0.361\n", - "The horizontal force exerted is -145.5 N\n" - ] - } - ], - "prompt_number": 59 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 6.6-6, Page No:256" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V_gas=3000 #Velocity of the gas exiting in m/s\n", - "m_dot_gas=80 #mass flow rate of gas escaping in kg/s\n", - "m_spacecraft=12000 #mass of the spacecraft in kg\n", - "delta_t=5 #Time in s\n", - "#Calculations\n", - "#Part(a)\n", - "a_spacecraft=-(m_dot_gas*V_gas)/m_spacecraft #Acceleration of the spacecraft in m/s^2\n", - "\n", - "#Part(b)\n", - "dV=a_spacecraft*delta_t #Change in velocity of the spacecraft in m/s\n", - "\n", - "#PArt(c)\n", - "F_thrust=-(m_dot_gas*V_gas)/1000 #Thrust force exerted in kN\n", - "\n", - "#Result\n", - "print \"The acceleration of the spacecraft is\",round(a_spacecraft),\"m/s^2\"\n", - "print \"The change in velocity is\",round(dV),\"m/s\"\n", - "print \"The thrust force exerted is\",round(F_thrust),\"kN\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The acceleration of the spacecraft is -20.0 m/s^2\n", - "The change in velocity is -100.0 m/s\n", - "The thrust force exerted is -240.0 kN\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 6, - "metadata": {}, - "source": [ - "Example 6.6-7, Page No:257" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V_dot=70 #Volumertic Flow rate in L/min\n", - "D=0.02 #Inner diameter of the pipe in m\n", - "C=60*10**3 #Conversion factor\n", - "rho=997 #Density of water in kg/m^3\n", - "P1_gauge=90000 #Pressure at location in Pa\n", - "X=57 #Total weight of faucet in N\n", - "\n", - "#Calculations\n", - "V=((V_dot*4)/(pi*D**2))/C #Velocity of flow in m/s\n", - "m_dot=(rho*V_dot)/C #mass flow rate in kg/s\n", - "\n", - "#Applying the Momentum equation\n", - "F_rx=-(m_dot*V)-((P1_gauge*pi*D**2)/4) #X-component of force in N\n", - "F_rz=-m_dot*V+X #z-Component of force in N\n", - "\n", - "#Result\n", - "print \"The net force exerted on the flange in vector notation is Fr\",round(F_rx,2),\"i+\",round(F_rz,2),\"k N\"\n", - "#NOTE:The answer in the textbook differs due to decimal point accuracy difference in computation" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The net force exerted on the flange in vector notation is Fr -31.99 i+ 53.29 k N\n" - ] - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 6.6-9, Page NO:266" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "rho=1000 #Denisty of water in kg/m^3\n", - "D=0.10 #Diameter of the pipe in m\n", - "V=3 #Average velocity of water in m/s\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "m=12 #Mass of horizontal pipe section when filled with water in kg\n", - "r1=0.5 #Moment arm 1 in m\n", - "r2=2 #Moment arm 2 in m\n", - "\n", - "#Calculation\n", - "m_dot=rho*((pi*D**2)/4)*V #Mass flow rate in kg/s\n", - "W=m*g #Weight in N\n", - "\n", - "#Applying the momentum equation\n", - "M_A=r1*W-(r2*m_dot*V) #Momentum about point A in N.m\n", - "\n", - "#Setting M as zero and using the momentum equation\n", - "L=((2*r2*m_dot*V)/W)**0.5 #Length in m\n", - "\n", - "#Result\n", - "print \"The bending Moment at A is\",round(M_A,1),\"N.m and the length required is\",round(L,1),\"m\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The bending Moment at A is -82.5 N.m and the length required is 1.5 m\n" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 6.6-9, Page No:267" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V_dot_nozzle=5 #Volumertic flow rate in L/s\n", - "D_jet=0.01 #Diameter of the jet in m\n", - "C=10**-3 #Conversion Factor\n", - "n_dot=300 #R.P.M of the nozzle\n", - "r=0.6 #Radial arm in m\n", - "m_dot=20 #Mass flow rate in kg/s\n", - "s=60**-1 #Conversion factor\n", - "#Calculations\n", - "V_jet_r=(V_dot_nozzle*4)/(pi*D_jet**2)*C #Velocity relative to the rotating nozzle in m/s\n", - "w=(2*pi*n_dot)*s #Angular speed in rad/s\n", - "V_nozzle=r*w #Tangential Velocity in m/s\n", - "\n", - "#Applying thr relative velocity principle\n", - "V_jet=V_jet_r-V_nozzle #Velocity of the jet in m/s\n", - "\n", - "#Applying the momentum Equation and using the torque concept\n", - "T_shaft=r*m_dot*V_jet #Torque transmitted through the shaft in N.m\n", - "W_dot=w*T_shaft*C #Power generated in kW\n", - "\n", - "#Result\n", - "print \"The sprinkler-type turbine has the potential to produce\",round(W_dot,1),\"kW\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The sprinkler-type turbine has the potential to produce 16.9 kW\n" - ] - } - ], - "prompt_number": 33 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter07.ipynb b/Fluid_Mechanics-Fundamentals_&_Applications/Chapter07.ipynb deleted file mode 100755 index 9cc4d914..00000000 --- a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter07.ipynb +++ /dev/null @@ -1,280 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:7a83d458ec863729e5567b39b8a122f73ab73bc391e4a0f9cd56c8645c12c28b" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 07: Dimensional Analysis and Modeling" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 7.7-4, Page No:290" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "g_earth=9.81 #Acceleration due to gravity on earth in m/^2\n", - "theta=(pi*5)/180 #Angle above the horizon in radians\n", - "v=21 #Speed of the baseball in m/s\n", - "zo=2 #Height at wich the ball is left in m\n", - "t_star=2.75 #Time required to hit the ground in s\n", - "\n", - "#Calculations\n", - "#Part(a)\n", - "g_moon=g_earth/6 #Acceleration due to gravity on the moon in m/s^2\n", - "w_o=v*sin(theta) #Vertical component of Speed in m/s\n", - "Fr_square=w_o**2/(g_moon*zo) #Value of froude number square \n", - "t_a=(t_star*zo)/w_o #Estimated time required to hit the ground in s\n", - "#Part(b)\n", - "#simplfying the calculations\n", - "a=w_o**2+(2*zo*g_moon)\n", - "b=a**0.5\n", - "t_b=(w_o+b)/g_moon #Exact time required for the ball to hit the ground in s\n", - "\n", - "#Result\n", - "print \"The estimated time required to hit the ground is\",round(t_a,2),\"s\"\n", - "print \"The exact time required for the ball to hit the ground is\",round(t_b,2),\"s\"\n", - "#Due to the decimal accuracy the answer in textbook differs " - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The estimated time required to hit the ground is 3.01 s\n", - "The exact time required for the ball to hit the ground is 3.04 s\n" - ] - } - ], - "prompt_number": 9 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 7.7-5, Page No:293" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "Vp=50 #Velocity in the prototype in mi/h\n", - "um=1.754*10**-5 #Viscosity in the model in kg/m.s\n", - "up=1.849*10**-5 #Viscosity in the prototype in kg/m.s\n", - "rhop=1.184 #Density of air in prototype in kg/m^3\n", - "rhom=1.269 #Density of air in model in kg/m^3\n", - "Lp_Lm=5 #ratio of length \n", - "\n", - "#Calculations\n", - "a=um/up\n", - "b=rhop/rhom\n", - "Vm=Vp*a*b*Lp_Lm #Velocity in the model in mi/h\n", - "\n", - "#result\n", - "print \"The velocity in the wind tunnel required is\",round(Vm),\"mi/h\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The velocity in the wind tunnel required is 221.0 mi/h\n" - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 7.7-6, Page No:294" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "Fd=94.3 #Average Drag force on the model in N\n", - "Vp=float(50) #Velocity of the prototype in mi/h\n", - "Vm=float(221) #Velocity of the model in mi/h\n", - "rhop=1.184 #Density of air in prototype in kg/m^3\n", - "rhom=1.269 #Density of air in model in kg/m^3\n", - "Lp_Lm=5 #ratio of length \n", - "\n", - "#Calculations\n", - "a=(rhop/rhom)\n", - "c=(Lp_Lm**2)\n", - "b=Vm/Vp\n", - "Fd_p=(Fd*a*c)/(b**2) #Drag Force on the prototype in N\n", - "\n", - "#Result\n", - "print \"The Drag force on the prototype is\",round(Fd_p),\"N\"\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Drag force on the prototype is 113.0 N\n" - ] - } - ], - "prompt_number": 44 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 7.7-10, Page No:313" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "import matplotlib.pyplot as plt\n", - "%matplotlib inline\n", - "\n", - "#Variable Decleration\n", - "Lm=0.991 #Length of the model truck in m\n", - "Hm=0.257 #height of the model truck in m\n", - "Wm=0.159 #Width of the model truck in m\n", - "rho=1.184 #Density of Air in kg/m^3\n", - "u=1.849*10**-5 #Viscosity of air in kg/m.s\n", - "FD_m=89.9 #Drag Force in the model in N\n", - "V_m=70 #Velocity in the model in m/s\n", - "C=16 #Geometric Ratio\n", - "Vp=26.8 #Velocity of the prototype in m/s\n", - "\n", - "#Calculations\n", - "\n", - "V=range(20,75,5) #Velocity array each in m/s\n", - "F=[12.4,19,22.1,29,34.3,39.9,47.2,55.5,66,77.6,89.9] #Drag force array in N\n", - "X=transpose(F) #Transpose of the matrix in order to mutliply\n", - "#Simplfying the calculations by using steps\n", - "\n", - "CD_m1=(X/V)\n", - "CD_m2=CD_m1/V\n", - "CD_m=(2*CD_m2)/(rho*Wm*Hm) #Drag Coefficient \n", - "\n", - "Y=transpose(V)\n", - "Re_m=(rho*Y*Wm)/u #Reynolds Number for each set\n", - "\n", - "#Calculations for prototype\n", - "Re_p=(rho*Vp*C*Wm)/u #Reynolds Number for the prototype\n", - "\n", - "#Aerodynamic Drag Calculations\n", - "FD_p=0.5*rho*Vp**2*C**2*Wm*Hm*CD_m[10] #Aerodynamic Drag on the Vehicle in N\n", - "\n", - "#Result\n", - "print \"The Aerodynamic Drag on the Vehicle is\",round(FD_p),\"N\"\n", - "\n", - "plt.plot(Re_m,CD_m,'ro')\n", - "plt.ylabel('Cd')\n", - "plt.xlabel('Re')\n", - "plt.show()\n", - "\n", - "#The answer in the textbook has been rounded off to the nearest value" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Aerodynamic Drag on the Vehicle is 3373.0 N\n" - ] - }, - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEPCAYAAACDTflkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFK5JREFUeJzt3X+QZWV95/H3127sjj8CKin8AYZUa1wwoGgK3STCNdmZ\n6ThR8quiRAuNlrEqsXuS3Y0sjBS9ZWaTWHFdetwoGiXGimA2CZZUG2bG0pshiaLo8DOA0EAFjBkN\nURKMPcUM3/3jnhnuXHra7sd77u17+v2qujXnPufMOd+HHu6nz3POc25kJpIklXjCsAuQJI0uQ0SS\nVMwQkSQVM0QkScUMEUlSMUNEklSs1hCJiI9ExP6IuOUY68+LiJsiYl9EfDkifrrOeiRJ/RV1zhOJ\niFcADwN/mplnLLP+yZn5nWr5DODqzHxebQVJkvqq1jORzLwO+NYK67/T9fYpwL/UWY8kqb/Gh11A\nRPw88HvAs4DNQy5HkrQGQ7+wnpmfzMzTgFcDHxt2PZKk1Rv6mchhmXldRIxHxDMy88HudRHhA74k\nqUBmRp37H+qZSERMRURUyy8B6A2QwzKzsa9LL7106DXYN/tn/5r3GoRaz0Qi4krgXODEiLgfuBQ4\nDiAzLwd+CbggIh6hcxfX6+qsR5LUX7WGSGae/z3Wvxt492r29c4tWxg/cICDExNsnp3lnK1b+1Kj\nJKncurkm8r387u7dR5a3Ly4CNCZIWq3WsEuoTZP7BvZv1DW9f4NQ62TDfomIx1V5yZYtvOvaa4dS\njySNgoggm3xh/fsxtrQ07BIkacMb2RA5NDk57BIkacMbyRC5eGqKTTMzwy5Dkja8kbmwfsmWLYwt\nLXFocpLpmZnGXFSXpFE2OhfWR6BOSVpPvLAuSVrXDBFJUrGRuSYySHsXFtg9P+8MeUn6HgyRHnsX\nFti1bRs7qlnx0LwZ8pLULw5n9dg9P39UgADsWFxkz86dQ6pIktYvQ6TH+IEDy7Y7Q16SHs8Q6XFw\nYmLZdmfIS9LjGSI9Ns/Osn1q6qg2Z8hL0vKcbLiMvQsL7Nm588gM+U3OkJc0ggYx2dAQkaSGcsa6\nJGldM0QkScUMEUlSMUNEklTMEJEkFTNEJEnFDBFJUjFDRJJUzBCRJBUzRCRJxQwRSVKxWkMkIj4S\nEfsj4pZjrH99RNwUETdHxN9FxJl11iNJ6q+6z0SuAKZXWH8PcE5mngm8C/hgzfVIkvqo1hDJzOuA\nb62w/vOZ+VD19nrg5DrrkST113q6JvIW4NPDLkKStHrjwy4AICJeCbwZ+Mlh1yJJWr2hh0h1Mf1D\nwHRmHnPoa25u7shyq9Wi1WrVXpskjZJ2u0273R7oMWv/ZsOIOBW4JjPPWGbdc4HPAm/IzC+ssA+/\n2VCS1mjkvx43Iq4EzgVOBPYDlwLHAWTm5RHxx8AvAP9Y/ZVHMvPsZfZjiEjSGo18iPSLISJJa+d3\nrEuS1jVDRJJUzBCRJBUzRCRJxQwRSVIxQ0SSVMwQkSQVM0QkScUMEUlSMUNEklTMEJEkFTNEJEnF\nDBFJUjFDRJJUzBCRJBUzRCRJxQwRSVIxQ0SSVMwQkSQVM0QkScUMEUlSMUNEklTMEJEkFTNEJEnF\nDBFJUjFDRJJUzBCRJBUzRCRJxQwRSVKxWkMkIj4SEfsj4pZjrP9PEfH5iFiKiP9WZy2SpP6r+0zk\nCmB6hfUPAjPAH9ZchySpBrWGSGZeB3xrhfXfzMwbgEfqrEOSVA+viUiSio0Pu4DVmpubO7LcarVo\ntVpDq0WS1qN2u0273R7oMSMz6z1AxKnANZl5xgrbXAo8nJnvOcb6rLtOSWqaiCAzo85jrJfhrFo7\nKUmqR61nIhFxJXAucCKwH7gUOA4gMy+PiGcCXwJ+EHgU+Hfg9Mx8uGc/nolI0hoN4kyk9uGsfjBE\nJGntNtJwliRpBBkikqRihogkqZghIkkqZohIkooZIpKkYoaIJKmYISJJKmaISJKKGSKSpGKGiCSp\nmCEiSSpmiEiSihkikqRihogkqZghIkkqZohIkooZIpKkYoaIJKmYISJJKmaISJKKGSKSpGKGiCSp\nmCEiSSo2PuwC1LF3YYHd8/OMHzjAwYkJNs/Ocs7WrcMuS5JWZIisA3sXFti1bRs7FhePtG2vlg0S\nSeuZw1nrwO75+aMCBGDH4iJ7du4cUkWStDqGyDowfuDAsu1jS0sDrkSS1uaYw1kR8UtAAlH9eZTM\n/KvvtfOI+AiwFfhGZp5xjG3mgZ8F/gN4U2buW13pzXFwYmLZ9kOTkwOuRJLWZqUzkVdXrzcDHwZe\nX73+uGpbjSuA6WOtjIhXAc/LzOcDvw68f5X7bZTNs7Nsn5o6qu3iqSk2zcwMqSJJWp1jnolk5psA\nImIPcHpmfr16/yzgo6vZeWZeFxGnrrDJaw7vKzOvj4gTIuKkzNy/quob4vDF80t27mRsaYlDk5NM\nz8x4UV3Sureau7NOAf656/1+4Ll9Ov5zgPu73j8AnFwdY0M5Z+tWQ0PSyFlNiHwG2BURH6dzfeS1\nwJ4+1hA97x93/QVgbm7uyHKr1aLVavWxBEkafe12m3a7PdBjRuayn9lExPOBkzLzbyPiF4FXVKu+\nBXw8M+9e1QE6w1nXLHdhPSI+ALQz86rq/R3Aub3DWRGRx6pTkrS8iCAze39R76uVLqz/H+DfoHMn\nVmb+dmb+NvBJ4L19Ov6ngAsAIuLlwLc32vUQSRplKw1nnZSZN/c2ZubNEfEjq9l5RFwJnAucGBH3\nA5cCx1X7uTwzPx0Rr4qIu4HvAL+25h5IkoZmpeGsuzPzeWtdVweHsyRp7QYxnLXSmcgNEfHrmfnB\nnqLeCny5zqJUPx/4KKkfVgqR3wKujojX81hovBSYAH6h7sJUHx/4KKlfjjmcBRARAbwS+DE6t97e\nlpmfHVBt3XU4nNVH79yyhd/dvftx7Zds2cK7rr12CBVJqsOwh7OoPrk/W73UED7wUVK/+BTfDcgH\nPkrqF0NkA/KBj5L6ZcVrIuuF10T6b+/CAnu6Hvi4yQc+So0ziGsihogkNdSwH3siSdKKDBFJUjFD\nRJJUzBCRJBUzRCRJxQwRSVIxQ0SSVMwQkSQVM0QkScUMEUlSMUNEklTMEJEkFTNEJEnFDBFJUjFD\nRJJUzBCRJBUzRCRJxQwRSVIxQ0SSVMwQkSQVqzVEImI6Iu6IiLsi4sJl1j8tIq6OiJsi4vqIeGGd\n9UiS+qu2EImIMeB9wDRwOnB+RJzWs9nFwFcy80XABcBlddUjSeq/Os9Ezgbuzsz7MvMR4CrgvJ5t\nTgM+B5CZdwKnRsQP1ViTJKmP6gyR5wD3d71/oGrrdhPwiwARcTbww8DJNdYkSeqj8Rr3navY5veB\nyyJiH3ALsA84tNyGc3NzR5ZbrRatVuv7r1CSGqTdbtNutwd6zMhczWd9wY4jXg7MZeZ09f4i4NHM\n/IMV/s69wBmZ+XBPe9ZVpyQ1VUSQmVHnMeoczroBeH5EnBoRTwReC3yqe4OIOL5aR0S8Ffib3gCR\nJK1ftQ1nZebBiHg7sAsYAz6cmbdHxNuq9ZfTuWvrTyIigVuBt9RVj4Zr78ICu+fnGT9wgIMTE2ye\nneWcrVuHXZak71Ntw1n95HDWaNu7sMCubdvYsbh4pG371BRbLrvMIJFqNOrDWRIAu+fnjwoQgB2L\ni+zZuXNIFUnqF0NEtRs/cGDZ9rGlpQFXIqnfDBHV7uDExLLthyYnB1yJpH4zRFS7zbOzbJ+aOqrt\n4qkpNs3MDKkiSf3ihXUNxN6FBfbs3MnY0hKHJifZNDPjRXWpZoO4sG6ISFJDeXeWJGldM0QkScUM\nEUlSMUNEklTMEJEkFTNEJEnFDBFJUjFDRJJUzBCRJBUzRCRJxQwRSVIxQ0SSVMwQkSQVM0QkScUM\nEUlSMUNEklTMEJEkFTNEJEnFxoddgFSXvQsL7J6fZ/zAAQ5OTLB5dtbvdZf6zBBRI+1dWGDXtm3s\nWFw80ra9WjZIpP5xOEuNtHt+/qgAAdixuMienTuHVJHUTIaIGmn8wIFl28eWlgZcidRstYZIRExH\nxB0RcVdEXLjM+hMj4tqIuDEibo2IN9VZjzaOgxMTy7YfmpwccCVSs9UWIhExBrwPmAZOB86PiNN6\nNns7sC8zXwy0gPdEhNdp9H3bPDvL9qmpo9ounppi08zMkCqSmqnOD+yzgbsz8z6AiLgKOA+4vWub\nrwNnVss/CDyYmQdrrEkbxOGL55fs3MnY0hKHJieZnpnxorrUZ5GZ9ew44peBLZn51ur9G4CXZeZM\n1zZPAD4L/CjwVOBXMvOvl9lX1lWnJDVVRJCZUecx6rwmsppP/YuBGzPz2cCLgf8bEU+tsSZJUh/V\nOZz1NeCUrvenAA/0bPMTwA6AzFyMiHuBFwA39O5sbm7uyHKr1aLVavW3Wkkace12m3a7PdBj1jmc\nNQ7cCfwM8E/AF4HzM/P2rm3+N/BQZv7PiDgJ+DJwZmb+a8++HM6SpDUaxHBWbWcimXkwIt4O7ALG\ngA9n5u0R8bZq/eXA/wKuiIib6AytvaM3QCRJ61dtZyL95JmIJK3dSJ+JSBuND3zURmSISH3gAx+1\nUfnsLKkPfOCjNipDROoDH/iojcoQkfrABz5qozJEpD7wgY/aqLzFV+qTvQsL7Ol64OMmH/ioIRvE\nLb6GiCQ1lPNEJK1o0HNThjEXZiP0cZQZItKIGvTclGHMhdkIfRx5mbnuX50yJXXbvnlzJjzu9c4t\nWxpxvGEccxh9rFP12Vnr57N3Z0kjatBzU4YxF2Yj9HHUGSLSiBr03JRhzIXZCH0cdYaINKIGPTdl\nGHNhNkIfR523+EojbNBzU4YxF2Yj9LEuzhOpGCKStHaDCBGHsyRJxQwRSVIxQ0SSVMwQkSQVM0Qk\nScUMEUlSMUNEklTMEJEkFTNEJEnFDBFJUjFDRJJUzBCRJBWrNUQiYjoi7oiIuyLiwmXW//eI2Fe9\nbomIgxFxQp01SZL6p7YQiYgx4H3ANHA6cH5EnNa9TWb+YWaelZlnARcB7cz8dl01rVftdnvYJdSm\nyX0D+zfqmt6/QajzTORs4O7MvC8zHwGuAs5bYftfBa6ssZ51q8n/kJvcN7B/o67p/RuEOkPkOcD9\nXe8fqNoeJyKeBGwB/rLGeiRJfVZniKzlW6ReDfztRhzKkqRRVts3G0bEy4G5zJyu3l8EPJqZf7DM\ntlcDn8jMq46xL7/WUJIKjOzX40bEOHAn8DPAPwFfBM7PzNt7tjseuAc4OTO/W0sxkqRajNe148w8\nGBFvB3YBY8CHM/P2iHhbtf7yatOfB3YZIJI0emo7E5EkNV+d80ROiYjPRcRtEXFrRMxW7U+PiD0R\n8dWI2N09uTAiLqomJt4REZu72l9aTUa8KyIu62qfiIhPVO1fiIgf7lr3xuoYX42IC2ro32REXB8R\nN0bEP0TE7zWpf13HGasmg17TtP5FxH0RcXPVvy82sH8nRMRfRMTt1b/RlzWhfxHxgnhskvK+iHgo\nImab0Leeem+ravt4Vc/67F9m1vICngm8uFp+Cp3rI6cB7wbeUbVfCPx+tXw6cCNwHHAqcDePnSl9\nETi7Wv40MF0t/wbwR9Xya4GrquWnA4vACdVrETihhj4+qfpzHPgC8FNN6l91rP8K/Bnwqep9Y/oH\n3As8vaetSf37KPDmrn+jxzepf9WxngB8HTilKX2rarwHmKjefwJ443rtX99/qCv8h/kk8F+AO4CT\nqrZnAndUyxcBF3Ztfy3wcuBZwO1d7a8DPtC1zcu6/if5ZrV8PvD+rr/zAeB1NfbtScCXgBc2qX/A\nycBngFcC11RtTerfvcAzetoa0T86gXHPMu2N6F/XvjcD1zWpb3Q+yO8EnlYd+xpg03rt30AewBgR\npwJnAdfT+Y+wv1q1HzipWn42nQmJhx2enNjb/jUem7R4ZEJjZh4EHoqIZ6ywr76KiCdExI10+vG5\nzLyNBvUPeC/wO8CjXW1N6l8Cn4mIGyLirVVbU/r3I8A3I+KKiPhKRHwoIp5Mc/p32Ot47EkXjehb\nZv4r8B7gH+nc2frtzNzDOu1f7SESEU+hMxN9W2b+e/e67ERd1l1DXTLz0cx8MZ3f2M+JiFf2rB/Z\n/kXEzwHfyMx9wLL3mY9y/yo/mZ3ntv0s8JsR8YrulSPev3HgJXSGLF4CfAf4H90bjHj/iIgn0pmo\n/P96141y3yJiCvgtOkNTzwaeEhFv6N5mPfWv7qf4HkcnQD6WmZ+smvdHxDOr9c8CvlG1f43OuOZh\nJ9NJwa9Vy73th//Oc6t9jQPHZ+aDy+zrFI5O177KzIeABeClNKd/PwG8JiLupfOb3k9HxMdoTv/I\nzK9Xf34TuJrO896a0r8HgAcy80vV+7+gEyr/3JD+QSf8v1z9/KA5P7sfB/4+Mx+szhL+CvjPrNef\nXR3jlNVYWgB/Cry3p/3dVON3dH4z6r049EQ6p+KLPHZx6HrgZdU+ey8Ovb9rvK/74tA9dC4MPe3w\ncp/7d+LhfQI/AOylM7GyEf3r6eu5PHZNpBH9o3Md66nV8pOBv6Mzvt6I/lXH2Qv8aLU8V/WtSf27\nCnhj1/tG9A14EXArnc+VoHODxG+u1/7V8qFTFfNTdMbSbwT2Va/pqsjPAF8FdncXCFxM586CO4At\nXe0vBW6p1s13tU8Afw7cRefuqFO71v1a1X5X9z+0PvbvDOArVf9uBn6n64cw8v3r6eu5PHZ3ViP6\nV/3PdmP1uhW4qEn9q47xIjo3fNxE57fZ45vSPzrB/y9Uvwg08Gf3DuC2qraP0rnzal32z8mGkqRi\nfj2uJKmYISJJKmaISJKKGSKSpGKGiCSpmCEiSSpW25dSSU0TEYfozAkao3Pf/QWZ+fBwq5KGyzMR\nafX+IzPPyswzgX8D3jbsgqRhM0SkMp8HpqDzwLyI+OvqacB7I+IFQ65NGhhDRFqjiBij85ytW6um\nDwIzmfnjdB6d/0fDqk0aNB97Iq1SRByk8xyi5wD30fninyfReZrqnV2bPjEzXzjwAqUh8MK6tHrf\nzcyzIuIHgF3AeXQeiPft7HwvibThOJwlrVFmfheYBXYADwP3RsQvA0THmcOsTxokQ0RavSNjv5l5\nI53bfH8FeD3wluqrkm8FXjOc8qTB85qIJKmYZyKSpGKGiCSpmCEiSSpmiEiSihkikqRihogkqZgh\nIkkqZohIkor9f3X4SsSs+H35AAAAAElFTkSuQmCC\n", - "text": [ - "<matplotlib.figure.Figure at 0x10b5b8950>" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 7.7-11, Page No:316" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "Lm_Lp=10**-2 #Length Scale Factor\n", - "vp=1.002*10**-6 #Kinematic viscosity of the prototype in m^2/s\n", - "\n", - "#Calculations\n", - "vm=vp*(Lm_Lp)**1.5 #Required Kinematic Viscosity in m^2/s\n", - "\n", - "#Result\n", - "print \"Looking up in a table we cannot find a fluid of the kinematic viscosity\",vm,\"m^2/s\"\n", - "\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Looking up in a table we cannot find a fluid of the kinematic viscosity 1.002e-09 m^2/s\n" - ] - } - ], - "prompt_number": 2 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter07_1.ipynb b/Fluid_Mechanics-Fundamentals_&_Applications/Chapter07_1.ipynb deleted file mode 100755 index 9cc4d914..00000000 --- a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter07_1.ipynb +++ /dev/null @@ -1,280 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:7a83d458ec863729e5567b39b8a122f73ab73bc391e4a0f9cd56c8645c12c28b" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 07: Dimensional Analysis and Modeling" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 7.7-4, Page No:290" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "g_earth=9.81 #Acceleration due to gravity on earth in m/^2\n", - "theta=(pi*5)/180 #Angle above the horizon in radians\n", - "v=21 #Speed of the baseball in m/s\n", - "zo=2 #Height at wich the ball is left in m\n", - "t_star=2.75 #Time required to hit the ground in s\n", - "\n", - "#Calculations\n", - "#Part(a)\n", - "g_moon=g_earth/6 #Acceleration due to gravity on the moon in m/s^2\n", - "w_o=v*sin(theta) #Vertical component of Speed in m/s\n", - "Fr_square=w_o**2/(g_moon*zo) #Value of froude number square \n", - "t_a=(t_star*zo)/w_o #Estimated time required to hit the ground in s\n", - "#Part(b)\n", - "#simplfying the calculations\n", - "a=w_o**2+(2*zo*g_moon)\n", - "b=a**0.5\n", - "t_b=(w_o+b)/g_moon #Exact time required for the ball to hit the ground in s\n", - "\n", - "#Result\n", - "print \"The estimated time required to hit the ground is\",round(t_a,2),\"s\"\n", - "print \"The exact time required for the ball to hit the ground is\",round(t_b,2),\"s\"\n", - "#Due to the decimal accuracy the answer in textbook differs " - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The estimated time required to hit the ground is 3.01 s\n", - "The exact time required for the ball to hit the ground is 3.04 s\n" - ] - } - ], - "prompt_number": 9 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 7.7-5, Page No:293" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "Vp=50 #Velocity in the prototype in mi/h\n", - "um=1.754*10**-5 #Viscosity in the model in kg/m.s\n", - "up=1.849*10**-5 #Viscosity in the prototype in kg/m.s\n", - "rhop=1.184 #Density of air in prototype in kg/m^3\n", - "rhom=1.269 #Density of air in model in kg/m^3\n", - "Lp_Lm=5 #ratio of length \n", - "\n", - "#Calculations\n", - "a=um/up\n", - "b=rhop/rhom\n", - "Vm=Vp*a*b*Lp_Lm #Velocity in the model in mi/h\n", - "\n", - "#result\n", - "print \"The velocity in the wind tunnel required is\",round(Vm),\"mi/h\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The velocity in the wind tunnel required is 221.0 mi/h\n" - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 7.7-6, Page No:294" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "Fd=94.3 #Average Drag force on the model in N\n", - "Vp=float(50) #Velocity of the prototype in mi/h\n", - "Vm=float(221) #Velocity of the model in mi/h\n", - "rhop=1.184 #Density of air in prototype in kg/m^3\n", - "rhom=1.269 #Density of air in model in kg/m^3\n", - "Lp_Lm=5 #ratio of length \n", - "\n", - "#Calculations\n", - "a=(rhop/rhom)\n", - "c=(Lp_Lm**2)\n", - "b=Vm/Vp\n", - "Fd_p=(Fd*a*c)/(b**2) #Drag Force on the prototype in N\n", - "\n", - "#Result\n", - "print \"The Drag force on the prototype is\",round(Fd_p),\"N\"\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Drag force on the prototype is 113.0 N\n" - ] - } - ], - "prompt_number": 44 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 7.7-10, Page No:313" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "import matplotlib.pyplot as plt\n", - "%matplotlib inline\n", - "\n", - "#Variable Decleration\n", - "Lm=0.991 #Length of the model truck in m\n", - "Hm=0.257 #height of the model truck in m\n", - "Wm=0.159 #Width of the model truck in m\n", - "rho=1.184 #Density of Air in kg/m^3\n", - "u=1.849*10**-5 #Viscosity of air in kg/m.s\n", - "FD_m=89.9 #Drag Force in the model in N\n", - "V_m=70 #Velocity in the model in m/s\n", - "C=16 #Geometric Ratio\n", - "Vp=26.8 #Velocity of the prototype in m/s\n", - "\n", - "#Calculations\n", - "\n", - "V=range(20,75,5) #Velocity array each in m/s\n", - "F=[12.4,19,22.1,29,34.3,39.9,47.2,55.5,66,77.6,89.9] #Drag force array in N\n", - "X=transpose(F) #Transpose of the matrix in order to mutliply\n", - "#Simplfying the calculations by using steps\n", - "\n", - "CD_m1=(X/V)\n", - "CD_m2=CD_m1/V\n", - "CD_m=(2*CD_m2)/(rho*Wm*Hm) #Drag Coefficient \n", - "\n", - "Y=transpose(V)\n", - "Re_m=(rho*Y*Wm)/u #Reynolds Number for each set\n", - "\n", - "#Calculations for prototype\n", - "Re_p=(rho*Vp*C*Wm)/u #Reynolds Number for the prototype\n", - "\n", - "#Aerodynamic Drag Calculations\n", - "FD_p=0.5*rho*Vp**2*C**2*Wm*Hm*CD_m[10] #Aerodynamic Drag on the Vehicle in N\n", - "\n", - "#Result\n", - "print \"The Aerodynamic Drag on the Vehicle is\",round(FD_p),\"N\"\n", - "\n", - "plt.plot(Re_m,CD_m,'ro')\n", - "plt.ylabel('Cd')\n", - "plt.xlabel('Re')\n", - "plt.show()\n", - "\n", - "#The answer in the textbook has been rounded off to the nearest value" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Aerodynamic Drag on the Vehicle is 3373.0 N\n" - ] - }, - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEPCAYAAACDTflkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFK5JREFUeJzt3X+QZWV95/H3127sjj8CKin8AYZUa1wwoGgK3STCNdmZ\n6ThR8quiRAuNlrEqsXuS3Y0sjBS9ZWaTWHFdetwoGiXGimA2CZZUG2bG0pshiaLo8DOA0EAFjBkN\nURKMPcUM3/3jnhnuXHra7sd77u17+v2qujXnPufMOd+HHu6nz3POc25kJpIklXjCsAuQJI0uQ0SS\nVMwQkSQVM0QkScUMEUlSMUNEklSs1hCJiI9ExP6IuOUY68+LiJsiYl9EfDkifrrOeiRJ/RV1zhOJ\niFcADwN/mplnLLP+yZn5nWr5DODqzHxebQVJkvqq1jORzLwO+NYK67/T9fYpwL/UWY8kqb/Gh11A\nRPw88HvAs4DNQy5HkrQGQ7+wnpmfzMzTgFcDHxt2PZKk1Rv6mchhmXldRIxHxDMy88HudRHhA74k\nqUBmRp37H+qZSERMRURUyy8B6A2QwzKzsa9LL7106DXYN/tn/5r3GoRaz0Qi4krgXODEiLgfuBQ4\nDiAzLwd+CbggIh6hcxfX6+qsR5LUX7WGSGae/z3Wvxt492r29c4tWxg/cICDExNsnp3lnK1b+1Kj\nJKncurkm8r387u7dR5a3Ly4CNCZIWq3WsEuoTZP7BvZv1DW9f4NQ62TDfomIx1V5yZYtvOvaa4dS\njySNgoggm3xh/fsxtrQ07BIkacMb2RA5NDk57BIkacMbyRC5eGqKTTMzwy5Dkja8kbmwfsmWLYwt\nLXFocpLpmZnGXFSXpFE2OhfWR6BOSVpPvLAuSVrXDBFJUrGRuSYySHsXFtg9P+8MeUn6HgyRHnsX\nFti1bRs7qlnx0LwZ8pLULw5n9dg9P39UgADsWFxkz86dQ6pIktYvQ6TH+IEDy7Y7Q16SHs8Q6XFw\nYmLZdmfIS9LjGSI9Ns/Osn1q6qg2Z8hL0vKcbLiMvQsL7Nm588gM+U3OkJc0ggYx2dAQkaSGcsa6\nJGldM0QkScUMEUlSMUNEklTMEJEkFTNEJEnFDBFJUjFDRJJUzBCRJBUzRCRJxQwRSVKxWkMkIj4S\nEfsj4pZjrH99RNwUETdHxN9FxJl11iNJ6q+6z0SuAKZXWH8PcE5mngm8C/hgzfVIkvqo1hDJzOuA\nb62w/vOZ+VD19nrg5DrrkST113q6JvIW4NPDLkKStHrjwy4AICJeCbwZ+Mlh1yJJWr2hh0h1Mf1D\nwHRmHnPoa25u7shyq9Wi1WrVXpskjZJ2u0273R7oMWv/ZsOIOBW4JjPPWGbdc4HPAm/IzC+ssA+/\n2VCS1mjkvx43Iq4EzgVOBPYDlwLHAWTm5RHxx8AvAP9Y/ZVHMvPsZfZjiEjSGo18iPSLISJJa+d3\nrEuS1jVDRJJUzBCRJBUzRCRJxQwRSVIxQ0SSVMwQkSQVM0QkScUMEUlSMUNEklTMEJEkFTNEJEnF\nDBFJUjFDRJJUzBCRJBUzRCRJxQwRSVIxQ0SSVMwQkSQVM0QkScUMEUlSMUNEklTMEJEkFTNEJEnF\nDBFJUjFDRJJUzBCRJBUzRCRJxQwRSVKxWkMkIj4SEfsj4pZjrP9PEfH5iFiKiP9WZy2SpP6r+0zk\nCmB6hfUPAjPAH9ZchySpBrWGSGZeB3xrhfXfzMwbgEfqrEOSVA+viUiSio0Pu4DVmpubO7LcarVo\ntVpDq0WS1qN2u0273R7oMSMz6z1AxKnANZl5xgrbXAo8nJnvOcb6rLtOSWqaiCAzo85jrJfhrFo7\nKUmqR61nIhFxJXAucCKwH7gUOA4gMy+PiGcCXwJ+EHgU+Hfg9Mx8uGc/nolI0hoN4kyk9uGsfjBE\nJGntNtJwliRpBBkikqRihogkqZghIkkqZohIkooZIpKkYoaIJKmYISJJKmaISJKKGSKSpGKGiCSp\nmCEiSSpmiEiSihkikqRihogkqZghIkkqZohIkooZIpKkYoaIJKmYISJJKmaISJKKGSKSpGKGiCSp\nmCEiSSo2PuwC1LF3YYHd8/OMHzjAwYkJNs/Ocs7WrcMuS5JWZIisA3sXFti1bRs7FhePtG2vlg0S\nSeuZw1nrwO75+aMCBGDH4iJ7du4cUkWStDqGyDowfuDAsu1jS0sDrkSS1uaYw1kR8UtAAlH9eZTM\n/KvvtfOI+AiwFfhGZp5xjG3mgZ8F/gN4U2buW13pzXFwYmLZ9kOTkwOuRJLWZqUzkVdXrzcDHwZe\nX73+uGpbjSuA6WOtjIhXAc/LzOcDvw68f5X7bZTNs7Nsn5o6qu3iqSk2zcwMqSJJWp1jnolk5psA\nImIPcHpmfr16/yzgo6vZeWZeFxGnrrDJaw7vKzOvj4gTIuKkzNy/quob4vDF80t27mRsaYlDk5NM\nz8x4UV3Sureau7NOAf656/1+4Ll9Ov5zgPu73j8AnFwdY0M5Z+tWQ0PSyFlNiHwG2BURH6dzfeS1\nwJ4+1hA97x93/QVgbm7uyHKr1aLVavWxBEkafe12m3a7PdBjRuayn9lExPOBkzLzbyPiF4FXVKu+\nBXw8M+9e1QE6w1nXLHdhPSI+ALQz86rq/R3Aub3DWRGRx6pTkrS8iCAze39R76uVLqz/H+DfoHMn\nVmb+dmb+NvBJ4L19Ov6ngAsAIuLlwLc32vUQSRplKw1nnZSZN/c2ZubNEfEjq9l5RFwJnAucGBH3\nA5cCx1X7uTwzPx0Rr4qIu4HvAL+25h5IkoZmpeGsuzPzeWtdVweHsyRp7QYxnLXSmcgNEfHrmfnB\nnqLeCny5zqJUPx/4KKkfVgqR3wKujojX81hovBSYAH6h7sJUHx/4KKlfjjmcBRARAbwS+DE6t97e\nlpmfHVBt3XU4nNVH79yyhd/dvftx7Zds2cK7rr12CBVJqsOwh7OoPrk/W73UED7wUVK/+BTfDcgH\nPkrqF0NkA/KBj5L6ZcVrIuuF10T6b+/CAnu6Hvi4yQc+So0ziGsihogkNdSwH3siSdKKDBFJUjFD\nRJJUzBCRJBUzRCRJxQwRSVIxQ0SSVMwQkSQVM0QkScUMEUlSMUNEklTMEJEkFTNEJEnFDBFJUjFD\nRJJUzBCRJBUzRCRJxQwRSVIxQ0SSVMwQkSQVqzVEImI6Iu6IiLsi4sJl1j8tIq6OiJsi4vqIeGGd\n9UiS+qu2EImIMeB9wDRwOnB+RJzWs9nFwFcy80XABcBlddUjSeq/Os9Ezgbuzsz7MvMR4CrgvJ5t\nTgM+B5CZdwKnRsQP1ViTJKmP6gyR5wD3d71/oGrrdhPwiwARcTbww8DJNdYkSeqj8Rr3navY5veB\nyyJiH3ALsA84tNyGc3NzR5ZbrRatVuv7r1CSGqTdbtNutwd6zMhczWd9wY4jXg7MZeZ09f4i4NHM\n/IMV/s69wBmZ+XBPe9ZVpyQ1VUSQmVHnMeoczroBeH5EnBoRTwReC3yqe4OIOL5aR0S8Ffib3gCR\nJK1ftQ1nZebBiHg7sAsYAz6cmbdHxNuq9ZfTuWvrTyIigVuBt9RVj4Zr78ICu+fnGT9wgIMTE2ye\nneWcrVuHXZak71Ntw1n95HDWaNu7sMCubdvYsbh4pG371BRbLrvMIJFqNOrDWRIAu+fnjwoQgB2L\ni+zZuXNIFUnqF0NEtRs/cGDZ9rGlpQFXIqnfDBHV7uDExLLthyYnB1yJpH4zRFS7zbOzbJ+aOqrt\n4qkpNs3MDKkiSf3ihXUNxN6FBfbs3MnY0hKHJifZNDPjRXWpZoO4sG6ISFJDeXeWJGldM0QkScUM\nEUlSMUNEklTMEJEkFTNEJEnFDBFJUjFDRJJUzBCRJBUzRCRJxQwRSVIxQ0SSVMwQkSQVM0QkScUM\nEUlSMUNEklTMEJEkFTNEJEnFxoddgFSXvQsL7J6fZ/zAAQ5OTLB5dtbvdZf6zBBRI+1dWGDXtm3s\nWFw80ra9WjZIpP5xOEuNtHt+/qgAAdixuMienTuHVJHUTIaIGmn8wIFl28eWlgZcidRstYZIRExH\nxB0RcVdEXLjM+hMj4tqIuDEibo2IN9VZjzaOgxMTy7YfmpwccCVSs9UWIhExBrwPmAZOB86PiNN6\nNns7sC8zXwy0gPdEhNdp9H3bPDvL9qmpo9ounppi08zMkCqSmqnOD+yzgbsz8z6AiLgKOA+4vWub\nrwNnVss/CDyYmQdrrEkbxOGL55fs3MnY0hKHJieZnpnxorrUZ5GZ9ew44peBLZn51ur9G4CXZeZM\n1zZPAD4L/CjwVOBXMvOvl9lX1lWnJDVVRJCZUecx6rwmsppP/YuBGzPz2cCLgf8bEU+tsSZJUh/V\nOZz1NeCUrvenAA/0bPMTwA6AzFyMiHuBFwA39O5sbm7uyHKr1aLVavW3Wkkace12m3a7PdBj1jmc\nNQ7cCfwM8E/AF4HzM/P2rm3+N/BQZv7PiDgJ+DJwZmb+a8++HM6SpDUaxHBWbWcimXkwIt4O7ALG\ngA9n5u0R8bZq/eXA/wKuiIib6AytvaM3QCRJ61dtZyL95JmIJK3dSJ+JSBuND3zURmSISH3gAx+1\nUfnsLKkPfOCjNipDROoDH/iojcoQkfrABz5qozJEpD7wgY/aqLzFV+qTvQsL7Ol64OMmH/ioIRvE\nLb6GiCQ1lPNEJK1o0HNThjEXZiP0cZQZItKIGvTclGHMhdkIfRx5mbnuX50yJXXbvnlzJjzu9c4t\nWxpxvGEccxh9rFP12Vnr57N3Z0kjatBzU4YxF2Yj9HHUGSLSiBr03JRhzIXZCH0cdYaINKIGPTdl\nGHNhNkIfR523+EojbNBzU4YxF2Yj9LEuzhOpGCKStHaDCBGHsyRJxQwRSVIxQ0SSVMwQkSQVM0Qk\nScUMEUlSMUNEklTMEJEkFTNEJEnFDBFJUjFDRJJUzBCRJBWrNUQiYjoi7oiIuyLiwmXW//eI2Fe9\nbomIgxFxQp01SZL6p7YQiYgx4H3ANHA6cH5EnNa9TWb+YWaelZlnARcB7cz8dl01rVftdnvYJdSm\nyX0D+zfqmt6/QajzTORs4O7MvC8zHwGuAs5bYftfBa6ssZ51q8n/kJvcN7B/o67p/RuEOkPkOcD9\nXe8fqNoeJyKeBGwB/rLGeiRJfVZniKzlW6ReDfztRhzKkqRRVts3G0bEy4G5zJyu3l8EPJqZf7DM\ntlcDn8jMq46xL7/WUJIKjOzX40bEOHAn8DPAPwFfBM7PzNt7tjseuAc4OTO/W0sxkqRajNe148w8\nGBFvB3YBY8CHM/P2iHhbtf7yatOfB3YZIJI0emo7E5EkNV+d80ROiYjPRcRtEXFrRMxW7U+PiD0R\n8dWI2N09uTAiLqomJt4REZu72l9aTUa8KyIu62qfiIhPVO1fiIgf7lr3xuoYX42IC2ro32REXB8R\nN0bEP0TE7zWpf13HGasmg17TtP5FxH0RcXPVvy82sH8nRMRfRMTt1b/RlzWhfxHxgnhskvK+iHgo\nImab0Leeem+ravt4Vc/67F9m1vICngm8uFp+Cp3rI6cB7wbeUbVfCPx+tXw6cCNwHHAqcDePnSl9\nETi7Wv40MF0t/wbwR9Xya4GrquWnA4vACdVrETihhj4+qfpzHPgC8FNN6l91rP8K/Bnwqep9Y/oH\n3As8vaetSf37KPDmrn+jxzepf9WxngB8HTilKX2rarwHmKjefwJ443rtX99/qCv8h/kk8F+AO4CT\nqrZnAndUyxcBF3Ztfy3wcuBZwO1d7a8DPtC1zcu6/if5ZrV8PvD+rr/zAeB1NfbtScCXgBc2qX/A\nycBngFcC11RtTerfvcAzetoa0T86gXHPMu2N6F/XvjcD1zWpb3Q+yO8EnlYd+xpg03rt30AewBgR\npwJnAdfT+Y+wv1q1HzipWn42nQmJhx2enNjb/jUem7R4ZEJjZh4EHoqIZ6ywr76KiCdExI10+vG5\nzLyNBvUPeC/wO8CjXW1N6l8Cn4mIGyLirVVbU/r3I8A3I+KKiPhKRHwoIp5Mc/p32Ot47EkXjehb\nZv4r8B7gH+nc2frtzNzDOu1f7SESEU+hMxN9W2b+e/e67ERd1l1DXTLz0cx8MZ3f2M+JiFf2rB/Z\n/kXEzwHfyMx9wLL3mY9y/yo/mZ3ntv0s8JsR8YrulSPev3HgJXSGLF4CfAf4H90bjHj/iIgn0pmo\n/P96141y3yJiCvgtOkNTzwaeEhFv6N5mPfWv7qf4HkcnQD6WmZ+smvdHxDOr9c8CvlG1f43OuOZh\nJ9NJwa9Vy73th//Oc6t9jQPHZ+aDy+zrFI5O177KzIeABeClNKd/PwG8JiLupfOb3k9HxMdoTv/I\nzK9Xf34TuJrO896a0r8HgAcy80vV+7+gEyr/3JD+QSf8v1z9/KA5P7sfB/4+Mx+szhL+CvjPrNef\nXR3jlNVYWgB/Cry3p/3dVON3dH4z6r049EQ6p+KLPHZx6HrgZdU+ey8Ovb9rvK/74tA9dC4MPe3w\ncp/7d+LhfQI/AOylM7GyEf3r6eu5PHZNpBH9o3Md66nV8pOBv6Mzvt6I/lXH2Qv8aLU8V/WtSf27\nCnhj1/tG9A14EXArnc+VoHODxG+u1/7V8qFTFfNTdMbSbwT2Va/pqsjPAF8FdncXCFxM586CO4At\nXe0vBW6p1s13tU8Afw7cRefuqFO71v1a1X5X9z+0PvbvDOArVf9uBn6n64cw8v3r6eu5PHZ3ViP6\nV/3PdmP1uhW4qEn9q47xIjo3fNxE57fZ45vSPzrB/y9Uvwg08Gf3DuC2qraP0rnzal32z8mGkqRi\nfj2uJKmYISJJKmaISJKKGSKSpGKGiCSpmCEiSSpW25dSSU0TEYfozAkao3Pf/QWZ+fBwq5KGyzMR\nafX+IzPPyswzgX8D3jbsgqRhM0SkMp8HpqDzwLyI+OvqacB7I+IFQ65NGhhDRFqjiBij85ytW6um\nDwIzmfnjdB6d/0fDqk0aNB97Iq1SRByk8xyi5wD30fninyfReZrqnV2bPjEzXzjwAqUh8MK6tHrf\nzcyzIuIHgF3AeXQeiPft7HwvibThOJwlrVFmfheYBXYADwP3RsQvA0THmcOsTxokQ0RavSNjv5l5\nI53bfH8FeD3wluqrkm8FXjOc8qTB85qIJKmYZyKSpGKGiCSpmCEiSSpmiEiSihkikqRihogkqZgh\nIkkqZohIkor9f3X4SsSs+H35AAAAAElFTkSuQmCC\n", - "text": [ - "<matplotlib.figure.Figure at 0x10b5b8950>" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 7.7-11, Page No:316" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "Lm_Lp=10**-2 #Length Scale Factor\n", - "vp=1.002*10**-6 #Kinematic viscosity of the prototype in m^2/s\n", - "\n", - "#Calculations\n", - "vm=vp*(Lm_Lp)**1.5 #Required Kinematic Viscosity in m^2/s\n", - "\n", - "#Result\n", - "print \"Looking up in a table we cannot find a fluid of the kinematic viscosity\",vm,\"m^2/s\"\n", - "\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Looking up in a table we cannot find a fluid of the kinematic viscosity 1.002e-09 m^2/s\n" - ] - } - ], - "prompt_number": 2 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter08.ipynb b/Fluid_Mechanics-Fundamentals_&_Applications/Chapter08.ipynb deleted file mode 100755 index e70edd03..00000000 --- a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter08.ipynb +++ /dev/null @@ -1,475 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:11a32dcbb7adff422edff329d33e29629cd83e2f8ab7cf7ac7803e8cbd9385ca" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 08:Internal Flow" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 8.8-1, Page No:349" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "u_max=6 #Maximum Velocity in m/s\n", - "R=0.02 #Radius of the Pipe in m\n", - "L=70 #Length of the pipe in m\n", - "rho=1252 #Density of glycerin in kg/m^3\n", - "u=0.3073 #Viscosity of glycerin in kg/m.s\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "C=10**-3 #Conversion factor\n", - "\n", - "#Calculations\n", - "D=R*2 #Diameter of the pipe in m\n", - "V=u_max/2 #Average Velocity in m/s\n", - "V_dot=V*(pi*R**2) #Volumertic Flow rate in m^3/s\n", - "Re=(rho*V*D)/u #Reynolds Number \n", - "f=64/Re #Friction Factor\n", - "h_L=(f*L*V**2)/(2*g*D) #Head loss in m\n", - "theta=(pi*15)/180 #Angle in radians\n", - "\n", - "#Applying the energy balance equation\n", - "#As z2=z1 z2-z1=0 hence we do not consider it in the computation\n", - "delta_P=rho*g*(h_L)*C #Pressure difference in kPa\n", - "W_dot=V_dot*delta_P #Useful pumping Power in kW\n", - "\n", - "#Inclined Case\n", - "delta_z=L*sin(theta) #elevation difference in m\n", - "delta_P_up=(rho*g*delta_z*C)+(rho*g*h_L*C) #Pressure difference up in kPa\n", - "V_dot_upward=W_dot/delta_P_up #Flow rate through the upward pipe in m^3/s\n", - "\n", - "#Percentage Calculations\n", - "per_V=((V_dot-V_dot_upward)/V_dot)*100 #Percentage change in the flow rate\n", - "\n", - "#Result\n", - "print \"The velocity of the flow is\",round(V),\"m/s\"\n", - "print \"The pressure difference across 70m long pipe is\",round(delta_P),\"kPa\"\n", - "print \"The power required to maintain the flow is\",round(W_dot,2),\"kW\"\n", - "print \"The percentage change in the flow rate is\",round(per_V,1),\"%\"\n", - "#Answer for percentage change and flow rate through the pipe upward direction are incorrect" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The velocity of the flow is 3.0 m/s\n", - "The pressure difference across 70m long pipe is 1291.0 kPa\n", - "The power required to maintain the flow is 4.87 kW\n", - "The percentage change in the flow rate is 14.7 %\n" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 8.8-2, Page No:350" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "rho=1000 #Density of water in kg/m^3\n", - "u=1.519*10**-3 #Viscosity of water in kg/m.s\n", - "L=9 #Length of the pipe in m\n", - "D=0.003 #Diameter of the pipe in m\n", - "V=0.9 #Average velocity inside the pipe of water in m/s\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "\n", - "#Calculations\n", - "#Part(a)\n", - "\n", - "Re=(rho*V*D)/u #Reynolds Number\n", - "f=64/Re #Friction Factor\n", - "h_L=(f*L*V**2)/(2*g*D) #Head Loss in m\n", - "\n", - "#Part(b)\n", - "delta_P=(f*L*V**2)/(2*D) #Pressure difference in kPa\n", - "\n", - "#Part(c)\n", - "V_dot=(V*pi*D**2)/4 #Volumetric Flow rate in m^3/s\n", - "W_dot=V_dot*delta_P*1000 #Pumping power required in W\n", - "\n", - "#Result\n", - "print \"The Head Loss is\",round(h_L,2),\"m\"\n", - "print \"The pressure drop is\",round(delta_P,1),\"kPa\"\n", - "print \"The pumping power required is\",round(W_dot,2),\"W\"\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Head Loss is 4.46 m\n", - "The pressure drop is 43.7 kPa\n", - "The pumping power required is 0.28 W\n" - ] - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 8.8-3, Page No:360" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "rho=999 #Density of water in kg/m^3\n", - "u=1.138*10**-3 #Viscosity in kg/m.s\n", - "D=0.05 #Diameter of the pipe in m\n", - "V_dot= 0.006 #Volumetric Flow rate in m^3/s\n", - "L=60 #Length of the pipe in m\n", - "e=0.002 #Relative roughness value from table\n", - "f=0.0172 #Value from Moody Chart\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "\n", - "#Calculations\n", - "V=round((V_dot*4)/(pi*D**2),2) #Velocity of the flow in the pipe in m/s\n", - "Re=(rho*V*D)/u #Reynolds Number\n", - "e_D=e/(D*1000) #Relative roughness\n", - "\n", - "#Taking the value for root f from Moody Chart as f=0.0172\n", - "delta_P=(f*L*rho*V**2)/(D*2) #Pressure Drop in N/m^2\n", - "h_L=delta_P/(rho*g) #Head Loss in m\n", - "W_pump=V_dot*delta_P #Required Power in W\n", - "\n", - "#Result\n", - "print \"The Pressure Drop is\",round(delta_P),\"N/m^2\"\n", - "print \"The head loss is\",round(h_L,2),\"m\"\n", - "print \"The Power required is\",round(W_pump),\"W\" \n", - "\n", - "#The answer for delta_P is off by 4 due to decimal accuracy in the formula\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Pressure Drop is 96536.0 N/m^2\n", - "The head loss is 9.85 m\n", - "The Power required is 579.0 W\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 8.8-4, Page No:361" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V_dot=0.35 #Volumertic flow rate in m^3/s\n", - "L=150 #Length of the pipe in m\n", - "rho=1.145 #Density of the fluid in kg/m^3\n", - "u=1.895*10**-5 #Dynamic viscosity of the fluid in kg/m.s\n", - "v=1.655*10**-5 #Kinematic Viscosity of the fluid in m^2/s\n", - "h_l=20 #Allowable head loss in m\n", - "g= 9.81 #Acceleration due to gravity in m/s^2\n", - "\n", - "#The following three equations are solved using EES hence we will be taking the values directly here\n", - "D=0.267 #Diameter of the pipe in m\n", - "f=0.0180\n", - "V=6.24 #Velocity of low in m/s\n", - "Re=100800 #Reynolds Number\n", - "\n", - "#Calculations\n", - "#Simplfying the calculations\n", - "c=V_dot**9.4\n", - "d=L/(g*h_l)\n", - "f=d**5.2\n", - "#Using Swamee-Jain Formula\n", - "D=0.66*((v*c*f)**0.04) #Diameter of the pipe in m\n", - "\n", - "#Result\n", - "print \"The diameter of the pipe is\",round(D,3),\"m\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The diameter of the pipe is 0.271 m\n" - ] - } - ], - "prompt_number": 18 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 8.8-5, Page No:362" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Deceleration\n", - "#Using the computationally simple method given in the discussion\n", - "\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "D=0.267 #Diameter in m\n", - "h_l=20 #Head loss in m\n", - "L=300 #Length of the pipe in m\n", - "v=1.655*10**-5 #Kinematic Voscosity in m^2/s\n", - "V_dot_old=0.35 #Volumetric Flow rate in m^3/s\n", - "\n", - "#Calculations\n", - "a=((3.17*v**2*L)/(g*D**3*h_l))**0.5\n", - "b=log(a)\n", - "c=((g*D**5*h_l)/L)**0.5\n", - "\n", - "V_dot_new=-0.965*b*c #Volumetric Flow rate in m^3/s\n", - "V_dot=V_dot_old-V_dot_new #Drop in the flow rate in m^/s\n", - "\n", - "print \"The drop in the flow rate is\",round(V_dot,2),\"m^3/s\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The drop in the flow rate is 0.11 m^3/s\n" - ] - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 8.8-6, Page No:370" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "D1=0.06 #Diameter of the pipe at section 1 in m\n", - "D2=0.09 #Diameter of the pipe at section 2 in m\n", - "V1=7 #Average Velocity at section 1 in m/s\n", - "K_l=0.133 # interpolating from table\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "P1=150 #Pressure head at section one in kPa\n", - "rho=1000 #Density of the fluid in kg/m^3\n", - "alpha1=1.06 #momentum correction factor\n", - "alpha2=alpha1 #momentum correction factor\n", - "C=10**-3 #Conversion factor\n", - "\n", - "#Calculations\n", - "#Applying the one dimensional continuity equation\n", - "V2=(D1**2/D2**2)*V1 #Velocity of the fluid at section 2 in m/s\n", - "\n", - "#Irreversible head loss\n", - "h_l=K_l*(V1**2/(2*g)) #Irreversible head loss in m\n", - "\n", - "#Using the energy equation\n", - "P2=P1+rho*(((alpha1*V1**2-alpha2*V2**2)*0.5)-g*h_l)*C #Pressure head at section 2 in kPa\n", - "\n", - "#Result\n", - "print \"The head loss is\",round(h_l,4),\"m\"\n", - "print \"The pressure head at section two is\",round(P2),\"kPa\"\n", - "#The answer differs due to decimal point accuracy\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The head loss is 0.3322 m\n", - "The pressure head at section two is 168.0 kPa\n" - ] - } - ], - "prompt_number": 21 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 8.8-8, Page No:377" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable decleration\n", - "rho=999.7 #Density of the fluid in kg/m^3\n", - "u=1.307*10**-3 # Dynamic Viscosity in kg/m.s \n", - "e=0.00026 #Roughness of cast iron in m\n", - "V_dot=0.006 #Volumetric Flow rate in m^3/s\n", - "z2=4 #static head at section 2 in m\n", - "D=0.05 #Diameter of the pipe in m\n", - "#Kl declerations\n", - "Kl_entrance=0.5\n", - "Kl_elbow=0.3\n", - "Kl_valve=0.2\n", - "Kl_exit=1.06\n", - "f=0.0315 #Using Moody Chart and Colebrook Equation friction factor\n", - "L=89 #Length of the pipe in m \n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "\n", - "#Calculations\n", - "V=(V_dot*4)/(pi*D**2) #Average Velocity in the pipe in m/s\n", - "Re=(rho*V*D)/u #Reynolds Number\n", - "e_D=e/D\n", - "sum_Kl=Kl_entrance+2*Kl_elbow+Kl_valve+Kl_exit #Summation of all Kl\n", - "#Total Head Loss\n", - "h_l=(((f*L)/D)+sum_Kl)*(V**2/(2*g)) #Total head loss in m\n", - "\n", - "#Using Energy equation\n", - "z1=z2+h_l #Free surface of the first reservoir in m\n", - "\n", - "#Result\n", - "print \"The elevation of the free surface of the first reservoir is\",round(z1,1),\"m\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The elevation of the free surface of the first reservoir is 31.8 m\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 8.8-10, Page No:385" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "rho_met=788.4 #Density of the fluid in kg/m^3\n", - "u=5.857*10**-4 #Dynamic Viscosity in kg/m.s\n", - "rho_hg=13600 #Density of mercury in kg/m^3\n", - "d=0.03 #diameter of the orifice meter in m\n", - "D=0.04 #Diameter of the pipe in m\n", - "h=0.11 #differential height of the manometer in m\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "Cd=0.61 #Coefficient of discharge\n", - "\n", - "#Calculations\n", - "beta=d/D #Diameter ratio\n", - "Ao=(pi*d**2)/4 #Area of throat in m^2\n", - "\n", - "#Pressure Drop\n", - "delta_P=(rho_hg-rho_met)*g*h #Pressure drop in m\n", - "\n", - "#Flow rate\n", - "V_dot=Ao*Cd*(((2*delta_P)/(rho_met*(1-beta**4)))**0.5) #Volumetric Flow rate in m^3/s\n", - "V=(V_dot*4)/(pi*D**2) #Average Velocity in m/s\n", - "\n", - "#Reynolds Number\n", - "Re=(rho_met*V*D)/u #Reynolds Number\n", - "\n", - "#Coefficient of Discharge\n", - "Cd_calculations=0.5959+0.0312*beta**2.1-0.184*beta**8+((91.71*beta**2.50)/Re**0.75)\n", - "\n", - "#Result\n", - "print \"The flow rate of methanol in the pipe is\",round(V_dot,5),\"m^3/s\"\n", - "print \"The average velocity of low in the pipe is\",round(V,2),\"m/s\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The flow rate of methanol in the pipe is 0.00309 m^3/s\n", - "The average velocity of low in the pipe is 2.46 m/s\n" - ] - } - ], - "prompt_number": 5 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter08_1.ipynb b/Fluid_Mechanics-Fundamentals_&_Applications/Chapter08_1.ipynb deleted file mode 100755 index e70edd03..00000000 --- a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter08_1.ipynb +++ /dev/null @@ -1,475 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:11a32dcbb7adff422edff329d33e29629cd83e2f8ab7cf7ac7803e8cbd9385ca" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 08:Internal Flow" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 8.8-1, Page No:349" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "u_max=6 #Maximum Velocity in m/s\n", - "R=0.02 #Radius of the Pipe in m\n", - "L=70 #Length of the pipe in m\n", - "rho=1252 #Density of glycerin in kg/m^3\n", - "u=0.3073 #Viscosity of glycerin in kg/m.s\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "C=10**-3 #Conversion factor\n", - "\n", - "#Calculations\n", - "D=R*2 #Diameter of the pipe in m\n", - "V=u_max/2 #Average Velocity in m/s\n", - "V_dot=V*(pi*R**2) #Volumertic Flow rate in m^3/s\n", - "Re=(rho*V*D)/u #Reynolds Number \n", - "f=64/Re #Friction Factor\n", - "h_L=(f*L*V**2)/(2*g*D) #Head loss in m\n", - "theta=(pi*15)/180 #Angle in radians\n", - "\n", - "#Applying the energy balance equation\n", - "#As z2=z1 z2-z1=0 hence we do not consider it in the computation\n", - "delta_P=rho*g*(h_L)*C #Pressure difference in kPa\n", - "W_dot=V_dot*delta_P #Useful pumping Power in kW\n", - "\n", - "#Inclined Case\n", - "delta_z=L*sin(theta) #elevation difference in m\n", - "delta_P_up=(rho*g*delta_z*C)+(rho*g*h_L*C) #Pressure difference up in kPa\n", - "V_dot_upward=W_dot/delta_P_up #Flow rate through the upward pipe in m^3/s\n", - "\n", - "#Percentage Calculations\n", - "per_V=((V_dot-V_dot_upward)/V_dot)*100 #Percentage change in the flow rate\n", - "\n", - "#Result\n", - "print \"The velocity of the flow is\",round(V),\"m/s\"\n", - "print \"The pressure difference across 70m long pipe is\",round(delta_P),\"kPa\"\n", - "print \"The power required to maintain the flow is\",round(W_dot,2),\"kW\"\n", - "print \"The percentage change in the flow rate is\",round(per_V,1),\"%\"\n", - "#Answer for percentage change and flow rate through the pipe upward direction are incorrect" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The velocity of the flow is 3.0 m/s\n", - "The pressure difference across 70m long pipe is 1291.0 kPa\n", - "The power required to maintain the flow is 4.87 kW\n", - "The percentage change in the flow rate is 14.7 %\n" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 8.8-2, Page No:350" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "rho=1000 #Density of water in kg/m^3\n", - "u=1.519*10**-3 #Viscosity of water in kg/m.s\n", - "L=9 #Length of the pipe in m\n", - "D=0.003 #Diameter of the pipe in m\n", - "V=0.9 #Average velocity inside the pipe of water in m/s\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "\n", - "#Calculations\n", - "#Part(a)\n", - "\n", - "Re=(rho*V*D)/u #Reynolds Number\n", - "f=64/Re #Friction Factor\n", - "h_L=(f*L*V**2)/(2*g*D) #Head Loss in m\n", - "\n", - "#Part(b)\n", - "delta_P=(f*L*V**2)/(2*D) #Pressure difference in kPa\n", - "\n", - "#Part(c)\n", - "V_dot=(V*pi*D**2)/4 #Volumetric Flow rate in m^3/s\n", - "W_dot=V_dot*delta_P*1000 #Pumping power required in W\n", - "\n", - "#Result\n", - "print \"The Head Loss is\",round(h_L,2),\"m\"\n", - "print \"The pressure drop is\",round(delta_P,1),\"kPa\"\n", - "print \"The pumping power required is\",round(W_dot,2),\"W\"\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Head Loss is 4.46 m\n", - "The pressure drop is 43.7 kPa\n", - "The pumping power required is 0.28 W\n" - ] - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 8.8-3, Page No:360" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "rho=999 #Density of water in kg/m^3\n", - "u=1.138*10**-3 #Viscosity in kg/m.s\n", - "D=0.05 #Diameter of the pipe in m\n", - "V_dot= 0.006 #Volumetric Flow rate in m^3/s\n", - "L=60 #Length of the pipe in m\n", - "e=0.002 #Relative roughness value from table\n", - "f=0.0172 #Value from Moody Chart\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "\n", - "#Calculations\n", - "V=round((V_dot*4)/(pi*D**2),2) #Velocity of the flow in the pipe in m/s\n", - "Re=(rho*V*D)/u #Reynolds Number\n", - "e_D=e/(D*1000) #Relative roughness\n", - "\n", - "#Taking the value for root f from Moody Chart as f=0.0172\n", - "delta_P=(f*L*rho*V**2)/(D*2) #Pressure Drop in N/m^2\n", - "h_L=delta_P/(rho*g) #Head Loss in m\n", - "W_pump=V_dot*delta_P #Required Power in W\n", - "\n", - "#Result\n", - "print \"The Pressure Drop is\",round(delta_P),\"N/m^2\"\n", - "print \"The head loss is\",round(h_L,2),\"m\"\n", - "print \"The Power required is\",round(W_pump),\"W\" \n", - "\n", - "#The answer for delta_P is off by 4 due to decimal accuracy in the formula\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Pressure Drop is 96536.0 N/m^2\n", - "The head loss is 9.85 m\n", - "The Power required is 579.0 W\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 8.8-4, Page No:361" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V_dot=0.35 #Volumertic flow rate in m^3/s\n", - "L=150 #Length of the pipe in m\n", - "rho=1.145 #Density of the fluid in kg/m^3\n", - "u=1.895*10**-5 #Dynamic viscosity of the fluid in kg/m.s\n", - "v=1.655*10**-5 #Kinematic Viscosity of the fluid in m^2/s\n", - "h_l=20 #Allowable head loss in m\n", - "g= 9.81 #Acceleration due to gravity in m/s^2\n", - "\n", - "#The following three equations are solved using EES hence we will be taking the values directly here\n", - "D=0.267 #Diameter of the pipe in m\n", - "f=0.0180\n", - "V=6.24 #Velocity of low in m/s\n", - "Re=100800 #Reynolds Number\n", - "\n", - "#Calculations\n", - "#Simplfying the calculations\n", - "c=V_dot**9.4\n", - "d=L/(g*h_l)\n", - "f=d**5.2\n", - "#Using Swamee-Jain Formula\n", - "D=0.66*((v*c*f)**0.04) #Diameter of the pipe in m\n", - "\n", - "#Result\n", - "print \"The diameter of the pipe is\",round(D,3),\"m\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The diameter of the pipe is 0.271 m\n" - ] - } - ], - "prompt_number": 18 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 8.8-5, Page No:362" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Deceleration\n", - "#Using the computationally simple method given in the discussion\n", - "\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "D=0.267 #Diameter in m\n", - "h_l=20 #Head loss in m\n", - "L=300 #Length of the pipe in m\n", - "v=1.655*10**-5 #Kinematic Voscosity in m^2/s\n", - "V_dot_old=0.35 #Volumetric Flow rate in m^3/s\n", - "\n", - "#Calculations\n", - "a=((3.17*v**2*L)/(g*D**3*h_l))**0.5\n", - "b=log(a)\n", - "c=((g*D**5*h_l)/L)**0.5\n", - "\n", - "V_dot_new=-0.965*b*c #Volumetric Flow rate in m^3/s\n", - "V_dot=V_dot_old-V_dot_new #Drop in the flow rate in m^/s\n", - "\n", - "print \"The drop in the flow rate is\",round(V_dot,2),\"m^3/s\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The drop in the flow rate is 0.11 m^3/s\n" - ] - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 8.8-6, Page No:370" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "D1=0.06 #Diameter of the pipe at section 1 in m\n", - "D2=0.09 #Diameter of the pipe at section 2 in m\n", - "V1=7 #Average Velocity at section 1 in m/s\n", - "K_l=0.133 # interpolating from table\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "P1=150 #Pressure head at section one in kPa\n", - "rho=1000 #Density of the fluid in kg/m^3\n", - "alpha1=1.06 #momentum correction factor\n", - "alpha2=alpha1 #momentum correction factor\n", - "C=10**-3 #Conversion factor\n", - "\n", - "#Calculations\n", - "#Applying the one dimensional continuity equation\n", - "V2=(D1**2/D2**2)*V1 #Velocity of the fluid at section 2 in m/s\n", - "\n", - "#Irreversible head loss\n", - "h_l=K_l*(V1**2/(2*g)) #Irreversible head loss in m\n", - "\n", - "#Using the energy equation\n", - "P2=P1+rho*(((alpha1*V1**2-alpha2*V2**2)*0.5)-g*h_l)*C #Pressure head at section 2 in kPa\n", - "\n", - "#Result\n", - "print \"The head loss is\",round(h_l,4),\"m\"\n", - "print \"The pressure head at section two is\",round(P2),\"kPa\"\n", - "#The answer differs due to decimal point accuracy\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The head loss is 0.3322 m\n", - "The pressure head at section two is 168.0 kPa\n" - ] - } - ], - "prompt_number": 21 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 8.8-8, Page No:377" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable decleration\n", - "rho=999.7 #Density of the fluid in kg/m^3\n", - "u=1.307*10**-3 # Dynamic Viscosity in kg/m.s \n", - "e=0.00026 #Roughness of cast iron in m\n", - "V_dot=0.006 #Volumetric Flow rate in m^3/s\n", - "z2=4 #static head at section 2 in m\n", - "D=0.05 #Diameter of the pipe in m\n", - "#Kl declerations\n", - "Kl_entrance=0.5\n", - "Kl_elbow=0.3\n", - "Kl_valve=0.2\n", - "Kl_exit=1.06\n", - "f=0.0315 #Using Moody Chart and Colebrook Equation friction factor\n", - "L=89 #Length of the pipe in m \n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "\n", - "#Calculations\n", - "V=(V_dot*4)/(pi*D**2) #Average Velocity in the pipe in m/s\n", - "Re=(rho*V*D)/u #Reynolds Number\n", - "e_D=e/D\n", - "sum_Kl=Kl_entrance+2*Kl_elbow+Kl_valve+Kl_exit #Summation of all Kl\n", - "#Total Head Loss\n", - "h_l=(((f*L)/D)+sum_Kl)*(V**2/(2*g)) #Total head loss in m\n", - "\n", - "#Using Energy equation\n", - "z1=z2+h_l #Free surface of the first reservoir in m\n", - "\n", - "#Result\n", - "print \"The elevation of the free surface of the first reservoir is\",round(z1,1),\"m\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The elevation of the free surface of the first reservoir is 31.8 m\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 8.8-10, Page No:385" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "rho_met=788.4 #Density of the fluid in kg/m^3\n", - "u=5.857*10**-4 #Dynamic Viscosity in kg/m.s\n", - "rho_hg=13600 #Density of mercury in kg/m^3\n", - "d=0.03 #diameter of the orifice meter in m\n", - "D=0.04 #Diameter of the pipe in m\n", - "h=0.11 #differential height of the manometer in m\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "Cd=0.61 #Coefficient of discharge\n", - "\n", - "#Calculations\n", - "beta=d/D #Diameter ratio\n", - "Ao=(pi*d**2)/4 #Area of throat in m^2\n", - "\n", - "#Pressure Drop\n", - "delta_P=(rho_hg-rho_met)*g*h #Pressure drop in m\n", - "\n", - "#Flow rate\n", - "V_dot=Ao*Cd*(((2*delta_P)/(rho_met*(1-beta**4)))**0.5) #Volumetric Flow rate in m^3/s\n", - "V=(V_dot*4)/(pi*D**2) #Average Velocity in m/s\n", - "\n", - "#Reynolds Number\n", - "Re=(rho_met*V*D)/u #Reynolds Number\n", - "\n", - "#Coefficient of Discharge\n", - "Cd_calculations=0.5959+0.0312*beta**2.1-0.184*beta**8+((91.71*beta**2.50)/Re**0.75)\n", - "\n", - "#Result\n", - "print \"The flow rate of methanol in the pipe is\",round(V_dot,5),\"m^3/s\"\n", - "print \"The average velocity of low in the pipe is\",round(V,2),\"m/s\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The flow rate of methanol in the pipe is 0.00309 m^3/s\n", - "The average velocity of low in the pipe is 2.46 m/s\n" - ] - } - ], - "prompt_number": 5 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter09.ipynb b/Fluid_Mechanics-Fundamentals_&_Applications/Chapter09.ipynb deleted file mode 100755 index 3740096e..00000000 --- a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter09.ipynb +++ /dev/null @@ -1,70 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:1c4d98200c8a1e6b771808b4d675ec239e0025ee2f57682b5788ea8e65d51528" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 09:Differential Analysis of Fluid Flow" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 9.9-11,Page No:437" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V=1 #Velocity of water in the channel in m/s\n", - "w=2 #Width of the channel in m\n", - "psi_wall=0 #Streamline at the wall m^2/s\n", - "psi_dividing=V #Streamline at the dividing m^2/s\n", - "delta=0.21\n", - "psi_18=1.8 #Streamline at 1.8 in m^2/s\n", - "psi_16=1.6 #Streamline at 1.6 in m^2/s\n", - "\n", - "#Calculations\n", - "#Volumetric Flow rate per unit width\n", - "V_dot_by_w=psi_dividing-psi_wall #Volumertic Flow rate per unit width in m^2/s\n", - "V_dot=V_dot_by_w*w #Volumetric flow Rate in m^3/s\n", - "\n", - "#Estimation of the velocity at A\n", - "V_A=(psi_18-psi_16)/delta #Velocity at point A in m/s\n", - "\n", - "#Result\n", - "print \"The velocity at point A is\",round(V_A,2),\"m/s\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The velocity at point A is 0.95 m/s\n" - ] - } - ], - "prompt_number": 1 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter09_1.ipynb b/Fluid_Mechanics-Fundamentals_&_Applications/Chapter09_1.ipynb deleted file mode 100755 index 3740096e..00000000 --- a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter09_1.ipynb +++ /dev/null @@ -1,70 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:1c4d98200c8a1e6b771808b4d675ec239e0025ee2f57682b5788ea8e65d51528" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 09:Differential Analysis of Fluid Flow" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 9.9-11,Page No:437" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V=1 #Velocity of water in the channel in m/s\n", - "w=2 #Width of the channel in m\n", - "psi_wall=0 #Streamline at the wall m^2/s\n", - "psi_dividing=V #Streamline at the dividing m^2/s\n", - "delta=0.21\n", - "psi_18=1.8 #Streamline at 1.8 in m^2/s\n", - "psi_16=1.6 #Streamline at 1.6 in m^2/s\n", - "\n", - "#Calculations\n", - "#Volumetric Flow rate per unit width\n", - "V_dot_by_w=psi_dividing-psi_wall #Volumertic Flow rate per unit width in m^2/s\n", - "V_dot=V_dot_by_w*w #Volumetric flow Rate in m^3/s\n", - "\n", - "#Estimation of the velocity at A\n", - "V_A=(psi_18-psi_16)/delta #Velocity at point A in m/s\n", - "\n", - "#Result\n", - "print \"The velocity at point A is\",round(V_A,2),\"m/s\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The velocity at point A is 0.95 m/s\n" - ] - } - ], - "prompt_number": 1 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter10.ipynb b/Fluid_Mechanics-Fundamentals_&_Applications/Chapter10.ipynb deleted file mode 100755 index 9563a530..00000000 --- a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter10.ipynb +++ /dev/null @@ -1,395 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:9f38ecf20d29c29811a2ed5f2bc2acc3740fe5cc50e5df7e0d3b218213f0359b" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 10:Approximate Solutions of the Navier-Stokes Equation" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 10.10-2, Page No:499" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "rho_air=0.8588 #Density of the surrounding air by gas law in kg/m^3\n", - "u=1.474*10**-5 #Dynamic Viscosity in kg/m.s\n", - "rho_particle=1240 #Density of the particle in kg/m^3\n", - "D=50*10**-6 #Diameter of the particles in m\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "\n", - "#Calculations\n", - "#Applying Newtons Third Law and solving for V we get\n", - "V=(D**2/(18*u))*(rho_particle-rho_air)*g #Terminal Velocity of the particle in m/s\n", - "\n", - "#Verification of Reynolds Number \n", - "Re=(rho_air*V*D)/u #Reynolds Number\n", - "\n", - "#Result\n", - "print \"The Terminal Velocity of the particles is\",round(V,3),\"m/s\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Terminal Velocity of the particles is 0.115 m/s\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 10.10-6,Page No:519" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V_dot_by_L1=2 #Strength of source in line 1 in m^2/s at (0,-1)m\n", - "V_dot_by_L2=-1 #Strength of source in line 2 in m^2/s at (1,-1)m\n", - "T=1.5 #Vortex Strength in m^2/s a (1,1) m\n", - "r_vortex=1 #distance in m\n", - "r_source1=1.414 #Distance in m\n", - "r_source2=1 #Distance in m\n", - "\n", - "#Calculations\n", - "V_vortex=T/(2*pi*r_vortex) #Velocity Induced by the Vortex in m/s\n", - "V_source1=V_dot_by_L1/(2*pi*r_source1) #Velocity induced by the source1 in m/s\n", - "V_source2=V_dot_by_L2/(2*pi*r_source2) #Velocity induced by the source2 in m/s\n", - "V=V_vortex+(V_source1/2**0.5)+V_source2+(V_source1/2**0.5) #Vectorial addition of the velocities in m/s\n", - "\n", - "#Result\n", - "print \"The superposed velocity at point (1,0) is\",round(V,3),\"m/s to the right\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The superposed velocity at point (1,0) is 0.398 m/s to the right\n" - ] - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 10.10-8, Page No:526" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V_dot=0.11 #Volumetric flow rate in m^3/s\n", - "L=0.35 #Length of flow in m\n", - "b=0.02 #m\n", - "u_star_max=0.159 #m/s\n", - "\n", - "#Calculations\n", - "V_dot_by_L=-V_dot/L #Strength of the line source in m^2/s\n", - "u_max=(-u_star_max*V_dot_by_L)/b #Umax in m/s\n", - "\n", - "#Result\n", - "print \"The strength of the line source is\",round(V_dot_by_L,3),\"m^2/s\"\n", - "print \"The maximum velocity is\",round(u_max,2),\"m/s\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The strength of the line source is -0.314 m^2/s\n", - "The maximum velocity is 2.5 m/s\n" - ] - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 10.10-9,Page No:535" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V=10 #Velocity of fluid Flow in kh/hr\n", - "rho=999.9 #Density of water at 5\u02daC in kg/m^3\n", - "v=1.519*10**-6 #Kinematic Viscosity in m^2/s\n", - "#Conversion Factors\n", - "C1=1000\n", - "C2=3600\n", - "\n", - "#Calculations\n", - "Rex=(V*0.5*C1)/(v*C2) #Reynolds Number\n", - "\n", - "#Result\n", - "print \"The Reynolds Number is\",round(Rex)\n", - "print \"As a result the boundary layer is Transitional\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Reynolds Number is 914344.0\n", - "As a result the boundary layer is Transitional\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 10.10-10,Page No:541" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V=32 #Velocity of the fluid in m/s\n", - "x=1.1 #Distance in m\n", - "v=1.7*10**-5 #Kinematic Viscosity in m^2/s\n", - "#Conversion factor\n", - "C1=1000 \n", - "C2=3600\n", - "C3=100\n", - "\n", - "#Calculations\n", - "Rex=(V*x*C1)/(v*C2) #Reynolds Number\n", - "delta=4.91*x*C3/Rex**0.5 #Thickness of boundary Layer in cm\n", - "\n", - "#Result\n", - "print \"The Thickness of the boundary Layer is\",round(delta,2),\"cm\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Thickness of the boundary Layer is 0.71 cm\n" - ] - } - ], - "prompt_number": 19 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 10.10-11, Page No:546" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable decleration\n", - "x=0.3 #Length of the tunnel in m\n", - "V=4 #Optimised speed in m/s\n", - "R=0.15 #Radius of the tunnel in m\n", - "v=1.507*10**-5 #Kinematic Viscosity in m^2/s\n", - "\n", - "#Calculations\n", - "Rex=(V*x)/v #Reynolds Number\n", - "#Using the diplacement thickness formula\n", - "delta_star=(1.72*x)/Rex**0.5 #Displacement Thickness in m\n", - "#Applying the Continuity Equation\n", - "V_end=(V*R**2)/(R-delta_star)**2 #Velocity at the end in m/s\n", - "\n", - "#Result\n", - "print \"The end velocity should be\",round(V_end,2),\"m/s\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The end velocity should be 4.1 m/s\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 10.10-12, Page No:550" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "import matplotlib.pyplot as plt\n", - "\n", - "#NOTE:The Notation has been changed here\n", - "\n", - "#Decleration of variables\n", - "V=10 #Velocity in m/s\n", - "x=1.52 #Length in m\n", - "v=1.516*10**-5 #Kinematic viscosity in m^2/s\n", - "u=[0,0.]\n", - "#Calculations\n", - "#Part(a)\n", - "\n", - "length=range(0,1500,20) #Array of length in mm\n", - "Re=(V*x)/v #Reynolds Number\n", - "y=transpose(length) #Transpose of the length matrix\n", - "#Laminar Boundary Layer\n", - "d_lam=(4.918*y)/((Re)**0.5)\n", - "#Turbulent Boundary Layer\n", - "d_tur=(0.16*y)/((Re)**(0.14285))\n", - "\n", - "#Part(b)\n", - "C_lam=0.664/((Re)**0.5) #Local Skin Friction coefficient for laminar boundary layer\n", - "C_tur=0.027/((Re)**0.14285) #Local Skin Friction coefficient for turbulent boundary Layer\n", - "\n", - "#Result\n", - "print \"The Reynolds Number is\",round(Re)\n", - "print \"The Local skin friction coefficient is\",round(C_lam,4),\"for laminar boundary layer\"\n", - "print \"The Local Skin friction coefficient is\",round(C_tur,4),\"for turbulent boundary layer\"\n", - "\n", - "plt.plot(y,d_tur,y,d_lam)\n", - "plt.xlabel('x,mm')\n", - "plt.ylabel('delta,mm')\n", - "plt.show()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Reynolds Number is 1002639.0\n", - "The Local skin friction coefficient is 0.0007 for laminar boundary layer\n", - "The Local Skin friction coefficient is 0.0038 for turbulent boundary layer\n" - ] - }, - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEPCAYAAACp/QjLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VPX1//HXYd+XBGRVsECiVsVat1at01ZbrS2tX7vZ\nn4qg1bpV+rWi0n5rql2sfrVWbStuuLRVq7Uqtoh8LUEsqKiAESsBAQWVCGELhiUk5/fHZxKyqUmY\nO3dm8n4+Hnlw596ZuSdA5uR8VnN3RERE6usQdwAiIpJ5lBxERKQJJQcREWlCyUFERJpQchARkSaU\nHEREpInIkoOZdTOzF8xskZm9bma/Tp4vMrM1ZrYw+XViVDGIiEjbWJTzHMysh7tXmlkn4Dngx8AX\ngQp3vzGyG4uIyB6JtFnJ3SuTh12AjsDG5GOL8r4iIrJnIk0OZtbBzBYBZcBsd1+SvHSxmS02s7vM\nrF+UMYiISOtF2qxUdxOzvsBM4ArgdWBd8tI1wBB3PzvyIEREpMU6peMm7r7ZzP4BHObuxbXnzexO\nYHrj55uZFnwSEWkDd09Js32Uo5UG1DYZmVl34ARgoZkNrve0U4CS5l7v7hn/ddVVV8Ueg+JUnIpT\nMdZ+pVKUlcMQ4F4z60BIQve7+zNmdp+ZHQI4sBI4L8IYRESkDSJLDu5eAhzazPkzo7qniIikhmZI\n74FEIhF3CC2iOFNLcaZWNsSZDTGmWlpGK7WWmXkmxiUiksnMDM/0DmkREcleSg4iItKEkoOIiDSh\n5CAiIk0oOYiISBNKDiIi0oSSg4hIxJYsgb//Pe4oWkfJQUQkItXVcP31cNxxsHlz3NG0TlpWZRUR\naW+WLYOzzoLOnWHBAth337gjah1VDiIiKVRTA7fcAp/9LHznO/Cvf2VfYgBVDiIiKbNqFUycCNu2\nwb//DQUFcUfUdqocRET2kDvccQccfjiceCI891x2JwZQ5SAiskfeeQfOOQfefx9mz4YDD4w7otRQ\n5SAi0gbu8Kc/wac+BUcdBc8/nzuJAVQ5iIi0WlkZ/OAHYUTSU0/BoU22Nct+qhxERFrhkUdg7FjY\nbz94+eXcTAygykFEpEXKy+Gii+CVV+Cxx0JTUi5T5SAi8jGefBIOPhgGD4aFC3M/MYAqBxGRD7V5\nM0yaBHPmwF/+EpbBaC9UOYiINGPWrFAtdOsGr77avhIDqHIQEWlg61aYPDk0Jd15J3zpS3FHFI/I\nKgcz62ZmL5jZIjN73cx+nTyfZ2azzKzUzJ42s35RxSAi0hrPPhtGIlVWhmqhvSYGAHP36N7crIe7\nV5pZJ+A54MfAOGC9u19nZpcD/d39ikav8yjjEhGpb9s2+MlP4MEH4bbbYNy4uCNqGzPD3S0V7xVp\nn4O7VyYPuwAdgY2E5HBv8vy9wDeijEFE5KO8+GKY5fzuu1BSkr2JIdUiTQ5m1sHMFgFlwGx3XwIM\ncvey5FPKgEFRxiAi0pwdO2DKlJAMrr46VA35+XFHlTki7ZB29xrgEDPrC8w0s883uu5m1mz7UVFR\nUd1xIpEgkUhEGKmItCcLF8L48fCJT8DixTAoS39FLS4upri4OJL3jrTPocGNzP4H2AacAyTcfa2Z\nDSFUFPs1eq76HEQk5aqq4Ne/hltvhRtugNNPB0tJC31myIo+BzMbUDsSycy6AycAC4EngPHJp40H\nHosqBhGRWkuWwGc+A/PmhSUwzjgjtxJDqkXZ5zAE+Feyz+EFYLq7PwNcC5xgZqXAF5KPRUQiUV0N\n110HiQScdx7MmAHDh8cdVeZLW7NSa6hZSURSYdkyOOss6NIFpk2DkSPjjihaWdGsJCISl5oauOWW\n0Iz0ne/AM8/kfmJINS2fISI5ZdUqmDgRtm8P/QvZvpdzXFQ5iEhOcIc77oDDD4cTT4S5c5UY9oQq\nBxHJeu+8A+ecA+vWQXExfPKTcUeU/VQ5iEjWcoc//Sksf/GZz8D8+UoMqaLKQUSyUllZGJr65psw\nc2ZIEJI6qhxEJOs8/HBYWvuAA+Cll5QYoqDKQUSyRnk5XHRRmOH8+ONw5JFxR5S7VDmISFaYPj1s\n2zl4cFg4T4khWqocRCSjbd4MkybBnDnwwAPwuc/FHVH7oMpBRDLWrFlw0EHQrVvYtlOJIX1UOYhI\nxtm6FSZPhiefhDvvbN97OcdFlYOIZJRnnw0jkbZtC9WCEkM8VDmISEbYtg1+8pOwXefUqfC1r8Ud\nUfumykFEYvfCC2GuwrvvhmpBiSF+qhxEJDY7dkBRUdhr4ZZb4FvfijsiqaXkICKxWLgQzjwTRo+G\nxYth0KC4I5L61KwkImlVVQVXXw1f/nIYkfToo0oMmUiVg4ikzZIlMH48DBwYKodhw+KOSD6MKgcR\niVx1NVx3HSQSYSXVf/5TiSHTqXIQkUiVlsJZZ0HXrrBggfZyzhaqHEQkEjU1YQTSZz8L3/0uPPOM\nEkM2UeUgIim3ahVMmBCGqs6bp72cs1FklYOZ7W1ms81siZm9ZmY/TJ4vMrM1ZrYw+XViVDGISHq5\nw+23w+GHw0knwdy5SgzZKsrKoQr4kbsvMrNewMtmNgtw4EZ3vzHCe4tImq1ZA+ecA+vXQ3Gx9nLO\ndpFVDu6+1t0XJY+3Av8BascnWFT3FZH0cof77oNDDw39C/PnKzHkgrT0OZjZSOBTwPPA0cDFZnYm\n8BJwqbtvSkccIpJaZWVhaOqbb8LMmdrLOZdEnhySTUqPAJe4+1Yz+yNwdfLyNcANwNmNX1dUVFR3\nnEgkSCQSUYcqIq3w8MNw8cUwcSI89FAYqirpVVxcTHFxcSTvbe4eyRsDmFln4Elghrvf1Mz1kcB0\ndz+o0XmPMi4RabvycrjoojDD+Z574Kij4o5IapkZ7p6SZvsoRysZcBfwev3EYGZD6j3tFKAkqhhE\nJLWmT4eDD4YhQ0JyUGLIXZFVDmZ2DPAs8CphhBLAFOA04JDkuZXAee5e1ui1qhxEMsjmzTBpEsyZ\nE6oF7eWcmVJZOUTW5+Duz9F8ZTIjqnuKSOo9/XQYonryyWEjnl694o5I0kEzpEWkWRUVcNllYZG8\nu+6CE06IOyJJJ62tJCJNzJkDY8fCzp1QUqLE0B6pchCROpWVMGVKGKY6dSp89atxRyRxUeUgIgA8\n/3yYxPb++6FvQYmhfVPlINLO7dgBRUUwbRrceit885txRySZQMlBpB175ZWwbefo0bB4sfZylt3U\nrCTSDlVVwdVXw4knwuTJ8OijSgzSkCoHkXZmyRI480wYODBUDsOHxx2RZCJVDiLtRHU1XHcdJBLw\ngx/AjBlKDPLhVDmItAPLloW+hW7dYMEC7eUsH0+Vg0gOq6mBm28Om/Ccdhr83/8pMUjLqHIQyVEr\nV4a9FnbuhHnzYMyYuCOSbKLKQSTHuMPtt8MRR4TF8p59VolBWk+Vg0gOWbMmrKC6fj0UF2svZ2k7\nVQ4iOcAd7rsPDj0Ujj4a5s9XYpA9o8pBJMuVlcF558GKFTBzZlgfSWRPqXIQyWIPPxyW1j7ggDBE\nVYlBUkWVg0gWKi+HCy+ERYvg8cfhyCPjjkhyjSoHkSwzfTocfDAMHQoLFyoxSDRUOYhkiU2bYNIk\nmDsXHngAPve5uCOSXKbKQSQLzJwZqoWePcPS2koMEjVVDiIZrKICLrssLJJ3991w/PFxRyTtxcdW\nDmb2NTNbaGYbzawi+bUlHcGJtGdz5oSRSDt3hm07lRgknczdP/oJZm8CpwCvuXtNi9/YbG/gPmAv\nwIHb3f1mM8sDHgJGAKuAb7v7pkav9Y+LSyRXVVbCT34Cf/0rTJ2qvZyl5cwMd7dUvFdL+hzWAEta\nkxiSqoAfufsngaOAC81sf+AKYJa7FwDPJB+LCPD882Guwtq1oVpQYpC4tKRyOAq4GpgN7Eyedne/\nsVU3MnsMuDX5dZy7l5nZYKDY3fdr9FxVDtKu7NgBRUUwbRrceit885txRyTZKJWVQ0s6pK8BKoBu\nQJe23MTMRgKfAl4ABrl7WfJSGaCda6VdW7gwbNs5enQYiaS9nCUTtCQ5DHH3E9p6AzPrBfwNuMTd\nK8x2JzV3dzNrtkQoKiqqO04kEiQSibaGIJKRqqrgV7+C3/8ebrgBTj8dLCW/80l7UVxcTHFxcSTv\n3ZJmpeuAZ9x9Zqvf3Kwz8CQww91vSp57A0i4+1ozGwLMVrOStDevvRa27dxrL7jzThg2LO6IJBek\nu0P6AmCGmW1vzVBWCyXCXcDrtYkh6QlgfPJ4PPBYa4MWyVbV1fCb38DnPw/nnw///KcSg2Smj60c\n2vzGZscAzwKvEoayAlwJvAj8FdgHDWWVdqS0NFQL3buHCW3ay1lSLZWVQ4uSg5kdDIykXh+Fuz+a\nigA+5H5KDpIzamrgllvgmmvCiKQLLoAOWrhGIpDW0UpmNg04CFgC1J/rEFlyEMkVK1fChAmh83n+\nfO3lLNmjJaOVjgQ+qV/lRVrOHe64I8x0njwZ/vu/oWPHuKMSabmWJIcFwAGEykFEPsaaNXDOOWFD\nnjlzwi5tItmmJS2f04D5ZlZqZiXJr1ejDkwk27jDfffBoYfC0UfDvHlKDJK9WlI53AWcDrxGwz4H\nEUlauxbOOy/0Mcycqb2cJfu1pHJ4392fcPcV7r6q9ivqwESyxUMPwSGHwIEHwoIFSgySG1pSOSw0\ns78A02m48J5GK0m7tn49XHhhWA/p8ce1l7PklpZUDj2AHcCXgK8mv74WZVAime6JJ8K2ncOHh4Xz\nlBgk10Q2Q3pPaBKcZKpNm2DSJHjuubC89rHHxh2RyG7pXlup8c0vNLPvmJn2n5Z2ZebMUC306AGL\nFikxSG5rywe8AccSRjCpeUlyXkUF/PjH8NRTYU0k7eUs7UGrk4O73xpFICKZaM6csPzF5z8ftu3s\n2zfuiETSo0XJwcy+CnySsBucA7j71RHGJRKrykqYMgUefhimTtVeztL+fGyfg5lNBb4NXJw89W1g\nRJRBicRp/vwwV+H990O1oMQg7VFLdoIrcfeDzOxVdz84ue3nU+5+TGRBabSSxGDHjrCk9rRpYevO\nU0+NOyKR1knrkt3AtuSflWY2DCgHBqfi5iKZ4pVXwkY8Y8aEamGvveKOSCReLUkOT5pZf+B64OXk\nuTuiC0kkfaqq4Fe/CpXCb38L3/seWEp+7xLJbi1pVurm7ttrjwmd0ttrz0USlJqVJA1eey1UC4MG\nhb0XtJezZLt0T4KbV3vg7tuT+z3P+4jni2S0Xbvg2mvD8NTzz4d//EOJQaSxD21WMrMhwFCgh5kd\nSpj85kAfwnpLIlln6dJQLfTsCS+9BCM07k6kWR/V5/Bl4CxgGHBDvfMVwJQIYxJJuZoauOUWuOYa\n+PnPQ8XQodWLx4i0Hy3pczjV3f+Wpnhq76k+B0mZlSvDLOeqKrjnnjAiSSQXpbLP4UOTg5ldSmhG\nqm1OqrtE2M/hxlQE8CH3VnKQPeYOt98OP/0pXH45/OhH0LFj3FGJRCdd8xx60zAptJqZ3Q2cTNhN\n7qDkuSLgHGBd8mlXuvtTe3IfkcbWrIFzzgkb8syZo72cRVor0v0czOxYYCtwX73kcBVQ8VGVhyoH\naSt3uO8+uOwyuPhiuOIK6Nw57qhE0iOtM6TNrBD4AzDY3T9pZgcD49z9Fx/3Wnefa2Yjm3vb1gYq\n8nHWroVzz4W33oKnnw77OotI27RkvMYdhNFJtftHlwCn7eF9LzazxWZ2l5n128P3EuGhh2DsWDjo\nIFiwQIlBZE+1ZPmMHu7+giXXFHB3N7OqPbjnH4Ha5b6vIQyTPbvxk4qKiuqOE4kEiURiD24puWr9\nerjwwrAe0vTpcMQRcUckkj7FxcUUFxdH8t4tGco6g7Bc98Pu/ikz+yZwtruf1KIbhGal6bV9Di25\npj4HaYnHHw/zFb73vTB/oXv3uCMSiVe6V2W9CJgKFJrZu8BK4P+19YZmNsTd30s+PIXQTCXSYps2\nwSWXwHPPheYk7eUsknofN8+hvm6EPopKWjjPwcweAI4DBgBlwFVAAjiEMEx2JXCeu5c1ep0qB2nW\nzJlhiOq4cfCb30CvXnFHJJI50j3PoRA4HHgief4M4MWWvLm7N9dxfXdrAhQBqKgIw1NnzAib8Rx/\nfNwRieS2lvQ5zAW+4u4Vyce9gX+6e2TFvCoHqa+4GCZOhEQi7LnQt2/cEYlkpnT3OewF1B+dVJU8\nJxKpykqYMgUefhimTtVeziLp1JLkcB/wopk9Spi89g3g3kijknZv/nw46yw47DAoKYG8vLgjEmlf\nWrR8hpl9GjiW0AfxrLsvjDQoNSu1W9u3w1VXwb33hq07Tz017ohEske6m5Vw95fZvX+0SCRefhnO\nPBP22y9MattLjZcisdF2JxK7qiooKoKTTgp9DI88osQgErcWVQ4iUSkpCdt2Dh4MCxdqL2eRTKHK\nQWKxaxdcey184QthbaR//EOJQSSTqHKQtFu6NIxE6tEDXnoJRoyIOyIRaUyVg6RNTQ3cdBMccwyc\nfjrMmqXEIJKpVDlIWqxYARMmQHV1mMMwenTcEYnIR1HlIJFyh9tuC/ssjBsX9nNWYhDJfKocJDKr\nV8PZZ4cltufOhf33jzsiEWkpVQ6Scu5hhvOhh8Jxx8G8eUoMItlGlYOk1Nq1cO658NZbocNZezmL\nZCdVDpIyDz0EY8fCwQfDggVKDCLZTJWD7LH168NEtldfhenTQ+eziGQ3VQ6yRx5/PFQKe+8Nr7yi\nxCCSK1Q5SJts2gSXXAL//jf89a9hYpuI5A5VDtJqM2fCQQdB796weLESg0guUuUgLVZRAT/+MTz1\nFNxzD3zxi3FHJCJRUeUgLTJ7duhbqK4Oy2wrMYjkNlUO8pEqK+HKK+Fvf4OpU+Hkk+OOSETSIdLK\nwczuNrMyMyupdy7PzGaZWamZPW1m/aKMQdpu3rwwV2H9+jBMVYlBpP2IullpGnBio3NXALPcvQB4\nJvlYMsj27XD55XDqqWFDnj//GfLy4o5KRNIp0uTg7nOBjY1OjwPuTR7fC3wjyhikdV5+GQ47DJYv\nDyOR/uu/4o5IROIQR4f0IHcvSx6XAYNiiEEa2bkTrroKTjop9DE88gjstVfcUYlIXGLtkHZ3NzNv\n7lpRUVHdcSKRIJFIpCmq9qekBMaPhyFDYNEiGDo07ohEpCWKi4spLi6O5L3NvdnP5tTdwGwkMN3d\nD0o+fgNIuPtaMxsCzHb3/Rq9xqOOS2DXLrj+erjxxtC3MHEimMUdlYi0lZnh7in5KY6jcngCGA/8\nJvnnYzHE0O4tXRqqhZ494aWXtJeziDQU9VDWB4B5QKGZrTazCcC1wAlmVgp8IflY0qSmBm66CY4+\nGs44I+y5oMQgIo1F3qzUFmpWisaKFTBhQpjlfM892stZJNeksllJy2e0A+5w221hOe1x42DOHCUG\nEfloWj4jx61eDeecAxs3wty52stZRFpGlUOOcg9NR5/+NBx7bFgKQ4lBRFpKlUMOeu89OPdcePvt\n0OE8dmzcEYlItlHlkEPc4cEHw2J5hxwCCxYoMYhI26hyyBHr1sEFF8CSJfDkk3D44XFHJCLZTJVD\nDnjssbARz8iR8MorSgwisudUOWSxjRvhkktCZ/PDD2svZxFJHVUOWeqpp0K10KdPWFpbiUFEUkmV\nQ5apqIBLL4WZM8NQVe3lLCJRUOWQRWbPDtVCdXXYtlOJQUSiosohC1RWwhVXwKOPwtSp2stZJNvU\neA0f7PyA3l17xx1Kiyk5ZLh58+Css8K6SK++qr2cRTLZhm0bKC0vpbS8lKXrl1K6IRwv37Cc7x34\nPe4Yd0fcIbaYVmXNUNu3h207770Xfv97OPXUuCMSEYDtu7azfMPyuiRQWl7K0vKllJaXsmPXDgry\nCygcUMiYvDEU5hfWHaejakjlqqxKDhno5ZfhzDNhv/3gj3/UXs4i6VbjNazevLrBB3/t8XsV7zGy\n30gKBxRSkFdAQX5BXUIY1HMQFuN2ikoOOWrnTvjlL8Py2r/9LZx2mrbtFIlSeWV5gw//2gTw5oY3\nyeueFz708wsZk7+7ChjZbySdOmRmi3y2bxMqzSgpCdXCsGGwcCEMHRp3RCK5YVvVtgbNQLXJYGn5\nUnbV7KIwv7AuCXzrgG9ROKCQ0Xmj6dWlV9yhx0qVQ8x27YLrr4cbb4Trrgudz6oWRFqnuqaatze/\n3WwzUNnWMj7R/xPNVgEDewyMtRko1VQ55Ig33oDx46F379DPsM8+cUckkrncnfWV65vtCH5z45sM\n6DEgfPjnjaFwQCEnjzmZgvwCRvQbkbHNQJlMlUMMamrgd78L/Qs//zmcfz500HREEQAqqypZvmF5\nGApaXkrphtK6Y8frKoDa5qAx+WMYkzeGnl16xh167NQhncVWrIAJE0KCmDZNezlL+1RdU82qTaua\nrQLWVa5jVP9RdaOAapNBQX4BA3oMyKlmoFRTcshC7mF2809/ClOmhNVUO3aMOyqR6Lg76yrX7Z4Q\nVq8KWLFxBYN6DWrwwV/bHzCi7wg6dtAPR1soOWSZ1avh7LNh06awWN4BB8QdkUjqfLDzA5ZtWNZs\nM1AH60DhgN1NQLVJYHTeaLp37h536DknJ5KDma0CtgDVQJW7H1HvWk4kB/cww3nyZJg0KfzZSf1i\nkoV21eyqawZqnATKt5UzOm90+PDPC5PBapNAfo/8uENvV3IlOawEPu3uG5q5lvXJYe1aOPdcePvt\nkCC0l7NkOnen7IOyZhPAqk2rGNxrcIMqoHZU0N599lYzUIbIpaGsOdez5A4PPRT6FM49Fx55BLp0\niTsqkd0qdlSwbMOyJovDlZaX0qVjl90dwXkFjB87noL8AkbnjaZbp25xhy5pFGflsALYTGhWmuru\nd9S7lpWVw7p1cMEFsGRJqBa0l7PEpaq6ilWbVjWZEFZaXsrGbRsZkz+mQWdw7Vdedy37m81ypXI4\n2t3fM7OBwCwze8Pd59ZeLCoqqntiIpEgkUikP8JWeOyxMF/h9NPh/vuhm37Jkoi5O2u3rt29HES9\nKuCtTW8xrM+wugrgwL0O5NT9T6VwQCHD+wyng2liTS4oLi6muLg4kvfOiNFKZnYVsNXdb0g+zprK\nYeNG+OEPYf78MBJJezlLqm3ZsYVl5cuarQK6d+petzpobUdwQX4Bo/qPomunrnGHLmmW9R3SZtYD\n6OjuFWbWE3ga+Lm7P528nhXJ4amn4Pvfh298A669Fnpqgqa00c7qnazcuLLZKmDLji11nb/1l4gu\nyC+gf/f+cYcuGSQXksO+wN+TDzsBf3b3X9e7ntHJoaICLr0UZs6Eu+/WXs7SMu7OuxXvNrs43OrN\nqxneZ3iTWcGFAwoZ2nuomoGkRbK+z8HdVwKHxHHvPTV7NkycGBJCSQn06RN3RJJpNm/f3GwCWFa+\njF5dejXoCD5uxHGhGShvFF06alibZI6M6HNoLBMrh8pKuPJK+Nvf4Pbb4StfiTsiidOOXTtYsXFF\nkyRQWl7K1p1bG1QA9ZeG6NetX9yhSw7L+malj5NpyWHevLDPwhFHwM03Q55G+7ULNV7DO1veafDB\nXzspbM2WNezTd58mC8MV5BcwtPdQLQ4nsVBySJPt2+FnPwtDU//wBzjllLgjkihs2r6pbkZw/Spg\n2YZl9Onap8lcgML8Qvbtv6+agSTjZH2fQzZ46aWwEc/++8Orr8LAgXFHJHtix64dDbaKrF8FbNu1\nrUECOGW/U+qOe3ftHXfoIrFQ5dDIzp3wi1/AbbfBTTfBaadp285sUeM1rNmyptkq4N2KdxnRb0Sz\nS0QP6TVEzUCSE1Q5RKSkBM48E4YNg0WLYOjQuCOS5mzYtmH3wnD1KoDlG5bTv3v/BquDnvCJEygc\nUMi+/falc8fOcYcukjVUOQC7dsH118ONN8J114XOZ/0iGa/tu7Z/6FaRO6t3NlgWuv4eAWoGkvZM\nHdIp9MYboW+hd2+46y4YMSIttxVCM9Dbm99udonotVvXMrLfyAZLQ9TOEh7Uc5CagUSaoeSQAjU1\n8LvfwS9/CVdfDT/4AXTQJNRIrK9c3+xewW9ueJP8Hvm72/+TH/6F+YWM6DeCTh3U6inSGkoOe2jF\nCpgwISSIadNg9OjIbtVubKva9qF7BFTXVIcE0KgKGJM/hl5desUdukjOUHJoI/cwCul//ifMdp40\nCTpqA6sWq66p5q3NbzVbBZRtLeMT/T9RlwDG5I+pWxtoYI+BagYSSQMlhzZ4+204+2zYvDlsxLP/\n/il9+5zh7qyvXN/s8tArNq5gYI+Bu9v/kx/+BfkF7NN3HzUDicRMyaEV3MM+C5Mnw49+FP7spM8w\nPtj5QV0zUOMkAOz+4K9XBYzJH0OPzj1ijlxEPoySQwu9917Yx3n16lAtjB2bguCyyK6aXby16a1m\nq4D1lesZ1X9Us1VAfvd8NQOJZCElh4/hDg8+GPoUzj039DF0ydFlcNyd9z94v9klolduXMngXoOb\n3St4n7770LGDOlxEcomSw0dYtw4uuACWLAnVwuGHpzi4mGzduZVl5cuaXSK6Y4eODSaD1Y4MGtV/\nFN07d487dBFJEyWHD/H3v4fEcPrpcM010K1bBMFFaFfNLlZuXNmkCWhp+VI2btvI6LzRzVYB+T3y\n4w5dRDKAkkMjGzfCD38I8+eHzudjjokutj3l7qzdurbZjuBVm1YxpPeQZpeI3rvv3toqUkQ+khbe\nq2fGDPj+98NeC4sXQ8+ecUcUVOyoYNmGZc2uENq1U9cGCWDC3hPqtors1inLyh0RyUlZWzls2QKX\nXgqzZoU1kb74xTQFV09VdRUrN61ssEJobRLYvGMzo/NGN6kCCvILyOuureREJPXafeXwr3/BxIlw\n/PFhI54+faK7l7vz3tb3miwOV1peylub3mJYn2F1TT9jB4/l25/8NgX5BQzrM0zNQCKStbKqcvjg\nA7jiitDxfPvt8JWvpO6eW3ZsaXZ10GUbltGjc48GC8PVVgCj+o+ia6euqQtCRGQPZH2HtJmdCNwE\ndATudPffNLreJDnMmxeW1j7ySLj5ZshrQ8vMzuqdrNi4otkksHXn1rqZwI2bgfp169f2b1ZEJE2y\nOjmYWUeGp4z6AAAHjElEQVRgKXA88A6wADjN3f9T7zl1yWH7dvjZz+D+++EPfwgdzx/F3Xm34t3d\nw0CTK4QuXb+U1VtWs0/ffRrsFFbbJDS099BWzwouLi4mkUi06jVxUJyppThTKxvizIYYIfv7HI4A\nlrv7KgAzexD4OvCfxk986aVQLey3X+hbGDhw97VN2zft7gSut0T0svJl9O7au25JiIL8AhIjE3Wj\ngbp0TN1U6Wz5D6M4U0txplY2xJkNMaZaHMlhGLC63uM1wJGNn/Szn8Efb9/B5deuYNSRS5lWWsrS\neburgMqqygZ7BIwrGFe3TlDfbn3T9s2IiOSiOJJDi9qxbqgaRfVF73B7xT4ULAxNP0cMO4LTDz6d\ngvyCNjUDiYhIy8TR53AUUOTuJyYfXwnU1O+UNrPMG0IlIpIFsrlDuhOhQ/qLwLvAizTqkBYRkXil\nvVnJ3XeZ2UXATMJQ1ruUGEREMktGToITEZF4Zdz6DmZ2opm9YWbLzOzymGPZ28xmm9kSM3vNzH6Y\nPJ9nZrPMrNTMnjazfvVec2Uy9jfM7EtpjLWjmS00s+kZHGM/M3vEzP5jZq+b2ZEZGueVyX/zEjP7\ni5l1zYQ4zexuMyszs5J651odl5l9Ovm9LTOz36UpzuuT/+6LzexRM+tb71rGxFnv2qVmVmNmefXO\npT3OD4vRzC5O/n2+Zmb1+2tTF6O7Z8wXoZlpOTAS6AwsAvaPMZ7BwCHJ416EvpL9geuAycnzlwPX\nJo8PSMbcOfk9LAc6pCnW/wb+DDyRfJyJMd4LTEwedwL6ZlqcyXutALomHz8EjM+EOIFjgU8BJfXO\ntSau2paCF4Ejksf/BE5MQ5wn1P69ANdmapzJ83sDTwErgbw44/yQv8vPA7OAzsnHA6OIMdMqh7oJ\ncu5eBdROkIuFu69190XJ462EiXrDgHGEDzqSf34jefx14AF3r/IwyW854XuKlJkNB74C3AnUjlTI\ntBj7Ase6+90Q+p7cfXOmxQlsAaqAHsnBEz0IAydij9Pd5wIbG51uTVxHmtkQoLe7v5h83n31XhNZ\nnO4+y91rkg9fAIZnYpxJNwKTG52LJc4PifF84NfJz0jcfV0UMWZacmhugtywmGJpwMxGEjL4C8Ag\ndy9LXioDBiWPhxJirpWu+H8LXAbU1DuXaTHuC6wzs2lm9oqZ3WFmPTMtTnffANwAvE1ICpvcfVam\nxVlPa+NqfP4d0v8zNpHw2yvNxBNrnGb2dWCNu7/a6FImxTkG+JyZPW9mxWZ2WBQxZlpyyMjecTPr\nBfwNuMTdK+pf81CnfVTckX5PZvZV4H13X8juqqFhADHHmNQJOBT4g7sfCnwAXNEgiAyI08xGAZMI\nZflQoJeZnd4giAyIs9mbfnxcsTOznwA73f0vccfSmJn1AKYAV9U/HVM4H6UT0N/djyL8UvjXKG6S\nacnhHUJ7X629aZjx0s7MOhMSw/3u/ljydJmZDU5eHwK8nzzfOP7hyXNR+iwwzsxWAg8AXzCz+zMs\nRgj/jmvcfUHy8SOEZLE2w+I8DJjn7uXuvgt4FPhMBsZZqzX/zmuS54c3Op+WeM3sLELz5/+rdzqT\n4hxF+KVgcfLnaTjwspkNyrA41xD+X5L8eaoxswGpjjHTksNLwBgzG2lmXYDvAE/EFYyZGXAX8Lq7\n31Tv0hOETkqSfz5W7/x3zayLme1LKP9eJELuPsXd93b3fYHvAv9y9zMyKcZknGuB1WZWkDx1PLAE\nmJ5JcQJvAEeZWffkv//xwOsZGGetVv07J/8dtlgYKWbAGfVeExkLy/RfBnzd3bc3ij8j4nT3Encf\n5O77Jn+e1gCHJpvtMibO5Pt/ASD589TF3denPMZU9aqn6gs4iTAqaDlwZcyxHENox18ELEx+nQjk\nAf8HlAJPA/3qvWZKMvY3gC+nOd7j2D1aKeNiBMYSlmhfTPjNp2+GxjmZkLhKCJ28nTMhTkJl+C6w\nk9A3N6EtcQGfTn5vy4Gb0xDnRGAZ8Fa9n6M/ZFCcO2r/PhtdX0FytFJccTYXY/L/4/3Je74MJKKI\nUZPgRESkiUxrVhIRkQyg5CAiIk0oOYiISBNKDiIi0oSSg4iINKHkICIiTSg5iIhIE0oOIiLShJKD\ntFtmdnhy85muZtYzuXHKAfWuj0xumjLNzJaa2Z/N7Etm9m8Lm+scnnxekZnda2bPmtkqM/svM/tf\nM3vVzGYkl/4WySpKDtJueVi07AngF8BvCIsrvt7oaaOA/wX2AwqB77j70cCPCUsV1NqXsAnLOOBP\nwCx3PxjYBpwc5fchEgX9RiPt3dWEBR+3ARc3c32luy8BMLMlhHWMAF4jrOAJYZnsGe5ebWavEXY8\nm5m8VlLveSJZQ5WDtHcDgJ6EbWC7N3N9R73jGsJicrXH9X+52gngYbezqkav0S9hknWUHKS9mwr8\nFPgLoWkJM3ujle+RiRvCiOwR/UYj7ZaZnQnscPcHzawDMM/MvtXoaY2XLfZmjhvvwPZRrxHJClqy\nW6QeMzsZ2Nfdb407FpE4KTmIiEgT6nMQEZEmlBxERKQJJQcREWlCyUFERJpQchARkSaUHEREpAkl\nBxERaeL/AxTcQojqb0i5AAAAAElFTkSuQmCC\n", - "text": [ - "<matplotlib.figure.Figure at 0x10b5bee50>" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Examples 10.10-15,Page No:563" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "rho=1.204 #Density of the fluid in kg/m^3\n", - "w=0.5 #Width of the test object in m\n", - "U=10 #Velocity of the flow in m/s\n", - "delta1=0.042 #Boundary Layer thickness at 1 in m\n", - "delta2=0.077 #Boundary Layer thickness at 2 in m\n", - "\n", - "#Calculations\n", - "a=(delta2-delta1) \n", - "b=w*rho\n", - "c=U**2\n", - "Fd=(b*c*a*4)/45#Skin friction drag in N\n", - "\n", - "#Result\n", - "print \"The Skin Friction Drag is\",round(Fd,2),\"N\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Skin Friction Drag is 0.19 N\n" - ] - } - ], - "prompt_number": 15 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter10_1.ipynb b/Fluid_Mechanics-Fundamentals_&_Applications/Chapter10_1.ipynb deleted file mode 100755 index 505f66cb..00000000 --- a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter10_1.ipynb +++ /dev/null @@ -1,396 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:e9f209a2bf5415ddf06809cb9961528b86fd396a12cb639b1f2552ce5098ec2f" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 10:Approximate Solutions of the Navier-Stokes Equation" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 10.10-2, Page No:499" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "rho_air=0.8588 #Density of the surrounding air by gas law in kg/m^3\n", - "u=1.474*10**-5 #Dynamic Viscosity in kg/m.s\n", - "rho_particle=1240 #Density of the particle in kg/m^3\n", - "D=50*10**-6 #Diameter of the particles in m\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "\n", - "#Calculations\n", - "#Applying Newtons Third Law and solving for V we get\n", - "V=(D**2/(18*u))*(rho_particle-rho_air)*g #Terminal Velocity of the particle in m/s\n", - "\n", - "#Verification of Reynolds Number \n", - "Re=(rho_air*V*D)/u #Reynolds Number\n", - "\n", - "#Result\n", - "print \"The Terminal Velocity of the particles is\",round(V,3),\"m/s\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Terminal Velocity of the particles is 0.115 m/s\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 10.10-6,Page No:519" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V_dot_by_L1=2 #Strength of source in line 1 in m^2/s at (0,-1)m\n", - "V_dot_by_L2=-1 #Strength of source in line 2 in m^2/s at (1,-1)m\n", - "T=1.5 #Vortex Strength in m^2/s a (1,1) m\n", - "r_vortex=1 #distance in m\n", - "r_source1=1.414 #Distance in m\n", - "r_source2=1 #Distance in m\n", - "\n", - "#Calculations\n", - "V_vortex=T/(2*pi*r_vortex) #Velocity Induced by the Vortex in m/s\n", - "V_source1=V_dot_by_L1/(2*pi*r_source1) #Velocity induced by the source1 in m/s\n", - "V_source2=V_dot_by_L2/(2*pi*r_source2) #Velocity induced by the source2 in m/s\n", - "V=V_vortex+(V_source1/2**0.5)+V_source2+(V_source1/2**0.5) #Vectorial addition of the velocities in m/s\n", - "\n", - "#Result\n", - "print \"The superposed velocity at point (1,0) is\",round(V,3),\"m/s to the right\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The superposed velocity at point (1,0) is 0.398 m/s to the right\n" - ] - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 10.10-8, Page No:526" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V_dot=0.11 #Volumetric flow rate in m^3/s\n", - "L=0.35 #Length of flow in m\n", - "b=0.02 #m\n", - "u_star_max=0.159 #m/s\n", - "\n", - "#Calculations\n", - "V_dot_by_L=-V_dot/L #Strength of the line source in m^2/s\n", - "u_max=(-u_star_max*V_dot_by_L)/b #Umax in m/s\n", - "\n", - "#Result\n", - "print \"The strength of the line source is\",round(V_dot_by_L,3),\"m^2/s\"\n", - "print \"The maximum velocity is\",round(u_max,2),\"m/s\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The strength of the line source is -0.314 m^2/s\n", - "The maximum velocity is 2.5 m/s\n" - ] - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 10.10-9,Page No:535" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V=10 #Velocity of fluid Flow in kh/hr\n", - "rho=999.9 #Density of water at 5\u02daC in kg/m^3\n", - "v=1.519*10**-6 #Kinematic Viscosity in m^2/s\n", - "#Conversion Factors\n", - "C1=1000\n", - "C2=3600\n", - "\n", - "#Calculations\n", - "Rex=(V*0.5*C1)/(v*C2) #Reynolds Number\n", - "\n", - "#Result\n", - "print \"The Reynolds Number is\",round(Rex)\n", - "print \"As a result the boundary layer is Transitional\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Reynolds Number is 914344.0\n", - "As a result the boundary layer is Transitional\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 10.10-10,Page No:541" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V=32 #Velocity of the fluid in m/s\n", - "x=1.1 #Distance in m\n", - "v=1.7*10**-5 #Kinematic Viscosity in m^2/s\n", - "#Conversion factor\n", - "C1=1000 \n", - "C2=3600\n", - "C3=100\n", - "\n", - "#Calculations\n", - "Rex=(V*x*C1)/(v*C2) #Reynolds Number\n", - "delta=4.91*x*C3/Rex**0.5 #Thickness of boundary Layer in cm\n", - "\n", - "#Result\n", - "print \"The Thickness of the boundary Layer is\",round(delta,2),\"cm\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Thickness of the boundary Layer is 0.71 cm\n" - ] - } - ], - "prompt_number": 19 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 10.10-11, Page No:546" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable decleration\n", - "x=0.3 #Length of the tunnel in m\n", - "V=4 #Optimised speed in m/s\n", - "R=0.15 #Radius of the tunnel in m\n", - "v=1.507*10**-5 #Kinematic Viscosity in m^2/s\n", - "\n", - "#Calculations\n", - "Rex=(V*x)/v #Reynolds Number\n", - "#Using the diplacement thickness formula\n", - "delta_star=(1.72*x)/Rex**0.5 #Displacement Thickness in m\n", - "#Applying the Continuity Equation\n", - "V_end=(V*R**2)/(R-delta_star)**2 #Velocity at the end in m/s\n", - "\n", - "#Result\n", - "print \"The end velocity should be\",round(V_end,2),\"m/s\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The end velocity should be 4.1 m/s\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 10.10-12, Page No:550" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "import matplotlib.pyplot as plt\n", - "%matplotlib inline\n", - "\n", - "#NOTE:The Notation has been changed here\n", - "\n", - "#Decleration of variables\n", - "V=10 #Velocity in m/s\n", - "x=1.52 #Length in m\n", - "v=1.516*10**-5 #Kinematic viscosity in m^2/s\n", - "u=[0,0.]\n", - "#Calculations\n", - "#Part(a)\n", - "\n", - "length=range(0,1500,20) #Array of length in mm\n", - "Re=(V*x)/v #Reynolds Number\n", - "y=transpose(length) #Transpose of the length matrix\n", - "#Laminar Boundary Layer\n", - "d_lam=(4.918*y)/((Re)**0.5)\n", - "#Turbulent Boundary Layer\n", - "d_tur=(0.16*y)/((Re)**(0.14285))\n", - "\n", - "#Part(b)\n", - "C_lam=0.664/((Re)**0.5) #Local Skin Friction coefficient for laminar boundary layer\n", - "C_tur=0.027/((Re)**0.14285) #Local Skin Friction coefficient for turbulent boundary Layer\n", - "\n", - "#Result\n", - "print \"The Reynolds Number is\",round(Re)\n", - "print \"The Local skin friction coefficient is\",round(C_lam,4),\"for laminar boundary layer\"\n", - "print \"The Local Skin friction coefficient is\",round(C_tur,4),\"for turbulent boundary layer\"\n", - "\n", - "plt.plot(y,d_tur,y,d_lam)\n", - "plt.xlabel('x,mm')\n", - "plt.ylabel('delta,mm')\n", - "plt.show()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Reynolds Number is 1002639.0\n", - "The Local skin friction coefficient is 0.0007 for laminar boundary layer\n", - "The Local Skin friction coefficient is 0.0038 for turbulent boundary layer\n" - ] - }, - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEPCAYAAACp/QjLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VPX1//HXYd+XBGRVsECiVsVat1at01ZbrS2tX7vZ\nn4qg1bpV+rWi0n5rql2sfrVWbStuuLRVq7Uqtoh8LUEsqKiAESsBAQWVCGELhiUk5/fHZxKyqUmY\nO3dm8n4+Hnlw596ZuSdA5uR8VnN3RERE6usQdwAiIpJ5lBxERKQJJQcREWlCyUFERJpQchARkSaU\nHEREpInIkoOZdTOzF8xskZm9bma/Tp4vMrM1ZrYw+XViVDGIiEjbWJTzHMysh7tXmlkn4Dngx8AX\ngQp3vzGyG4uIyB6JtFnJ3SuTh12AjsDG5GOL8r4iIrJnIk0OZtbBzBYBZcBsd1+SvHSxmS02s7vM\nrF+UMYiISOtF2qxUdxOzvsBM4ArgdWBd8tI1wBB3PzvyIEREpMU6peMm7r7ZzP4BHObuxbXnzexO\nYHrj55uZFnwSEWkDd09Js32Uo5UG1DYZmVl34ARgoZkNrve0U4CS5l7v7hn/ddVVV8Ueg+JUnIpT\nMdZ+pVKUlcMQ4F4z60BIQve7+zNmdp+ZHQI4sBI4L8IYRESkDSJLDu5eAhzazPkzo7qniIikhmZI\n74FEIhF3CC2iOFNLcaZWNsSZDTGmWlpGK7WWmXkmxiUiksnMDM/0DmkREcleSg4iItKEkoOIiDSh\n5CAiIk0oOYiISBNKDiIi0oSSg4hIxJYsgb//Pe4oWkfJQUQkItXVcP31cNxxsHlz3NG0TlpWZRUR\naW+WLYOzzoLOnWHBAth337gjah1VDiIiKVRTA7fcAp/9LHznO/Cvf2VfYgBVDiIiKbNqFUycCNu2\nwb//DQUFcUfUdqocRET2kDvccQccfjiceCI891x2JwZQ5SAiskfeeQfOOQfefx9mz4YDD4w7otRQ\n5SAi0gbu8Kc/wac+BUcdBc8/nzuJAVQ5iIi0WlkZ/OAHYUTSU0/BoU22Nct+qhxERFrhkUdg7FjY\nbz94+eXcTAygykFEpEXKy+Gii+CVV+Cxx0JTUi5T5SAi8jGefBIOPhgGD4aFC3M/MYAqBxGRD7V5\nM0yaBHPmwF/+EpbBaC9UOYiINGPWrFAtdOsGr77avhIDqHIQEWlg61aYPDk0Jd15J3zpS3FHFI/I\nKgcz62ZmL5jZIjN73cx+nTyfZ2azzKzUzJ42s35RxSAi0hrPPhtGIlVWhmqhvSYGAHP36N7crIe7\nV5pZJ+A54MfAOGC9u19nZpcD/d39ikav8yjjEhGpb9s2+MlP4MEH4bbbYNy4uCNqGzPD3S0V7xVp\nn4O7VyYPuwAdgY2E5HBv8vy9wDeijEFE5KO8+GKY5fzuu1BSkr2JIdUiTQ5m1sHMFgFlwGx3XwIM\ncvey5FPKgEFRxiAi0pwdO2DKlJAMrr46VA35+XFHlTki7ZB29xrgEDPrC8w0s883uu5m1mz7UVFR\nUd1xIpEgkUhEGKmItCcLF8L48fCJT8DixTAoS39FLS4upri4OJL3jrTPocGNzP4H2AacAyTcfa2Z\nDSFUFPs1eq76HEQk5aqq4Ne/hltvhRtugNNPB0tJC31myIo+BzMbUDsSycy6AycAC4EngPHJp40H\nHosqBhGRWkuWwGc+A/PmhSUwzjgjtxJDqkXZ5zAE+Feyz+EFYLq7PwNcC5xgZqXAF5KPRUQiUV0N\n110HiQScdx7MmAHDh8cdVeZLW7NSa6hZSURSYdkyOOss6NIFpk2DkSPjjihaWdGsJCISl5oauOWW\n0Iz0ne/AM8/kfmJINS2fISI5ZdUqmDgRtm8P/QvZvpdzXFQ5iEhOcIc77oDDD4cTT4S5c5UY9oQq\nBxHJeu+8A+ecA+vWQXExfPKTcUeU/VQ5iEjWcoc//Sksf/GZz8D8+UoMqaLKQUSyUllZGJr65psw\nc2ZIEJI6qhxEJOs8/HBYWvuAA+Cll5QYoqDKQUSyRnk5XHRRmOH8+ONw5JFxR5S7VDmISFaYPj1s\n2zl4cFg4T4khWqocRCSjbd4MkybBnDnwwAPwuc/FHVH7oMpBRDLWrFlw0EHQrVvYtlOJIX1UOYhI\nxtm6FSZPhiefhDvvbN97OcdFlYOIZJRnnw0jkbZtC9WCEkM8VDmISEbYtg1+8pOwXefUqfC1r8Ud\nUfumykFEYvfCC2GuwrvvhmpBiSF+qhxEJDY7dkBRUdhr4ZZb4FvfijsiqaXkICKxWLgQzjwTRo+G\nxYth0KC4I5L61KwkImlVVQVXXw1f/nIYkfToo0oMmUiVg4ikzZIlMH48DBwYKodhw+KOSD6MKgcR\niVx1NVx3HSQSYSXVf/5TiSHTqXIQkUiVlsJZZ0HXrrBggfZyzhaqHEQkEjU1YQTSZz8L3/0uPPOM\nEkM2UeUgIim3ahVMmBCGqs6bp72cs1FklYOZ7W1ms81siZm9ZmY/TJ4vMrM1ZrYw+XViVDGISHq5\nw+23w+GHw0knwdy5SgzZKsrKoQr4kbsvMrNewMtmNgtw4EZ3vzHCe4tImq1ZA+ecA+vXQ3Gx9nLO\ndpFVDu6+1t0XJY+3Av8BascnWFT3FZH0cof77oNDDw39C/PnKzHkgrT0OZjZSOBTwPPA0cDFZnYm\n8BJwqbtvSkccIpJaZWVhaOqbb8LMmdrLOZdEnhySTUqPAJe4+1Yz+yNwdfLyNcANwNmNX1dUVFR3\nnEgkSCQSUYcqIq3w8MNw8cUwcSI89FAYqirpVVxcTHFxcSTvbe4eyRsDmFln4Elghrvf1Mz1kcB0\ndz+o0XmPMi4RabvycrjoojDD+Z574Kij4o5IapkZ7p6SZvsoRysZcBfwev3EYGZD6j3tFKAkqhhE\nJLWmT4eDD4YhQ0JyUGLIXZFVDmZ2DPAs8CphhBLAFOA04JDkuZXAee5e1ui1qhxEMsjmzTBpEsyZ\nE6oF7eWcmVJZOUTW5+Duz9F8ZTIjqnuKSOo9/XQYonryyWEjnl694o5I0kEzpEWkWRUVcNllYZG8\nu+6CE06IOyJJJ62tJCJNzJkDY8fCzp1QUqLE0B6pchCROpWVMGVKGKY6dSp89atxRyRxUeUgIgA8\n/3yYxPb++6FvQYmhfVPlINLO7dgBRUUwbRrceit885txRySZQMlBpB175ZWwbefo0bB4sfZylt3U\nrCTSDlVVwdVXw4knwuTJ8OijSgzSkCoHkXZmyRI480wYODBUDsOHxx2RZCJVDiLtRHU1XHcdJBLw\ngx/AjBlKDPLhVDmItAPLloW+hW7dYMEC7eUsH0+Vg0gOq6mBm28Om/Ccdhr83/8pMUjLqHIQyVEr\nV4a9FnbuhHnzYMyYuCOSbKLKQSTHuMPtt8MRR4TF8p59VolBWk+Vg0gOWbMmrKC6fj0UF2svZ2k7\nVQ4iOcAd7rsPDj0Ujj4a5s9XYpA9o8pBJMuVlcF558GKFTBzZlgfSWRPqXIQyWIPPxyW1j7ggDBE\nVYlBUkWVg0gWKi+HCy+ERYvg8cfhyCPjjkhyjSoHkSwzfTocfDAMHQoLFyoxSDRUOYhkiU2bYNIk\nmDsXHngAPve5uCOSXKbKQSQLzJwZqoWePcPS2koMEjVVDiIZrKICLrssLJJ3991w/PFxRyTtxcdW\nDmb2NTNbaGYbzawi+bUlHcGJtGdz5oSRSDt3hm07lRgknczdP/oJZm8CpwCvuXtNi9/YbG/gPmAv\nwIHb3f1mM8sDHgJGAKuAb7v7pkav9Y+LSyRXVVbCT34Cf/0rTJ2qvZyl5cwMd7dUvFdL+hzWAEta\nkxiSqoAfufsngaOAC81sf+AKYJa7FwDPJB+LCPD882Guwtq1oVpQYpC4tKRyOAq4GpgN7Eyedne/\nsVU3MnsMuDX5dZy7l5nZYKDY3fdr9FxVDtKu7NgBRUUwbRrceit885txRyTZKJWVQ0s6pK8BKoBu\nQJe23MTMRgKfAl4ABrl7WfJSGaCda6VdW7gwbNs5enQYiaS9nCUTtCQ5DHH3E9p6AzPrBfwNuMTd\nK8x2JzV3dzNrtkQoKiqqO04kEiQSibaGIJKRqqrgV7+C3/8ebrgBTj8dLCW/80l7UVxcTHFxcSTv\n3ZJmpeuAZ9x9Zqvf3Kwz8CQww91vSp57A0i4+1ozGwLMVrOStDevvRa27dxrL7jzThg2LO6IJBek\nu0P6AmCGmW1vzVBWCyXCXcDrtYkh6QlgfPJ4PPBYa4MWyVbV1fCb38DnPw/nnw///KcSg2Smj60c\n2vzGZscAzwKvEoayAlwJvAj8FdgHDWWVdqS0NFQL3buHCW3ay1lSLZWVQ4uSg5kdDIykXh+Fuz+a\nigA+5H5KDpIzamrgllvgmmvCiKQLLoAOWrhGIpDW0UpmNg04CFgC1J/rEFlyEMkVK1fChAmh83n+\nfO3lLNmjJaOVjgQ+qV/lRVrOHe64I8x0njwZ/vu/oWPHuKMSabmWJIcFwAGEykFEPsaaNXDOOWFD\nnjlzwi5tItmmJS2f04D5ZlZqZiXJr1ejDkwk27jDfffBoYfC0UfDvHlKDJK9WlI53AWcDrxGwz4H\nEUlauxbOOy/0Mcycqb2cJfu1pHJ4392fcPcV7r6q9ivqwESyxUMPwSGHwIEHwoIFSgySG1pSOSw0\ns78A02m48J5GK0m7tn49XHhhWA/p8ce1l7PklpZUDj2AHcCXgK8mv74WZVAime6JJ8K2ncOHh4Xz\nlBgk10Q2Q3pPaBKcZKpNm2DSJHjuubC89rHHxh2RyG7pXlup8c0vNLPvmJn2n5Z2ZebMUC306AGL\nFikxSG5rywe8AccSRjCpeUlyXkUF/PjH8NRTYU0k7eUs7UGrk4O73xpFICKZaM6csPzF5z8ftu3s\n2zfuiETSo0XJwcy+CnySsBucA7j71RHGJRKrykqYMgUefhimTtVeztL+fGyfg5lNBb4NXJw89W1g\nRJRBicRp/vwwV+H990O1oMQg7VFLdoIrcfeDzOxVdz84ue3nU+5+TGRBabSSxGDHjrCk9rRpYevO\nU0+NOyKR1knrkt3AtuSflWY2DCgHBqfi5iKZ4pVXwkY8Y8aEamGvveKOSCReLUkOT5pZf+B64OXk\nuTuiC0kkfaqq4Fe/CpXCb38L3/seWEp+7xLJbi1pVurm7ttrjwmd0ttrz0USlJqVJA1eey1UC4MG\nhb0XtJezZLt0T4KbV3vg7tuT+z3P+4jni2S0Xbvg2mvD8NTzz4d//EOJQaSxD21WMrMhwFCgh5kd\nSpj85kAfwnpLIlln6dJQLfTsCS+9BCM07k6kWR/V5/Bl4CxgGHBDvfMVwJQIYxJJuZoauOUWuOYa\n+PnPQ8XQodWLx4i0Hy3pczjV3f+Wpnhq76k+B0mZlSvDLOeqKrjnnjAiSSQXpbLP4UOTg5ldSmhG\nqm1OqrtE2M/hxlQE8CH3VnKQPeYOt98OP/0pXH45/OhH0LFj3FGJRCdd8xx60zAptJqZ3Q2cTNhN\n7qDkuSLgHGBd8mlXuvtTe3IfkcbWrIFzzgkb8syZo72cRVor0v0czOxYYCtwX73kcBVQ8VGVhyoH\naSt3uO8+uOwyuPhiuOIK6Nw57qhE0iOtM6TNrBD4AzDY3T9pZgcD49z9Fx/3Wnefa2Yjm3vb1gYq\n8nHWroVzz4W33oKnnw77OotI27RkvMYdhNFJtftHlwCn7eF9LzazxWZ2l5n128P3EuGhh2DsWDjo\nIFiwQIlBZE+1ZPmMHu7+giXXFHB3N7OqPbjnH4Ha5b6vIQyTPbvxk4qKiuqOE4kEiURiD24puWr9\nerjwwrAe0vTpcMQRcUckkj7FxcUUFxdH8t4tGco6g7Bc98Pu/ikz+yZwtruf1KIbhGal6bV9Di25\npj4HaYnHHw/zFb73vTB/oXv3uCMSiVe6V2W9CJgKFJrZu8BK4P+19YZmNsTd30s+PIXQTCXSYps2\nwSWXwHPPheYk7eUsknofN8+hvm6EPopKWjjPwcweAI4DBgBlwFVAAjiEMEx2JXCeu5c1ep0qB2nW\nzJlhiOq4cfCb30CvXnFHJJI50j3PoRA4HHgief4M4MWWvLm7N9dxfXdrAhQBqKgIw1NnzAib8Rx/\nfNwRieS2lvQ5zAW+4u4Vyce9gX+6e2TFvCoHqa+4GCZOhEQi7LnQt2/cEYlkpnT3OewF1B+dVJU8\nJxKpykqYMgUefhimTtVeziLp1JLkcB/wopk9Spi89g3g3kijknZv/nw46yw47DAoKYG8vLgjEmlf\nWrR8hpl9GjiW0AfxrLsvjDQoNSu1W9u3w1VXwb33hq07Tz017ohEske6m5Vw95fZvX+0SCRefhnO\nPBP22y9MattLjZcisdF2JxK7qiooKoKTTgp9DI88osQgErcWVQ4iUSkpCdt2Dh4MCxdqL2eRTKHK\nQWKxaxdcey184QthbaR//EOJQSSTqHKQtFu6NIxE6tEDXnoJRoyIOyIRaUyVg6RNTQ3cdBMccwyc\nfjrMmqXEIJKpVDlIWqxYARMmQHV1mMMwenTcEYnIR1HlIJFyh9tuC/ssjBsX9nNWYhDJfKocJDKr\nV8PZZ4cltufOhf33jzsiEWkpVQ6Scu5hhvOhh8Jxx8G8eUoMItlGlYOk1Nq1cO658NZbocNZezmL\nZCdVDpIyDz0EY8fCwQfDggVKDCLZTJWD7LH168NEtldfhenTQ+eziGQ3VQ6yRx5/PFQKe+8Nr7yi\nxCCSK1Q5SJts2gSXXAL//jf89a9hYpuI5A5VDtJqM2fCQQdB796weLESg0guUuUgLVZRAT/+MTz1\nFNxzD3zxi3FHJCJRUeUgLTJ7duhbqK4Oy2wrMYjkNlUO8pEqK+HKK+Fvf4OpU+Hkk+OOSETSIdLK\nwczuNrMyMyupdy7PzGaZWamZPW1m/aKMQdpu3rwwV2H9+jBMVYlBpP2IullpGnBio3NXALPcvQB4\nJvlYMsj27XD55XDqqWFDnj//GfLy4o5KRNIp0uTg7nOBjY1OjwPuTR7fC3wjyhikdV5+GQ47DJYv\nDyOR/uu/4o5IROIQR4f0IHcvSx6XAYNiiEEa2bkTrroKTjop9DE88gjstVfcUYlIXGLtkHZ3NzNv\n7lpRUVHdcSKRIJFIpCmq9qekBMaPhyFDYNEiGDo07ohEpCWKi4spLi6O5L3NvdnP5tTdwGwkMN3d\nD0o+fgNIuPtaMxsCzHb3/Rq9xqOOS2DXLrj+erjxxtC3MHEimMUdlYi0lZnh7in5KY6jcngCGA/8\nJvnnYzHE0O4tXRqqhZ494aWXtJeziDQU9VDWB4B5QKGZrTazCcC1wAlmVgp8IflY0qSmBm66CY4+\nGs44I+y5oMQgIo1F3qzUFmpWisaKFTBhQpjlfM892stZJNeksllJy2e0A+5w221hOe1x42DOHCUG\nEfloWj4jx61eDeecAxs3wty52stZRFpGlUOOcg9NR5/+NBx7bFgKQ4lBRFpKlUMOeu89OPdcePvt\n0OE8dmzcEYlItlHlkEPc4cEHw2J5hxwCCxYoMYhI26hyyBHr1sEFF8CSJfDkk3D44XFHJCLZTJVD\nDnjssbARz8iR8MorSgwisudUOWSxjRvhkktCZ/PDD2svZxFJHVUOWeqpp0K10KdPWFpbiUFEUkmV\nQ5apqIBLL4WZM8NQVe3lLCJRUOWQRWbPDtVCdXXYtlOJQUSiosohC1RWwhVXwKOPwtSp2stZJNvU\neA0f7PyA3l17xx1Kiyk5ZLh58+Css8K6SK++qr2cRTLZhm0bKC0vpbS8lKXrl1K6IRwv37Cc7x34\nPe4Yd0fcIbaYVmXNUNu3h207770Xfv97OPXUuCMSEYDtu7azfMPyuiRQWl7K0vKllJaXsmPXDgry\nCygcUMiYvDEU5hfWHaejakjlqqxKDhno5ZfhzDNhv/3gj3/UXs4i6VbjNazevLrBB3/t8XsV7zGy\n30gKBxRSkFdAQX5BXUIY1HMQFuN2ikoOOWrnTvjlL8Py2r/9LZx2mrbtFIlSeWV5gw//2gTw5oY3\nyeueFz708wsZk7+7ChjZbySdOmRmi3y2bxMqzSgpCdXCsGGwcCEMHRp3RCK5YVvVtgbNQLXJYGn5\nUnbV7KIwv7AuCXzrgG9ROKCQ0Xmj6dWlV9yhx0qVQ8x27YLrr4cbb4Trrgudz6oWRFqnuqaatze/\n3WwzUNnWMj7R/xPNVgEDewyMtRko1VQ55Ig33oDx46F379DPsM8+cUckkrncnfWV65vtCH5z45sM\n6DEgfPjnjaFwQCEnjzmZgvwCRvQbkbHNQJlMlUMMamrgd78L/Qs//zmcfz500HREEQAqqypZvmF5\nGApaXkrphtK6Y8frKoDa5qAx+WMYkzeGnl16xh167NQhncVWrIAJE0KCmDZNezlL+1RdU82qTaua\nrQLWVa5jVP9RdaOAapNBQX4BA3oMyKlmoFRTcshC7mF2809/ClOmhNVUO3aMOyqR6Lg76yrX7Z4Q\nVq8KWLFxBYN6DWrwwV/bHzCi7wg6dtAPR1soOWSZ1avh7LNh06awWN4BB8QdkUjqfLDzA5ZtWNZs\nM1AH60DhgN1NQLVJYHTeaLp37h536DknJ5KDma0CtgDVQJW7H1HvWk4kB/cww3nyZJg0KfzZSf1i\nkoV21eyqawZqnATKt5UzOm90+PDPC5PBapNAfo/8uENvV3IlOawEPu3uG5q5lvXJYe1aOPdcePvt\nkCC0l7NkOnen7IOyZhPAqk2rGNxrcIMqoHZU0N599lYzUIbIpaGsOdez5A4PPRT6FM49Fx55BLp0\niTsqkd0qdlSwbMOyJovDlZaX0qVjl90dwXkFjB87noL8AkbnjaZbp25xhy5pFGflsALYTGhWmuru\nd9S7lpWVw7p1cMEFsGRJqBa0l7PEpaq6ilWbVjWZEFZaXsrGbRsZkz+mQWdw7Vdedy37m81ypXI4\n2t3fM7OBwCwze8Pd59ZeLCoqqntiIpEgkUikP8JWeOyxMF/h9NPh/vuhm37Jkoi5O2u3rt29HES9\nKuCtTW8xrM+wugrgwL0O5NT9T6VwQCHD+wyng2liTS4oLi6muLg4kvfOiNFKZnYVsNXdb0g+zprK\nYeNG+OEPYf78MBJJezlLqm3ZsYVl5cuarQK6d+petzpobUdwQX4Bo/qPomunrnGHLmmW9R3SZtYD\n6OjuFWbWE3ga+Lm7P528nhXJ4amn4Pvfh298A669Fnpqgqa00c7qnazcuLLZKmDLji11nb/1l4gu\nyC+gf/f+cYcuGSQXksO+wN+TDzsBf3b3X9e7ntHJoaICLr0UZs6Eu+/WXs7SMu7OuxXvNrs43OrN\nqxneZ3iTWcGFAwoZ2nuomoGkRbK+z8HdVwKHxHHvPTV7NkycGBJCSQn06RN3RJJpNm/f3GwCWFa+\njF5dejXoCD5uxHGhGShvFF06alibZI6M6HNoLBMrh8pKuPJK+Nvf4Pbb4StfiTsiidOOXTtYsXFF\nkyRQWl7K1p1bG1QA9ZeG6NetX9yhSw7L+malj5NpyWHevLDPwhFHwM03Q55G+7ULNV7DO1veafDB\nXzspbM2WNezTd58mC8MV5BcwtPdQLQ4nsVBySJPt2+FnPwtDU//wBzjllLgjkihs2r6pbkZw/Spg\n2YZl9Onap8lcgML8Qvbtv6+agSTjZH2fQzZ46aWwEc/++8Orr8LAgXFHJHtix64dDbaKrF8FbNu1\nrUECOGW/U+qOe3ftHXfoIrFQ5dDIzp3wi1/AbbfBTTfBaadp285sUeM1rNmyptkq4N2KdxnRb0Sz\nS0QP6TVEzUCSE1Q5RKSkBM48E4YNg0WLYOjQuCOS5mzYtmH3wnD1KoDlG5bTv3v/BquDnvCJEygc\nUMi+/falc8fOcYcukjVUOQC7dsH118ONN8J114XOZ/0iGa/tu7Z/6FaRO6t3NlgWuv4eAWoGkvZM\nHdIp9MYboW+hd2+46y4YMSIttxVCM9Dbm99udonotVvXMrLfyAZLQ9TOEh7Uc5CagUSaoeSQAjU1\n8LvfwS9/CVdfDT/4AXTQJNRIrK9c3+xewW9ueJP8Hvm72/+TH/6F+YWM6DeCTh3U6inSGkoOe2jF\nCpgwISSIadNg9OjIbtVubKva9qF7BFTXVIcE0KgKGJM/hl5desUdukjOUHJoI/cwCul//ifMdp40\nCTpqA6sWq66p5q3NbzVbBZRtLeMT/T9RlwDG5I+pWxtoYI+BagYSSQMlhzZ4+204+2zYvDlsxLP/\n/il9+5zh7qyvXN/s8tArNq5gYI+Bu9v/kx/+BfkF7NN3HzUDicRMyaEV3MM+C5Mnw49+FP7spM8w\nPtj5QV0zUOMkAOz+4K9XBYzJH0OPzj1ijlxEPoySQwu9917Yx3n16lAtjB2bguCyyK6aXby16a1m\nq4D1lesZ1X9Us1VAfvd8NQOJZCElh4/hDg8+GPoUzj039DF0ydFlcNyd9z94v9klolduXMngXoOb\n3St4n7770LGDOlxEcomSw0dYtw4uuACWLAnVwuGHpzi4mGzduZVl5cuaXSK6Y4eODSaD1Y4MGtV/\nFN07d487dBFJEyWHD/H3v4fEcPrpcM010K1bBMFFaFfNLlZuXNmkCWhp+VI2btvI6LzRzVYB+T3y\n4w5dRDKAkkMjGzfCD38I8+eHzudjjokutj3l7qzdurbZjuBVm1YxpPeQZpeI3rvv3toqUkQ+khbe\nq2fGDPj+98NeC4sXQ8+ecUcUVOyoYNmGZc2uENq1U9cGCWDC3hPqtors1inLyh0RyUlZWzls2QKX\nXgqzZoU1kb74xTQFV09VdRUrN61ssEJobRLYvGMzo/NGN6kCCvILyOuureREJPXafeXwr3/BxIlw\n/PFhI54+faK7l7vz3tb3miwOV1peylub3mJYn2F1TT9jB4/l25/8NgX5BQzrM0zNQCKStbKqcvjg\nA7jiitDxfPvt8JWvpO6eW3ZsaXZ10GUbltGjc48GC8PVVgCj+o+ia6euqQtCRGQPZH2HtJmdCNwE\ndATudPffNLreJDnMmxeW1j7ySLj5ZshrQ8vMzuqdrNi4otkksHXn1rqZwI2bgfp169f2b1ZEJE2y\nOjmYWUeGp4z6AAAHjElEQVRgKXA88A6wADjN3f9T7zl1yWH7dvjZz+D+++EPfwgdzx/F3Xm34t3d\nw0CTK4QuXb+U1VtWs0/ffRrsFFbbJDS099BWzwouLi4mkUi06jVxUJyppThTKxvizIYYIfv7HI4A\nlrv7KgAzexD4OvCfxk986aVQLey3X+hbGDhw97VN2zft7gSut0T0svJl9O7au25JiIL8AhIjE3Wj\ngbp0TN1U6Wz5D6M4U0txplY2xJkNMaZaHMlhGLC63uM1wJGNn/Szn8Efb9/B5deuYNSRS5lWWsrS\neburgMqqygZ7BIwrGFe3TlDfbn3T9s2IiOSiOJJDi9qxbqgaRfVF73B7xT4ULAxNP0cMO4LTDz6d\ngvyCNjUDiYhIy8TR53AUUOTuJyYfXwnU1O+UNrPMG0IlIpIFsrlDuhOhQ/qLwLvAizTqkBYRkXil\nvVnJ3XeZ2UXATMJQ1ruUGEREMktGToITEZF4Zdz6DmZ2opm9YWbLzOzymGPZ28xmm9kSM3vNzH6Y\nPJ9nZrPMrNTMnjazfvVec2Uy9jfM7EtpjLWjmS00s+kZHGM/M3vEzP5jZq+b2ZEZGueVyX/zEjP7\ni5l1zYQ4zexuMyszs5J651odl5l9Ovm9LTOz36UpzuuT/+6LzexRM+tb71rGxFnv2qVmVmNmefXO\npT3OD4vRzC5O/n2+Zmb1+2tTF6O7Z8wXoZlpOTAS6AwsAvaPMZ7BwCHJ416EvpL9geuAycnzlwPX\nJo8PSMbcOfk9LAc6pCnW/wb+DDyRfJyJMd4LTEwedwL6ZlqcyXutALomHz8EjM+EOIFjgU8BJfXO\ntSau2paCF4Ejksf/BE5MQ5wn1P69ANdmapzJ83sDTwErgbw44/yQv8vPA7OAzsnHA6OIMdMqh7oJ\ncu5eBdROkIuFu69190XJ462EiXrDgHGEDzqSf34jefx14AF3r/IwyW854XuKlJkNB74C3AnUjlTI\ntBj7Ase6+90Q+p7cfXOmxQlsAaqAHsnBEz0IAydij9Pd5wIbG51uTVxHmtkQoLe7v5h83n31XhNZ\nnO4+y91rkg9fAIZnYpxJNwKTG52LJc4PifF84NfJz0jcfV0UMWZacmhugtywmGJpwMxGEjL4C8Ag\ndy9LXioDBiWPhxJirpWu+H8LXAbU1DuXaTHuC6wzs2lm9oqZ3WFmPTMtTnffANwAvE1ICpvcfVam\nxVlPa+NqfP4d0v8zNpHw2yvNxBNrnGb2dWCNu7/a6FImxTkG+JyZPW9mxWZ2WBQxZlpyyMjecTPr\nBfwNuMTdK+pf81CnfVTckX5PZvZV4H13X8juqqFhADHHmNQJOBT4g7sfCnwAXNEgiAyI08xGAZMI\nZflQoJeZnd4giAyIs9mbfnxcsTOznwA73f0vccfSmJn1AKYAV9U/HVM4H6UT0N/djyL8UvjXKG6S\nacnhHUJ7X629aZjx0s7MOhMSw/3u/ljydJmZDU5eHwK8nzzfOP7hyXNR+iwwzsxWAg8AXzCz+zMs\nRgj/jmvcfUHy8SOEZLE2w+I8DJjn7uXuvgt4FPhMBsZZqzX/zmuS54c3Op+WeM3sLELz5/+rdzqT\n4hxF+KVgcfLnaTjwspkNyrA41xD+X5L8eaoxswGpjjHTksNLwBgzG2lmXYDvAE/EFYyZGXAX8Lq7\n31Tv0hOETkqSfz5W7/x3zayLme1LKP9eJELuPsXd93b3fYHvAv9y9zMyKcZknGuB1WZWkDx1PLAE\nmJ5JcQJvAEeZWffkv//xwOsZGGetVv07J/8dtlgYKWbAGfVeExkLy/RfBnzd3bc3ij8j4nT3Encf\n5O77Jn+e1gCHJpvtMibO5Pt/ASD589TF3denPMZU9aqn6gs4iTAqaDlwZcyxHENox18ELEx+nQjk\nAf8HlAJPA/3qvWZKMvY3gC+nOd7j2D1aKeNiBMYSlmhfTPjNp2+GxjmZkLhKCJ28nTMhTkJl+C6w\nk9A3N6EtcQGfTn5vy4Gb0xDnRGAZ8Fa9n6M/ZFCcO2r/PhtdX0FytFJccTYXY/L/4/3Je74MJKKI\nUZPgRESkiUxrVhIRkQyg5CAiIk0oOYiISBNKDiIi0oSSg4iINKHkICIiTSg5iIhIE0oOIiLShJKD\ntFtmdnhy85muZtYzuXHKAfWuj0xumjLNzJaa2Z/N7Etm9m8Lm+scnnxekZnda2bPmtkqM/svM/tf\nM3vVzGYkl/4WySpKDtJueVi07AngF8BvCIsrvt7oaaOA/wX2AwqB77j70cCPCUsV1NqXsAnLOOBP\nwCx3PxjYBpwc5fchEgX9RiPt3dWEBR+3ARc3c32luy8BMLMlhHWMAF4jrOAJYZnsGe5ebWavEXY8\nm5m8VlLveSJZQ5WDtHcDgJ6EbWC7N3N9R73jGsJicrXH9X+52gngYbezqkav0S9hknWUHKS9mwr8\nFPgLoWkJM3ujle+RiRvCiOwR/UYj7ZaZnQnscPcHzawDMM/MvtXoaY2XLfZmjhvvwPZRrxHJClqy\nW6QeMzsZ2Nfdb407FpE4KTmIiEgT6nMQEZEmlBxERKQJJQcREWlCyUFERJpQchARkSaUHEREpAkl\nBxERaeL/AxTcQojqb0i5AAAAAElFTkSuQmCC\n", - "text": [ - "<matplotlib.figure.Figure at 0x10b5b5f90>" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Examples 10.10-15,Page No:563" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "rho=1.204 #Density of the fluid in kg/m^3\n", - "w=0.5 #Width of the test object in m\n", - "U=10 #Velocity of the flow in m/s\n", - "delta1=0.042 #Boundary Layer thickness at 1 in m\n", - "delta2=0.077 #Boundary Layer thickness at 2 in m\n", - "\n", - "#Calculations\n", - "a=(delta2-delta1) \n", - "b=w*rho\n", - "c=U**2\n", - "Fd=(b*c*a*4)/45#Skin friction drag in N\n", - "\n", - "#Result\n", - "print \"The Skin Friction Drag is\",round(Fd,2),\"N\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Skin Friction Drag is 0.19 N\n" - ] - } - ], - "prompt_number": 15 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter10_2.ipynb b/Fluid_Mechanics-Fundamentals_&_Applications/Chapter10_2.ipynb deleted file mode 100755 index 505f66cb..00000000 --- a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter10_2.ipynb +++ /dev/null @@ -1,396 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:e9f209a2bf5415ddf06809cb9961528b86fd396a12cb639b1f2552ce5098ec2f" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 10:Approximate Solutions of the Navier-Stokes Equation" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 10.10-2, Page No:499" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "rho_air=0.8588 #Density of the surrounding air by gas law in kg/m^3\n", - "u=1.474*10**-5 #Dynamic Viscosity in kg/m.s\n", - "rho_particle=1240 #Density of the particle in kg/m^3\n", - "D=50*10**-6 #Diameter of the particles in m\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "\n", - "#Calculations\n", - "#Applying Newtons Third Law and solving for V we get\n", - "V=(D**2/(18*u))*(rho_particle-rho_air)*g #Terminal Velocity of the particle in m/s\n", - "\n", - "#Verification of Reynolds Number \n", - "Re=(rho_air*V*D)/u #Reynolds Number\n", - "\n", - "#Result\n", - "print \"The Terminal Velocity of the particles is\",round(V,3),\"m/s\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Terminal Velocity of the particles is 0.115 m/s\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 10.10-6,Page No:519" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V_dot_by_L1=2 #Strength of source in line 1 in m^2/s at (0,-1)m\n", - "V_dot_by_L2=-1 #Strength of source in line 2 in m^2/s at (1,-1)m\n", - "T=1.5 #Vortex Strength in m^2/s a (1,1) m\n", - "r_vortex=1 #distance in m\n", - "r_source1=1.414 #Distance in m\n", - "r_source2=1 #Distance in m\n", - "\n", - "#Calculations\n", - "V_vortex=T/(2*pi*r_vortex) #Velocity Induced by the Vortex in m/s\n", - "V_source1=V_dot_by_L1/(2*pi*r_source1) #Velocity induced by the source1 in m/s\n", - "V_source2=V_dot_by_L2/(2*pi*r_source2) #Velocity induced by the source2 in m/s\n", - "V=V_vortex+(V_source1/2**0.5)+V_source2+(V_source1/2**0.5) #Vectorial addition of the velocities in m/s\n", - "\n", - "#Result\n", - "print \"The superposed velocity at point (1,0) is\",round(V,3),\"m/s to the right\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The superposed velocity at point (1,0) is 0.398 m/s to the right\n" - ] - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 10.10-8, Page No:526" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V_dot=0.11 #Volumetric flow rate in m^3/s\n", - "L=0.35 #Length of flow in m\n", - "b=0.02 #m\n", - "u_star_max=0.159 #m/s\n", - "\n", - "#Calculations\n", - "V_dot_by_L=-V_dot/L #Strength of the line source in m^2/s\n", - "u_max=(-u_star_max*V_dot_by_L)/b #Umax in m/s\n", - "\n", - "#Result\n", - "print \"The strength of the line source is\",round(V_dot_by_L,3),\"m^2/s\"\n", - "print \"The maximum velocity is\",round(u_max,2),\"m/s\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The strength of the line source is -0.314 m^2/s\n", - "The maximum velocity is 2.5 m/s\n" - ] - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 10.10-9,Page No:535" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V=10 #Velocity of fluid Flow in kh/hr\n", - "rho=999.9 #Density of water at 5\u02daC in kg/m^3\n", - "v=1.519*10**-6 #Kinematic Viscosity in m^2/s\n", - "#Conversion Factors\n", - "C1=1000\n", - "C2=3600\n", - "\n", - "#Calculations\n", - "Rex=(V*0.5*C1)/(v*C2) #Reynolds Number\n", - "\n", - "#Result\n", - "print \"The Reynolds Number is\",round(Rex)\n", - "print \"As a result the boundary layer is Transitional\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Reynolds Number is 914344.0\n", - "As a result the boundary layer is Transitional\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 10.10-10,Page No:541" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V=32 #Velocity of the fluid in m/s\n", - "x=1.1 #Distance in m\n", - "v=1.7*10**-5 #Kinematic Viscosity in m^2/s\n", - "#Conversion factor\n", - "C1=1000 \n", - "C2=3600\n", - "C3=100\n", - "\n", - "#Calculations\n", - "Rex=(V*x*C1)/(v*C2) #Reynolds Number\n", - "delta=4.91*x*C3/Rex**0.5 #Thickness of boundary Layer in cm\n", - "\n", - "#Result\n", - "print \"The Thickness of the boundary Layer is\",round(delta,2),\"cm\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Thickness of the boundary Layer is 0.71 cm\n" - ] - } - ], - "prompt_number": 19 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 10.10-11, Page No:546" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable decleration\n", - "x=0.3 #Length of the tunnel in m\n", - "V=4 #Optimised speed in m/s\n", - "R=0.15 #Radius of the tunnel in m\n", - "v=1.507*10**-5 #Kinematic Viscosity in m^2/s\n", - "\n", - "#Calculations\n", - "Rex=(V*x)/v #Reynolds Number\n", - "#Using the diplacement thickness formula\n", - "delta_star=(1.72*x)/Rex**0.5 #Displacement Thickness in m\n", - "#Applying the Continuity Equation\n", - "V_end=(V*R**2)/(R-delta_star)**2 #Velocity at the end in m/s\n", - "\n", - "#Result\n", - "print \"The end velocity should be\",round(V_end,2),\"m/s\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The end velocity should be 4.1 m/s\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 10.10-12, Page No:550" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "import matplotlib.pyplot as plt\n", - "%matplotlib inline\n", - "\n", - "#NOTE:The Notation has been changed here\n", - "\n", - "#Decleration of variables\n", - "V=10 #Velocity in m/s\n", - "x=1.52 #Length in m\n", - "v=1.516*10**-5 #Kinematic viscosity in m^2/s\n", - "u=[0,0.]\n", - "#Calculations\n", - "#Part(a)\n", - "\n", - "length=range(0,1500,20) #Array of length in mm\n", - "Re=(V*x)/v #Reynolds Number\n", - "y=transpose(length) #Transpose of the length matrix\n", - "#Laminar Boundary Layer\n", - "d_lam=(4.918*y)/((Re)**0.5)\n", - "#Turbulent Boundary Layer\n", - "d_tur=(0.16*y)/((Re)**(0.14285))\n", - "\n", - "#Part(b)\n", - "C_lam=0.664/((Re)**0.5) #Local Skin Friction coefficient for laminar boundary layer\n", - "C_tur=0.027/((Re)**0.14285) #Local Skin Friction coefficient for turbulent boundary Layer\n", - "\n", - "#Result\n", - "print \"The Reynolds Number is\",round(Re)\n", - "print \"The Local skin friction coefficient is\",round(C_lam,4),\"for laminar boundary layer\"\n", - "print \"The Local Skin friction coefficient is\",round(C_tur,4),\"for turbulent boundary layer\"\n", - "\n", - "plt.plot(y,d_tur,y,d_lam)\n", - "plt.xlabel('x,mm')\n", - "plt.ylabel('delta,mm')\n", - "plt.show()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Reynolds Number is 1002639.0\n", - "The Local skin friction coefficient is 0.0007 for laminar boundary layer\n", - "The Local Skin friction coefficient is 0.0038 for turbulent boundary layer\n" - ] - }, - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEPCAYAAACp/QjLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VPX1//HXYd+XBGRVsECiVsVat1at01ZbrS2tX7vZ\nn4qg1bpV+rWi0n5rql2sfrVWbStuuLRVq7Uqtoh8LUEsqKiAESsBAQWVCGELhiUk5/fHZxKyqUmY\nO3dm8n4+Hnlw596ZuSdA5uR8VnN3RERE6usQdwAiIpJ5lBxERKQJJQcREWlCyUFERJpQchARkSaU\nHEREpInIkoOZdTOzF8xskZm9bma/Tp4vMrM1ZrYw+XViVDGIiEjbWJTzHMysh7tXmlkn4Dngx8AX\ngQp3vzGyG4uIyB6JtFnJ3SuTh12AjsDG5GOL8r4iIrJnIk0OZtbBzBYBZcBsd1+SvHSxmS02s7vM\nrF+UMYiISOtF2qxUdxOzvsBM4ArgdWBd8tI1wBB3PzvyIEREpMU6peMm7r7ZzP4BHObuxbXnzexO\nYHrj55uZFnwSEWkDd09Js32Uo5UG1DYZmVl34ARgoZkNrve0U4CS5l7v7hn/ddVVV8Ueg+JUnIpT\nMdZ+pVKUlcMQ4F4z60BIQve7+zNmdp+ZHQI4sBI4L8IYRESkDSJLDu5eAhzazPkzo7qniIikhmZI\n74FEIhF3CC2iOFNLcaZWNsSZDTGmWlpGK7WWmXkmxiUiksnMDM/0DmkREcleSg4iItKEkoOIiDSh\n5CAiIk0oOYiISBNKDiIi0oSSg4hIxJYsgb//Pe4oWkfJQUQkItXVcP31cNxxsHlz3NG0TlpWZRUR\naW+WLYOzzoLOnWHBAth337gjah1VDiIiKVRTA7fcAp/9LHznO/Cvf2VfYgBVDiIiKbNqFUycCNu2\nwb//DQUFcUfUdqocRET2kDvccQccfjiceCI891x2JwZQ5SAiskfeeQfOOQfefx9mz4YDD4w7otRQ\n5SAi0gbu8Kc/wac+BUcdBc8/nzuJAVQ5iIi0WlkZ/OAHYUTSU0/BoU22Nct+qhxERFrhkUdg7FjY\nbz94+eXcTAygykFEpEXKy+Gii+CVV+Cxx0JTUi5T5SAi8jGefBIOPhgGD4aFC3M/MYAqBxGRD7V5\nM0yaBHPmwF/+EpbBaC9UOYiINGPWrFAtdOsGr77avhIDqHIQEWlg61aYPDk0Jd15J3zpS3FHFI/I\nKgcz62ZmL5jZIjN73cx+nTyfZ2azzKzUzJ42s35RxSAi0hrPPhtGIlVWhmqhvSYGAHP36N7crIe7\nV5pZJ+A54MfAOGC9u19nZpcD/d39ikav8yjjEhGpb9s2+MlP4MEH4bbbYNy4uCNqGzPD3S0V7xVp\nn4O7VyYPuwAdgY2E5HBv8vy9wDeijEFE5KO8+GKY5fzuu1BSkr2JIdUiTQ5m1sHMFgFlwGx3XwIM\ncvey5FPKgEFRxiAi0pwdO2DKlJAMrr46VA35+XFHlTki7ZB29xrgEDPrC8w0s883uu5m1mz7UVFR\nUd1xIpEgkUhEGKmItCcLF8L48fCJT8DixTAoS39FLS4upri4OJL3jrTPocGNzP4H2AacAyTcfa2Z\nDSFUFPs1eq76HEQk5aqq4Ne/hltvhRtugNNPB0tJC31myIo+BzMbUDsSycy6AycAC4EngPHJp40H\nHosqBhGRWkuWwGc+A/PmhSUwzjgjtxJDqkXZ5zAE+Feyz+EFYLq7PwNcC5xgZqXAF5KPRUQiUV0N\n110HiQScdx7MmAHDh8cdVeZLW7NSa6hZSURSYdkyOOss6NIFpk2DkSPjjihaWdGsJCISl5oauOWW\n0Iz0ne/AM8/kfmJINS2fISI5ZdUqmDgRtm8P/QvZvpdzXFQ5iEhOcIc77oDDD4cTT4S5c5UY9oQq\nBxHJeu+8A+ecA+vWQXExfPKTcUeU/VQ5iEjWcoc//Sksf/GZz8D8+UoMqaLKQUSyUllZGJr65psw\nc2ZIEJI6qhxEJOs8/HBYWvuAA+Cll5QYoqDKQUSyRnk5XHRRmOH8+ONw5JFxR5S7VDmISFaYPj1s\n2zl4cFg4T4khWqocRCSjbd4MkybBnDnwwAPwuc/FHVH7oMpBRDLWrFlw0EHQrVvYtlOJIX1UOYhI\nxtm6FSZPhiefhDvvbN97OcdFlYOIZJRnnw0jkbZtC9WCEkM8VDmISEbYtg1+8pOwXefUqfC1r8Ud\nUfumykFEYvfCC2GuwrvvhmpBiSF+qhxEJDY7dkBRUdhr4ZZb4FvfijsiqaXkICKxWLgQzjwTRo+G\nxYth0KC4I5L61KwkImlVVQVXXw1f/nIYkfToo0oMmUiVg4ikzZIlMH48DBwYKodhw+KOSD6MKgcR\niVx1NVx3HSQSYSXVf/5TiSHTqXIQkUiVlsJZZ0HXrrBggfZyzhaqHEQkEjU1YQTSZz8L3/0uPPOM\nEkM2UeUgIim3ahVMmBCGqs6bp72cs1FklYOZ7W1ms81siZm9ZmY/TJ4vMrM1ZrYw+XViVDGISHq5\nw+23w+GHw0knwdy5SgzZKsrKoQr4kbsvMrNewMtmNgtw4EZ3vzHCe4tImq1ZA+ecA+vXQ3Gx9nLO\ndpFVDu6+1t0XJY+3Av8BascnWFT3FZH0cof77oNDDw39C/PnKzHkgrT0OZjZSOBTwPPA0cDFZnYm\n8BJwqbtvSkccIpJaZWVhaOqbb8LMmdrLOZdEnhySTUqPAJe4+1Yz+yNwdfLyNcANwNmNX1dUVFR3\nnEgkSCQSUYcqIq3w8MNw8cUwcSI89FAYqirpVVxcTHFxcSTvbe4eyRsDmFln4Elghrvf1Mz1kcB0\ndz+o0XmPMi4RabvycrjoojDD+Z574Kij4o5IapkZ7p6SZvsoRysZcBfwev3EYGZD6j3tFKAkqhhE\nJLWmT4eDD4YhQ0JyUGLIXZFVDmZ2DPAs8CphhBLAFOA04JDkuZXAee5e1ui1qhxEMsjmzTBpEsyZ\nE6oF7eWcmVJZOUTW5+Duz9F8ZTIjqnuKSOo9/XQYonryyWEjnl694o5I0kEzpEWkWRUVcNllYZG8\nu+6CE06IOyJJJ62tJCJNzJkDY8fCzp1QUqLE0B6pchCROpWVMGVKGKY6dSp89atxRyRxUeUgIgA8\n/3yYxPb++6FvQYmhfVPlINLO7dgBRUUwbRrceit885txRySZQMlBpB175ZWwbefo0bB4sfZylt3U\nrCTSDlVVwdVXw4knwuTJ8OijSgzSkCoHkXZmyRI480wYODBUDsOHxx2RZCJVDiLtRHU1XHcdJBLw\ngx/AjBlKDPLhVDmItAPLloW+hW7dYMEC7eUsH0+Vg0gOq6mBm28Om/Ccdhr83/8pMUjLqHIQyVEr\nV4a9FnbuhHnzYMyYuCOSbKLKQSTHuMPtt8MRR4TF8p59VolBWk+Vg0gOWbMmrKC6fj0UF2svZ2k7\nVQ4iOcAd7rsPDj0Ujj4a5s9XYpA9o8pBJMuVlcF558GKFTBzZlgfSWRPqXIQyWIPPxyW1j7ggDBE\nVYlBUkWVg0gWKi+HCy+ERYvg8cfhyCPjjkhyjSoHkSwzfTocfDAMHQoLFyoxSDRUOYhkiU2bYNIk\nmDsXHngAPve5uCOSXKbKQSQLzJwZqoWePcPS2koMEjVVDiIZrKICLrssLJJ3991w/PFxRyTtxcdW\nDmb2NTNbaGYbzawi+bUlHcGJtGdz5oSRSDt3hm07lRgknczdP/oJZm8CpwCvuXtNi9/YbG/gPmAv\nwIHb3f1mM8sDHgJGAKuAb7v7pkav9Y+LSyRXVVbCT34Cf/0rTJ2qvZyl5cwMd7dUvFdL+hzWAEta\nkxiSqoAfufsngaOAC81sf+AKYJa7FwDPJB+LCPD882Guwtq1oVpQYpC4tKRyOAq4GpgN7Eyedne/\nsVU3MnsMuDX5dZy7l5nZYKDY3fdr9FxVDtKu7NgBRUUwbRrceit885txRyTZKJWVQ0s6pK8BKoBu\nQJe23MTMRgKfAl4ABrl7WfJSGaCda6VdW7gwbNs5enQYiaS9nCUTtCQ5DHH3E9p6AzPrBfwNuMTd\nK8x2JzV3dzNrtkQoKiqqO04kEiQSibaGIJKRqqrgV7+C3/8ebrgBTj8dLCW/80l7UVxcTHFxcSTv\n3ZJmpeuAZ9x9Zqvf3Kwz8CQww91vSp57A0i4+1ozGwLMVrOStDevvRa27dxrL7jzThg2LO6IJBek\nu0P6AmCGmW1vzVBWCyXCXcDrtYkh6QlgfPJ4PPBYa4MWyVbV1fCb38DnPw/nnw///KcSg2Smj60c\n2vzGZscAzwKvEoayAlwJvAj8FdgHDWWVdqS0NFQL3buHCW3ay1lSLZWVQ4uSg5kdDIykXh+Fuz+a\nigA+5H5KDpIzamrgllvgmmvCiKQLLoAOWrhGIpDW0UpmNg04CFgC1J/rEFlyEMkVK1fChAmh83n+\nfO3lLNmjJaOVjgQ+qV/lRVrOHe64I8x0njwZ/vu/oWPHuKMSabmWJIcFwAGEykFEPsaaNXDOOWFD\nnjlzwi5tItmmJS2f04D5ZlZqZiXJr1ejDkwk27jDfffBoYfC0UfDvHlKDJK9WlI53AWcDrxGwz4H\nEUlauxbOOy/0Mcycqb2cJfu1pHJ4392fcPcV7r6q9ivqwESyxUMPwSGHwIEHwoIFSgySG1pSOSw0\ns78A02m48J5GK0m7tn49XHhhWA/p8ce1l7PklpZUDj2AHcCXgK8mv74WZVAime6JJ8K2ncOHh4Xz\nlBgk10Q2Q3pPaBKcZKpNm2DSJHjuubC89rHHxh2RyG7pXlup8c0vNLPvmJn2n5Z2ZebMUC306AGL\nFikxSG5rywe8AccSRjCpeUlyXkUF/PjH8NRTYU0k7eUs7UGrk4O73xpFICKZaM6csPzF5z8ftu3s\n2zfuiETSo0XJwcy+CnySsBucA7j71RHGJRKrykqYMgUefhimTtVeztL+fGyfg5lNBb4NXJw89W1g\nRJRBicRp/vwwV+H990O1oMQg7VFLdoIrcfeDzOxVdz84ue3nU+5+TGRBabSSxGDHjrCk9rRpYevO\nU0+NOyKR1knrkt3AtuSflWY2DCgHBqfi5iKZ4pVXwkY8Y8aEamGvveKOSCReLUkOT5pZf+B64OXk\nuTuiC0kkfaqq4Fe/CpXCb38L3/seWEp+7xLJbi1pVurm7ttrjwmd0ttrz0USlJqVJA1eey1UC4MG\nhb0XtJezZLt0T4KbV3vg7tuT+z3P+4jni2S0Xbvg2mvD8NTzz4d//EOJQaSxD21WMrMhwFCgh5kd\nSpj85kAfwnpLIlln6dJQLfTsCS+9BCM07k6kWR/V5/Bl4CxgGHBDvfMVwJQIYxJJuZoauOUWuOYa\n+PnPQ8XQodWLx4i0Hy3pczjV3f+Wpnhq76k+B0mZlSvDLOeqKrjnnjAiSSQXpbLP4UOTg5ldSmhG\nqm1OqrtE2M/hxlQE8CH3VnKQPeYOt98OP/0pXH45/OhH0LFj3FGJRCdd8xx60zAptJqZ3Q2cTNhN\n7qDkuSLgHGBd8mlXuvtTe3IfkcbWrIFzzgkb8syZo72cRVor0v0czOxYYCtwX73kcBVQ8VGVhyoH\naSt3uO8+uOwyuPhiuOIK6Nw57qhE0iOtM6TNrBD4AzDY3T9pZgcD49z9Fx/3Wnefa2Yjm3vb1gYq\n8nHWroVzz4W33oKnnw77OotI27RkvMYdhNFJtftHlwCn7eF9LzazxWZ2l5n128P3EuGhh2DsWDjo\nIFiwQIlBZE+1ZPmMHu7+giXXFHB3N7OqPbjnH4Ha5b6vIQyTPbvxk4qKiuqOE4kEiURiD24puWr9\nerjwwrAe0vTpcMQRcUckkj7FxcUUFxdH8t4tGco6g7Bc98Pu/ikz+yZwtruf1KIbhGal6bV9Di25\npj4HaYnHHw/zFb73vTB/oXv3uCMSiVe6V2W9CJgKFJrZu8BK4P+19YZmNsTd30s+PIXQTCXSYps2\nwSWXwHPPheYk7eUsknofN8+hvm6EPopKWjjPwcweAI4DBgBlwFVAAjiEMEx2JXCeu5c1ep0qB2nW\nzJlhiOq4cfCb30CvXnFHJJI50j3PoRA4HHgief4M4MWWvLm7N9dxfXdrAhQBqKgIw1NnzAib8Rx/\nfNwRieS2lvQ5zAW+4u4Vyce9gX+6e2TFvCoHqa+4GCZOhEQi7LnQt2/cEYlkpnT3OewF1B+dVJU8\nJxKpykqYMgUefhimTtVeziLp1JLkcB/wopk9Spi89g3g3kijknZv/nw46yw47DAoKYG8vLgjEmlf\nWrR8hpl9GjiW0AfxrLsvjDQoNSu1W9u3w1VXwb33hq07Tz017ohEske6m5Vw95fZvX+0SCRefhnO\nPBP22y9MattLjZcisdF2JxK7qiooKoKTTgp9DI88osQgErcWVQ4iUSkpCdt2Dh4MCxdqL2eRTKHK\nQWKxaxdcey184QthbaR//EOJQSSTqHKQtFu6NIxE6tEDXnoJRoyIOyIRaUyVg6RNTQ3cdBMccwyc\nfjrMmqXEIJKpVDlIWqxYARMmQHV1mMMwenTcEYnIR1HlIJFyh9tuC/ssjBsX9nNWYhDJfKocJDKr\nV8PZZ4cltufOhf33jzsiEWkpVQ6Scu5hhvOhh8Jxx8G8eUoMItlGlYOk1Nq1cO658NZbocNZezmL\nZCdVDpIyDz0EY8fCwQfDggVKDCLZTJWD7LH168NEtldfhenTQ+eziGQ3VQ6yRx5/PFQKe+8Nr7yi\nxCCSK1Q5SJts2gSXXAL//jf89a9hYpuI5A5VDtJqM2fCQQdB796weLESg0guUuUgLVZRAT/+MTz1\nFNxzD3zxi3FHJCJRUeUgLTJ7duhbqK4Oy2wrMYjkNlUO8pEqK+HKK+Fvf4OpU+Hkk+OOSETSIdLK\nwczuNrMyMyupdy7PzGaZWamZPW1m/aKMQdpu3rwwV2H9+jBMVYlBpP2IullpGnBio3NXALPcvQB4\nJvlYMsj27XD55XDqqWFDnj//GfLy4o5KRNIp0uTg7nOBjY1OjwPuTR7fC3wjyhikdV5+GQ47DJYv\nDyOR/uu/4o5IROIQR4f0IHcvSx6XAYNiiEEa2bkTrroKTjop9DE88gjstVfcUYlIXGLtkHZ3NzNv\n7lpRUVHdcSKRIJFIpCmq9qekBMaPhyFDYNEiGDo07ohEpCWKi4spLi6O5L3NvdnP5tTdwGwkMN3d\nD0o+fgNIuPtaMxsCzHb3/Rq9xqOOS2DXLrj+erjxxtC3MHEimMUdlYi0lZnh7in5KY6jcngCGA/8\nJvnnYzHE0O4tXRqqhZ494aWXtJeziDQU9VDWB4B5QKGZrTazCcC1wAlmVgp8IflY0qSmBm66CY4+\nGs44I+y5oMQgIo1F3qzUFmpWisaKFTBhQpjlfM892stZJNeksllJy2e0A+5w221hOe1x42DOHCUG\nEfloWj4jx61eDeecAxs3wty52stZRFpGlUOOcg9NR5/+NBx7bFgKQ4lBRFpKlUMOeu89OPdcePvt\n0OE8dmzcEYlItlHlkEPc4cEHw2J5hxwCCxYoMYhI26hyyBHr1sEFF8CSJfDkk3D44XFHJCLZTJVD\nDnjssbARz8iR8MorSgwisudUOWSxjRvhkktCZ/PDD2svZxFJHVUOWeqpp0K10KdPWFpbiUFEUkmV\nQ5apqIBLL4WZM8NQVe3lLCJRUOWQRWbPDtVCdXXYtlOJQUSiosohC1RWwhVXwKOPwtSp2stZJNvU\neA0f7PyA3l17xx1Kiyk5ZLh58+Css8K6SK++qr2cRTLZhm0bKC0vpbS8lKXrl1K6IRwv37Cc7x34\nPe4Yd0fcIbaYVmXNUNu3h207770Xfv97OPXUuCMSEYDtu7azfMPyuiRQWl7K0vKllJaXsmPXDgry\nCygcUMiYvDEU5hfWHaejakjlqqxKDhno5ZfhzDNhv/3gj3/UXs4i6VbjNazevLrBB3/t8XsV7zGy\n30gKBxRSkFdAQX5BXUIY1HMQFuN2ikoOOWrnTvjlL8Py2r/9LZx2mrbtFIlSeWV5gw//2gTw5oY3\nyeueFz708wsZk7+7ChjZbySdOmRmi3y2bxMqzSgpCdXCsGGwcCEMHRp3RCK5YVvVtgbNQLXJYGn5\nUnbV7KIwv7AuCXzrgG9ROKCQ0Xmj6dWlV9yhx0qVQ8x27YLrr4cbb4Trrgudz6oWRFqnuqaatze/\n3WwzUNnWMj7R/xPNVgEDewyMtRko1VQ55Ig33oDx46F379DPsM8+cUckkrncnfWV65vtCH5z45sM\n6DEgfPjnjaFwQCEnjzmZgvwCRvQbkbHNQJlMlUMMamrgd78L/Qs//zmcfz500HREEQAqqypZvmF5\nGApaXkrphtK6Y8frKoDa5qAx+WMYkzeGnl16xh167NQhncVWrIAJE0KCmDZNezlL+1RdU82qTaua\nrQLWVa5jVP9RdaOAapNBQX4BA3oMyKlmoFRTcshC7mF2809/ClOmhNVUO3aMOyqR6Lg76yrX7Z4Q\nVq8KWLFxBYN6DWrwwV/bHzCi7wg6dtAPR1soOWSZ1avh7LNh06awWN4BB8QdkUjqfLDzA5ZtWNZs\nM1AH60DhgN1NQLVJYHTeaLp37h536DknJ5KDma0CtgDVQJW7H1HvWk4kB/cww3nyZJg0KfzZSf1i\nkoV21eyqawZqnATKt5UzOm90+PDPC5PBapNAfo/8uENvV3IlOawEPu3uG5q5lvXJYe1aOPdcePvt\nkCC0l7NkOnen7IOyZhPAqk2rGNxrcIMqoHZU0N599lYzUIbIpaGsOdez5A4PPRT6FM49Fx55BLp0\niTsqkd0qdlSwbMOyJovDlZaX0qVjl90dwXkFjB87noL8AkbnjaZbp25xhy5pFGflsALYTGhWmuru\nd9S7lpWVw7p1cMEFsGRJqBa0l7PEpaq6ilWbVjWZEFZaXsrGbRsZkz+mQWdw7Vdedy37m81ypXI4\n2t3fM7OBwCwze8Pd59ZeLCoqqntiIpEgkUikP8JWeOyxMF/h9NPh/vuhm37Jkoi5O2u3rt29HES9\nKuCtTW8xrM+wugrgwL0O5NT9T6VwQCHD+wyng2liTS4oLi6muLg4kvfOiNFKZnYVsNXdb0g+zprK\nYeNG+OEPYf78MBJJezlLqm3ZsYVl5cuarQK6d+petzpobUdwQX4Bo/qPomunrnGHLmmW9R3SZtYD\n6OjuFWbWE3ga+Lm7P528nhXJ4amn4Pvfh298A669Fnpqgqa00c7qnazcuLLZKmDLji11nb/1l4gu\nyC+gf/f+cYcuGSQXksO+wN+TDzsBf3b3X9e7ntHJoaICLr0UZs6Eu+/WXs7SMu7OuxXvNrs43OrN\nqxneZ3iTWcGFAwoZ2nuomoGkRbK+z8HdVwKHxHHvPTV7NkycGBJCSQn06RN3RJJpNm/f3GwCWFa+\njF5dejXoCD5uxHGhGShvFF06alibZI6M6HNoLBMrh8pKuPJK+Nvf4Pbb4StfiTsiidOOXTtYsXFF\nkyRQWl7K1p1bG1QA9ZeG6NetX9yhSw7L+malj5NpyWHevLDPwhFHwM03Q55G+7ULNV7DO1veafDB\nXzspbM2WNezTd58mC8MV5BcwtPdQLQ4nsVBySJPt2+FnPwtDU//wBzjllLgjkihs2r6pbkZw/Spg\n2YZl9Onap8lcgML8Qvbtv6+agSTjZH2fQzZ46aWwEc/++8Orr8LAgXFHJHtix64dDbaKrF8FbNu1\nrUECOGW/U+qOe3ftHXfoIrFQ5dDIzp3wi1/AbbfBTTfBaadp285sUeM1rNmyptkq4N2KdxnRb0Sz\nS0QP6TVEzUCSE1Q5RKSkBM48E4YNg0WLYOjQuCOS5mzYtmH3wnD1KoDlG5bTv3v/BquDnvCJEygc\nUMi+/falc8fOcYcukjVUOQC7dsH118ONN8J114XOZ/0iGa/tu7Z/6FaRO6t3NlgWuv4eAWoGkvZM\nHdIp9MYboW+hd2+46y4YMSIttxVCM9Dbm99udonotVvXMrLfyAZLQ9TOEh7Uc5CagUSaoeSQAjU1\n8LvfwS9/CVdfDT/4AXTQJNRIrK9c3+xewW9ueJP8Hvm72/+TH/6F+YWM6DeCTh3U6inSGkoOe2jF\nCpgwISSIadNg9OjIbtVubKva9qF7BFTXVIcE0KgKGJM/hl5desUdukjOUHJoI/cwCul//ifMdp40\nCTpqA6sWq66p5q3NbzVbBZRtLeMT/T9RlwDG5I+pWxtoYI+BagYSSQMlhzZ4+204+2zYvDlsxLP/\n/il9+5zh7qyvXN/s8tArNq5gYI+Bu9v/kx/+BfkF7NN3HzUDicRMyaEV3MM+C5Mnw49+FP7spM8w\nPtj5QV0zUOMkAOz+4K9XBYzJH0OPzj1ijlxEPoySQwu9917Yx3n16lAtjB2bguCyyK6aXby16a1m\nq4D1lesZ1X9Us1VAfvd8NQOJZCElh4/hDg8+GPoUzj039DF0ydFlcNyd9z94v9klolduXMngXoOb\n3St4n7770LGDOlxEcomSw0dYtw4uuACWLAnVwuGHpzi4mGzduZVl5cuaXSK6Y4eODSaD1Y4MGtV/\nFN07d487dBFJEyWHD/H3v4fEcPrpcM010K1bBMFFaFfNLlZuXNmkCWhp+VI2btvI6LzRzVYB+T3y\n4w5dRDKAkkMjGzfCD38I8+eHzudjjokutj3l7qzdurbZjuBVm1YxpPeQZpeI3rvv3toqUkQ+khbe\nq2fGDPj+98NeC4sXQ8+ecUcUVOyoYNmGZc2uENq1U9cGCWDC3hPqtors1inLyh0RyUlZWzls2QKX\nXgqzZoU1kb74xTQFV09VdRUrN61ssEJobRLYvGMzo/NGN6kCCvILyOuureREJPXafeXwr3/BxIlw\n/PFhI54+faK7l7vz3tb3miwOV1peylub3mJYn2F1TT9jB4/l25/8NgX5BQzrM0zNQCKStbKqcvjg\nA7jiitDxfPvt8JWvpO6eW3ZsaXZ10GUbltGjc48GC8PVVgCj+o+ia6euqQtCRGQPZH2HtJmdCNwE\ndATudPffNLreJDnMmxeW1j7ySLj5ZshrQ8vMzuqdrNi4otkksHXn1rqZwI2bgfp169f2b1ZEJE2y\nOjmYWUeGp4z6AAAHjElEQVRgKXA88A6wADjN3f9T7zl1yWH7dvjZz+D+++EPfwgdzx/F3Xm34t3d\nw0CTK4QuXb+U1VtWs0/ffRrsFFbbJDS099BWzwouLi4mkUi06jVxUJyppThTKxvizIYYIfv7HI4A\nlrv7KgAzexD4OvCfxk986aVQLey3X+hbGDhw97VN2zft7gSut0T0svJl9O7au25JiIL8AhIjE3Wj\ngbp0TN1U6Wz5D6M4U0txplY2xJkNMaZaHMlhGLC63uM1wJGNn/Szn8Efb9/B5deuYNSRS5lWWsrS\neburgMqqygZ7BIwrGFe3TlDfbn3T9s2IiOSiOJJDi9qxbqgaRfVF73B7xT4ULAxNP0cMO4LTDz6d\ngvyCNjUDiYhIy8TR53AUUOTuJyYfXwnU1O+UNrPMG0IlIpIFsrlDuhOhQ/qLwLvAizTqkBYRkXil\nvVnJ3XeZ2UXATMJQ1ruUGEREMktGToITEZF4Zdz6DmZ2opm9YWbLzOzymGPZ28xmm9kSM3vNzH6Y\nPJ9nZrPMrNTMnjazfvVec2Uy9jfM7EtpjLWjmS00s+kZHGM/M3vEzP5jZq+b2ZEZGueVyX/zEjP7\ni5l1zYQ4zexuMyszs5J651odl5l9Ovm9LTOz36UpzuuT/+6LzexRM+tb71rGxFnv2qVmVmNmefXO\npT3OD4vRzC5O/n2+Zmb1+2tTF6O7Z8wXoZlpOTAS6AwsAvaPMZ7BwCHJ416EvpL9geuAycnzlwPX\nJo8PSMbcOfk9LAc6pCnW/wb+DDyRfJyJMd4LTEwedwL6ZlqcyXutALomHz8EjM+EOIFjgU8BJfXO\ntSau2paCF4Ejksf/BE5MQ5wn1P69ANdmapzJ83sDTwErgbw44/yQv8vPA7OAzsnHA6OIMdMqh7oJ\ncu5eBdROkIuFu69190XJ462EiXrDgHGEDzqSf34jefx14AF3r/IwyW854XuKlJkNB74C3AnUjlTI\ntBj7Ase6+90Q+p7cfXOmxQlsAaqAHsnBEz0IAydij9Pd5wIbG51uTVxHmtkQoLe7v5h83n31XhNZ\nnO4+y91rkg9fAIZnYpxJNwKTG52LJc4PifF84NfJz0jcfV0UMWZacmhugtywmGJpwMxGEjL4C8Ag\ndy9LXioDBiWPhxJirpWu+H8LXAbU1DuXaTHuC6wzs2lm9oqZ3WFmPTMtTnffANwAvE1ICpvcfVam\nxVlPa+NqfP4d0v8zNpHw2yvNxBNrnGb2dWCNu7/a6FImxTkG+JyZPW9mxWZ2WBQxZlpyyMjecTPr\nBfwNuMTdK+pf81CnfVTckX5PZvZV4H13X8juqqFhADHHmNQJOBT4g7sfCnwAXNEgiAyI08xGAZMI\nZflQoJeZnd4giAyIs9mbfnxcsTOznwA73f0vccfSmJn1AKYAV9U/HVM4H6UT0N/djyL8UvjXKG6S\nacnhHUJ7X629aZjx0s7MOhMSw/3u/ljydJmZDU5eHwK8nzzfOP7hyXNR+iwwzsxWAg8AXzCz+zMs\nRgj/jmvcfUHy8SOEZLE2w+I8DJjn7uXuvgt4FPhMBsZZqzX/zmuS54c3Op+WeM3sLELz5/+rdzqT\n4hxF+KVgcfLnaTjwspkNyrA41xD+X5L8eaoxswGpjjHTksNLwBgzG2lmXYDvAE/EFYyZGXAX8Lq7\n31Tv0hOETkqSfz5W7/x3zayLme1LKP9eJELuPsXd93b3fYHvAv9y9zMyKcZknGuB1WZWkDx1PLAE\nmJ5JcQJvAEeZWffkv//xwOsZGGetVv07J/8dtlgYKWbAGfVeExkLy/RfBnzd3bc3ij8j4nT3Encf\n5O77Jn+e1gCHJpvtMibO5Pt/ASD589TF3denPMZU9aqn6gs4iTAqaDlwZcyxHENox18ELEx+nQjk\nAf8HlAJPA/3qvWZKMvY3gC+nOd7j2D1aKeNiBMYSlmhfTPjNp2+GxjmZkLhKCJ28nTMhTkJl+C6w\nk9A3N6EtcQGfTn5vy4Gb0xDnRGAZ8Fa9n6M/ZFCcO2r/PhtdX0FytFJccTYXY/L/4/3Je74MJKKI\nUZPgRESkiUxrVhIRkQyg5CAiIk0oOYiISBNKDiIi0oSSg4iINKHkICIiTSg5iIhIE0oOIiLShJKD\ntFtmdnhy85muZtYzuXHKAfWuj0xumjLNzJaa2Z/N7Etm9m8Lm+scnnxekZnda2bPmtkqM/svM/tf\nM3vVzGYkl/4WySpKDtJueVi07AngF8BvCIsrvt7oaaOA/wX2AwqB77j70cCPCUsV1NqXsAnLOOBP\nwCx3PxjYBpwc5fchEgX9RiPt3dWEBR+3ARc3c32luy8BMLMlhHWMAF4jrOAJYZnsGe5ebWavEXY8\nm5m8VlLveSJZQ5WDtHcDgJ6EbWC7N3N9R73jGsJicrXH9X+52gngYbezqkav0S9hknWUHKS9mwr8\nFPgLoWkJM3ujle+RiRvCiOwR/UYj7ZaZnQnscPcHzawDMM/MvtXoaY2XLfZmjhvvwPZRrxHJClqy\nW6QeMzsZ2Nfdb407FpE4KTmIiEgT6nMQEZEmlBxERKQJJQcREWlCyUFERJpQchARkSaUHEREpAkl\nBxERaeL/AxTcQojqb0i5AAAAAElFTkSuQmCC\n", - "text": [ - "<matplotlib.figure.Figure at 0x10b5b5f90>" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Examples 10.10-15,Page No:563" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "rho=1.204 #Density of the fluid in kg/m^3\n", - "w=0.5 #Width of the test object in m\n", - "U=10 #Velocity of the flow in m/s\n", - "delta1=0.042 #Boundary Layer thickness at 1 in m\n", - "delta2=0.077 #Boundary Layer thickness at 2 in m\n", - "\n", - "#Calculations\n", - "a=(delta2-delta1) \n", - "b=w*rho\n", - "c=U**2\n", - "Fd=(b*c*a*4)/45#Skin friction drag in N\n", - "\n", - "#Result\n", - "print \"The Skin Friction Drag is\",round(Fd,2),\"N\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Skin Friction Drag is 0.19 N\n" - ] - } - ], - "prompt_number": 15 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter11.ipynb b/Fluid_Mechanics-Fundamentals_&_Applications/Chapter11.ipynb deleted file mode 100755 index 31185c9b..00000000 --- a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter11.ipynb +++ /dev/null @@ -1,328 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:09f3cec4160faaa4e2a9f5ff2c23e2a27e23b91a36394dba268c313658b30c58" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 11:External Flow:Drag and Lift" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 11.11-1, Page No:589" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "Fd=300 #Drag Force in N\n", - "A=2.07 #Frontal Aera in m^2\n", - "rho=1.204 #denisty of air in kg/m^3\n", - "V=95 #Velocity of the fluid around the body in km/h\n", - "C=3.6 #Conversion factor \n", - "\n", - "#Calculations\n", - "Cd=(2*Fd*C**2)/(rho*A*V**2) #Coefficient of Drag of the Car\n", - "\n", - "#Result\n", - "print \"The Coefficient of Drag of the Car is\",round(Cd,2)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Coefficient of Drag of the Car is 0.35\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 11.11-2,Page No:599" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "W=1.85 #Width of the car in m\n", - "H=1.7 #Height of the car in m\n", - "Cd=0.3 #Drag Coefficient\n", - "rho=1.20 #Denisty of air in kg/m^3\n", - "V=95 #Velocity of the car in km/h\n", - "C=3.6 #Conversion Factor\n", - "L=18000 #Distance travelled by the car in one year in km\n", - "n_car=0.3 #Efficiency of the car in fraction\n", - "HV=44000 #Heating Value of the fuel in kJ/kg\n", - "rho_fuel=0.74 #Density of the fuel in kg/L\n", - "Unit_Cost=0.95 #Unit cost of fuel per litre in $\n", - "Hnew=1.55 #New design height in m\n", - "\n", - "#Calculation\n", - "#Drag Force before Redesigning\n", - "Fd=Cd*W*H*rho*V**2*0.5*(1/C) #Drag Force in N\n", - "W_drag=Fd*L #Work Done to overcome the drag force in kJ/year\n", - "E_in=W_drag/n_car #Energy required in kJ/year\n", - "#Amount of fuel\n", - "Amount_of_fuel=E_in/(HV*rho_fuel) #Amount of fuel required in L/year\n", - "Cost=Amount_of_fuel*Unit_Cost #Total cost per year in $/year\n", - "\n", - "#Reduction ratio\n", - "Reduction_Ratio=(H-Hnew)/H #Reduction ratio\n", - "#Fuel Reduction\n", - "Fuel_Reduction=Reduction_Ratio*Amount_of_fuel #Fuel reduced in L/year\n", - "Cost_Reduction=Reduction_Ratio*Cost #Cost Reduction in $/Year\n", - "\n", - "#Result\n", - "print \"The Reduction Ratio of the redesigned car is\",round(Reduction_Ratio,3)\n", - "print \"Therefore the cars height reduces the fuel consumption by\",round(Reduction_Ratio*100),\"%\"\n", - "\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Reduction Ratio of the redesigned car is 0.088\n", - "Therefore the cars height reduces the fuel consumption by 9.0 %\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 11.11-3,Page No:604" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "L=5 #Length on the flat plate in m\n", - "V=2 #Full stream velocity in m/s\n", - "v=2.485*10**-4 #Kinematic Viscosity in m^2/s\n", - "rho=876 #Density of the fluid in kg/m^3\n", - "\n", - "#Calculations\n", - "Rel=(V*L)/v #Reynolds Number\n", - "Cf=1.328*Rel**-0.5 #Average Friction Coefficient\n", - "\n", - "#As pressure drag is zero Cd=Cf\n", - "Fd=Cf*L*rho*V**2*0.5 #Drag Force in N\n", - "\n", - "#Result\n", - "print \"The total Drag Force per Unit Width is\",round(Fd),\"N\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The total Drag Force per Unit Width is 58.0 N\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 11.11-4,Page No:609" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "D=0.022 #Diameter of the pipe in m\n", - "rho=999.1 #Density of the fluid in kg/m^3\n", - "u=1.138*10**-3 #Dynamic Viscosity in kg/m.s\n", - "V=4 #Velocity in m/s\n", - "Cd=1 #Coefficent of Drag\n", - "L=30 #Width of the river in m\n", - "\n", - "#Calculations\n", - "Re=(rho*V*D)/u #Reynolds Number\n", - "Fd=Cd*D*L*rho*V**2*0.5 #Drag Force in N\n", - "\n", - "#Result\n", - "print \"The drag force on the pipe is\",round(Fd),\"N\"\n", - "#The answer in the textbook has been approximated to a large value" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The drag force on the pipe is 5275.0 N\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 11.11-5,Page No:616" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "m=70000 #Mass of the airplane in kg\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "V_k=558 #Velocity of the airplane in km/h\n", - "rho=1.2 #Denisty of air in kg/m^3\n", - "Cl_max1=1.52 #Coefficient of lift case 1\n", - "Cl_max2=3.48 #Coefficient of lift case 2\n", - "A=150 #Area in m^2\n", - "rho_h=0.312 #Density at crusing altitude in kg/m^3\n", - "Cd=0.03 #Coefficient of drag at crusing altitude\n", - "\n", - "#Calculations\n", - "W=m*g #Weight of the aircraft in N\n", - "V=V_k/3.6 #Velocity in m/s\n", - "\n", - "#Part (A)\n", - "V_min1=((2*W)/(rho*Cl_max1*A))**0.5 #Minimum stall speed in m/s without flap\n", - "V_min2=((2*W)/(rho*Cl_max2*A))**0.5 #Minimum stall speed in m/s with flap\n", - "V_min1_safe=1.2*V_min1 #Safe minimum velocity to avoid stall in m/s without flap\n", - "V_min2_safe=1.2*V_min2 #Safe minimum velocity to avoid stall in m/s with flap\n", - "\n", - "#Part(B)\n", - "Fl=W #Lift force required in N\n", - "Cl=(2*Fl)/(rho_h*A*V**2) #Coefficient of lift\n", - "\n", - "#Part(C)\n", - "Fd=Cd*A*rho_h*V**2*0.5*10**-3 #Drag Force in kN\n", - "Thrust=Fd #thrust Force in kN\n", - "Power=Thrust*V #Power required in kW\n", - "\n", - "#Result\n", - "print \"The safe speed limits without and with flaps are\",round(V_min1_safe,1),\"m/s and\",round(V_min2_safe,1),\"m/s\"\n", - "print \"The lift coefficient is\",round(Cl,2),\"and the corresponding angle of attack is 10\u02da\"\n", - "print \"The power required to provide enough thrust is\",round(Power),\"kW\"\n", - "#The final power answer has been rounded in the textbook" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The safe speed limits without and with flaps are 85.0 m/s and 56.2 m/s\n", - "The lift coefficient is 1.22 and the corresponding angle of attack is 10\u02da\n", - "The power required to provide enough thrust is 2614.0 kW\n" - ] - } - ], - "prompt_number": 15 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 11.11-6, Page No:618" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "m=0.057 #mass of the tennis ball in kg\n", - "D=0.0637 #Diameter of the tennis ball in m\n", - "V_k=72 #Velocity with which th ball is hit in km/h\n", - "w_rpm=4800 #backspin given to the ball in rpm\n", - "Cl=0.21 #Coefficient of lift\n", - "rho=1.184 #Density of the fluid in kg/m^3\n", - "g=9.81 #Aceleration due to gravity in m/s^2\n", - "\n", - "#Calculations\n", - "V=V_k/3.6 #Velocity of the ball in m/s\n", - "w=(w_rpm*2*pi)/60 #Angular velocity in rad/s\n", - "\n", - "#non dimensional rate of rotation\n", - "#Changing the notation from the one used in the textbook to simplify\n", - "ror=(w*D)/(2*V) #Non dimnsional rate of rotation\n", - "A=4**-1*pi*D**2 #Frontal Area in m^2\n", - "Fl=Cl*A*rho*V**2*0.5 #Lift force in N\n", - "W=m*g #Weight of the ball in N\n", - "F=W-Fl #Combined force in N\n", - "\n", - "#Result\n", - "print \"The ball will drop due to a combined effect of lift and gravity with a force of\",round(W,3),\"N\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The ball will drop due to a combined effect of lift and gravity with a force of 0.559 N\n" - ] - } - ], - "prompt_number": 16 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter11_1.ipynb b/Fluid_Mechanics-Fundamentals_&_Applications/Chapter11_1.ipynb deleted file mode 100755 index 31185c9b..00000000 --- a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter11_1.ipynb +++ /dev/null @@ -1,328 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:09f3cec4160faaa4e2a9f5ff2c23e2a27e23b91a36394dba268c313658b30c58" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 11:External Flow:Drag and Lift" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 11.11-1, Page No:589" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "Fd=300 #Drag Force in N\n", - "A=2.07 #Frontal Aera in m^2\n", - "rho=1.204 #denisty of air in kg/m^3\n", - "V=95 #Velocity of the fluid around the body in km/h\n", - "C=3.6 #Conversion factor \n", - "\n", - "#Calculations\n", - "Cd=(2*Fd*C**2)/(rho*A*V**2) #Coefficient of Drag of the Car\n", - "\n", - "#Result\n", - "print \"The Coefficient of Drag of the Car is\",round(Cd,2)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Coefficient of Drag of the Car is 0.35\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 11.11-2,Page No:599" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "W=1.85 #Width of the car in m\n", - "H=1.7 #Height of the car in m\n", - "Cd=0.3 #Drag Coefficient\n", - "rho=1.20 #Denisty of air in kg/m^3\n", - "V=95 #Velocity of the car in km/h\n", - "C=3.6 #Conversion Factor\n", - "L=18000 #Distance travelled by the car in one year in km\n", - "n_car=0.3 #Efficiency of the car in fraction\n", - "HV=44000 #Heating Value of the fuel in kJ/kg\n", - "rho_fuel=0.74 #Density of the fuel in kg/L\n", - "Unit_Cost=0.95 #Unit cost of fuel per litre in $\n", - "Hnew=1.55 #New design height in m\n", - "\n", - "#Calculation\n", - "#Drag Force before Redesigning\n", - "Fd=Cd*W*H*rho*V**2*0.5*(1/C) #Drag Force in N\n", - "W_drag=Fd*L #Work Done to overcome the drag force in kJ/year\n", - "E_in=W_drag/n_car #Energy required in kJ/year\n", - "#Amount of fuel\n", - "Amount_of_fuel=E_in/(HV*rho_fuel) #Amount of fuel required in L/year\n", - "Cost=Amount_of_fuel*Unit_Cost #Total cost per year in $/year\n", - "\n", - "#Reduction ratio\n", - "Reduction_Ratio=(H-Hnew)/H #Reduction ratio\n", - "#Fuel Reduction\n", - "Fuel_Reduction=Reduction_Ratio*Amount_of_fuel #Fuel reduced in L/year\n", - "Cost_Reduction=Reduction_Ratio*Cost #Cost Reduction in $/Year\n", - "\n", - "#Result\n", - "print \"The Reduction Ratio of the redesigned car is\",round(Reduction_Ratio,3)\n", - "print \"Therefore the cars height reduces the fuel consumption by\",round(Reduction_Ratio*100),\"%\"\n", - "\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Reduction Ratio of the redesigned car is 0.088\n", - "Therefore the cars height reduces the fuel consumption by 9.0 %\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 11.11-3,Page No:604" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "L=5 #Length on the flat plate in m\n", - "V=2 #Full stream velocity in m/s\n", - "v=2.485*10**-4 #Kinematic Viscosity in m^2/s\n", - "rho=876 #Density of the fluid in kg/m^3\n", - "\n", - "#Calculations\n", - "Rel=(V*L)/v #Reynolds Number\n", - "Cf=1.328*Rel**-0.5 #Average Friction Coefficient\n", - "\n", - "#As pressure drag is zero Cd=Cf\n", - "Fd=Cf*L*rho*V**2*0.5 #Drag Force in N\n", - "\n", - "#Result\n", - "print \"The total Drag Force per Unit Width is\",round(Fd),\"N\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The total Drag Force per Unit Width is 58.0 N\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 11.11-4,Page No:609" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "D=0.022 #Diameter of the pipe in m\n", - "rho=999.1 #Density of the fluid in kg/m^3\n", - "u=1.138*10**-3 #Dynamic Viscosity in kg/m.s\n", - "V=4 #Velocity in m/s\n", - "Cd=1 #Coefficent of Drag\n", - "L=30 #Width of the river in m\n", - "\n", - "#Calculations\n", - "Re=(rho*V*D)/u #Reynolds Number\n", - "Fd=Cd*D*L*rho*V**2*0.5 #Drag Force in N\n", - "\n", - "#Result\n", - "print \"The drag force on the pipe is\",round(Fd),\"N\"\n", - "#The answer in the textbook has been approximated to a large value" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The drag force on the pipe is 5275.0 N\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 11.11-5,Page No:616" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "m=70000 #Mass of the airplane in kg\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "V_k=558 #Velocity of the airplane in km/h\n", - "rho=1.2 #Denisty of air in kg/m^3\n", - "Cl_max1=1.52 #Coefficient of lift case 1\n", - "Cl_max2=3.48 #Coefficient of lift case 2\n", - "A=150 #Area in m^2\n", - "rho_h=0.312 #Density at crusing altitude in kg/m^3\n", - "Cd=0.03 #Coefficient of drag at crusing altitude\n", - "\n", - "#Calculations\n", - "W=m*g #Weight of the aircraft in N\n", - "V=V_k/3.6 #Velocity in m/s\n", - "\n", - "#Part (A)\n", - "V_min1=((2*W)/(rho*Cl_max1*A))**0.5 #Minimum stall speed in m/s without flap\n", - "V_min2=((2*W)/(rho*Cl_max2*A))**0.5 #Minimum stall speed in m/s with flap\n", - "V_min1_safe=1.2*V_min1 #Safe minimum velocity to avoid stall in m/s without flap\n", - "V_min2_safe=1.2*V_min2 #Safe minimum velocity to avoid stall in m/s with flap\n", - "\n", - "#Part(B)\n", - "Fl=W #Lift force required in N\n", - "Cl=(2*Fl)/(rho_h*A*V**2) #Coefficient of lift\n", - "\n", - "#Part(C)\n", - "Fd=Cd*A*rho_h*V**2*0.5*10**-3 #Drag Force in kN\n", - "Thrust=Fd #thrust Force in kN\n", - "Power=Thrust*V #Power required in kW\n", - "\n", - "#Result\n", - "print \"The safe speed limits without and with flaps are\",round(V_min1_safe,1),\"m/s and\",round(V_min2_safe,1),\"m/s\"\n", - "print \"The lift coefficient is\",round(Cl,2),\"and the corresponding angle of attack is 10\u02da\"\n", - "print \"The power required to provide enough thrust is\",round(Power),\"kW\"\n", - "#The final power answer has been rounded in the textbook" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The safe speed limits without and with flaps are 85.0 m/s and 56.2 m/s\n", - "The lift coefficient is 1.22 and the corresponding angle of attack is 10\u02da\n", - "The power required to provide enough thrust is 2614.0 kW\n" - ] - } - ], - "prompt_number": 15 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 11.11-6, Page No:618" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "m=0.057 #mass of the tennis ball in kg\n", - "D=0.0637 #Diameter of the tennis ball in m\n", - "V_k=72 #Velocity with which th ball is hit in km/h\n", - "w_rpm=4800 #backspin given to the ball in rpm\n", - "Cl=0.21 #Coefficient of lift\n", - "rho=1.184 #Density of the fluid in kg/m^3\n", - "g=9.81 #Aceleration due to gravity in m/s^2\n", - "\n", - "#Calculations\n", - "V=V_k/3.6 #Velocity of the ball in m/s\n", - "w=(w_rpm*2*pi)/60 #Angular velocity in rad/s\n", - "\n", - "#non dimensional rate of rotation\n", - "#Changing the notation from the one used in the textbook to simplify\n", - "ror=(w*D)/(2*V) #Non dimnsional rate of rotation\n", - "A=4**-1*pi*D**2 #Frontal Area in m^2\n", - "Fl=Cl*A*rho*V**2*0.5 #Lift force in N\n", - "W=m*g #Weight of the ball in N\n", - "F=W-Fl #Combined force in N\n", - "\n", - "#Result\n", - "print \"The ball will drop due to a combined effect of lift and gravity with a force of\",round(W,3),\"N\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The ball will drop due to a combined effect of lift and gravity with a force of 0.559 N\n" - ] - } - ], - "prompt_number": 16 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter11_2.ipynb b/Fluid_Mechanics-Fundamentals_&_Applications/Chapter11_2.ipynb deleted file mode 100755 index 31185c9b..00000000 --- a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter11_2.ipynb +++ /dev/null @@ -1,328 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:09f3cec4160faaa4e2a9f5ff2c23e2a27e23b91a36394dba268c313658b30c58" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 11:External Flow:Drag and Lift" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 11.11-1, Page No:589" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "Fd=300 #Drag Force in N\n", - "A=2.07 #Frontal Aera in m^2\n", - "rho=1.204 #denisty of air in kg/m^3\n", - "V=95 #Velocity of the fluid around the body in km/h\n", - "C=3.6 #Conversion factor \n", - "\n", - "#Calculations\n", - "Cd=(2*Fd*C**2)/(rho*A*V**2) #Coefficient of Drag of the Car\n", - "\n", - "#Result\n", - "print \"The Coefficient of Drag of the Car is\",round(Cd,2)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Coefficient of Drag of the Car is 0.35\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 11.11-2,Page No:599" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "W=1.85 #Width of the car in m\n", - "H=1.7 #Height of the car in m\n", - "Cd=0.3 #Drag Coefficient\n", - "rho=1.20 #Denisty of air in kg/m^3\n", - "V=95 #Velocity of the car in km/h\n", - "C=3.6 #Conversion Factor\n", - "L=18000 #Distance travelled by the car in one year in km\n", - "n_car=0.3 #Efficiency of the car in fraction\n", - "HV=44000 #Heating Value of the fuel in kJ/kg\n", - "rho_fuel=0.74 #Density of the fuel in kg/L\n", - "Unit_Cost=0.95 #Unit cost of fuel per litre in $\n", - "Hnew=1.55 #New design height in m\n", - "\n", - "#Calculation\n", - "#Drag Force before Redesigning\n", - "Fd=Cd*W*H*rho*V**2*0.5*(1/C) #Drag Force in N\n", - "W_drag=Fd*L #Work Done to overcome the drag force in kJ/year\n", - "E_in=W_drag/n_car #Energy required in kJ/year\n", - "#Amount of fuel\n", - "Amount_of_fuel=E_in/(HV*rho_fuel) #Amount of fuel required in L/year\n", - "Cost=Amount_of_fuel*Unit_Cost #Total cost per year in $/year\n", - "\n", - "#Reduction ratio\n", - "Reduction_Ratio=(H-Hnew)/H #Reduction ratio\n", - "#Fuel Reduction\n", - "Fuel_Reduction=Reduction_Ratio*Amount_of_fuel #Fuel reduced in L/year\n", - "Cost_Reduction=Reduction_Ratio*Cost #Cost Reduction in $/Year\n", - "\n", - "#Result\n", - "print \"The Reduction Ratio of the redesigned car is\",round(Reduction_Ratio,3)\n", - "print \"Therefore the cars height reduces the fuel consumption by\",round(Reduction_Ratio*100),\"%\"\n", - "\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Reduction Ratio of the redesigned car is 0.088\n", - "Therefore the cars height reduces the fuel consumption by 9.0 %\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 11.11-3,Page No:604" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "L=5 #Length on the flat plate in m\n", - "V=2 #Full stream velocity in m/s\n", - "v=2.485*10**-4 #Kinematic Viscosity in m^2/s\n", - "rho=876 #Density of the fluid in kg/m^3\n", - "\n", - "#Calculations\n", - "Rel=(V*L)/v #Reynolds Number\n", - "Cf=1.328*Rel**-0.5 #Average Friction Coefficient\n", - "\n", - "#As pressure drag is zero Cd=Cf\n", - "Fd=Cf*L*rho*V**2*0.5 #Drag Force in N\n", - "\n", - "#Result\n", - "print \"The total Drag Force per Unit Width is\",round(Fd),\"N\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The total Drag Force per Unit Width is 58.0 N\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 11.11-4,Page No:609" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "D=0.022 #Diameter of the pipe in m\n", - "rho=999.1 #Density of the fluid in kg/m^3\n", - "u=1.138*10**-3 #Dynamic Viscosity in kg/m.s\n", - "V=4 #Velocity in m/s\n", - "Cd=1 #Coefficent of Drag\n", - "L=30 #Width of the river in m\n", - "\n", - "#Calculations\n", - "Re=(rho*V*D)/u #Reynolds Number\n", - "Fd=Cd*D*L*rho*V**2*0.5 #Drag Force in N\n", - "\n", - "#Result\n", - "print \"The drag force on the pipe is\",round(Fd),\"N\"\n", - "#The answer in the textbook has been approximated to a large value" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The drag force on the pipe is 5275.0 N\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 11.11-5,Page No:616" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "m=70000 #Mass of the airplane in kg\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "V_k=558 #Velocity of the airplane in km/h\n", - "rho=1.2 #Denisty of air in kg/m^3\n", - "Cl_max1=1.52 #Coefficient of lift case 1\n", - "Cl_max2=3.48 #Coefficient of lift case 2\n", - "A=150 #Area in m^2\n", - "rho_h=0.312 #Density at crusing altitude in kg/m^3\n", - "Cd=0.03 #Coefficient of drag at crusing altitude\n", - "\n", - "#Calculations\n", - "W=m*g #Weight of the aircraft in N\n", - "V=V_k/3.6 #Velocity in m/s\n", - "\n", - "#Part (A)\n", - "V_min1=((2*W)/(rho*Cl_max1*A))**0.5 #Minimum stall speed in m/s without flap\n", - "V_min2=((2*W)/(rho*Cl_max2*A))**0.5 #Minimum stall speed in m/s with flap\n", - "V_min1_safe=1.2*V_min1 #Safe minimum velocity to avoid stall in m/s without flap\n", - "V_min2_safe=1.2*V_min2 #Safe minimum velocity to avoid stall in m/s with flap\n", - "\n", - "#Part(B)\n", - "Fl=W #Lift force required in N\n", - "Cl=(2*Fl)/(rho_h*A*V**2) #Coefficient of lift\n", - "\n", - "#Part(C)\n", - "Fd=Cd*A*rho_h*V**2*0.5*10**-3 #Drag Force in kN\n", - "Thrust=Fd #thrust Force in kN\n", - "Power=Thrust*V #Power required in kW\n", - "\n", - "#Result\n", - "print \"The safe speed limits without and with flaps are\",round(V_min1_safe,1),\"m/s and\",round(V_min2_safe,1),\"m/s\"\n", - "print \"The lift coefficient is\",round(Cl,2),\"and the corresponding angle of attack is 10\u02da\"\n", - "print \"The power required to provide enough thrust is\",round(Power),\"kW\"\n", - "#The final power answer has been rounded in the textbook" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The safe speed limits without and with flaps are 85.0 m/s and 56.2 m/s\n", - "The lift coefficient is 1.22 and the corresponding angle of attack is 10\u02da\n", - "The power required to provide enough thrust is 2614.0 kW\n" - ] - } - ], - "prompt_number": 15 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 11.11-6, Page No:618" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "m=0.057 #mass of the tennis ball in kg\n", - "D=0.0637 #Diameter of the tennis ball in m\n", - "V_k=72 #Velocity with which th ball is hit in km/h\n", - "w_rpm=4800 #backspin given to the ball in rpm\n", - "Cl=0.21 #Coefficient of lift\n", - "rho=1.184 #Density of the fluid in kg/m^3\n", - "g=9.81 #Aceleration due to gravity in m/s^2\n", - "\n", - "#Calculations\n", - "V=V_k/3.6 #Velocity of the ball in m/s\n", - "w=(w_rpm*2*pi)/60 #Angular velocity in rad/s\n", - "\n", - "#non dimensional rate of rotation\n", - "#Changing the notation from the one used in the textbook to simplify\n", - "ror=(w*D)/(2*V) #Non dimnsional rate of rotation\n", - "A=4**-1*pi*D**2 #Frontal Area in m^2\n", - "Fl=Cl*A*rho*V**2*0.5 #Lift force in N\n", - "W=m*g #Weight of the ball in N\n", - "F=W-Fl #Combined force in N\n", - "\n", - "#Result\n", - "print \"The ball will drop due to a combined effect of lift and gravity with a force of\",round(W,3),\"N\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The ball will drop due to a combined effect of lift and gravity with a force of 0.559 N\n" - ] - } - ], - "prompt_number": 16 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter12.ipynb b/Fluid_Mechanics-Fundamentals_&_Applications/Chapter12.ipynb deleted file mode 100755 index e505af37..00000000 --- a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter12.ipynb +++ /dev/null @@ -1,853 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:277bc4cb4b4cbb4032c88d8fd8301e41a2fcfc6cb9b7c57adbca5a396d6c0dce" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 12:Compressible Flow" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.12-1, Page No:638" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V_1=250 #Velocity in m/s\n", - "c_p=1.005 #Constant Pressure specific heat in kJ/kg.K\n", - "k=1.4 #Specific heat ratio \n", - "T1=255.7 #\n", - "C=10**-3 #COnversion factor\n", - "P1=54.05 #Atmospheric Pressure in kPa\n", - "SPR=8 #Stagnation pressure ratio \n", - "\n", - "#Calculations\n", - "#Part(a)\n", - "T_01=T1+((V_1**2/(2*c_p))*C) #Stagnation temperature in K\n", - "\n", - "P_01=P1*((T_01/T1)**(k/(k-1))) #Stagnation Pressure in kPa\n", - "\n", - "#Part(b)\n", - "T_02=T_01*((SPR)**((k-1)/k)) #Stagnation Temperature at compressor exit in K\n", - "\n", - "Win=c_p*(T_02-T_01) #Work per unit mass of air in kJ/kg\n", - "\n", - "#Result\n", - "print \"The stagnation pressure is\",round(P_01,2),\"kPa\"\n", - "print \"The required compressor work per unit mass is\",round(Win,1),\"kJ/kg\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The stagnation pressure is 80.77 kPa\n", - "The required compressor work per unit mass is 233.9 kJ/kg\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.12-2, Page No:639" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "cp=0.846 #Specific Heat in kJ/kg.K\n", - "k=1.289 #Specific heat ratio\n", - "R=0.1889 #gas constant for Carbon dioxide in kJ/kg.K\n", - "T_0=473 #Temperature in K\n", - "P0=1.4*10**3 #Pressure in kPa\n", - "P=1.2*10**3 #Pressure in kPa\n", - "m_dot=3 #Mass flow rate in kg/s\n", - "\n", - "#Calcualtions\n", - "x=((k-1)/k)\n", - "b=float(P/P0)\n", - "T=T_0*((b)**x) #Temperature where pressure is P in K\n", - "V=(2*cp*(T0-T)*10**3)**0.5 #Velocity in m/s\n", - "\n", - "#Using The Ideal Gas relation\n", - "rho=P/(R*T) #Density of the fluid in kg/m^3\n", - "\n", - "#Using the mass flow rate relation\n", - "A=m_dot/(rho*V) #Area in m^2\n", - "\n", - "c=(k*R*T*10**3)**0.5 #speed of sound in m/s\n", - "\n", - "#Mach Number\n", - "Ma=V/c #Mach's Number\n", - "\n", - "#Result\n", - "print \"Similarly we can compute data for other pressures as well\"\n", - "print \"The denisty of air is\",round(rho,5),\"kg/m^3\"\n", - "print \"The area is\",A,\"m^2\"\n", - "print \"The speed of sound is\",round(c,2),\"m/s\"\n", - "print \"The Mach Number is\",round(Ma,3)\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Similarly we can compute data for other pressures as well\n", - "The denisty of air is 13.90266 kg/m^3\n", - "The area is 0.00130869674184 m^2\n", - "The speed of sound is 333.56 m/s\n", - "The Mach NUmber is 0.494\n" - ] - } - ], - "prompt_number": 29 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.12-3,Page No:645" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "k=1.289 #Specific Heat Ratio\n", - "To=473 #Stagnation temperature in K\n", - "Po=1400 #Stagnation pressure in kPa\n", - "\n", - "#Calculations\n", - "#Notation has been changed for simplicity of computation\n", - "T_ratio=2/(k+1) #ratio of T star to To\n", - "P_ratio=(2/(k+1))**(k/(k-1)) #Ratio of P star to Po\n", - "\n", - "T_star=T_ratio*To #Critical Temperature in K\n", - "P_star=P_ratio*Po #Critical Pressure in kPa\n", - "\n", - "#Result\n", - "print \"the critical temperature and pressrue are\",round(T_star),\"K and\",round(P_star),\"kPa\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "the critical temperature and pressrue are 413.0 K and 767.0 kPa\n" - ] - } - ], - "prompt_number": 30 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.12-4, Page No:648" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable decleration\n", - "Vi=150 #Velocity at the inlet in m/s\n", - "cp=1.005 #Specific heat in kJ/Kg.K\n", - "k=1.4 #Specific heat ratio\n", - "Ti=873 #Temperature at the inlet in K\n", - "Pi=1 #Pressure at the inlet in Mpa\n", - "Pb1=0.7 #Back pressure in part a in Mpa\n", - "Pb2=0.4 #Back pressure in part b in Mpa\n", - "R=0.287 #Gas Constant in kPa.m^3/kg.K\n", - "At=50*10**-4 #Area in m^2\n", - "\n", - "#Values taken from the table\n", - "P_ratio=0.67 #Presure ratio\n", - "T_ratio=0.892 #Temperature ratio\n", - "Mat=0.778 #Mach Number \n", - "\n", - "#Calculations\n", - "Toi=Ti+((Vi**2/(2*cp))*10**-3) #Stagnation Temperature in K\n", - "\n", - "Poi=Pi*((Toi/Ti)**(k/(k-1))) #Stagnation Presure in mPa\n", - "\n", - "#Stagnation pressure and temperature values remain constant throughout\n", - "\n", - "#Part(A)\n", - "#Notation will be changed to avoid computational complexicity\n", - "BPR1=Pb1/Poi #Back Pressure ratio\n", - "\n", - "Tt=T_ratio*Toi #Temperature in K\n", - "rhot=(Pb1*10**3)/(R*Tt) #Density in kg/m^3\n", - "Vt=Mat*((k*R*Tt*10**3)**0.5) #Velocity in m/s\n", - "m_dot1=rhot*At*Vt #Mass flow rate in kg/s\n", - "\n", - "#Part(B)\n", - "#Notation will be changed\n", - "BPR2=Pb2/Poi #Back pressure ratio\n", - "\n", - "m_dot2=(At*Poi*10**3)*((k/(Toi*R))**0.5)*((2/(k+1))**((k+1)/(2*(k-1))))*1000**0.5 #mass flow rate in kg/s\n", - "\n", - "#Result\n", - "print \"The mass flow rate at the nozzle is\",round(m_dot1,2),\"kg/s\"\n", - "print \"The mass flow rate through the nozzleis calculated to be\",round(m_dot2,2),\"kg/s\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The mass flow rate at the nozzle is 6.77 kg/s\n", - "The mass flow rate through the nozzleis calculated to be 7.11 kg/s\n" - ] - } - ], - "prompt_number": 53 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.12-5, Page No:650" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "Pgauge=220 #Gauge Pressure in the tire in kPa\n", - "Patm=94 #Atmospheric Pressure in kPa\n", - "R=0.287 #Gas Constant in kPa.m^3/kg.K\n", - "k=1.4 #Specific heat ratio\n", - "T=298 #Temperature in K\n", - "D=0.004 #Diamter in m\n", - "\n", - "#Calculations\n", - "P=Pgauge+Patm #Absolute Pressure in the tre in kPa\n", - "\n", - "#Critical Presure in the tire from table\n", - "Pstar=round(0.5283*P) #Critical Presure in kPa\n", - "\n", - "#Flow is choked\n", - "rho0=P/(R*T) #Denisty of the fluid in kg/m^3\n", - "rho_star=rho0*((2/(k+1))**(1/(k-1))) #Critical Density in kg/m^3\n", - "T_star=(2/(k+1))*T #Critical Temperature in K\n", - "\n", - "V=(k*R*T_star*1000)**0.5 #Velocity in m/s\n", - "m_dot=rho_star*((pi*D**2)/4)*V #mass flow rate in kg/s\n", - "\n", - "#Result\n", - "print \"The initial mass flow rate is\",round(m_dot,5),\"kg/s\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The initial mass flow rate is 0.00924 kg/s\n" - ] - } - ], - "prompt_number": 63 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.12-6, Page No:653" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "k=1.4 #Specific Heat ratio\n", - "R=0.287 #Gas Constant in kJ/kg.K\n", - "Ma=2 #Mach Number\n", - "A=20*10**-4 #Throat Area in m^2\n", - "P0=1000 #Pressure in kPa\n", - "T0=800 #Temperature in K\n", - "\n", - "#Calculations\n", - "rho0=P0/(R*T0) #Density of the fluid in kg/m^3\n", - "\n", - "#Part(a) When Ma=1\n", - "#Notation has been changed\n", - "#Taking values from the table\n", - "P_ratio=0.5283 #Pressure ratio\n", - "T_ratio=0.8333 #Temperature Ratio\n", - "rho_ratio=0.6339 #Density Ratio\n", - "\n", - "#Thus\n", - "P_star=P_ratio*P0 #Critical Pressure in kPa\n", - "T_star=T_ratio*T0 #Critical Temperature in K\n", - "rho_star=rho_ratio*rho0 #Critical Denisty in kg/m^3\n", - "\n", - "V_star=(k*R*T_star*1000)**0.5 #Critical Velocity in m/s\n", - "\n", - "#Part(b) When Ma=2\n", - "P_ratio2=0.1278 #Pressure ratio in part b\n", - "T_ratio2=0.5556 #Temperature ratio in part b\n", - "rho_ratio2=0.23 #Density ratio in part b\n", - "Ma_star=1.633 #Critical Mach Number\n", - "A_ratio=1.6875 #Area ratio in part b\n", - "\n", - "#Thus\n", - "Pe=P_ratio2*P0 #Pressure at the exit plane in kPa\n", - "Te=T_ratio2*T0 #Temperature at the exit plane in K\n", - "rho_e=rho_ratio2*rho0 #Density at the exit plane in kg/m^3\n", - "Ae=A_ratio*A #Area at the exit plane in m^2\n", - "Ve=Ma_star*V_star #Velocity at the exit plane in m/s\n", - "\n", - "#Part(c)\n", - "m_dot=rho_star*A*V_star #Mass flow rate in kg/s\n", - "\n", - "\n", - "#Result\n", - "print \"The throat conditions are as follows\"\n", - "print \"P*=\",round(P_star),\"kPa\",\"T*=\",round(T_star,1),\"K\",\"rho*=\",round(rho_star,3),\"kg/m^3\"\n", - "print \"The exit plane conditions are as follows\"\n", - "print \"Pe=\",round(Pe),\"kPa\",\"Te=\",round(Te,1),\"K\",\"rho_e=\",round(rho_e,3),\"kg/m^3\"\n", - "print \"Ae=\",Ae,\"m^2\"\n", - "print \"The mass flow rate is\",round(m_dot,2),\"kg/s\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The throat conditions are as follows\n", - "P*= 528.0 kPa T*= 666.6 K rho*= 2.761 kg/m^3\n", - "The exit plane conditions are as follows\n", - "Pe= 128.0 kPa Te= 444.5 K rho_e= 1.002 kg/m^3\n", - "Ae= 0.003375 m^2\n", - "The mass flow rate is 2.86 kg/s\n" - ] - } - ], - "prompt_number": 69 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.12-8, Page No:659" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#NOTE:The variable names have been changed\n", - "\n", - "#Variable Decleration\n", - "k=1.4 #Specific Heat ratio\n", - "R=0.287 #gas Constant in kJ/kg.K\n", - "cp=1.005 #Specfic heat at constant pressure in kJ/kg.K\n", - "#Table Values\n", - "P01=1 #pressure in MPa\n", - "P1=0.1278 #Pressure in MPa\n", - "T1=444.5 #Temperature in K\n", - "rho1=1.002 #Denisty in kg/m^3\n", - "Ma1=2 #Mach Number \n", - "Ma2=0.5774 #Mach Number \n", - "Po_ratio=0.7209 #Presure ratio\n", - "P_ratio=4.5 #Pressure ratio\n", - "T_ratio=1.6875 #Temperature Ratio\n", - "rho_ratio=2.6667 #Density Ratio\n", - "A=20*10**-4 #Area in m^2\n", - "\n", - "#Calculations\n", - "#Part(a)\n", - "\n", - "P02=Po_ratio*P01 #Stagnation Pressure after the shockwave in MPa\n", - "P2=P1*P_ratio #Static Pressure after the shockwave in MPa\n", - "T2=T_ratio*T1 #Temperature after the shockwave in K\n", - "rho2=rho_ratio*rho1 #Denisty after the shockwave in kg/m^3\n", - "\n", - "#Part(b)\n", - "e_change=cp*(np.log(T2/T1))-(R*np.log(P2/P1)) #Entropy change across the shock in kJ/kg.K\n", - "\n", - "#Part(c)\n", - "V2=Ma2*(k*R*T2*1000)**0.5 #Velocity in m/s\n", - "\n", - "#Part(d)\n", - "#Same as example 12-6 above\n", - "m_dot=2.86 #Mass Flow rate in kg/s\n", - "\n", - "#Result\n", - "print \"The Following are the values\"\n", - "print \"Stagnation Pressure\",round(P02,3),\"MPa\"\n", - "print \"Static Pressure\",round(P2,3),\"MPa\"\n", - "print \"Static Temperature\",round(T2,1),\"K\"\n", - "print \"Static Denisty\",round(rho2,2),\"kg/m^3\"\n", - "print \"The entropy change is\",round(e_change,5),\"kJ/kg.K\"\n", - "print \"The exit velocity is\",round(V2),\"m/s\"\n", - "print \"The mass flow rate is\",round(m_dot,3),\"kg/s\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Following are the values\n", - "Stagnation Pressure 0.721 MPa\n", - "Static Pressure 0.575 MPa\n", - "Static Temperature 750.1 K\n", - "Static Denisty 2.67 kg/m^3\n", - "The entropy change is 0.09419 kJ/kg.K\n", - "The exit velocity is 317.0 m/s\n", - "The mass flow rate is 2.86 kg/s\n" - ] - } - ], - "prompt_number": 77 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.12-9, Page No:667" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "u=19 #angle of Mach lines in Degrees\n", - "\n", - "#Calculations\n", - "Ma1=1/(sin((u*pi)/180)) #Mach Number \n", - "\n", - "#Result\n", - "print \"The Mach Number is\",round(Ma1,2)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Mach Number is 3.07\n" - ] - } - ], - "prompt_number": 81 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.12-10, Page No:667" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#NOTE:Some Variable names have been changed\n", - "\n", - "#Variable Decleration\n", - "Ma1=2 #Mach Number\n", - "k=1.4 #Specific heat ratio\n", - "theta=10 #Deflection in degrees\n", - "beta_weak=39.3 #Oblique shock angle in degrees\n", - "beta_strong=83.7 #Oblique shock angle in degrees\n", - "P1=75 #Pressure in kPa\n", - "Ma2_n_w=0.8032 #Mach Number on Downstream side\n", - "Ma2_n_s=0.5794 #Mach Number on Downstream Side \n", - "\n", - "#Calculations\n", - "\n", - "#Weak shock\n", - "Ma1_n_w=Ma1*sin((beta_weak*pi)/180) #Mach Number\n", - "\n", - "#Strong Shock\n", - "Ma1_n_s=Ma1*sin((beta_strong*pi)/180) #Mach Number\n", - "\n", - "#Pressure Calculations\n", - "\n", - "#Weak Shock\n", - "P2_w=((2*k*(Ma1_n_w**2)-k+1)/(k+1))*P1 #Pressure in kPa\n", - "\n", - "#Strong Shock\n", - "P2_s=((2*k*(Ma1_n_s**2)-k+1)/(k+1))*P1 #Pressure in kPa\n", - "\n", - "Ma2_w=Ma2_n_w/sin(((beta_weak-theta)*pi)/180) #Mach NUmber on the downstream side\n", - "\n", - "Ma2_s=Ma2_n_s/sin(((beta_strong-theta)*pi)/180) #Mach NUmber on the downstream side\n", - "\n", - "#Result\n", - "print \"The Mach number on the downstream side of the oblique shock are\"\n", - "print \"Ma in weak shock\",round(Ma2_w,3),\"Ma in strong shock\",round(Ma2_s,3)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Mach number on the downstream side of the oblique shock are\n", - "Ma in weak shock 1.641 Ma in strong shock 0.604\n" - ] - } - ], - "prompt_number": 85 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.12-11, Page no:668" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "Ma1=2 #Mach Number \n", - "P1=230 #Pressure in kPa\n", - "k=1.4 #Specific Heat ratio\n", - "theta=10 #Degrees\n", - "Ma2=2.38 #Mach Number \n", - "\n", - "#Calculations\n", - "#Simplfying the calculation\n", - "a=((k+1)/(k-1))**0.5\n", - "b=((Ma1**2)-1)**0.5\n", - "c=((k-1)/(k+1))**0.5\n", - "d=arctan(b)*180*pi**-1\n", - "e=arctan(c*b)*180*pi**-1\n", - "\n", - "vMa1=a*e-d #Upstream Prandtl-Meyer Function in degrees\n", - "vMa2=theta+vMa1 #Degrees\n", - "\n", - "#Pressure Calculations\n", - "#Simplifying Calculations\n", - "a1=(k-1)*0.5\n", - "b1=k/(k-1)\n", - "f=(1+a1*Ma2**2)**(-b1)\n", - "g=(1+a1*Ma1**2)**(-b1)\n", - "P2=P1*(f/g) #Pressure in kPa\n", - "\n", - "#Result\n", - "print \"The Mach Number on the Downstream Side is\",round(Ma2,2)\n", - "print \"The Pressure at the downstream side is\",round(P2),\"kPa\"\n", - "#The answer in the textbook has not been rounded and hence differes " - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Mach Number on the Downstream Side is 2.38\n", - "The Pressure at the downstream side is 127.0 kPa\n" - ] - } - ], - "prompt_number": 128 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.12-14, Page No:677" - ] - }, - { - "cell_type": "code", - "collapsed": true, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "k=1.4 #Specific Heat Ratio\n", - "cp=1.005 #Specific Heat in kJ/kg.K\n", - "R=0.287 #Gas COnstant in kJ/kg.K\n", - "P1=480 #Pressure in kPa\n", - "T1=550 #Temperature in K\n", - "D=0.15 #Diameter in m\n", - "AF=40 #Air-Fuel mass ratio\n", - "HV=42000 #Heating Value in kJ/kg\n", - "V=80 #Velocity in m/s\n", - "\n", - "#Values from Tables\n", - "T_ratio=0.1291 #Temperature ratio\n", - "T_ratio1=0.1541 #Temperature Ratio\n", - "P_ratio1=2.3065 #Pressure ratio\n", - "V_ratio1=0.0668 #Velocity Ratio\n", - "T_ratio2=0.4389 #Temperature Ratio\n", - "P_ratio2=2.1086 #Pressure Ratio\n", - "V_ratio2=0.2082 #Velocity ratio\n", - "\n", - "#Calculations\n", - "rho1=P1/(R*T1) #Density in kg/m^3\n", - "A1=(pi*D**2)/4 #Area in m^2\n", - "m_dot_air=rho1*A1*V #Mass flow rate of air in kg/s\n", - "m_dot_fuel=m_dot_air/AF #Mass flow rate of the fuel in kg/s\n", - "Q_dot=m_dot_fuel*HV #Heat in kW\n", - "q=Q_dot/m_dot_air #HEat Transfer rate in kJ/kg\n", - "\n", - "#Stagnation Temperature and Mach Number at INLET\n", - "T01=T1+(V**2/(2*cp))*10**-3 #Stagnation Temperature in K\n", - "c1=(k*R*T1*1000)**0.5 #Speed in m/s\n", - "Ma1=V/c1 #Mach Number\n", - "\n", - "#EXIT stagnation Temperature and Mach Number\n", - "T02=T01+(q/cp) #Stagnation Temperature in K\n", - "\n", - "T0_star=T01/T_ratio #Critical Temperature in K\n", - "\n", - "#Value for Ma2 is taken form the table corresponding to the Temperature ratio given below\n", - "T_rat=T02/T0_star #Temperature Ratio\n", - "Ma2=0.314 #Mach Number\n", - "\n", - "#Exit Values\n", - "T2=T1*(T_ratio2/T_ratio1) #Temperature in K\n", - "P2=P1*(P_ratio2/P_ratio1) #Pressure in kPa\n", - "V2=V*(V_ratio2/V_ratio1) #Velocity in m/s\n", - "\n", - "#Result\n", - "print \"The Temperature at the exit is\",round(T2),\"K\"\n", - "print \"The pressure at the exit is\",round(P2),\"kPa\"\n", - "print \"The velocity at the exit is\",round(V2),\"m/s\"\n", - "#The answer for temperature in tetbook is incorrect\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Temperature at the exit is 1566.0 K\n", - "The pressure at the exit is 439.0 kPa\n", - "The velocity at the exit is 249.0 m/s\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.12-15, Page No:685" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Varialble Decleration\n", - "k=1.4 #Specific Heat ratio\n", - "cp=1.005 #Specific Heat in kJ/kg.K\n", - "R=0.287 #Gas Constant in kJ/kg.K\n", - "v=1.58*10**-5 #Kinematic Viscosity in m^2/s\n", - "P1=150 #Pressure in kPa\n", - "T1=300 #Temperature in K\n", - "Ma1=0.4 #Mach Number\n", - "D=0.03 #Diameter in m\n", - "f=0.0148 #Friction factor\n", - "#Values from tables\n", - "P_ratio1=1.5901 \n", - "T_ratio1=1.1628\n", - "P_ratio2=2.6958\n", - "V_ratio=0.4313\n", - "fL1_D=2.3085\n", - "\n", - "#Calculations\n", - "c1=(k*R*T1*1000)**0.5 #Inlet Velocity in m/s\n", - "V1=Ma1*c1 #Velocity in m/s\n", - "Re1=(V1*D)/v #Reynolds Number\n", - "\n", - "L1_star=(fL1_D*D)/f #Duct Length in m\n", - "T_star=T1/T_ratio1 #Temperature in K\n", - "P_star=P1/P_ratio2 #Pressure in kPa\n", - "V_star=V1/V_ratio #Velocity in m/s\n", - "\n", - "fraction=1-(1/P_ratio1) #Fraction of the inlet stagnation pressure lost \n", - "\n", - "#Result\n", - "print \"The duct length is\",round(L1_star,2),\"m\"\n", - "print \"The Temperature is\",round(T_star),\"K\"\n", - "print \"The Pressure is\",round(P_star,1),\"kPa\"\n", - "print \"The Velocity is\",round(V_star),\"m/s\"\n", - "print round(fraction,3),\"Fraction of the total stagnation pressure is lost in the duct\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The duct length is 4.68 m\n", - "The Temperature is 258.0 K\n", - "The Pressure is 55.6 kPa\n", - "The Velocity is 322.0 m/s\n", - "0.371 Fraction of the total stagnation pressure is lost in the duct\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.12-16,Page No:686" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "k=1.4 #Specific Heat ratio\n", - "cp=1.005 #Specific Heat in kJ/kg.K\n", - "R=0.287 #Gas Constant in kJ/kg.K\n", - "V1=85 #Velocity in m/s\n", - "P1=220 #Pressure in kPa\n", - "T1=450 #Temperature in K\n", - "f=0.023 #Friction factor \n", - "L=27 #Length in m\n", - "D=0.05 #Diameter in m\n", - "\n", - "#Value from table\n", - "fl_D=14.5333\n", - "\n", - "#Calculations\n", - "c1=(k*R*T1*1000)**0.5 #Velocity in m/s\n", - "Ma1=V1/c1 #Mach Number\n", - "\n", - "#Notation has been changed\n", - "fL_D1=(f*L)/D #Function\n", - "fL_D2=fl_D-fL_D1 #Function\n", - "\n", - "#Mach NUmber corresponding to this value is 0.42\n", - "Ma2=0.420 #Mach Number\n", - "\n", - "rho1=P1/(R*T1) #Density of the fluid in kg/m^3\n", - "A1=(pi*D**2)/4 #Area in m^2\n", - "m_air=rho1*V1*A1 #Mass flow rate in kg/s\n", - "\n", - "#Discussion Calculations\n", - "L_max1=(fl_D*D)/f #MAx Duct length in m\n", - "L_max2=(fL_D2*D)/f #Max Duct length in m\n", - "\n", - "#Result\n", - "print \"The Mach Number is\",round(Ma2,3)\n", - "print \"The mass flow rate is\",round(m_air,3),\"kg/s\"\n", - "print \"The max length at inlet is\",round(L_max1,1),\"m\"\n", - "print \"The max length at exit is\",round(L_max2,1),\"m\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Mach Number is 0.42\n", - "The mass flow rate is 0.284 kg/s\n", - "The max length at inlet is 31.6 m\n", - "The max length at exit is 4.6 m\n" - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter12_1.ipynb b/Fluid_Mechanics-Fundamentals_&_Applications/Chapter12_1.ipynb deleted file mode 100755 index e505af37..00000000 --- a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter12_1.ipynb +++ /dev/null @@ -1,853 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:277bc4cb4b4cbb4032c88d8fd8301e41a2fcfc6cb9b7c57adbca5a396d6c0dce" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 12:Compressible Flow" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.12-1, Page No:638" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V_1=250 #Velocity in m/s\n", - "c_p=1.005 #Constant Pressure specific heat in kJ/kg.K\n", - "k=1.4 #Specific heat ratio \n", - "T1=255.7 #\n", - "C=10**-3 #COnversion factor\n", - "P1=54.05 #Atmospheric Pressure in kPa\n", - "SPR=8 #Stagnation pressure ratio \n", - "\n", - "#Calculations\n", - "#Part(a)\n", - "T_01=T1+((V_1**2/(2*c_p))*C) #Stagnation temperature in K\n", - "\n", - "P_01=P1*((T_01/T1)**(k/(k-1))) #Stagnation Pressure in kPa\n", - "\n", - "#Part(b)\n", - "T_02=T_01*((SPR)**((k-1)/k)) #Stagnation Temperature at compressor exit in K\n", - "\n", - "Win=c_p*(T_02-T_01) #Work per unit mass of air in kJ/kg\n", - "\n", - "#Result\n", - "print \"The stagnation pressure is\",round(P_01,2),\"kPa\"\n", - "print \"The required compressor work per unit mass is\",round(Win,1),\"kJ/kg\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The stagnation pressure is 80.77 kPa\n", - "The required compressor work per unit mass is 233.9 kJ/kg\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.12-2, Page No:639" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "cp=0.846 #Specific Heat in kJ/kg.K\n", - "k=1.289 #Specific heat ratio\n", - "R=0.1889 #gas constant for Carbon dioxide in kJ/kg.K\n", - "T_0=473 #Temperature in K\n", - "P0=1.4*10**3 #Pressure in kPa\n", - "P=1.2*10**3 #Pressure in kPa\n", - "m_dot=3 #Mass flow rate in kg/s\n", - "\n", - "#Calcualtions\n", - "x=((k-1)/k)\n", - "b=float(P/P0)\n", - "T=T_0*((b)**x) #Temperature where pressure is P in K\n", - "V=(2*cp*(T0-T)*10**3)**0.5 #Velocity in m/s\n", - "\n", - "#Using The Ideal Gas relation\n", - "rho=P/(R*T) #Density of the fluid in kg/m^3\n", - "\n", - "#Using the mass flow rate relation\n", - "A=m_dot/(rho*V) #Area in m^2\n", - "\n", - "c=(k*R*T*10**3)**0.5 #speed of sound in m/s\n", - "\n", - "#Mach Number\n", - "Ma=V/c #Mach's Number\n", - "\n", - "#Result\n", - "print \"Similarly we can compute data for other pressures as well\"\n", - "print \"The denisty of air is\",round(rho,5),\"kg/m^3\"\n", - "print \"The area is\",A,\"m^2\"\n", - "print \"The speed of sound is\",round(c,2),\"m/s\"\n", - "print \"The Mach Number is\",round(Ma,3)\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Similarly we can compute data for other pressures as well\n", - "The denisty of air is 13.90266 kg/m^3\n", - "The area is 0.00130869674184 m^2\n", - "The speed of sound is 333.56 m/s\n", - "The Mach NUmber is 0.494\n" - ] - } - ], - "prompt_number": 29 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.12-3,Page No:645" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "k=1.289 #Specific Heat Ratio\n", - "To=473 #Stagnation temperature in K\n", - "Po=1400 #Stagnation pressure in kPa\n", - "\n", - "#Calculations\n", - "#Notation has been changed for simplicity of computation\n", - "T_ratio=2/(k+1) #ratio of T star to To\n", - "P_ratio=(2/(k+1))**(k/(k-1)) #Ratio of P star to Po\n", - "\n", - "T_star=T_ratio*To #Critical Temperature in K\n", - "P_star=P_ratio*Po #Critical Pressure in kPa\n", - "\n", - "#Result\n", - "print \"the critical temperature and pressrue are\",round(T_star),\"K and\",round(P_star),\"kPa\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "the critical temperature and pressrue are 413.0 K and 767.0 kPa\n" - ] - } - ], - "prompt_number": 30 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.12-4, Page No:648" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable decleration\n", - "Vi=150 #Velocity at the inlet in m/s\n", - "cp=1.005 #Specific heat in kJ/Kg.K\n", - "k=1.4 #Specific heat ratio\n", - "Ti=873 #Temperature at the inlet in K\n", - "Pi=1 #Pressure at the inlet in Mpa\n", - "Pb1=0.7 #Back pressure in part a in Mpa\n", - "Pb2=0.4 #Back pressure in part b in Mpa\n", - "R=0.287 #Gas Constant in kPa.m^3/kg.K\n", - "At=50*10**-4 #Area in m^2\n", - "\n", - "#Values taken from the table\n", - "P_ratio=0.67 #Presure ratio\n", - "T_ratio=0.892 #Temperature ratio\n", - "Mat=0.778 #Mach Number \n", - "\n", - "#Calculations\n", - "Toi=Ti+((Vi**2/(2*cp))*10**-3) #Stagnation Temperature in K\n", - "\n", - "Poi=Pi*((Toi/Ti)**(k/(k-1))) #Stagnation Presure in mPa\n", - "\n", - "#Stagnation pressure and temperature values remain constant throughout\n", - "\n", - "#Part(A)\n", - "#Notation will be changed to avoid computational complexicity\n", - "BPR1=Pb1/Poi #Back Pressure ratio\n", - "\n", - "Tt=T_ratio*Toi #Temperature in K\n", - "rhot=(Pb1*10**3)/(R*Tt) #Density in kg/m^3\n", - "Vt=Mat*((k*R*Tt*10**3)**0.5) #Velocity in m/s\n", - "m_dot1=rhot*At*Vt #Mass flow rate in kg/s\n", - "\n", - "#Part(B)\n", - "#Notation will be changed\n", - "BPR2=Pb2/Poi #Back pressure ratio\n", - "\n", - "m_dot2=(At*Poi*10**3)*((k/(Toi*R))**0.5)*((2/(k+1))**((k+1)/(2*(k-1))))*1000**0.5 #mass flow rate in kg/s\n", - "\n", - "#Result\n", - "print \"The mass flow rate at the nozzle is\",round(m_dot1,2),\"kg/s\"\n", - "print \"The mass flow rate through the nozzleis calculated to be\",round(m_dot2,2),\"kg/s\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The mass flow rate at the nozzle is 6.77 kg/s\n", - "The mass flow rate through the nozzleis calculated to be 7.11 kg/s\n" - ] - } - ], - "prompt_number": 53 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.12-5, Page No:650" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "Pgauge=220 #Gauge Pressure in the tire in kPa\n", - "Patm=94 #Atmospheric Pressure in kPa\n", - "R=0.287 #Gas Constant in kPa.m^3/kg.K\n", - "k=1.4 #Specific heat ratio\n", - "T=298 #Temperature in K\n", - "D=0.004 #Diamter in m\n", - "\n", - "#Calculations\n", - "P=Pgauge+Patm #Absolute Pressure in the tre in kPa\n", - "\n", - "#Critical Presure in the tire from table\n", - "Pstar=round(0.5283*P) #Critical Presure in kPa\n", - "\n", - "#Flow is choked\n", - "rho0=P/(R*T) #Denisty of the fluid in kg/m^3\n", - "rho_star=rho0*((2/(k+1))**(1/(k-1))) #Critical Density in kg/m^3\n", - "T_star=(2/(k+1))*T #Critical Temperature in K\n", - "\n", - "V=(k*R*T_star*1000)**0.5 #Velocity in m/s\n", - "m_dot=rho_star*((pi*D**2)/4)*V #mass flow rate in kg/s\n", - "\n", - "#Result\n", - "print \"The initial mass flow rate is\",round(m_dot,5),\"kg/s\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The initial mass flow rate is 0.00924 kg/s\n" - ] - } - ], - "prompt_number": 63 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.12-6, Page No:653" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "k=1.4 #Specific Heat ratio\n", - "R=0.287 #Gas Constant in kJ/kg.K\n", - "Ma=2 #Mach Number\n", - "A=20*10**-4 #Throat Area in m^2\n", - "P0=1000 #Pressure in kPa\n", - "T0=800 #Temperature in K\n", - "\n", - "#Calculations\n", - "rho0=P0/(R*T0) #Density of the fluid in kg/m^3\n", - "\n", - "#Part(a) When Ma=1\n", - "#Notation has been changed\n", - "#Taking values from the table\n", - "P_ratio=0.5283 #Pressure ratio\n", - "T_ratio=0.8333 #Temperature Ratio\n", - "rho_ratio=0.6339 #Density Ratio\n", - "\n", - "#Thus\n", - "P_star=P_ratio*P0 #Critical Pressure in kPa\n", - "T_star=T_ratio*T0 #Critical Temperature in K\n", - "rho_star=rho_ratio*rho0 #Critical Denisty in kg/m^3\n", - "\n", - "V_star=(k*R*T_star*1000)**0.5 #Critical Velocity in m/s\n", - "\n", - "#Part(b) When Ma=2\n", - "P_ratio2=0.1278 #Pressure ratio in part b\n", - "T_ratio2=0.5556 #Temperature ratio in part b\n", - "rho_ratio2=0.23 #Density ratio in part b\n", - "Ma_star=1.633 #Critical Mach Number\n", - "A_ratio=1.6875 #Area ratio in part b\n", - "\n", - "#Thus\n", - "Pe=P_ratio2*P0 #Pressure at the exit plane in kPa\n", - "Te=T_ratio2*T0 #Temperature at the exit plane in K\n", - "rho_e=rho_ratio2*rho0 #Density at the exit plane in kg/m^3\n", - "Ae=A_ratio*A #Area at the exit plane in m^2\n", - "Ve=Ma_star*V_star #Velocity at the exit plane in m/s\n", - "\n", - "#Part(c)\n", - "m_dot=rho_star*A*V_star #Mass flow rate in kg/s\n", - "\n", - "\n", - "#Result\n", - "print \"The throat conditions are as follows\"\n", - "print \"P*=\",round(P_star),\"kPa\",\"T*=\",round(T_star,1),\"K\",\"rho*=\",round(rho_star,3),\"kg/m^3\"\n", - "print \"The exit plane conditions are as follows\"\n", - "print \"Pe=\",round(Pe),\"kPa\",\"Te=\",round(Te,1),\"K\",\"rho_e=\",round(rho_e,3),\"kg/m^3\"\n", - "print \"Ae=\",Ae,\"m^2\"\n", - "print \"The mass flow rate is\",round(m_dot,2),\"kg/s\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The throat conditions are as follows\n", - "P*= 528.0 kPa T*= 666.6 K rho*= 2.761 kg/m^3\n", - "The exit plane conditions are as follows\n", - "Pe= 128.0 kPa Te= 444.5 K rho_e= 1.002 kg/m^3\n", - "Ae= 0.003375 m^2\n", - "The mass flow rate is 2.86 kg/s\n" - ] - } - ], - "prompt_number": 69 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.12-8, Page No:659" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#NOTE:The variable names have been changed\n", - "\n", - "#Variable Decleration\n", - "k=1.4 #Specific Heat ratio\n", - "R=0.287 #gas Constant in kJ/kg.K\n", - "cp=1.005 #Specfic heat at constant pressure in kJ/kg.K\n", - "#Table Values\n", - "P01=1 #pressure in MPa\n", - "P1=0.1278 #Pressure in MPa\n", - "T1=444.5 #Temperature in K\n", - "rho1=1.002 #Denisty in kg/m^3\n", - "Ma1=2 #Mach Number \n", - "Ma2=0.5774 #Mach Number \n", - "Po_ratio=0.7209 #Presure ratio\n", - "P_ratio=4.5 #Pressure ratio\n", - "T_ratio=1.6875 #Temperature Ratio\n", - "rho_ratio=2.6667 #Density Ratio\n", - "A=20*10**-4 #Area in m^2\n", - "\n", - "#Calculations\n", - "#Part(a)\n", - "\n", - "P02=Po_ratio*P01 #Stagnation Pressure after the shockwave in MPa\n", - "P2=P1*P_ratio #Static Pressure after the shockwave in MPa\n", - "T2=T_ratio*T1 #Temperature after the shockwave in K\n", - "rho2=rho_ratio*rho1 #Denisty after the shockwave in kg/m^3\n", - "\n", - "#Part(b)\n", - "e_change=cp*(np.log(T2/T1))-(R*np.log(P2/P1)) #Entropy change across the shock in kJ/kg.K\n", - "\n", - "#Part(c)\n", - "V2=Ma2*(k*R*T2*1000)**0.5 #Velocity in m/s\n", - "\n", - "#Part(d)\n", - "#Same as example 12-6 above\n", - "m_dot=2.86 #Mass Flow rate in kg/s\n", - "\n", - "#Result\n", - "print \"The Following are the values\"\n", - "print \"Stagnation Pressure\",round(P02,3),\"MPa\"\n", - "print \"Static Pressure\",round(P2,3),\"MPa\"\n", - "print \"Static Temperature\",round(T2,1),\"K\"\n", - "print \"Static Denisty\",round(rho2,2),\"kg/m^3\"\n", - "print \"The entropy change is\",round(e_change,5),\"kJ/kg.K\"\n", - "print \"The exit velocity is\",round(V2),\"m/s\"\n", - "print \"The mass flow rate is\",round(m_dot,3),\"kg/s\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Following are the values\n", - "Stagnation Pressure 0.721 MPa\n", - "Static Pressure 0.575 MPa\n", - "Static Temperature 750.1 K\n", - "Static Denisty 2.67 kg/m^3\n", - "The entropy change is 0.09419 kJ/kg.K\n", - "The exit velocity is 317.0 m/s\n", - "The mass flow rate is 2.86 kg/s\n" - ] - } - ], - "prompt_number": 77 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.12-9, Page No:667" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "u=19 #angle of Mach lines in Degrees\n", - "\n", - "#Calculations\n", - "Ma1=1/(sin((u*pi)/180)) #Mach Number \n", - "\n", - "#Result\n", - "print \"The Mach Number is\",round(Ma1,2)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Mach Number is 3.07\n" - ] - } - ], - "prompt_number": 81 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.12-10, Page No:667" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#NOTE:Some Variable names have been changed\n", - "\n", - "#Variable Decleration\n", - "Ma1=2 #Mach Number\n", - "k=1.4 #Specific heat ratio\n", - "theta=10 #Deflection in degrees\n", - "beta_weak=39.3 #Oblique shock angle in degrees\n", - "beta_strong=83.7 #Oblique shock angle in degrees\n", - "P1=75 #Pressure in kPa\n", - "Ma2_n_w=0.8032 #Mach Number on Downstream side\n", - "Ma2_n_s=0.5794 #Mach Number on Downstream Side \n", - "\n", - "#Calculations\n", - "\n", - "#Weak shock\n", - "Ma1_n_w=Ma1*sin((beta_weak*pi)/180) #Mach Number\n", - "\n", - "#Strong Shock\n", - "Ma1_n_s=Ma1*sin((beta_strong*pi)/180) #Mach Number\n", - "\n", - "#Pressure Calculations\n", - "\n", - "#Weak Shock\n", - "P2_w=((2*k*(Ma1_n_w**2)-k+1)/(k+1))*P1 #Pressure in kPa\n", - "\n", - "#Strong Shock\n", - "P2_s=((2*k*(Ma1_n_s**2)-k+1)/(k+1))*P1 #Pressure in kPa\n", - "\n", - "Ma2_w=Ma2_n_w/sin(((beta_weak-theta)*pi)/180) #Mach NUmber on the downstream side\n", - "\n", - "Ma2_s=Ma2_n_s/sin(((beta_strong-theta)*pi)/180) #Mach NUmber on the downstream side\n", - "\n", - "#Result\n", - "print \"The Mach number on the downstream side of the oblique shock are\"\n", - "print \"Ma in weak shock\",round(Ma2_w,3),\"Ma in strong shock\",round(Ma2_s,3)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Mach number on the downstream side of the oblique shock are\n", - "Ma in weak shock 1.641 Ma in strong shock 0.604\n" - ] - } - ], - "prompt_number": 85 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.12-11, Page no:668" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "Ma1=2 #Mach Number \n", - "P1=230 #Pressure in kPa\n", - "k=1.4 #Specific Heat ratio\n", - "theta=10 #Degrees\n", - "Ma2=2.38 #Mach Number \n", - "\n", - "#Calculations\n", - "#Simplfying the calculation\n", - "a=((k+1)/(k-1))**0.5\n", - "b=((Ma1**2)-1)**0.5\n", - "c=((k-1)/(k+1))**0.5\n", - "d=arctan(b)*180*pi**-1\n", - "e=arctan(c*b)*180*pi**-1\n", - "\n", - "vMa1=a*e-d #Upstream Prandtl-Meyer Function in degrees\n", - "vMa2=theta+vMa1 #Degrees\n", - "\n", - "#Pressure Calculations\n", - "#Simplifying Calculations\n", - "a1=(k-1)*0.5\n", - "b1=k/(k-1)\n", - "f=(1+a1*Ma2**2)**(-b1)\n", - "g=(1+a1*Ma1**2)**(-b1)\n", - "P2=P1*(f/g) #Pressure in kPa\n", - "\n", - "#Result\n", - "print \"The Mach Number on the Downstream Side is\",round(Ma2,2)\n", - "print \"The Pressure at the downstream side is\",round(P2),\"kPa\"\n", - "#The answer in the textbook has not been rounded and hence differes " - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Mach Number on the Downstream Side is 2.38\n", - "The Pressure at the downstream side is 127.0 kPa\n" - ] - } - ], - "prompt_number": 128 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.12-14, Page No:677" - ] - }, - { - "cell_type": "code", - "collapsed": true, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "k=1.4 #Specific Heat Ratio\n", - "cp=1.005 #Specific Heat in kJ/kg.K\n", - "R=0.287 #Gas COnstant in kJ/kg.K\n", - "P1=480 #Pressure in kPa\n", - "T1=550 #Temperature in K\n", - "D=0.15 #Diameter in m\n", - "AF=40 #Air-Fuel mass ratio\n", - "HV=42000 #Heating Value in kJ/kg\n", - "V=80 #Velocity in m/s\n", - "\n", - "#Values from Tables\n", - "T_ratio=0.1291 #Temperature ratio\n", - "T_ratio1=0.1541 #Temperature Ratio\n", - "P_ratio1=2.3065 #Pressure ratio\n", - "V_ratio1=0.0668 #Velocity Ratio\n", - "T_ratio2=0.4389 #Temperature Ratio\n", - "P_ratio2=2.1086 #Pressure Ratio\n", - "V_ratio2=0.2082 #Velocity ratio\n", - "\n", - "#Calculations\n", - "rho1=P1/(R*T1) #Density in kg/m^3\n", - "A1=(pi*D**2)/4 #Area in m^2\n", - "m_dot_air=rho1*A1*V #Mass flow rate of air in kg/s\n", - "m_dot_fuel=m_dot_air/AF #Mass flow rate of the fuel in kg/s\n", - "Q_dot=m_dot_fuel*HV #Heat in kW\n", - "q=Q_dot/m_dot_air #HEat Transfer rate in kJ/kg\n", - "\n", - "#Stagnation Temperature and Mach Number at INLET\n", - "T01=T1+(V**2/(2*cp))*10**-3 #Stagnation Temperature in K\n", - "c1=(k*R*T1*1000)**0.5 #Speed in m/s\n", - "Ma1=V/c1 #Mach Number\n", - "\n", - "#EXIT stagnation Temperature and Mach Number\n", - "T02=T01+(q/cp) #Stagnation Temperature in K\n", - "\n", - "T0_star=T01/T_ratio #Critical Temperature in K\n", - "\n", - "#Value for Ma2 is taken form the table corresponding to the Temperature ratio given below\n", - "T_rat=T02/T0_star #Temperature Ratio\n", - "Ma2=0.314 #Mach Number\n", - "\n", - "#Exit Values\n", - "T2=T1*(T_ratio2/T_ratio1) #Temperature in K\n", - "P2=P1*(P_ratio2/P_ratio1) #Pressure in kPa\n", - "V2=V*(V_ratio2/V_ratio1) #Velocity in m/s\n", - "\n", - "#Result\n", - "print \"The Temperature at the exit is\",round(T2),\"K\"\n", - "print \"The pressure at the exit is\",round(P2),\"kPa\"\n", - "print \"The velocity at the exit is\",round(V2),\"m/s\"\n", - "#The answer for temperature in tetbook is incorrect\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Temperature at the exit is 1566.0 K\n", - "The pressure at the exit is 439.0 kPa\n", - "The velocity at the exit is 249.0 m/s\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.12-15, Page No:685" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Varialble Decleration\n", - "k=1.4 #Specific Heat ratio\n", - "cp=1.005 #Specific Heat in kJ/kg.K\n", - "R=0.287 #Gas Constant in kJ/kg.K\n", - "v=1.58*10**-5 #Kinematic Viscosity in m^2/s\n", - "P1=150 #Pressure in kPa\n", - "T1=300 #Temperature in K\n", - "Ma1=0.4 #Mach Number\n", - "D=0.03 #Diameter in m\n", - "f=0.0148 #Friction factor\n", - "#Values from tables\n", - "P_ratio1=1.5901 \n", - "T_ratio1=1.1628\n", - "P_ratio2=2.6958\n", - "V_ratio=0.4313\n", - "fL1_D=2.3085\n", - "\n", - "#Calculations\n", - "c1=(k*R*T1*1000)**0.5 #Inlet Velocity in m/s\n", - "V1=Ma1*c1 #Velocity in m/s\n", - "Re1=(V1*D)/v #Reynolds Number\n", - "\n", - "L1_star=(fL1_D*D)/f #Duct Length in m\n", - "T_star=T1/T_ratio1 #Temperature in K\n", - "P_star=P1/P_ratio2 #Pressure in kPa\n", - "V_star=V1/V_ratio #Velocity in m/s\n", - "\n", - "fraction=1-(1/P_ratio1) #Fraction of the inlet stagnation pressure lost \n", - "\n", - "#Result\n", - "print \"The duct length is\",round(L1_star,2),\"m\"\n", - "print \"The Temperature is\",round(T_star),\"K\"\n", - "print \"The Pressure is\",round(P_star,1),\"kPa\"\n", - "print \"The Velocity is\",round(V_star),\"m/s\"\n", - "print round(fraction,3),\"Fraction of the total stagnation pressure is lost in the duct\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The duct length is 4.68 m\n", - "The Temperature is 258.0 K\n", - "The Pressure is 55.6 kPa\n", - "The Velocity is 322.0 m/s\n", - "0.371 Fraction of the total stagnation pressure is lost in the duct\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.12-16,Page No:686" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "k=1.4 #Specific Heat ratio\n", - "cp=1.005 #Specific Heat in kJ/kg.K\n", - "R=0.287 #Gas Constant in kJ/kg.K\n", - "V1=85 #Velocity in m/s\n", - "P1=220 #Pressure in kPa\n", - "T1=450 #Temperature in K\n", - "f=0.023 #Friction factor \n", - "L=27 #Length in m\n", - "D=0.05 #Diameter in m\n", - "\n", - "#Value from table\n", - "fl_D=14.5333\n", - "\n", - "#Calculations\n", - "c1=(k*R*T1*1000)**0.5 #Velocity in m/s\n", - "Ma1=V1/c1 #Mach Number\n", - "\n", - "#Notation has been changed\n", - "fL_D1=(f*L)/D #Function\n", - "fL_D2=fl_D-fL_D1 #Function\n", - "\n", - "#Mach NUmber corresponding to this value is 0.42\n", - "Ma2=0.420 #Mach Number\n", - "\n", - "rho1=P1/(R*T1) #Density of the fluid in kg/m^3\n", - "A1=(pi*D**2)/4 #Area in m^2\n", - "m_air=rho1*V1*A1 #Mass flow rate in kg/s\n", - "\n", - "#Discussion Calculations\n", - "L_max1=(fl_D*D)/f #MAx Duct length in m\n", - "L_max2=(fL_D2*D)/f #Max Duct length in m\n", - "\n", - "#Result\n", - "print \"The Mach Number is\",round(Ma2,3)\n", - "print \"The mass flow rate is\",round(m_air,3),\"kg/s\"\n", - "print \"The max length at inlet is\",round(L_max1,1),\"m\"\n", - "print \"The max length at exit is\",round(L_max2,1),\"m\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Mach Number is 0.42\n", - "The mass flow rate is 0.284 kg/s\n", - "The max length at inlet is 31.6 m\n", - "The max length at exit is 4.6 m\n" - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter12_2.ipynb b/Fluid_Mechanics-Fundamentals_&_Applications/Chapter12_2.ipynb deleted file mode 100755 index e505af37..00000000 --- a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter12_2.ipynb +++ /dev/null @@ -1,853 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:277bc4cb4b4cbb4032c88d8fd8301e41a2fcfc6cb9b7c57adbca5a396d6c0dce" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 12:Compressible Flow" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.12-1, Page No:638" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V_1=250 #Velocity in m/s\n", - "c_p=1.005 #Constant Pressure specific heat in kJ/kg.K\n", - "k=1.4 #Specific heat ratio \n", - "T1=255.7 #\n", - "C=10**-3 #COnversion factor\n", - "P1=54.05 #Atmospheric Pressure in kPa\n", - "SPR=8 #Stagnation pressure ratio \n", - "\n", - "#Calculations\n", - "#Part(a)\n", - "T_01=T1+((V_1**2/(2*c_p))*C) #Stagnation temperature in K\n", - "\n", - "P_01=P1*((T_01/T1)**(k/(k-1))) #Stagnation Pressure in kPa\n", - "\n", - "#Part(b)\n", - "T_02=T_01*((SPR)**((k-1)/k)) #Stagnation Temperature at compressor exit in K\n", - "\n", - "Win=c_p*(T_02-T_01) #Work per unit mass of air in kJ/kg\n", - "\n", - "#Result\n", - "print \"The stagnation pressure is\",round(P_01,2),\"kPa\"\n", - "print \"The required compressor work per unit mass is\",round(Win,1),\"kJ/kg\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The stagnation pressure is 80.77 kPa\n", - "The required compressor work per unit mass is 233.9 kJ/kg\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.12-2, Page No:639" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "cp=0.846 #Specific Heat in kJ/kg.K\n", - "k=1.289 #Specific heat ratio\n", - "R=0.1889 #gas constant for Carbon dioxide in kJ/kg.K\n", - "T_0=473 #Temperature in K\n", - "P0=1.4*10**3 #Pressure in kPa\n", - "P=1.2*10**3 #Pressure in kPa\n", - "m_dot=3 #Mass flow rate in kg/s\n", - "\n", - "#Calcualtions\n", - "x=((k-1)/k)\n", - "b=float(P/P0)\n", - "T=T_0*((b)**x) #Temperature where pressure is P in K\n", - "V=(2*cp*(T0-T)*10**3)**0.5 #Velocity in m/s\n", - "\n", - "#Using The Ideal Gas relation\n", - "rho=P/(R*T) #Density of the fluid in kg/m^3\n", - "\n", - "#Using the mass flow rate relation\n", - "A=m_dot/(rho*V) #Area in m^2\n", - "\n", - "c=(k*R*T*10**3)**0.5 #speed of sound in m/s\n", - "\n", - "#Mach Number\n", - "Ma=V/c #Mach's Number\n", - "\n", - "#Result\n", - "print \"Similarly we can compute data for other pressures as well\"\n", - "print \"The denisty of air is\",round(rho,5),\"kg/m^3\"\n", - "print \"The area is\",A,\"m^2\"\n", - "print \"The speed of sound is\",round(c,2),\"m/s\"\n", - "print \"The Mach Number is\",round(Ma,3)\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Similarly we can compute data for other pressures as well\n", - "The denisty of air is 13.90266 kg/m^3\n", - "The area is 0.00130869674184 m^2\n", - "The speed of sound is 333.56 m/s\n", - "The Mach NUmber is 0.494\n" - ] - } - ], - "prompt_number": 29 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.12-3,Page No:645" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "k=1.289 #Specific Heat Ratio\n", - "To=473 #Stagnation temperature in K\n", - "Po=1400 #Stagnation pressure in kPa\n", - "\n", - "#Calculations\n", - "#Notation has been changed for simplicity of computation\n", - "T_ratio=2/(k+1) #ratio of T star to To\n", - "P_ratio=(2/(k+1))**(k/(k-1)) #Ratio of P star to Po\n", - "\n", - "T_star=T_ratio*To #Critical Temperature in K\n", - "P_star=P_ratio*Po #Critical Pressure in kPa\n", - "\n", - "#Result\n", - "print \"the critical temperature and pressrue are\",round(T_star),\"K and\",round(P_star),\"kPa\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "the critical temperature and pressrue are 413.0 K and 767.0 kPa\n" - ] - } - ], - "prompt_number": 30 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.12-4, Page No:648" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable decleration\n", - "Vi=150 #Velocity at the inlet in m/s\n", - "cp=1.005 #Specific heat in kJ/Kg.K\n", - "k=1.4 #Specific heat ratio\n", - "Ti=873 #Temperature at the inlet in K\n", - "Pi=1 #Pressure at the inlet in Mpa\n", - "Pb1=0.7 #Back pressure in part a in Mpa\n", - "Pb2=0.4 #Back pressure in part b in Mpa\n", - "R=0.287 #Gas Constant in kPa.m^3/kg.K\n", - "At=50*10**-4 #Area in m^2\n", - "\n", - "#Values taken from the table\n", - "P_ratio=0.67 #Presure ratio\n", - "T_ratio=0.892 #Temperature ratio\n", - "Mat=0.778 #Mach Number \n", - "\n", - "#Calculations\n", - "Toi=Ti+((Vi**2/(2*cp))*10**-3) #Stagnation Temperature in K\n", - "\n", - "Poi=Pi*((Toi/Ti)**(k/(k-1))) #Stagnation Presure in mPa\n", - "\n", - "#Stagnation pressure and temperature values remain constant throughout\n", - "\n", - "#Part(A)\n", - "#Notation will be changed to avoid computational complexicity\n", - "BPR1=Pb1/Poi #Back Pressure ratio\n", - "\n", - "Tt=T_ratio*Toi #Temperature in K\n", - "rhot=(Pb1*10**3)/(R*Tt) #Density in kg/m^3\n", - "Vt=Mat*((k*R*Tt*10**3)**0.5) #Velocity in m/s\n", - "m_dot1=rhot*At*Vt #Mass flow rate in kg/s\n", - "\n", - "#Part(B)\n", - "#Notation will be changed\n", - "BPR2=Pb2/Poi #Back pressure ratio\n", - "\n", - "m_dot2=(At*Poi*10**3)*((k/(Toi*R))**0.5)*((2/(k+1))**((k+1)/(2*(k-1))))*1000**0.5 #mass flow rate in kg/s\n", - "\n", - "#Result\n", - "print \"The mass flow rate at the nozzle is\",round(m_dot1,2),\"kg/s\"\n", - "print \"The mass flow rate through the nozzleis calculated to be\",round(m_dot2,2),\"kg/s\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The mass flow rate at the nozzle is 6.77 kg/s\n", - "The mass flow rate through the nozzleis calculated to be 7.11 kg/s\n" - ] - } - ], - "prompt_number": 53 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.12-5, Page No:650" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "Pgauge=220 #Gauge Pressure in the tire in kPa\n", - "Patm=94 #Atmospheric Pressure in kPa\n", - "R=0.287 #Gas Constant in kPa.m^3/kg.K\n", - "k=1.4 #Specific heat ratio\n", - "T=298 #Temperature in K\n", - "D=0.004 #Diamter in m\n", - "\n", - "#Calculations\n", - "P=Pgauge+Patm #Absolute Pressure in the tre in kPa\n", - "\n", - "#Critical Presure in the tire from table\n", - "Pstar=round(0.5283*P) #Critical Presure in kPa\n", - "\n", - "#Flow is choked\n", - "rho0=P/(R*T) #Denisty of the fluid in kg/m^3\n", - "rho_star=rho0*((2/(k+1))**(1/(k-1))) #Critical Density in kg/m^3\n", - "T_star=(2/(k+1))*T #Critical Temperature in K\n", - "\n", - "V=(k*R*T_star*1000)**0.5 #Velocity in m/s\n", - "m_dot=rho_star*((pi*D**2)/4)*V #mass flow rate in kg/s\n", - "\n", - "#Result\n", - "print \"The initial mass flow rate is\",round(m_dot,5),\"kg/s\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The initial mass flow rate is 0.00924 kg/s\n" - ] - } - ], - "prompt_number": 63 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.12-6, Page No:653" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "k=1.4 #Specific Heat ratio\n", - "R=0.287 #Gas Constant in kJ/kg.K\n", - "Ma=2 #Mach Number\n", - "A=20*10**-4 #Throat Area in m^2\n", - "P0=1000 #Pressure in kPa\n", - "T0=800 #Temperature in K\n", - "\n", - "#Calculations\n", - "rho0=P0/(R*T0) #Density of the fluid in kg/m^3\n", - "\n", - "#Part(a) When Ma=1\n", - "#Notation has been changed\n", - "#Taking values from the table\n", - "P_ratio=0.5283 #Pressure ratio\n", - "T_ratio=0.8333 #Temperature Ratio\n", - "rho_ratio=0.6339 #Density Ratio\n", - "\n", - "#Thus\n", - "P_star=P_ratio*P0 #Critical Pressure in kPa\n", - "T_star=T_ratio*T0 #Critical Temperature in K\n", - "rho_star=rho_ratio*rho0 #Critical Denisty in kg/m^3\n", - "\n", - "V_star=(k*R*T_star*1000)**0.5 #Critical Velocity in m/s\n", - "\n", - "#Part(b) When Ma=2\n", - "P_ratio2=0.1278 #Pressure ratio in part b\n", - "T_ratio2=0.5556 #Temperature ratio in part b\n", - "rho_ratio2=0.23 #Density ratio in part b\n", - "Ma_star=1.633 #Critical Mach Number\n", - "A_ratio=1.6875 #Area ratio in part b\n", - "\n", - "#Thus\n", - "Pe=P_ratio2*P0 #Pressure at the exit plane in kPa\n", - "Te=T_ratio2*T0 #Temperature at the exit plane in K\n", - "rho_e=rho_ratio2*rho0 #Density at the exit plane in kg/m^3\n", - "Ae=A_ratio*A #Area at the exit plane in m^2\n", - "Ve=Ma_star*V_star #Velocity at the exit plane in m/s\n", - "\n", - "#Part(c)\n", - "m_dot=rho_star*A*V_star #Mass flow rate in kg/s\n", - "\n", - "\n", - "#Result\n", - "print \"The throat conditions are as follows\"\n", - "print \"P*=\",round(P_star),\"kPa\",\"T*=\",round(T_star,1),\"K\",\"rho*=\",round(rho_star,3),\"kg/m^3\"\n", - "print \"The exit plane conditions are as follows\"\n", - "print \"Pe=\",round(Pe),\"kPa\",\"Te=\",round(Te,1),\"K\",\"rho_e=\",round(rho_e,3),\"kg/m^3\"\n", - "print \"Ae=\",Ae,\"m^2\"\n", - "print \"The mass flow rate is\",round(m_dot,2),\"kg/s\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The throat conditions are as follows\n", - "P*= 528.0 kPa T*= 666.6 K rho*= 2.761 kg/m^3\n", - "The exit plane conditions are as follows\n", - "Pe= 128.0 kPa Te= 444.5 K rho_e= 1.002 kg/m^3\n", - "Ae= 0.003375 m^2\n", - "The mass flow rate is 2.86 kg/s\n" - ] - } - ], - "prompt_number": 69 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.12-8, Page No:659" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#NOTE:The variable names have been changed\n", - "\n", - "#Variable Decleration\n", - "k=1.4 #Specific Heat ratio\n", - "R=0.287 #gas Constant in kJ/kg.K\n", - "cp=1.005 #Specfic heat at constant pressure in kJ/kg.K\n", - "#Table Values\n", - "P01=1 #pressure in MPa\n", - "P1=0.1278 #Pressure in MPa\n", - "T1=444.5 #Temperature in K\n", - "rho1=1.002 #Denisty in kg/m^3\n", - "Ma1=2 #Mach Number \n", - "Ma2=0.5774 #Mach Number \n", - "Po_ratio=0.7209 #Presure ratio\n", - "P_ratio=4.5 #Pressure ratio\n", - "T_ratio=1.6875 #Temperature Ratio\n", - "rho_ratio=2.6667 #Density Ratio\n", - "A=20*10**-4 #Area in m^2\n", - "\n", - "#Calculations\n", - "#Part(a)\n", - "\n", - "P02=Po_ratio*P01 #Stagnation Pressure after the shockwave in MPa\n", - "P2=P1*P_ratio #Static Pressure after the shockwave in MPa\n", - "T2=T_ratio*T1 #Temperature after the shockwave in K\n", - "rho2=rho_ratio*rho1 #Denisty after the shockwave in kg/m^3\n", - "\n", - "#Part(b)\n", - "e_change=cp*(np.log(T2/T1))-(R*np.log(P2/P1)) #Entropy change across the shock in kJ/kg.K\n", - "\n", - "#Part(c)\n", - "V2=Ma2*(k*R*T2*1000)**0.5 #Velocity in m/s\n", - "\n", - "#Part(d)\n", - "#Same as example 12-6 above\n", - "m_dot=2.86 #Mass Flow rate in kg/s\n", - "\n", - "#Result\n", - "print \"The Following are the values\"\n", - "print \"Stagnation Pressure\",round(P02,3),\"MPa\"\n", - "print \"Static Pressure\",round(P2,3),\"MPa\"\n", - "print \"Static Temperature\",round(T2,1),\"K\"\n", - "print \"Static Denisty\",round(rho2,2),\"kg/m^3\"\n", - "print \"The entropy change is\",round(e_change,5),\"kJ/kg.K\"\n", - "print \"The exit velocity is\",round(V2),\"m/s\"\n", - "print \"The mass flow rate is\",round(m_dot,3),\"kg/s\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Following are the values\n", - "Stagnation Pressure 0.721 MPa\n", - "Static Pressure 0.575 MPa\n", - "Static Temperature 750.1 K\n", - "Static Denisty 2.67 kg/m^3\n", - "The entropy change is 0.09419 kJ/kg.K\n", - "The exit velocity is 317.0 m/s\n", - "The mass flow rate is 2.86 kg/s\n" - ] - } - ], - "prompt_number": 77 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.12-9, Page No:667" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "u=19 #angle of Mach lines in Degrees\n", - "\n", - "#Calculations\n", - "Ma1=1/(sin((u*pi)/180)) #Mach Number \n", - "\n", - "#Result\n", - "print \"The Mach Number is\",round(Ma1,2)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Mach Number is 3.07\n" - ] - } - ], - "prompt_number": 81 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.12-10, Page No:667" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#NOTE:Some Variable names have been changed\n", - "\n", - "#Variable Decleration\n", - "Ma1=2 #Mach Number\n", - "k=1.4 #Specific heat ratio\n", - "theta=10 #Deflection in degrees\n", - "beta_weak=39.3 #Oblique shock angle in degrees\n", - "beta_strong=83.7 #Oblique shock angle in degrees\n", - "P1=75 #Pressure in kPa\n", - "Ma2_n_w=0.8032 #Mach Number on Downstream side\n", - "Ma2_n_s=0.5794 #Mach Number on Downstream Side \n", - "\n", - "#Calculations\n", - "\n", - "#Weak shock\n", - "Ma1_n_w=Ma1*sin((beta_weak*pi)/180) #Mach Number\n", - "\n", - "#Strong Shock\n", - "Ma1_n_s=Ma1*sin((beta_strong*pi)/180) #Mach Number\n", - "\n", - "#Pressure Calculations\n", - "\n", - "#Weak Shock\n", - "P2_w=((2*k*(Ma1_n_w**2)-k+1)/(k+1))*P1 #Pressure in kPa\n", - "\n", - "#Strong Shock\n", - "P2_s=((2*k*(Ma1_n_s**2)-k+1)/(k+1))*P1 #Pressure in kPa\n", - "\n", - "Ma2_w=Ma2_n_w/sin(((beta_weak-theta)*pi)/180) #Mach NUmber on the downstream side\n", - "\n", - "Ma2_s=Ma2_n_s/sin(((beta_strong-theta)*pi)/180) #Mach NUmber on the downstream side\n", - "\n", - "#Result\n", - "print \"The Mach number on the downstream side of the oblique shock are\"\n", - "print \"Ma in weak shock\",round(Ma2_w,3),\"Ma in strong shock\",round(Ma2_s,3)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Mach number on the downstream side of the oblique shock are\n", - "Ma in weak shock 1.641 Ma in strong shock 0.604\n" - ] - } - ], - "prompt_number": 85 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.12-11, Page no:668" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "Ma1=2 #Mach Number \n", - "P1=230 #Pressure in kPa\n", - "k=1.4 #Specific Heat ratio\n", - "theta=10 #Degrees\n", - "Ma2=2.38 #Mach Number \n", - "\n", - "#Calculations\n", - "#Simplfying the calculation\n", - "a=((k+1)/(k-1))**0.5\n", - "b=((Ma1**2)-1)**0.5\n", - "c=((k-1)/(k+1))**0.5\n", - "d=arctan(b)*180*pi**-1\n", - "e=arctan(c*b)*180*pi**-1\n", - "\n", - "vMa1=a*e-d #Upstream Prandtl-Meyer Function in degrees\n", - "vMa2=theta+vMa1 #Degrees\n", - "\n", - "#Pressure Calculations\n", - "#Simplifying Calculations\n", - "a1=(k-1)*0.5\n", - "b1=k/(k-1)\n", - "f=(1+a1*Ma2**2)**(-b1)\n", - "g=(1+a1*Ma1**2)**(-b1)\n", - "P2=P1*(f/g) #Pressure in kPa\n", - "\n", - "#Result\n", - "print \"The Mach Number on the Downstream Side is\",round(Ma2,2)\n", - "print \"The Pressure at the downstream side is\",round(P2),\"kPa\"\n", - "#The answer in the textbook has not been rounded and hence differes " - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Mach Number on the Downstream Side is 2.38\n", - "The Pressure at the downstream side is 127.0 kPa\n" - ] - } - ], - "prompt_number": 128 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.12-14, Page No:677" - ] - }, - { - "cell_type": "code", - "collapsed": true, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "k=1.4 #Specific Heat Ratio\n", - "cp=1.005 #Specific Heat in kJ/kg.K\n", - "R=0.287 #Gas COnstant in kJ/kg.K\n", - "P1=480 #Pressure in kPa\n", - "T1=550 #Temperature in K\n", - "D=0.15 #Diameter in m\n", - "AF=40 #Air-Fuel mass ratio\n", - "HV=42000 #Heating Value in kJ/kg\n", - "V=80 #Velocity in m/s\n", - "\n", - "#Values from Tables\n", - "T_ratio=0.1291 #Temperature ratio\n", - "T_ratio1=0.1541 #Temperature Ratio\n", - "P_ratio1=2.3065 #Pressure ratio\n", - "V_ratio1=0.0668 #Velocity Ratio\n", - "T_ratio2=0.4389 #Temperature Ratio\n", - "P_ratio2=2.1086 #Pressure Ratio\n", - "V_ratio2=0.2082 #Velocity ratio\n", - "\n", - "#Calculations\n", - "rho1=P1/(R*T1) #Density in kg/m^3\n", - "A1=(pi*D**2)/4 #Area in m^2\n", - "m_dot_air=rho1*A1*V #Mass flow rate of air in kg/s\n", - "m_dot_fuel=m_dot_air/AF #Mass flow rate of the fuel in kg/s\n", - "Q_dot=m_dot_fuel*HV #Heat in kW\n", - "q=Q_dot/m_dot_air #HEat Transfer rate in kJ/kg\n", - "\n", - "#Stagnation Temperature and Mach Number at INLET\n", - "T01=T1+(V**2/(2*cp))*10**-3 #Stagnation Temperature in K\n", - "c1=(k*R*T1*1000)**0.5 #Speed in m/s\n", - "Ma1=V/c1 #Mach Number\n", - "\n", - "#EXIT stagnation Temperature and Mach Number\n", - "T02=T01+(q/cp) #Stagnation Temperature in K\n", - "\n", - "T0_star=T01/T_ratio #Critical Temperature in K\n", - "\n", - "#Value for Ma2 is taken form the table corresponding to the Temperature ratio given below\n", - "T_rat=T02/T0_star #Temperature Ratio\n", - "Ma2=0.314 #Mach Number\n", - "\n", - "#Exit Values\n", - "T2=T1*(T_ratio2/T_ratio1) #Temperature in K\n", - "P2=P1*(P_ratio2/P_ratio1) #Pressure in kPa\n", - "V2=V*(V_ratio2/V_ratio1) #Velocity in m/s\n", - "\n", - "#Result\n", - "print \"The Temperature at the exit is\",round(T2),\"K\"\n", - "print \"The pressure at the exit is\",round(P2),\"kPa\"\n", - "print \"The velocity at the exit is\",round(V2),\"m/s\"\n", - "#The answer for temperature in tetbook is incorrect\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Temperature at the exit is 1566.0 K\n", - "The pressure at the exit is 439.0 kPa\n", - "The velocity at the exit is 249.0 m/s\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.12-15, Page No:685" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Varialble Decleration\n", - "k=1.4 #Specific Heat ratio\n", - "cp=1.005 #Specific Heat in kJ/kg.K\n", - "R=0.287 #Gas Constant in kJ/kg.K\n", - "v=1.58*10**-5 #Kinematic Viscosity in m^2/s\n", - "P1=150 #Pressure in kPa\n", - "T1=300 #Temperature in K\n", - "Ma1=0.4 #Mach Number\n", - "D=0.03 #Diameter in m\n", - "f=0.0148 #Friction factor\n", - "#Values from tables\n", - "P_ratio1=1.5901 \n", - "T_ratio1=1.1628\n", - "P_ratio2=2.6958\n", - "V_ratio=0.4313\n", - "fL1_D=2.3085\n", - "\n", - "#Calculations\n", - "c1=(k*R*T1*1000)**0.5 #Inlet Velocity in m/s\n", - "V1=Ma1*c1 #Velocity in m/s\n", - "Re1=(V1*D)/v #Reynolds Number\n", - "\n", - "L1_star=(fL1_D*D)/f #Duct Length in m\n", - "T_star=T1/T_ratio1 #Temperature in K\n", - "P_star=P1/P_ratio2 #Pressure in kPa\n", - "V_star=V1/V_ratio #Velocity in m/s\n", - "\n", - "fraction=1-(1/P_ratio1) #Fraction of the inlet stagnation pressure lost \n", - "\n", - "#Result\n", - "print \"The duct length is\",round(L1_star,2),\"m\"\n", - "print \"The Temperature is\",round(T_star),\"K\"\n", - "print \"The Pressure is\",round(P_star,1),\"kPa\"\n", - "print \"The Velocity is\",round(V_star),\"m/s\"\n", - "print round(fraction,3),\"Fraction of the total stagnation pressure is lost in the duct\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The duct length is 4.68 m\n", - "The Temperature is 258.0 K\n", - "The Pressure is 55.6 kPa\n", - "The Velocity is 322.0 m/s\n", - "0.371 Fraction of the total stagnation pressure is lost in the duct\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.12-16,Page No:686" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "k=1.4 #Specific Heat ratio\n", - "cp=1.005 #Specific Heat in kJ/kg.K\n", - "R=0.287 #Gas Constant in kJ/kg.K\n", - "V1=85 #Velocity in m/s\n", - "P1=220 #Pressure in kPa\n", - "T1=450 #Temperature in K\n", - "f=0.023 #Friction factor \n", - "L=27 #Length in m\n", - "D=0.05 #Diameter in m\n", - "\n", - "#Value from table\n", - "fl_D=14.5333\n", - "\n", - "#Calculations\n", - "c1=(k*R*T1*1000)**0.5 #Velocity in m/s\n", - "Ma1=V1/c1 #Mach Number\n", - "\n", - "#Notation has been changed\n", - "fL_D1=(f*L)/D #Function\n", - "fL_D2=fl_D-fL_D1 #Function\n", - "\n", - "#Mach NUmber corresponding to this value is 0.42\n", - "Ma2=0.420 #Mach Number\n", - "\n", - "rho1=P1/(R*T1) #Density of the fluid in kg/m^3\n", - "A1=(pi*D**2)/4 #Area in m^2\n", - "m_air=rho1*V1*A1 #Mass flow rate in kg/s\n", - "\n", - "#Discussion Calculations\n", - "L_max1=(fl_D*D)/f #MAx Duct length in m\n", - "L_max2=(fL_D2*D)/f #Max Duct length in m\n", - "\n", - "#Result\n", - "print \"The Mach Number is\",round(Ma2,3)\n", - "print \"The mass flow rate is\",round(m_air,3),\"kg/s\"\n", - "print \"The max length at inlet is\",round(L_max1,1),\"m\"\n", - "print \"The max length at exit is\",round(L_max2,1),\"m\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Mach Number is 0.42\n", - "The mass flow rate is 0.284 kg/s\n", - "The max length at inlet is 31.6 m\n", - "The max length at exit is 4.6 m\n" - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter13.ipynb b/Fluid_Mechanics-Fundamentals_&_Applications/Chapter13.ipynb deleted file mode 100755 index 55eeb9db..00000000 --- a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter13.ipynb +++ /dev/null @@ -1,493 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:a6e557f5af6e8e42adcc2ea3a1c780397b983eb75c9ac0cc9aa8adb6e5b6328c" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 13:Open-Channel Flow" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 13.13-1,Page No:711" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V_dot=0.2 #Volumetric flow rate in m^3/s\n", - "y=0.15 #Depth of flow in m\n", - "b=0.4 #Width in m\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "\n", - "#Calculations\n", - "V=V_dot/(y*b) #Velocity in m/s\n", - "yc=(V_dot**2/(g*b**2))**0.33 #Critical depth in m\n", - "\n", - "#Flow is supercritical\n", - "\n", - "Fr=V/((g*y)**0.5) #Froude Number\n", - "\n", - "Es1=y+(V_dot**2/(2*g*b**2*y**2)) #Specific Energy in m\n", - "#Alternate Depth\n", - "#Solving the Ploynomial Equation\n", - "\n", - "coeff=[1,-Es1,0,V_dot**2/(2*g*b**2)]\n", - "x=numpy.roots(coeff)\n", - "\n", - "#Result\n", - "print \"The velocity of flow is\",round(V,2),\"m/s\"\n", - "print \"As the froude number Fr\",round(Fr,2),\"> 1 the flow is supercritical\"\n", - "print \"The Alternate Depth is\",round(x[0],3),\"m\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The velocity of flow is 3.33 m/s\n", - "As the froude number Fr 2.75 > 1 the flow is supercritical\n", - "The Alternate Depth is 0.69 m\n" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 13.13-2, Page No:716" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "b=0.8 #Bottom width of the trapezoidal channel in m\n", - "y=0.52 #Depth of flow in m\n", - "theta=60 #Angle in degrees\n", - "alpha1=0.3 #Slope angle in degrees\n", - "n=0.03 #Mannings Coefficient \n", - "a=1 #m^1/3/s\n", - "alpha2=1 #Slope in degrees\n", - "\n", - "#Calculations\n", - "Ac=y*(b+(y/tan((theta*pi)/180))) #Cross-sectional Area in m^2\n", - "p=b+((2*y)/sin((theta*pi)/180)) #Perimeter in m\n", - "Rh=Ac/p #Hydraulic Radius in m\n", - "S01=tan((alpha1*pi)/180) #Slope of the bottom channel \n", - "S02=tan((alpha2*pi)/180) #Slope of the bottom channel\n", - "V_dot1=(a/n)*(Ac*Rh**0.66*S01**0.5) #Volumetric Flow rate in m^3/s\n", - "V_dot2=(a/n)*(Ac*Rh**0.66*S02**0.5) #Volumetric Flow rate in m^3/s\n", - "\n", - "#Result\n", - "print \"The volumetric flow rate when alpha is 0.3 degrees is\",round(V_dot1,2),\"m^3/s\" \n", - "print \"The volumetric flow rate when alpha is 1 degrees is\",round(V_dot2,2),\"m^3/s\" " - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The volumetric flow rate when alpha is 0.3 degrees is 0.6 m^3/s\n", - "The volumetric flow rate when alpha is 1 degrees is 1.1 m^3/s\n" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 13.13-4, Page No:718" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "S0=0.003 #Bottom slope\n", - "l1=3 #Length in m\n", - "p1= 10.486 #Perimeter in section 1 in m\n", - "p2=10 #Perimeter of section 2 in m\n", - "Ac1=21 #Area of section 1 in m^2\n", - "Ac2=16 #Area of section 2 in m^2\n", - "a=1 #m^1/3/s\n", - "n1=0.03 #Mannings coefficient for section 1\n", - "n2=0.05 #Mannings Coefficient for section 2\n", - "\n", - "#Calcualtions\n", - "Rh1=Ac1/p1 #Hydraulic Radius at section 1 in m\n", - "Rh2=Ac2/p2 #Hydraulic Radius at section 2 in m\n", - "Rh=(Ac1+Ac2)/(p1+p2) #Hydraulic Radius of the entire channel in m\n", - "\n", - "V_dot=a*S0**0.5*(((Ac1*Rh1**0.66)/n1)+((Ac2*Rh2**0.66)/n2)) #Volumetric Flow rate in m^3/s\n", - "n_eff=(a*(Ac1+Ac2)*Rh**0.66*S0**0.5)/V_dot #Effective Mannings Coefficient\n", - "\n", - "#Result\n", - "print \"The flow rate is\",round(V_dot),\"m^3/s\"\n", - "print \"The effective Mannings Coefficient is\",round(n_eff,3)\n", - "#The decimal point accuracy in python is the possible source of discrepancy in textbook and computed answer\n", - "#The answer computed is weel within the permissbile error limit\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The flow rate is 78.0 m^3/s\n", - "The effective Mannings Coefficient is 0.038\n" - ] - } - ], - "prompt_number": 18 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 13.13-5, Page No:722" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#NOTE:Variable names have been changed\n", - "\n", - "#Variable Decleration\n", - "n=0.016 #mannings Coefficient\n", - "V_dot=2 #Volumetric Flow rate in m^3/s\n", - "S0=0.001 #Bottom Slope\n", - "theta=60 #Angle in degrees\n", - "\n", - "#Calculations\n", - "\n", - "#Part(a)\n", - "#Using the Mannings Equation\n", - "b1=((2*n*V_dot*4**0.66)/(a*S0**0.5))**0.375 #Width of the Rectangular section in m\n", - "Aca=b1**2*0.5 #Area of rectangular section in m^2\n", - "p=2*b1 #Perimeter in m\n", - "y1=b1/2 #Depth of flow in m\n", - "\n", - "#Part(b)\n", - "b2=((n*V_dot)/(0.75*3**0.5*((3**0.5/4)**0.66)*a*S0**0.5))**0.375 #Width in m\n", - "y2=((3**0.5)/2)*b2 #Depth of flow in m\n", - "\n", - "#Result\n", - "print \"The cross-section for rectangular section are b=\",round(b1,2),\"m y=\",round(y1,2),\"m\"\n", - "print \"The cross-section for trapezoidal section are b=\",round(b2,2),\"m y=\",round(y2,3),\"m\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The cross-section for rectangular section are b= 1.84 m y= 0.92 m\n", - "The cross-section for trapezoidal section are b= 1.12 m y= 0.97 m\n" - ] - } - ], - "prompt_number": 25 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 13.13-7, Page No:732" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "y=2 #Depth of Flow in m\n", - "b=6 #Bottom width in m\n", - "a=1 #m^1/3/s\n", - "S0=0.004 #Bed Slope\n", - "n=0.014 #Mannings Coefficient\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "\n", - "#Calculations\n", - "Ac=y*b #Area in m^2\n", - "p=b+2*y #Perimeter in m\n", - "Rh=(Ac*10**-1)/(p*10**-1) #Hydraulic Radius in m \n", - "\n", - "#Flow rate \n", - "V_dot=(a/n)*(Ac*Rh**0.66*S0**0.5) #Volumetric Flow rate in m^3/s\n", - "\n", - "#Critical Depth\n", - "yc=V_dot**2/(g*Ac**2) #Critical Depth in m\n", - "\n", - "#Result\n", - "print \"As yn=\",round(y,2),\"m < yc=\",round(yc,2),\"m the slope is STEEP\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "As yn= 2.0 m < yc= 2.65 m the slope is STEEP\n" - ] - } - ], - "prompt_number": 43 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 13.13-8,Page No:735" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "rho=1000 #Density of water in kg/m^3\n", - "g=9.81 #Accelration due to gravity in m/s^2\n", - "y1=0.8 #Pre jump height in m\n", - "V1=7 #Velocity in m/s pre jump\n", - "b=10 #Width of the channel in m\n", - "\n", - "#Calculations\n", - "#Part(a)\n", - "Fr1=V1/((g*y1)**0.5) #Froude Number pre Jump\n", - "\n", - "#Greater than 1 hence supecritical\n", - "\n", - "y2=0.5*y1*(-1+((1+8*Fr1**2)**0.5)) #Post Jump Height\n", - "V2=(y1/y2)*V1 #Velocity post jump in m/s\n", - "\n", - "Fr2=V2/((g*y2)**0.5) #Froude Number after Jump\n", - "\n", - "#Part(b)\n", - "h_L=y1-y2+(V1**2-V2**2)/(2*g) #Head Loss in m\n", - "\n", - "Es1=y1+V1**2/(2*g) #Specific Energy before jump in m\n", - "\n", - "Dissipation_Ratio=h_L/Es1 #Dissipiation Ratio\n", - "\n", - "#Part(c)\n", - "m_dot=rho*b*y1*V1 #Mass Flow rate in kg/s\n", - "\n", - "E_dissipiated=m_dot*g*h_L #Energy Dissipiated in kW\n", - "\n", - "#Result \n", - "print \"The Depth of flow after the Jump is\",round(y2,2),\"m and the Froude Number is\",round(Fr2,3)\n", - "print \"The head loss is\",round(h_L,3),\"m and the Energy Dissipation Ratio is\",round(Dissipation_Ratio,3)\n", - "print \"The energy wasted is\",round(E_dissipiated/1000),\"kW\"\n", - "#NOTE:Answer differ due to decimal point accuracy" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "56000.0\n", - "The Depth of flow after the Jump is 2.46 m and the Froude Number is 0.465\n", - "The head loss is 0.577 m and the Energy Dissipation Ratio is 0.175\n", - "The energy wasted is 317.0 kW\n" - ] - } - ], - "prompt_number": 57 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 13.13-9,Page No:738" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "y1=3 #Depth of flow in m\n", - "a=0.25 #Height of Sluice Gate in m\n", - "y2=1.5 #Depth of flow after the turbulence subsides in m\n", - "Cd=0.47 #Coefficient of Discharge\n", - "b=6 #Width of the channel in m\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "\n", - "#Calculations\n", - "depth_ratio1=y1/a #Depth ratio\n", - "depth_ratio2=y2/a #Depth ratio\n", - "V_dot=Cd*b*a*((2*g*y1)**0.5) #Volumetric Flow rate in m^3/s\n", - "\n", - "#Result\n", - "print \"The volumetric Flow rate is\",round(V_dot,2),\"m^3/s\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The volumetric Flow rate is 5.41 m^3/s\n" - ] - } - ], - "prompt_number": 58 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 13.13-10, Page No:745" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V1=1.2 #Velocity in m/s\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "y1=0.8 #Depth of flow before encounternign the bump in m\n", - "delta_zb=0.15 # depth in m\n", - "\n", - "#Calculations\n", - "Fr1=V1/((g*y1)**0.5) #Froude Number\n", - "yc=((y1**2*V1**2)/g)**0.33 #Critical depth in m\n", - "\n", - "#Flow is subcritical\n", - "Es1=y1+(V1**2/(2*g)) #Specific Energy in m\n", - "\n", - "#Solving the equation\n", - "coeff=[1,-0.723,0,0.047]\n", - "y=numpy.roots(coeff) #Depth of flow in m\n", - "\n", - "Depression=y1-(y[0]+delta_zb)\n", - "\n", - "#Result\n", - "print \"The depression of the water surface is present and is\",round(Depression,2),\"m\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The depression of the water surface is present and is 0.06 m\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 13.13-11, Page No:746" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "y1=1.5 #Depth of flow in m\n", - "Pw=0.6 #Height in m\n", - "b=5 #Width in m\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "\n", - "#Calculations\n", - "H=y1-Pw #Weir Head in m\n", - "\n", - "#Using the Discharge Coefficient Formula\n", - "Cwd_rec=0.598+(0.0897*(H/Pw)) #Coefficient of Discharge\n", - "\n", - "V_dot=(2*Cwd_rec*b*(2*g)**0.5*(H**1.5))/3 #Volumetric Flow rate in m^3/s\n", - "\n", - "#Result\n", - "print \"The Volumetric Flow rate is\",round(V_dot,2),\"m^3/s\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Volumetric Flow rate is 9.23 m^3/s\n" - ] - } - ], - "prompt_number": 12 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter13_1.ipynb b/Fluid_Mechanics-Fundamentals_&_Applications/Chapter13_1.ipynb deleted file mode 100755 index 55eeb9db..00000000 --- a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter13_1.ipynb +++ /dev/null @@ -1,493 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:a6e557f5af6e8e42adcc2ea3a1c780397b983eb75c9ac0cc9aa8adb6e5b6328c" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 13:Open-Channel Flow" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 13.13-1,Page No:711" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V_dot=0.2 #Volumetric flow rate in m^3/s\n", - "y=0.15 #Depth of flow in m\n", - "b=0.4 #Width in m\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "\n", - "#Calculations\n", - "V=V_dot/(y*b) #Velocity in m/s\n", - "yc=(V_dot**2/(g*b**2))**0.33 #Critical depth in m\n", - "\n", - "#Flow is supercritical\n", - "\n", - "Fr=V/((g*y)**0.5) #Froude Number\n", - "\n", - "Es1=y+(V_dot**2/(2*g*b**2*y**2)) #Specific Energy in m\n", - "#Alternate Depth\n", - "#Solving the Ploynomial Equation\n", - "\n", - "coeff=[1,-Es1,0,V_dot**2/(2*g*b**2)]\n", - "x=numpy.roots(coeff)\n", - "\n", - "#Result\n", - "print \"The velocity of flow is\",round(V,2),\"m/s\"\n", - "print \"As the froude number Fr\",round(Fr,2),\"> 1 the flow is supercritical\"\n", - "print \"The Alternate Depth is\",round(x[0],3),\"m\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The velocity of flow is 3.33 m/s\n", - "As the froude number Fr 2.75 > 1 the flow is supercritical\n", - "The Alternate Depth is 0.69 m\n" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 13.13-2, Page No:716" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "b=0.8 #Bottom width of the trapezoidal channel in m\n", - "y=0.52 #Depth of flow in m\n", - "theta=60 #Angle in degrees\n", - "alpha1=0.3 #Slope angle in degrees\n", - "n=0.03 #Mannings Coefficient \n", - "a=1 #m^1/3/s\n", - "alpha2=1 #Slope in degrees\n", - "\n", - "#Calculations\n", - "Ac=y*(b+(y/tan((theta*pi)/180))) #Cross-sectional Area in m^2\n", - "p=b+((2*y)/sin((theta*pi)/180)) #Perimeter in m\n", - "Rh=Ac/p #Hydraulic Radius in m\n", - "S01=tan((alpha1*pi)/180) #Slope of the bottom channel \n", - "S02=tan((alpha2*pi)/180) #Slope of the bottom channel\n", - "V_dot1=(a/n)*(Ac*Rh**0.66*S01**0.5) #Volumetric Flow rate in m^3/s\n", - "V_dot2=(a/n)*(Ac*Rh**0.66*S02**0.5) #Volumetric Flow rate in m^3/s\n", - "\n", - "#Result\n", - "print \"The volumetric flow rate when alpha is 0.3 degrees is\",round(V_dot1,2),\"m^3/s\" \n", - "print \"The volumetric flow rate when alpha is 1 degrees is\",round(V_dot2,2),\"m^3/s\" " - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The volumetric flow rate when alpha is 0.3 degrees is 0.6 m^3/s\n", - "The volumetric flow rate when alpha is 1 degrees is 1.1 m^3/s\n" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 13.13-4, Page No:718" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "S0=0.003 #Bottom slope\n", - "l1=3 #Length in m\n", - "p1= 10.486 #Perimeter in section 1 in m\n", - "p2=10 #Perimeter of section 2 in m\n", - "Ac1=21 #Area of section 1 in m^2\n", - "Ac2=16 #Area of section 2 in m^2\n", - "a=1 #m^1/3/s\n", - "n1=0.03 #Mannings coefficient for section 1\n", - "n2=0.05 #Mannings Coefficient for section 2\n", - "\n", - "#Calcualtions\n", - "Rh1=Ac1/p1 #Hydraulic Radius at section 1 in m\n", - "Rh2=Ac2/p2 #Hydraulic Radius at section 2 in m\n", - "Rh=(Ac1+Ac2)/(p1+p2) #Hydraulic Radius of the entire channel in m\n", - "\n", - "V_dot=a*S0**0.5*(((Ac1*Rh1**0.66)/n1)+((Ac2*Rh2**0.66)/n2)) #Volumetric Flow rate in m^3/s\n", - "n_eff=(a*(Ac1+Ac2)*Rh**0.66*S0**0.5)/V_dot #Effective Mannings Coefficient\n", - "\n", - "#Result\n", - "print \"The flow rate is\",round(V_dot),\"m^3/s\"\n", - "print \"The effective Mannings Coefficient is\",round(n_eff,3)\n", - "#The decimal point accuracy in python is the possible source of discrepancy in textbook and computed answer\n", - "#The answer computed is weel within the permissbile error limit\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The flow rate is 78.0 m^3/s\n", - "The effective Mannings Coefficient is 0.038\n" - ] - } - ], - "prompt_number": 18 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 13.13-5, Page No:722" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#NOTE:Variable names have been changed\n", - "\n", - "#Variable Decleration\n", - "n=0.016 #mannings Coefficient\n", - "V_dot=2 #Volumetric Flow rate in m^3/s\n", - "S0=0.001 #Bottom Slope\n", - "theta=60 #Angle in degrees\n", - "\n", - "#Calculations\n", - "\n", - "#Part(a)\n", - "#Using the Mannings Equation\n", - "b1=((2*n*V_dot*4**0.66)/(a*S0**0.5))**0.375 #Width of the Rectangular section in m\n", - "Aca=b1**2*0.5 #Area of rectangular section in m^2\n", - "p=2*b1 #Perimeter in m\n", - "y1=b1/2 #Depth of flow in m\n", - "\n", - "#Part(b)\n", - "b2=((n*V_dot)/(0.75*3**0.5*((3**0.5/4)**0.66)*a*S0**0.5))**0.375 #Width in m\n", - "y2=((3**0.5)/2)*b2 #Depth of flow in m\n", - "\n", - "#Result\n", - "print \"The cross-section for rectangular section are b=\",round(b1,2),\"m y=\",round(y1,2),\"m\"\n", - "print \"The cross-section for trapezoidal section are b=\",round(b2,2),\"m y=\",round(y2,3),\"m\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The cross-section for rectangular section are b= 1.84 m y= 0.92 m\n", - "The cross-section for trapezoidal section are b= 1.12 m y= 0.97 m\n" - ] - } - ], - "prompt_number": 25 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 13.13-7, Page No:732" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "y=2 #Depth of Flow in m\n", - "b=6 #Bottom width in m\n", - "a=1 #m^1/3/s\n", - "S0=0.004 #Bed Slope\n", - "n=0.014 #Mannings Coefficient\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "\n", - "#Calculations\n", - "Ac=y*b #Area in m^2\n", - "p=b+2*y #Perimeter in m\n", - "Rh=(Ac*10**-1)/(p*10**-1) #Hydraulic Radius in m \n", - "\n", - "#Flow rate \n", - "V_dot=(a/n)*(Ac*Rh**0.66*S0**0.5) #Volumetric Flow rate in m^3/s\n", - "\n", - "#Critical Depth\n", - "yc=V_dot**2/(g*Ac**2) #Critical Depth in m\n", - "\n", - "#Result\n", - "print \"As yn=\",round(y,2),\"m < yc=\",round(yc,2),\"m the slope is STEEP\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "As yn= 2.0 m < yc= 2.65 m the slope is STEEP\n" - ] - } - ], - "prompt_number": 43 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 13.13-8,Page No:735" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "rho=1000 #Density of water in kg/m^3\n", - "g=9.81 #Accelration due to gravity in m/s^2\n", - "y1=0.8 #Pre jump height in m\n", - "V1=7 #Velocity in m/s pre jump\n", - "b=10 #Width of the channel in m\n", - "\n", - "#Calculations\n", - "#Part(a)\n", - "Fr1=V1/((g*y1)**0.5) #Froude Number pre Jump\n", - "\n", - "#Greater than 1 hence supecritical\n", - "\n", - "y2=0.5*y1*(-1+((1+8*Fr1**2)**0.5)) #Post Jump Height\n", - "V2=(y1/y2)*V1 #Velocity post jump in m/s\n", - "\n", - "Fr2=V2/((g*y2)**0.5) #Froude Number after Jump\n", - "\n", - "#Part(b)\n", - "h_L=y1-y2+(V1**2-V2**2)/(2*g) #Head Loss in m\n", - "\n", - "Es1=y1+V1**2/(2*g) #Specific Energy before jump in m\n", - "\n", - "Dissipation_Ratio=h_L/Es1 #Dissipiation Ratio\n", - "\n", - "#Part(c)\n", - "m_dot=rho*b*y1*V1 #Mass Flow rate in kg/s\n", - "\n", - "E_dissipiated=m_dot*g*h_L #Energy Dissipiated in kW\n", - "\n", - "#Result \n", - "print \"The Depth of flow after the Jump is\",round(y2,2),\"m and the Froude Number is\",round(Fr2,3)\n", - "print \"The head loss is\",round(h_L,3),\"m and the Energy Dissipation Ratio is\",round(Dissipation_Ratio,3)\n", - "print \"The energy wasted is\",round(E_dissipiated/1000),\"kW\"\n", - "#NOTE:Answer differ due to decimal point accuracy" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "56000.0\n", - "The Depth of flow after the Jump is 2.46 m and the Froude Number is 0.465\n", - "The head loss is 0.577 m and the Energy Dissipation Ratio is 0.175\n", - "The energy wasted is 317.0 kW\n" - ] - } - ], - "prompt_number": 57 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 13.13-9,Page No:738" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "y1=3 #Depth of flow in m\n", - "a=0.25 #Height of Sluice Gate in m\n", - "y2=1.5 #Depth of flow after the turbulence subsides in m\n", - "Cd=0.47 #Coefficient of Discharge\n", - "b=6 #Width of the channel in m\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "\n", - "#Calculations\n", - "depth_ratio1=y1/a #Depth ratio\n", - "depth_ratio2=y2/a #Depth ratio\n", - "V_dot=Cd*b*a*((2*g*y1)**0.5) #Volumetric Flow rate in m^3/s\n", - "\n", - "#Result\n", - "print \"The volumetric Flow rate is\",round(V_dot,2),\"m^3/s\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The volumetric Flow rate is 5.41 m^3/s\n" - ] - } - ], - "prompt_number": 58 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 13.13-10, Page No:745" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V1=1.2 #Velocity in m/s\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "y1=0.8 #Depth of flow before encounternign the bump in m\n", - "delta_zb=0.15 # depth in m\n", - "\n", - "#Calculations\n", - "Fr1=V1/((g*y1)**0.5) #Froude Number\n", - "yc=((y1**2*V1**2)/g)**0.33 #Critical depth in m\n", - "\n", - "#Flow is subcritical\n", - "Es1=y1+(V1**2/(2*g)) #Specific Energy in m\n", - "\n", - "#Solving the equation\n", - "coeff=[1,-0.723,0,0.047]\n", - "y=numpy.roots(coeff) #Depth of flow in m\n", - "\n", - "Depression=y1-(y[0]+delta_zb)\n", - "\n", - "#Result\n", - "print \"The depression of the water surface is present and is\",round(Depression,2),\"m\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The depression of the water surface is present and is 0.06 m\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 13.13-11, Page No:746" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "y1=1.5 #Depth of flow in m\n", - "Pw=0.6 #Height in m\n", - "b=5 #Width in m\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "\n", - "#Calculations\n", - "H=y1-Pw #Weir Head in m\n", - "\n", - "#Using the Discharge Coefficient Formula\n", - "Cwd_rec=0.598+(0.0897*(H/Pw)) #Coefficient of Discharge\n", - "\n", - "V_dot=(2*Cwd_rec*b*(2*g)**0.5*(H**1.5))/3 #Volumetric Flow rate in m^3/s\n", - "\n", - "#Result\n", - "print \"The Volumetric Flow rate is\",round(V_dot,2),\"m^3/s\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Volumetric Flow rate is 9.23 m^3/s\n" - ] - } - ], - "prompt_number": 12 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter13_2.ipynb b/Fluid_Mechanics-Fundamentals_&_Applications/Chapter13_2.ipynb deleted file mode 100755 index 55eeb9db..00000000 --- a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter13_2.ipynb +++ /dev/null @@ -1,493 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:a6e557f5af6e8e42adcc2ea3a1c780397b983eb75c9ac0cc9aa8adb6e5b6328c" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 13:Open-Channel Flow" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 13.13-1,Page No:711" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V_dot=0.2 #Volumetric flow rate in m^3/s\n", - "y=0.15 #Depth of flow in m\n", - "b=0.4 #Width in m\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "\n", - "#Calculations\n", - "V=V_dot/(y*b) #Velocity in m/s\n", - "yc=(V_dot**2/(g*b**2))**0.33 #Critical depth in m\n", - "\n", - "#Flow is supercritical\n", - "\n", - "Fr=V/((g*y)**0.5) #Froude Number\n", - "\n", - "Es1=y+(V_dot**2/(2*g*b**2*y**2)) #Specific Energy in m\n", - "#Alternate Depth\n", - "#Solving the Ploynomial Equation\n", - "\n", - "coeff=[1,-Es1,0,V_dot**2/(2*g*b**2)]\n", - "x=numpy.roots(coeff)\n", - "\n", - "#Result\n", - "print \"The velocity of flow is\",round(V,2),\"m/s\"\n", - "print \"As the froude number Fr\",round(Fr,2),\"> 1 the flow is supercritical\"\n", - "print \"The Alternate Depth is\",round(x[0],3),\"m\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The velocity of flow is 3.33 m/s\n", - "As the froude number Fr 2.75 > 1 the flow is supercritical\n", - "The Alternate Depth is 0.69 m\n" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 13.13-2, Page No:716" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "b=0.8 #Bottom width of the trapezoidal channel in m\n", - "y=0.52 #Depth of flow in m\n", - "theta=60 #Angle in degrees\n", - "alpha1=0.3 #Slope angle in degrees\n", - "n=0.03 #Mannings Coefficient \n", - "a=1 #m^1/3/s\n", - "alpha2=1 #Slope in degrees\n", - "\n", - "#Calculations\n", - "Ac=y*(b+(y/tan((theta*pi)/180))) #Cross-sectional Area in m^2\n", - "p=b+((2*y)/sin((theta*pi)/180)) #Perimeter in m\n", - "Rh=Ac/p #Hydraulic Radius in m\n", - "S01=tan((alpha1*pi)/180) #Slope of the bottom channel \n", - "S02=tan((alpha2*pi)/180) #Slope of the bottom channel\n", - "V_dot1=(a/n)*(Ac*Rh**0.66*S01**0.5) #Volumetric Flow rate in m^3/s\n", - "V_dot2=(a/n)*(Ac*Rh**0.66*S02**0.5) #Volumetric Flow rate in m^3/s\n", - "\n", - "#Result\n", - "print \"The volumetric flow rate when alpha is 0.3 degrees is\",round(V_dot1,2),\"m^3/s\" \n", - "print \"The volumetric flow rate when alpha is 1 degrees is\",round(V_dot2,2),\"m^3/s\" " - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The volumetric flow rate when alpha is 0.3 degrees is 0.6 m^3/s\n", - "The volumetric flow rate when alpha is 1 degrees is 1.1 m^3/s\n" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 13.13-4, Page No:718" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "S0=0.003 #Bottom slope\n", - "l1=3 #Length in m\n", - "p1= 10.486 #Perimeter in section 1 in m\n", - "p2=10 #Perimeter of section 2 in m\n", - "Ac1=21 #Area of section 1 in m^2\n", - "Ac2=16 #Area of section 2 in m^2\n", - "a=1 #m^1/3/s\n", - "n1=0.03 #Mannings coefficient for section 1\n", - "n2=0.05 #Mannings Coefficient for section 2\n", - "\n", - "#Calcualtions\n", - "Rh1=Ac1/p1 #Hydraulic Radius at section 1 in m\n", - "Rh2=Ac2/p2 #Hydraulic Radius at section 2 in m\n", - "Rh=(Ac1+Ac2)/(p1+p2) #Hydraulic Radius of the entire channel in m\n", - "\n", - "V_dot=a*S0**0.5*(((Ac1*Rh1**0.66)/n1)+((Ac2*Rh2**0.66)/n2)) #Volumetric Flow rate in m^3/s\n", - "n_eff=(a*(Ac1+Ac2)*Rh**0.66*S0**0.5)/V_dot #Effective Mannings Coefficient\n", - "\n", - "#Result\n", - "print \"The flow rate is\",round(V_dot),\"m^3/s\"\n", - "print \"The effective Mannings Coefficient is\",round(n_eff,3)\n", - "#The decimal point accuracy in python is the possible source of discrepancy in textbook and computed answer\n", - "#The answer computed is weel within the permissbile error limit\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The flow rate is 78.0 m^3/s\n", - "The effective Mannings Coefficient is 0.038\n" - ] - } - ], - "prompt_number": 18 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 13.13-5, Page No:722" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#NOTE:Variable names have been changed\n", - "\n", - "#Variable Decleration\n", - "n=0.016 #mannings Coefficient\n", - "V_dot=2 #Volumetric Flow rate in m^3/s\n", - "S0=0.001 #Bottom Slope\n", - "theta=60 #Angle in degrees\n", - "\n", - "#Calculations\n", - "\n", - "#Part(a)\n", - "#Using the Mannings Equation\n", - "b1=((2*n*V_dot*4**0.66)/(a*S0**0.5))**0.375 #Width of the Rectangular section in m\n", - "Aca=b1**2*0.5 #Area of rectangular section in m^2\n", - "p=2*b1 #Perimeter in m\n", - "y1=b1/2 #Depth of flow in m\n", - "\n", - "#Part(b)\n", - "b2=((n*V_dot)/(0.75*3**0.5*((3**0.5/4)**0.66)*a*S0**0.5))**0.375 #Width in m\n", - "y2=((3**0.5)/2)*b2 #Depth of flow in m\n", - "\n", - "#Result\n", - "print \"The cross-section for rectangular section are b=\",round(b1,2),\"m y=\",round(y1,2),\"m\"\n", - "print \"The cross-section for trapezoidal section are b=\",round(b2,2),\"m y=\",round(y2,3),\"m\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The cross-section for rectangular section are b= 1.84 m y= 0.92 m\n", - "The cross-section for trapezoidal section are b= 1.12 m y= 0.97 m\n" - ] - } - ], - "prompt_number": 25 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 13.13-7, Page No:732" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "y=2 #Depth of Flow in m\n", - "b=6 #Bottom width in m\n", - "a=1 #m^1/3/s\n", - "S0=0.004 #Bed Slope\n", - "n=0.014 #Mannings Coefficient\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "\n", - "#Calculations\n", - "Ac=y*b #Area in m^2\n", - "p=b+2*y #Perimeter in m\n", - "Rh=(Ac*10**-1)/(p*10**-1) #Hydraulic Radius in m \n", - "\n", - "#Flow rate \n", - "V_dot=(a/n)*(Ac*Rh**0.66*S0**0.5) #Volumetric Flow rate in m^3/s\n", - "\n", - "#Critical Depth\n", - "yc=V_dot**2/(g*Ac**2) #Critical Depth in m\n", - "\n", - "#Result\n", - "print \"As yn=\",round(y,2),\"m < yc=\",round(yc,2),\"m the slope is STEEP\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "As yn= 2.0 m < yc= 2.65 m the slope is STEEP\n" - ] - } - ], - "prompt_number": 43 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 13.13-8,Page No:735" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "rho=1000 #Density of water in kg/m^3\n", - "g=9.81 #Accelration due to gravity in m/s^2\n", - "y1=0.8 #Pre jump height in m\n", - "V1=7 #Velocity in m/s pre jump\n", - "b=10 #Width of the channel in m\n", - "\n", - "#Calculations\n", - "#Part(a)\n", - "Fr1=V1/((g*y1)**0.5) #Froude Number pre Jump\n", - "\n", - "#Greater than 1 hence supecritical\n", - "\n", - "y2=0.5*y1*(-1+((1+8*Fr1**2)**0.5)) #Post Jump Height\n", - "V2=(y1/y2)*V1 #Velocity post jump in m/s\n", - "\n", - "Fr2=V2/((g*y2)**0.5) #Froude Number after Jump\n", - "\n", - "#Part(b)\n", - "h_L=y1-y2+(V1**2-V2**2)/(2*g) #Head Loss in m\n", - "\n", - "Es1=y1+V1**2/(2*g) #Specific Energy before jump in m\n", - "\n", - "Dissipation_Ratio=h_L/Es1 #Dissipiation Ratio\n", - "\n", - "#Part(c)\n", - "m_dot=rho*b*y1*V1 #Mass Flow rate in kg/s\n", - "\n", - "E_dissipiated=m_dot*g*h_L #Energy Dissipiated in kW\n", - "\n", - "#Result \n", - "print \"The Depth of flow after the Jump is\",round(y2,2),\"m and the Froude Number is\",round(Fr2,3)\n", - "print \"The head loss is\",round(h_L,3),\"m and the Energy Dissipation Ratio is\",round(Dissipation_Ratio,3)\n", - "print \"The energy wasted is\",round(E_dissipiated/1000),\"kW\"\n", - "#NOTE:Answer differ due to decimal point accuracy" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "56000.0\n", - "The Depth of flow after the Jump is 2.46 m and the Froude Number is 0.465\n", - "The head loss is 0.577 m and the Energy Dissipation Ratio is 0.175\n", - "The energy wasted is 317.0 kW\n" - ] - } - ], - "prompt_number": 57 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 13.13-9,Page No:738" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "y1=3 #Depth of flow in m\n", - "a=0.25 #Height of Sluice Gate in m\n", - "y2=1.5 #Depth of flow after the turbulence subsides in m\n", - "Cd=0.47 #Coefficient of Discharge\n", - "b=6 #Width of the channel in m\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "\n", - "#Calculations\n", - "depth_ratio1=y1/a #Depth ratio\n", - "depth_ratio2=y2/a #Depth ratio\n", - "V_dot=Cd*b*a*((2*g*y1)**0.5) #Volumetric Flow rate in m^3/s\n", - "\n", - "#Result\n", - "print \"The volumetric Flow rate is\",round(V_dot,2),\"m^3/s\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The volumetric Flow rate is 5.41 m^3/s\n" - ] - } - ], - "prompt_number": 58 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 13.13-10, Page No:745" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V1=1.2 #Velocity in m/s\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "y1=0.8 #Depth of flow before encounternign the bump in m\n", - "delta_zb=0.15 # depth in m\n", - "\n", - "#Calculations\n", - "Fr1=V1/((g*y1)**0.5) #Froude Number\n", - "yc=((y1**2*V1**2)/g)**0.33 #Critical depth in m\n", - "\n", - "#Flow is subcritical\n", - "Es1=y1+(V1**2/(2*g)) #Specific Energy in m\n", - "\n", - "#Solving the equation\n", - "coeff=[1,-0.723,0,0.047]\n", - "y=numpy.roots(coeff) #Depth of flow in m\n", - "\n", - "Depression=y1-(y[0]+delta_zb)\n", - "\n", - "#Result\n", - "print \"The depression of the water surface is present and is\",round(Depression,2),\"m\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The depression of the water surface is present and is 0.06 m\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 13.13-11, Page No:746" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "y1=1.5 #Depth of flow in m\n", - "Pw=0.6 #Height in m\n", - "b=5 #Width in m\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "\n", - "#Calculations\n", - "H=y1-Pw #Weir Head in m\n", - "\n", - "#Using the Discharge Coefficient Formula\n", - "Cwd_rec=0.598+(0.0897*(H/Pw)) #Coefficient of Discharge\n", - "\n", - "V_dot=(2*Cwd_rec*b*(2*g)**0.5*(H**1.5))/3 #Volumetric Flow rate in m^3/s\n", - "\n", - "#Result\n", - "print \"The Volumetric Flow rate is\",round(V_dot,2),\"m^3/s\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Volumetric Flow rate is 9.23 m^3/s\n" - ] - } - ], - "prompt_number": 12 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter14.ipynb b/Fluid_Mechanics-Fundamentals_&_Applications/Chapter14.ipynb deleted file mode 100755 index 3dea9b5b..00000000 --- a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter14.ipynb +++ /dev/null @@ -1,863 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:f0e9b0e6ec9189526906ddc4e7e3f751013d08f921dd1d0821502bb66e87b78c" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 14: Turbomachinery" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-1, Page No:767" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "import matplotlib.pyplot as plt\n", - "\n", - "#Variable Deceleration\n", - "V_dot_cfm=range(0,1500,250) #Volumetric Flow rate in cubic feet per second\n", - "V_dot_mps=transpose(V_dot_cfm)/2118.83 #Volumetric flow rate in m^/s\n", - "rho_air=1.184 #Density of air in kg/m^3\n", - "rho_water=998 #Density of water in kg/m^3\n", - "Patm=101.3 #Atmospheric Pressure in kPa\n", - "v=1.562*10**-5 #Kinematic Viscosity in m^2/s\n", - "D=0.23 #Diameter in m\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "f=0.0209 #Friction coefficient from table\n", - "L=13.4 #Length in m\n", - "V=6.81 #Velocity of flow in m/s\n", - "alpha=1.05 #Constant\n", - "C=(1/0.0254) #Conversion factor\n", - "\n", - "#Minor Loss Coefficients\n", - "ml_1=1.3\n", - "ml_2=0.21\n", - "ml_3=1.8\n", - "\n", - "#Calculations\n", - "Re=(4*V_dot_mps)/(v*pi*D) #Reynolds Number\n", - "\n", - "#Friction coefficient values from Moddy Chart\n", - "f1=[0,0.023,0.022,0.0185,0.0175,0.0162]\n", - "f=transpose(f1)\n", - "\n", - "#Cross Sectional Area\n", - "A=(pi*D**2)/4 #Area of the pipe cross section in m^2\n", - "\n", - "V1=transpose(V_dot_mps)/A #Velocity array in m/s\n", - "V=transpose(V1) #Velocity in m/s\n", - "\n", - "#Minor Losses\n", - "Kl=ml_1+(5*ml_2)+ml_3 #Minor losses \n", - "\n", - "H_required=(alpha+(f*(L/D))+Kl)*(V**2/(2*g)) #Required net head in m of air\n", - "\n", - "H_required_inches=H_required*(rho_air/rho_water)*C #Head Required in inches of water\n", - "\n", - "H_av=[0.9,0.95,0.9,0.77,0.4,0] #Table values taken fro plotting\n", - "\n", - "#Result\n", - "print \"The Plot shows the variation of the head required and the head available as a function\"\n", - "print \"Of V_dot. The intersection point tells the operating point.\"\n", - "\n", - "plt.plot(V_dot_cfm,H_required_inches,V_dot_cfm,H_av)\n", - "plt.ylabel('H,inches H2O')\n", - "plt.xlabel('V_dot,cfm')\n", - "plt.show()\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Plot shows the variation of the head required and the head available as a function\n", - "Of V_dot. The intersection point tells the operating point.\n" - ] - }, - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEQCAYAAACugzM1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VOX5xvHvwy6yKoiyKCAiIFQRRERpUnGlbq2i6K/u\ntWpR61ZsbWtStSogrlTcUMEFqGIV6opL0IIisiiyKChWRAUE2SFkeX5/vAOEEEJCZnJmMvfnuuZi\n5szJzD2I8+Q972bujoiIyM5UizqAiIgkNxUKEREplQqFiIiUSoVCRERKpUIhIiKlUqEQEZFSJaxQ\nmFkdM5tqZrPMbK6Z3bmT8x4wswVm9omZdU1UHhER2T01EvXC7r7JzH7h7hvMrAbwXzM7xt3/u+Uc\nM+sLtHP3g8zsSGA40DNRmUREpPwSeunJ3TfE7tYCqgMri51yGjAydu5UoJGZNUtkJhERKZ+EFgoz\nq2Zms4ClwLvuPrfYKS2AxUUefwu0TGQmEREpn0S3KArd/TDCl//PzSyzhNOs+I8lMpOIiJRPwvoo\ninL31Wb2CtAdyCny1BKgVZHHLWPHtmNmKh4iIrvB3Yv/Ml5uiRz11MTMGsXu7wEcD8wsdtp44ILY\nOT2BVe6+tKTXc/eUvWVlZUWeIR2zK3/0N+WP9hYviWxR7AeMNLNqhIL0tLu/bWaXA7j7I+7+qpn1\nNbOFwHrg4gTmERFJmHXroF69qFMkRiKHx84GDi/h+CPFHl+VqAwiIpVh7Vro0QOeegqOPDLqNPGn\nmdmVIDMzM+oIuy2Vs4PyRy0d8rvDb38LvXtXzSIBYPG8jpUoZuapkFNE0s/998OoUTB5MtSpE3Wa\n7ZkZHofObBUKEZHdNHky/PrX8OGH0KZN1Gl2FK9CoUtPIiK7YelS6N8fnnwyOYtEPKlQiIiUU34+\nnHsuXHwx9O0bdZrE06UnEZFy+vOfYcYMePVVqF496jQ7F69LT5UyM1tEpKp4+WV47jmYPj25i0Q8\nqUUhIlJGCxdCr17wn/+EeRPJTp3ZIiKVaMMGOPNM+PvfU6NIxJNaFCIiu+AOF10EhYVhzoRV+Hf0\nyqE+ChGRSvLYY6Hz+sMPU6dIxJNaFCIipfj44zAE9r//hfbto05TPuqjEBFJsBUroF8/ePjh1CsS\n8aQWhYhICQoL4Ze/hM6dYciQqNPsHrUoREQS6Pbbw0inO++MOkn01JktIlLM66/Do4+G/oka+pZU\noRARKep//wtDYZ9/HvbdN+o0yUGXnkREYnJz4ayzYODAsBGRBOrMFhGJufJKWL48tCaqwnwJTbgT\nEYmjUaPgnXdg2rSqUSTiSS0KEUl7n34KffrAu++G4bBVhYbHiojEwerVYbG/++6rWkUintSiEJG0\n5R72vG7RAoYNizpN/KmPQkSkgu6+G77/HsaMiTpJclOhEJG0lJMD99wDH30EtWtHnSa5qY9CRNLO\nd9/BeefB009Dq1ZRp0l+KhQiklby8uDss2HAADjuuKjTpAZ1ZotIWrn+evjiCxg/HqpV8V+Vk354\nrJm1MrN3zWyOmX1mZteUcE6mma02s5mx218TlUdE5Pnn4aWXwiWnql4k4imRndl5wHXuPsvM6gHT\nzWyiu88rdt4kdz8tgTlERJg/H37/e3jjDWjcOOo0qSVhNdXdf3D3WbH764B5QPMSTtVkeRFJqHXr\nwqS6u+6Cww+POk3qqZTGl5m1BroCU4s95UAvM/vEzF41s06VkUdE0oc7/O530LMnXHpp1GlSU8Ln\nUcQuO70A/CHWsihqBtDK3TeY2cnAS0Aa70wrIvE2bFi47DR5ctRJUldCC4WZ1QTGAc+4+0vFn3f3\ntUXuv2ZmD5nZXu6+svi52dnZW+9nZmaSmZmZkMwiUnV88EHY0vSDD2CPPaJOk3g5OTnk5OTE/XUT\nNjzWzAwYCaxw9+t2ck4zYJm7u5n1AP7l7q1LOE/DY0WkXJYtg27dYPhwOOWUqNNEIxXWejoa+A3w\nqZnNjB27GdgfwN0fAc4CrjSzfGAD0D+BeUQkTRQUwLnnwoUXpm+RiCdNuBORKucvf4GpU8NQ2OrV\no04TnVRoUYiIVLoJE8KEuunT07tIxJMKhYhUGV99Bb/9Lbz8MjRtGnWaqkOT2EWkSti4MUyq+9vf\nwpwJiR/1UYhIynMPk+k2bYJnnwXTeg+A+ihERLYaMSJ0Xk+dqiKRCGpRiEhKmz4dTj4Z3n8fDj44\n6jTJJemXGRcRSbSVK+Gss+Chh1QkEkktChFJSYWFcOqp0KEDDB0adZrkpBaFiKS1O+6ANWvC0uGS\nWOrMFpGUM3FiWMNp2jSoWTPqNFWfCoWIpJRvvoHzz4exY6F5SVuhSdzp0pOIpIzcXOjXD264ATIy\nok6TPtSZLSIpY8AA+O47ePFFzZcoC024E5G08swzoW9i2jQVicqmFoWIJL3Zs+HYY+Gdd6BLl6jT\npA4NjxWRtLBmTVjs7957VSSiohaFiCQt9zDzulmzMPtaykd9FCJS5d1zDyxeDM89F3WS9KZCISJJ\n6b33YMgQ+OgjqF076jTpTX0UIpJ0vv8ezj0XRo6E/fePOo2oUIhIUsnLg3POgcsvhxNPjDqNgDqz\nRSTJ3HgjzJ0L//kPVNOvshWizmwRqXJeeAHGjYOPP1aRSCZqUYhIUvj8c+jdG157Dbp1izpN1aAJ\ndyJSZaxfHybV/eMfKhLJSC0KEYmUO/zmN1CrFjzxhNZxiif1UYhIlTB8OMyZA1OmqEgkK7UoRCQy\nU6eGfa+nTIF27aJOU/Woj0JEUtry5XD22fDYYyoSyS5hhcLMWpnZu2Y2x8w+M7NrdnLeA2a2wMw+\nMbOuicojIsmjoADOOy/cTj896jSyK4nso8gDrnP3WWZWD5huZhPdfd6WE8ysL9DO3Q8ysyOB4UDP\nBGYSkSSQnR2KxW23RZ1EyiJhhcLdfwB+iN1fZ2bzgObAvCKnnQaMjJ0z1cwamVkzd1+aqFwiEq1X\nXoGnngqT6mpoOE1KqJQ+CjNrDXQFphZ7qgWwuMjjb4GWlZFJRCrfokVwySUwdmzYY0JSQ8Lreeyy\n0wvAH9x9XUmnFHtc4vCm7OzsrfczMzPJzMyMU0IRqQybNoVJdX/5C/TqFXWaqiknJ4ecnJy4v25C\nh8eaWU3gP8Br7n5fCc8/DOS4+5jY4/lARvFLTxoeK5L6LrsM1q6F0aM1X6KyJP3wWDMzYAQwt6Qi\nETMeuCB2fk9glfonRKqeJ56AyZPh8cdVJFJRwloUZnYM8B7wKdsuJ90M7A/g7o/EzhsGnASsBy52\n9xklvJZaFCIpauZMOOGEsGNdx45Rp0kv8WpR7LJQmFlb4BDCl/1cd/+qom9aXioUIqnpp5+ge3e4\n446wGZFUroQXCjNrADwOdAdmxQ4fBkwHLnX3NRV987JSoRBJPYWFYTLdgQfCfTu7+CwJVRmLAj4I\nzAX6u3th7E2rAX8FhhHrWxARKUlWFqxcGTYiktRWWotiobuXuAJLac8lgloUIqnlrrvCpLpJkzRf\nIkqV0aLQN7OIlNu994bRTSoSVUdpw2M/MLNbYsNcgTDk1cz+BnyQ+Ggikmr++U944AF45x1o0SLq\nNBIvpV16akiYB3E423dmzyR0Zq+qlITo0pNIKnjsMbj9dsjJgTZtok4jULnDY9sBnQiXoua5+8KK\nvml5qVCIJLeRI8PSHDk52lsimVRmoajp7nnFjjV19+UVffOyUqEQSV5jxsD114fLTR06RJ1Gikr4\nEh5m9gsz+xb4wczeNLOijck3K/rGIpL6xo2Da6+FN99UkajKSuvMHgKcCDQBHgUmmtlRlZJKRJLe\nhAnw+9/Da69B585Rp5FEKm14bC13nxO7/0Js46EXzeymSsglIkns9dfh0kvDJkRdtYFxlVdaodhs\nZvvGdqrD3eeYWR/gFeDASkknIknn7bfhggvgpZfgiCOiTiOVobRLT38G9i16wN2/BTKAuxIZSkSS\n03vvQf/+8MIL2nwonSR046J40agnkeh98EFY5G/0aOjTJ+o0UhYJX8LDzGYXeehsv2Wpu/vPKvrm\nIpIapk0LRWLUKBWJdFRaH8WpRe6/AvRlx/2tRaSKmzULTjkFRoyAk06KOo1EYaeFwt2/3nLfzDa7\n+/8qJZGIJI3PPoOTT4aHHoJTT931+VI1JWzPbBFJbfPnhy1M77kHzjwz6jQSpdL6KLqxrW9iDzM7\nPHbfAUra21pEqoaFC+H44+HOO+Hcc6NOI1ErbfXYHLbtSWEU25/C3X+R0GTbZ9GoJ5FK8vXXkJEB\nf/0rXHZZ1GmkIiptUcBkoEIhUjkWLw5F4oYbYMCAqNNIRSV8UUARSS/ffQfHHgtXXaUiIdtToRAR\nli4N8yMuvTQsGS5SlAqFSJr78Uc47riwNMef/hR1GklGuywUZnaMmdWL3T/fzO4xswMSH01EEm3l\nyjC66dRT4ZZbok4jyaosLYrhwHozOxS4HvgSGJXQVCKScKtXw4knhn6Jf/wDTOsuyE6UpVDkx4Yc\nnQH8093/CdRPbCwRSaS1a8OM65494e67VSSkdKWt9bTFWjO7GfgN0NvMqgM1ExtLRBJl/fqwdlPn\nznD//SoSsmtlaVGcA2wCLoltYtSCsE3qLpnZE2a2tNhKtEWfzzSz1WY2M3b7a5mTi0i5bdwYVoFt\n0wYefhiqaTiLlEGZJtyZWWugnbu/ZWZ1gRruvqYMP9cbWAeMcvcuJTyfCVzv7qft4nU04U6kgnJz\n4YwzoHFjePppqF496kSSaJU24c7Mfgc8DzwSO9QS+HdZXtzd3wd+2tVblOW1RGT3bd4M/frBnnuG\nPSVUJKQ8ytLwHAAcA6wBcPcvgH3i9P4O9DKzT8zsVTPrFKfXFZGY/Hw477zQF/Hcc1CjLD2TIkWU\n5Z9MrrvnWqzHy8xqUGyBwAqYAbRy9w1mdjLwEtC+pBOzs7O33s/MzCQzMzNOEUSqroICOP982LAB\n/v1vqFUr6kSSSDk5OeTk5MT9dXfZR2FmQ4BVwAXAVcDvgbnu/pcyvUHo35hQUh9FCecuArq5+8pi\nx9VHIVJOhYVwySWwZAmMHw977BF1Iqlslbko4J+A5cBs4HLgVSAuo5PMrJnFmipm1oNQuFbu4sdE\nZBcKC+GKK2DRInj5ZRUJqZiELjNuZqOBDKAJsBTIIjYHw90fMbMBwJVAPrCBMALqwxJeRy0KkTJy\nh6uvhhkz4I03oL6mx6atStuPwsyOIXzBt2Zbn4a7e9uKvnlZqVCIlI073HgjvP8+TJwIDRtGnUii\nFK9CUZbO7BHAtYSO54KKvqGIJIY7/OUv8M474aYiIfFSlkKxyt1fS3gSEamQW2+FCRPg3XfDpDqR\neCltz+xusbv9gOrAi0DulufdfUbC023LoktPIqW4884wkS4nB5o1izqNJIuE91GYWQ6lzJdw919U\n9M3LSoVCZOfuuQeGD4dJk6B586jTSDKptM7sZKBCIVKyYcNCoZg0CVq1ijqNJJvKXOvpDjNrVORx\nYzO7vaJvLCIV8+ijMGRI6LhWkZBEKsuEu77uvmrLA3f/Cfhl4iKJyK6MHAm33QZvvw2tW0edRqq6\nshSKamZWZ8sDM9sD0IoxIhEZPRpuvjnMk2jXLuo0kg7KMjz2WeBtM3uCsCT4xWjPbJFIjBsH118f\nikSHDlGnkXRR1o2LTgaOI4yCmujubyQ6WLH3V2e2pL3x4+Gyy8KyHIcdFnUaSQUa9SSSRl57DS68\nEF59Fbp3jzqNpIrKHPV0ppktMLM1ZrY2dtvlNqgiEh9vvRWKxMsvq0hINMqyKOCXwCnuPq9yIpWY\nQS0KSUuTJoUtTMeNg969o04jqaYy96P4IcoiIZKupkwJRWLMGBUJiVZZRj19bGZjCduUbo4dc3d/\nMXGxRNLbtGlwxhnw9NNw7LFRp5F0V5ZC0RDYCJxQ7LgKhUgCzJwJp5wCI0bAiSdGnUZEo55Eksrs\n2XD88fDQQ/DrX0edRlJdwjcuMrOb3H2QmT1YwtPu7tdU9M1FZJv580ML4r77VCQkuZR26Wlu7M/p\nbL/cuFHK8uMiUn4LFsBxx8Fdd0H//lGnEdmeLj2JRGzRIsjIgFtugd/+Nuo0UpVU5p7Zxd/4DmA1\n8Li7r6hoAJF09s03YVTTn/6kIiHJqyzzKIqbBhQA98U5i0haWbIkFIk//AF+//uo04jsnC49iUTg\nhx8gMxMuvhhuuinqNFJVVcaop6KjnZzQib31sUY9ieye5ctDx/V556lISGoorY9iy2gnA/4O3MK2\nYqFf70V2w8qVYZ7E6afD3/4WdRqRsinrfhQz3b1rJeTZ2fvr0pOkvJ9+ghNOCCOchgwBq/AFAZHS\nVeaigCJSQVOmQNeuofNaRUJSTbmHx4pI2RUUwKBB8MAD8OijcNppUScSKb/SOrPXsa0vYg8zW1vk\naXf3Brt68dg+278Elrl7l52c8wBwMrABuMjdZ5Y1vEgy++47OP98yM+Hjz+Gli2jTiSye3Z66cnd\n67l7/ditRpH79ctSJGKeBE7a2ZNm1hdo5+4HAb8DhpcrvUiSeuUVOPzw0B/xzjsqEpLaEnrpyd3f\nN7PWpZxyGjAydu5UM2tkZs3cfWkic4kkSm4u/PnPYUe655/XhkNSNUTdR9ECWFzk8bdAS0CFQlLO\nggVhQb/99w97Suy1V9SJROIj6kIB20/kg53M0cjOzt56PzMzk8zMzMQlEimnp5+G66+Hv/8drrxS\no5okGjk5OeTk5MT9dRO+hEfs0tOEkjqzzexhIMfdx8Qezwcyil960jwKSVZr14Z1mqZPD3tb/+xn\nUScS2aaqzKMYD1wAYGY9gVXqn5BUMX166LCuUyfsca0iIVVVQi89mdloIANoYmaLgSygJoC7P+Lu\nr5pZXzNbCKwHLk5knmTj7mzK38SqTatYnbuaVZtWsSZ3DXVr1qVRnUZbb3vW3BPTtYykUVgYdqG7\n6y548EE455yoE4kkllaPrQB3Z2P+RlZtWrX1tnrT6u0eb73llnBs0yoAGtdpvLUo1K9dnw15G7Y7\nZ3PBZhrWbrhd8WhYpyGNajfa7tjObvVq1VOhiZNly8KKrytWwOjR0KZN1IlEdi5el57SulC4+w5f\nylu/8HN38oVf7Fa9WvWSv6BL+BJvWKfhDsfq1Kizy5x5BXllzlNS/o15G2lYp+EOxaast3q16lHN\nor5KGb2334YLLgi3W2+FmjWjTiRSOhUKwhf9+rz1pX9hbvkNfye/0deqXit8ie/Gl2jD2g2pXaN2\nBH8j5ZNXkMea3DVlLizFb+vz1tOgdoMyF8TiRbFB7QYpXWjy8iArC0aOhKeeCqu/iqSCtCsUZ449\ns8Qvt9rVa5f8JVWGyzIN6zSkVvVaUX+8pJdfmF9iodnhMttOivG6zeuoX6t+if8NmtRtwsF7H0zH\nph3p2KQje9fdO+qPu52vv4Zzz4VGjUKh2GefqBOJlF3aFYrn5zxf4m/0Naur/Z/sCgoLWJO7psRW\ny7L1y5j/43zm/TiPucvnUqdGHTo26Uinpp22/dm0I/vV26/S+1mefx4GDAibC113HVRL3UaRpKm0\nKxSpkFMqxt35ft33zF0+l3nL520tHvN+nEdufu7WVkfRInJAowPifllrw4ZQGN5+O8yN6N49ri8v\nUmlUKCStrNiwYlvhKFJEVmxcQfu922/fAmnSkXZ7tdut1uZnn4Xhrl27wkMPQYOyLn8pkoRUKESA\ntblrt7t0Ne/HecxbPo9vVn9D28Zt6di0I52adNraGjm4ycHUrVl3h9dxh0ceCduT3n13GNmkEcWS\n6lQoREqxKX8TC1Ys2Fo8tvy5cOVC9qu339aWR8emHWlZuxPDsjqyeGFDxoyBgw+OOr1IfKhQiOyG\n/MJ8vvrpK+YtD8Vj0tx5vPvZXHzv+TSt3zC0QIoUkU5NO9G0blNNWJSUpEIhUgEFBXDnnTBsGDz+\nOPT9ZSHfrvl2ax9I0ZaIme3QB9KxaUdaNWilAiJJTYVCZDctWQK/+U24/8wz0KLFzs91d5atX7Zd\n/8fcH0MxWbt5LR2adNhWPGKFpE3jNtSolgwr+Eu6U6EQ2Q3/+Q/89rdw1VVhJ7rq1Xf/tVZtWrXD\nMN65y+fyw7ofOGivg3boSG+/d/uUmMkvVYcKhUg55ObCwIHw0kvw3HNw9NGJe6/1m9fz+YrPdygi\ni35axKH7Hsr1Pa/nzE5nqtUhCadCIVJGn38etiht2zb0RzRuHE2OzQWbeX3h6wyZMoQla5Zww1E3\ncHHXi0scrisSDyoUIrvgDqNGwY03wm23weWXJ8/ciCmLpzBkyhAmfzOZAUcMYECPATSp2yTqWFLF\nqFCIlGLNmrBF6cyZMHYsdO4cdaKSzf9xPkOnDGXcvHH8X5f/4/qjrqdNY21yIfFRVbZCFYm7jz8O\nW5TuuWfYojRZiwRAhyYdeOy0x5jz+znUq1WP7o91p/8L/Zn+3fSoo4lspRaFVBmFhXDvvTBoEPzz\nn9CvX9SJym9N7hoem/4Y9354Lx2adGDg0QM5vu3xmq8hu0WXnkSKWLYMLrwQVq8Oo5pat446UcVs\nLtjMmM/GMHjyYGpUq8HAowfSr1M/Lasv5aJCIRLz1luhSFx0EWRnV60tSt2d1xa+xuDJg/l61ddc\n1/M6Lj38UurVqhd1NEkBKhSS9vLy4JZbwsimUaOgT5+oEyXW1G+nMmTKECb9bxJXdLuCq4+8mn32\n1JZ7snMqFJLWFi0KW5TuvXfYx7pp06gTVZ4FKxYw9IOhjJ0zlv6H9OeGXjfQbq92UceSJKRRT5K2\nxo6FI48MGwxNmJBeRQLgoL0P4uFTHmb+gPk0qduEo0YcRb/n+/HRko+ijiZVlFoUkjLWr4drr4Wc\nnLBFabduUSdKDus2r2PEjBHc8+E9tGnUhoFHD+TkdidrpJTo0pOkl08/DS2II44IQ1/r1486UfLJ\nK8jjX3P+xeApgyn0Qv7Y64/079yfWtVrRR1NIqJCIWnBPexdnZ0N99wD558fdaLk5+5M/GoigycP\n5vMVn3Ndz+u47PDLqF9b1TXdqFBIlbdyJVx6KXzzTbjUdNBBUSdKPdO/m86QKUN466u3uOzwy7jm\nyGvYr/5+UceSSqLObKnS3n8funaFNm1gyhQVid3VrXk3xpw1ho8u+4i1m9fS6aFOXDb+Mj7/8fOo\no0kKSWihMLOTzGy+mS0ws5tKeD7TzFab2czY7a+JzCPJr6AAbr0Vzj4bhg8Pl5tqa6+fCmvbuC3D\n+g7ji6u+oEWDFvR+sje/GvsrPlj8QdTRJAUk7NKTmVUHPgeOA5YA04Bz3X1ekXMygevd/bRdvJYu\nPaWBb78NW5RWqxa2KG3ePOpEVdeGvA08OfNJhn4wlBYNWjCw10B+2f6XVDNdZKhKUuHSUw9gobt/\n7e55wBjg9BLO0xg+Yfx46N4dTjgBJk5UkUi0ujXrMqDHAL64+guuOuIqsidlc8hDh/DEzCfIzc+N\nOp4kmUQWihbA4iKPv40dK8qBXmb2iZm9amadEphHktCmTXDNNeH24otw880V28dayqdGtRqc0/kc\nPr7sY4adPIyxc8bS9oG2DJ48mNWbVkcdT5JEIgtFWa4VzQBaufuhwIPASwnMI0nEHV5/HXr2hO++\nCxsM9eoVdar0ZWb0aduHN37zBq+c9wqfLv2Utg+0ZeDEgSxZsyTqeBKxRO7uvgRoVeRxK0KrYit3\nX1vk/mtm9pCZ7eXuK4u/WHZ29tb7mZmZZGZmxjuvVIL8/LAEx+DBoVjcfHOYSKdJxMnjsH0P45lf\nP8P/Vv2Pez+8ly7Du3BGhzO4sdeNdGqqRn8yy8nJIScnJ+6vm8jO7BqEzuw+wHfAR+zYmd0MWObu\nbmY9gH+5e+sSXkud2Slu/XoYMSKMYmrdGm66CU46SQUiFazYsILhHw9n2EfD6NGiBwOPHsjRrY7W\nEiEpICUm3JnZycB9QHVghLvfaWaXA7j7I2Y2ALgSyAc2EEZAfVjC66hQpKgff4QHHwxDXXv3hoED\nw4J+kno25m1k5CcjGfrBUJrUbcLAXgM5vcPpGimVxFKiUMSLCkXqWbQotB6efRbOOgtuvBHat486\nlcRDQWEBL81/iUGTB7E6dzU3HnUj5x96PnVq1Ik6mhSjQiFJadas0P/w5ptw2WVhNNN+WjGiSnJ3\n3vvfewyeMpgZ38/gmh7XcEX3K2i8R+Ooo0mMCoUkDXd4910YNAjmzAlLgf/ud9CgQdTJpLLMXjqb\nuz+4mwmfT+Diwy7m2p7X0qphq13/oCSUCoVErqAgzH0YNCh0Vg8cCOedpyU30tni1Yu5f+r9PDHz\nCU5pfwo3HX0Th+xzSNSx0pYKhURm40YYORLuvhv22SeMYDr11LD0hgjAqk2rGD5tOPdNvY+MAzK4\nJeMWOu/TOepYaUeFQirdTz+FvSEefBB69AgtiGOOiTqVJLN1m9cxfNpwhn4wlN4H9OaWn99Cl2Zd\noo6VNlJhrSepIhYvhhtugHbtYOFCePvtsDaTioTsSr1a9fjj0X/ky2u+5MgWR3L808dz1r/O4tOl\nn0YdTcpBhUJ2as4cuOgiOPTQ8PiTT+DJJ+EQXXKWctqz1p7c2OtGvrzmS45qeRQnPnMiZ/7rTD75\n4ZOoo0kZqFDIdtzDpkGnngp9+oS5D19+CUOHQsuWUaeTVLdnrT25odcNfHnNlxzd6mhOevYkfjX2\nV8z6YVbU0aQU6qMQAAoLYcKEMIJp+fIwQe7CC6GO5lBJAm3I28Cj0x9l8OTB9GjRg6yMLLru1zXq\nWFWGOrMlLnJzw+zpIUOgXr0wgulXv9JS31K5NuZt5NHpjzJo8iCOaHEEWRlZHL7f4VHHSnkqFFIh\na9bAI4/AffdBly6hQGRmapE+idbGvI08NuMxBk0eRLf9upGVkUW35t2ijpWyVChkt3z/Pdx/Pzz+\nOJx4Ivzxj3DYYVGnEtnepvxNPDY9FIyu+3UlKyOL7s27Rx0r5Wh4rJTLF1+EtZcOOQQ2bICPPw6X\nnFQkJBnVqVGHq4+8moXXLOTEA0/kjDFncMpzpzBtybSoo6UltSiquKlTwyJ9778PAwaEW5MmUacS\nKZ9N+ZvCq+9AAAAL3ElEQVQYMWMEd02+iy77dCErI4sjW2q9+l3RpSfZKXd47bVQIL7+OkyWu+QS\n2HPPqJOJVExufi5PzHyCO/57B5336UxWRhY9W/aMOlbSUqGQHeTlwZgxoUBUrx6W2Dj7bKiRyA1v\nRSKQm5/Lk7Oe5I7376BT005kZWRxVKujoo6VdFQoZKt167ZtM3rggWEE0wknaASTVH25+bk8Nesp\n7vjvHXRo0oGsjCx6teoVdaykoUIhLFsGw4aFbUYzM0ML4ogjok4lUvk2F2wOBeP9O2i/d3uyMrI4\nev+jo44VORWKNPbVV2FJjdGjw6WlG28MC/aJpLvNBZsZOWskd/z3Dtrt1Y6sjCyO2T99V69UoUhD\nM2aE/oe33oLLLw/bjDZrFnUqkeSzuWAzoz4ZxT/e/wdtG7clOyOb3gf0jjpWpVOhSBPuYVnvQYNg\n/ny47rowH6J+/aiTiSS/vIK8rQWjdaPWZGdm8/MDfh51rEqjQlHF5efDuHGhBbFpU+h/OPdcqFUr\n6mQiqSevII9nPn2G29+/nf0b7k9WRhaZrTOjjpVwKhRV1MaNYc+HoUOhefMwgqlvX20zKhIPeQV5\nPDv7WW5/73ZaNmhJdmZ2lS4YKhQpLi8v7PMwf/72t3nz4Be/CC2IXhrlJ5IQ+YX5PPvps9z23m20\naNCC7IxQMKyKjSlXoUgRP/0En3++Y0H4+mto1Qo6dNjxtvfeUacWSQ/5hfk8N/s5bn/vdvatty9Z\nGVkc2+bYKlMwVCiSSGEhfPPNjsVg/nxYv77kYtCuHdSuHXVyEYFQMEbPHs1t791Gs3rNyMrIok+b\nPilfMFQoIrBhQ1iFtXgx+OKL0AooqSA0b64Z0iKpIr8wnzGfjeG2926jad2mZGVkcVzb41K2YKhQ\nJIg7LF1acutg6dLQEiheDNq313BVkaqkoLCAsXPGcuukW9lrj73Izszm+LbHp1zBSIlCYWYnAfcB\n1YHH3X1QCec8AJwMbAAucveZJZwT90Kxs87k+fOhZs2SWwetW2uLUJF0UlBYwL/m/Itb37uVRnUa\nkZ2RzQkHnpAyBSPpC4WZVQc+B44DlgDTgHPdfV6Rc/oCV7l7XzM7Erjf3XdYM7gihaK8nckHHxz/\n/RpycnLIzMyM74tWklTODsoftaqSv6CwgOfnPs+tk26lQe0GZGdmc+KBJyZ9wUiFHe56AAvd/Wt3\nzwPGAKcXO+c0YCSAu08FGplZuRelKCyERYvCHgz33QdXXBEWydt3X9h/f7j66jC7uX59OP/8MJFt\n9WpYsAAmTIAhQ+DSS+HooxOzqU9OTk78X7SSpHJ2UP6oVZX81atVp3/n/sy+cjbX9byOG968gZ4j\nevLqgldJhcv3FZXInQpaAIuLPP4WKL4lVUnntASWlvSC69eX3Jm8YMH2ncldukC/fupMFpH4ql6t\nOud0Pod+h/TjhbkvMHDiQLJzssnKyKLvQX2TvoWxuxJZKMpaZov/zZb4cwccEJbVLtqZfNppYWKa\nOpNFpDJVs2qcfcjZnNXpLMbNHcef3v4T2ZOyGXXGKDo27Rh1vLhLZB9FTyDb3U+KPf4zUFi0Q9vM\nHgZy3H1M7PF8IMPdlxZ7rarfthMRSYB49FEkskXxMXCQmbUGvgPOAc4tds544CpgTKywrCpeJCA+\nH1RERHZPwgqFu+eb2VXAG4ThsSPcfZ6ZXR57/hF3f9XM+prZQmA9cHGi8oiIyO5JiQl3IiISnaRe\nvNrMTjKz+Wa2wMxuijpPScyslZm9a2ZzzOwzM7smdnwvM5toZl+Y2Ztm1qjIz/w59pnmm9kJ0aXf\nxsyqm9lMM5sQe5wS+c2skZm9YGbzzGyumR2ZKtmL5JljZrPN7Dkzq53M+c3sCTNbamazixwrd14z\n6xb7zAvM7P6I8w+J/fv5xMxeNLOGqZS/yHM3mFmhme0V9/zunpQ3wuWqhUBroCYwC+gYda4Scu4L\nHBa7X48wybAjMBgYGDt+E3BX7H6n2GepGftsC4FqSfA5rgeeBcbHHqdEfsI8nEti92sADVMoe2vg\nK6B27PFY4MJkzg/0BroCs4scK0/eLVcxPgJ6xO6/CpwUYf7jt/w9AnelWv7Y8VbA68AiYK9450/m\nFkVZJuxFzt1/cPdZsfvrgHmE+SFbJxPG/jwjdv90YLS757n714T/eD0qNXQxZtYS6As8zrbhykmf\nP/abX293fwJCv5i7ryYFssesAfKAumZWA6hLGPiRtPnd/X3gp2KHy5P3SDPbD6jv7h/FzhtV5GcS\nqqT87j7R3QtjD6cS5nJBiuSPuQcYWOxY3PInc6EoaTJei4iylElshFdXwj+2Zr5tBNdSYMuM8+aE\nz7JFMnyue4E/AoVFjqVC/jbAcjN70sxmmNljZrYnqZEdd18JDAW+IRSIVe4+kRTJX0R58xY/voTk\n+BwAlxB+w4YUyW9mpwPfuvunxZ6KW/5kLhQp1ctuZvWAccAf3H1t0ec8tO9K+zyRfVYzOwVY5mEx\nxhKHISdx/hrA4cBD7n44YeTcn4qekMTZMbMDgWsJlwWaA/XM7DdFz0nm/CUpQ96kZWZ/ATa7+3NR\nZykrM6sL3AxkFT0c7/dJ5kKxhHDdbYtWbF8Fk4aZ1SQUiafd/aXY4aVmtm/s+f2AZbHjxT9Xy9ix\nqPQCTjOzRcBo4Fgze5rUyP8t4TepabHHLxAKxw8pkB2gOzDF3Ve4ez7wInAUqZN/i/L8W/k2drxl\nseORfg4zu4hw+fX/ihxOhfwHEn7R+CT2/3BLYLqFNfPilj+ZC8XWCXtmVoswYW98xJl2YGYGjADm\nuvt9RZ4aT+iYJPbnS0WO9zezWmbWBjiI0LEUCXe/2d1buXsboD/wjrufTwrkd/cfgMVm1j526Dhg\nDjCBJM8eMx/oaWZ7xP4dHQfMJXXyb1Gufyux/25rYiPUDDi/yM9UOgvbIfwRON3dNxV5Kunzu/ts\nd2/m7m1i/w9/CxweuxQYv/yV0VNfgR7+kwmjiBYCf446z04yHkO4tj8LmBm7nQTsBbwFfAG8CTQq\n8jM3xz7TfODEqD9DkVwZbBv1lBL5gUMJS9h/QviNvGGqZI/lGUgobrMJHcE1kzk/odX5HbCZ0Id4\n8e7kBbrFPvNC4IEI818CLAD+V+T/34dSIH/ulr//Ys9/RWzUUzzza8KdiIiUKpkvPYmISBJQoRAR\nkVKpUIiISKlUKEREpFQqFCIiUioVChERKZUKhYiIlEqFQqo0M3un+L4NZnatmT1Uhp99yszO3MU5\n15rZHuXMNDq298EfyvNzIlFRoZCqbjRhaZKizgHKsvBbWRa4+wNhefAyia2J1N3dD3X3StvwRqQi\nVCikqhsH/DK238OWpeCbu/t/SzrZzIbFdgObCOxDbCVOM+sTW8r8UzMbEVs/5xrCqq/vmtnbJbzW\nEWY22cxmmdmHsRWG3wRaWNhN8BgzyzGze8xsWmyXtSPM7N8Wdou7LRF/ISLlpUIhVZqHPR8+IqwM\nCqF1Mbakc83s10B7wg6FFxBW1nUzqwM8CZzt7j8jLG9+pbs/QFh3J9Pd+xR7rVqEzbaucffDCAv+\nbQROBb50966xYuVArrsfAQwHXgauADoDF5lZ4/j8TYjsPhUKSQdFLz+dE3tckt7Acx58D7wTO34w\nsMjdF8YejwR+vov3PBj43t2nQ9j90N0LKHmvgC2rIn8GfObuS919M2GBt/138T4iCadCIelgPNDH\nzLoCdT1s0rQzJX2RF++nsBKOVURu7M/CIve3PK4ex/cR2S0qFFLledjL/F3C5aPSOrHfA84xs2qx\nDXh+ETv+OdA6tiMdhPX7J8XurwUabHkBMxtlZt0JyzrvF7uPmdU3M33pS0pSoZB0MRrows4vO+Hu\n/ybsTTCXcHlpSux4LmHfhefN7FMgH3g49mOPAq8X6czuAnzn7nmEy1wPmtks4A2g9pa32lmEUp4T\niYz2oxCJEzNrADzm7udEnUUknlQoRESkVDWiDiBS2cysCzCq2OFN7n5UFHlEkp1aFCIiUip1ZouI\nSKlUKEREpFQqFCIiUioVChERKZUKhYiIlOr/AXlSO7gvU2MeAAAAAElFTkSuQmCC\n", - "text": [ - "<matplotlib.figure.Figure at 0x10bc1ac10>" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-2, Page No:770" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "rho=998 #Density in kg/m^3\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "V_dot=0.0233 #Volumetric flow rate in m^3/s\n", - "H_small=7.3 #Head in m\n", - "H_big=21.9 #Head in m\n", - "n_pump_small=0.7 #Efficiency of the pump in fraction small\n", - "n_pump_big=0.765 #Efficiency of pump in fraction big\n", - "#Calculations\n", - "bhp_small=(rho*g*V_dot*H)/n_pump_small #Required bhp in kW\n", - "\n", - "#Similarly for 241.3mm impeller we get 6.53kW\n", - "bhp_big=(rho*g*V_dot*H_big)/n_pump_big\n", - "\n", - "#Result\n", - "print \"The required bhp is\",round(bhp_small,2),\"W\"\n", - "print \"The required bhp is\",round(bhp_big,2),\"W\"\n", - "print \"Clearly the small one is better as it uses less power\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The required bhp is 2378.92 W\n", - "The required bhp is 6530.38 W\n", - "Clearly the small one is better as it uses less power\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-4, Page No:780" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "n_dot=900 #Speed in rpm\n", - "V_closed=0.45 #Volume of motor oil in cm^3\n", - "n=0.5 #Number of rotations\n", - "\n", - "#Calculations\n", - "V_dot=n_dot*(2*V_closed/n) #Volumetric Fow rate in cm^3/min\n", - "\n", - "#Result\n", - "print \"The volumetric Flow rate is\",round(V_dot),\"cm^3/min\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The volumetric Flow rate is 1620.0 cm^3/min\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-5, Page No:784" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "n_dot=1750 #Speed in rpm\n", - "w=183.3 #Angular Speed in rad/s\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "alpha1=0 #Angle in degrees\n", - "alpha2=40 #Angle in degrees\n", - "b1=0.052 #Inlet blade width in m\n", - "b2=0.023 #Outlet blade width in m\n", - "V_dot=0.13 #Volumetric Flow rate in m^3/s\n", - "rho_water=1000 #Density of water in kg/m^3\n", - "rho_air=1.2 #Density of air in kg/m^3\n", - "r1=0.04 #Inlet radius in m\n", - "r2=0.08 #Outlet radius in m\n", - "\n", - "#Calcualtions\n", - "V1_n=V_dot/(2*pi*r1*b1) #Normal Component of Velocity in m/s\n", - "V1=V1_n #Since Vt is zero Velocity in m/s\n", - "V2_n=V_dot/(2*pi*r2*b2) #Normal Component of velocity in m/s\n", - "V2_t=V2_n*tan((alpha2*pi)/180) #Tangential Component of velocity in m/s\n", - "\n", - "#Applying the Bernoullis principle \n", - "H=(w/g)*(r2*V2_t) #Net head in m\n", - "Hwater_column=H*(rho_air/rho_water)*1000 #Equivalent water column in mm of water\n", - "\n", - "bhp=rho_air*g*V_dot*H #bhp required in W\n", - "\n", - "#Result\n", - "print \"The net Head produced is\",round(Hwater_column),\"mm of water\"\n", - "print \"The brake horsepower required is\",round(bhp,1),\"W\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The net Head produced is 17.0 mm of water\n", - "The brake horsepower required is 21.6 W\n" - ] - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-6, Page No:786" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "r1=0.1 #Inlet Radius in m\n", - "r2=0.18 #Outlet radius in m\n", - "b1=0.05 #Inlet width in m\n", - "b2=0.03 #Outlet width in m\n", - "V_dot=0.25 #Volumetric Flow rate delivered in m^3/s\n", - "n=1720 #Speed of the impeller in rpm\n", - "rho=1226 #Density of the fluid in kg/m^3\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "H=14.5 #Head in m\n", - "\n", - "#Calculations\n", - "#Required horse power\n", - "W_water_horsepower=rho*g*V_dot*H #Required Horse Power in W\n", - "W_dot_water_hp=W_water_horsepower/745.7 #Required Horse Power in hp\n", - "\n", - "w=n*(2*pi/60) #Angular Speed in rad/s\n", - "\n", - "beta1=(arctan((V_dot)/(2*pi*b1*w*r1**2)))*(180/pi) #Blade inlet angle in degrees\n", - "\n", - "#Using elemetary analysis\n", - "V2_n=V_dot/(2*pi*r2*b2) #Normal Component of Velocity in m/s\n", - "\n", - "V2_t=(g*H)/(w*r2) #Tangential Component of velocity in m/s\n", - "\n", - "#Simplfying Calculation\n", - "a=w*r2-V2_t\n", - "\n", - "beta2=arctan(V2_n/a)*(180/pi) #Angle in degrees\n", - "\n", - "#Result\n", - "print \"The angel beta1 is\",round(beta1,2),\"degrees\"\n", - "print \"The angle beta2 is\",round(beta2,2),\"degrees\"\n", - "print \"The horsepower required is\",round(W_dot_water_hp,1),\"hp\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The angel beta1 is 23.84 degrees\n", - "The angle beta2 is 14.73 degrees\n", - "The horsepower required is 58.5 hp\n" - ] - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-7, Page No:792" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "D_propeller=0.34 #Overall Diameter of the propeller in m\n", - "alpha=14 #Angle of attack in degrees\n", - "n=1700 #Speed of the propeller in rpm\n", - "D_hub=0.055 #Diameter of the hub assembly in m\n", - "V=13.4 #Velocity of the plane in m/s\n", - "\n", - "#Calculations\n", - "C=60/(2*pi) #Conversion factor\n", - "phi1=(arctan((V*C)/(n*D_hub*0.5)))*(180/pi) #Angle in degrees\n", - "theta1=alpha+phi1 #Pitch Angle at arbitrary radius in degrees\n", - "phi2=(arctan((V*C)/(n*D_propeller*0.5)))*(180/pi) #Angle in degrees\n", - "theta2=alpha+phi2 #Pitch angle at the tip in degrees\n", - "\n", - "#Result\n", - "print \"The pitch angle at any radius is\",round(theta1,1),\"degrees\"\n", - "print \"The pitch angle at the tip is\",round(theta2,1),\"degrees\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The pitch angle at any radius is 83.9 degrees\n", - "The pitch angle at the tip is 37.9 degrees\n" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-8,Page No:797" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V_in=47.1 #Velocity at the inlet in m/s\n", - "beta_st=60 #trailing edge at Angle in degrees\n", - "n=1750 #Speed of the impeller in rpm\n", - "r=0.4 #Radius in m\n", - "\n", - "#Calculations\n", - "V_st=V_in/cos((beta_st*pi)/180) #Velocity leaving the trail in m/s\n", - "\n", - "u_theta=((n*2*pi)/60)*r #Tangential Velocity of rotor blades in m/s\n", - "\n", - "beta_r1=(arctan((u_theta+V_in*tan((beta_st*pi)/180))/V_in))*(180/pi) #Angle of leading edge in degrees\n", - "\n", - "beta_rt=(arctan(u_theta/V_in))*(180/pi) #Angle in degrees\n", - "\n", - "#Result\n", - "print \"The leading edge and trailing edge angles are\",round(beta_r1,2),\"degrees and\",round(beta_rt,2),\"degrees\"\n", - "print \"We select number like 13 15 and 17 rotor blades\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The leading edge and trailing edge angles are 73.09 degrees and 57.28 degrees\n", - "We select number like 13 15 and 17 rotor blades\n" - ] - } - ], - "prompt_number": 22 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-9, Page No:802" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "n=1170 #Speed of the pump in rpm\n", - "H=23.5 #Required head in ft\n", - "V_dot=320 #Gasoline pumped gallon/minute\n", - "Ratio=3.658*10**-4 #Nsp/Nsp_US ratio\n", - "\n", - "#Calcualtions\n", - "Nsp_US=(n*V_dot**0.5)/(H**0.75) #Pump specific speed in US units\n", - "Nsp=Nsp_US*(Ratio) #Normalizes pump specific speed\n", - "\n", - "#Result\n", - "print \"The Nsp_US value is\",round(Nsp_US,2),\"and Nsp value is\",round(Nsp,3),\"which tells\"\n", - "print \"A centrifugal Pump is the best suitable one\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Nsp_US value is 1960.92 and Nsp value is 0.717 which tells\n", - "A centrifugal Pump is the best suitable one\n" - ] - } - ], - "prompt_number": 23 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-10, Page No:804" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "wa=1 #Setting as unit speed\n", - "\n", - "#Calculations\n", - "wb=2*wa #Speed \n", - "bhp_ratio=(wb/wa)**3 #Ratio od required shaft power \n", - "\n", - "#Result\n", - "print \"The ratio of required shaft power is\",round(bhp_ratio)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The ratio of required shaft power is 8.0\n" - ] - } - ], - "prompt_number": 24 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-11, Page No:805" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "import matplotlib.pyplot as plt\n", - "\n", - "#Variable Decleration\n", - "D_A=0.06 #Diameter of pump A in m\n", - "n_A=1725 #Operating Speed in rpm\n", - "w_A=180.6 #Operating Angular Speed in rad/s\n", - "V_B_dot=2.4*10**-3 #Volumetric Flow rate in m^3/s\n", - "V_A_dot=5*10**-4 #Volumetric Flow rate in m^3/s\n", - "H_A=1.5 #Head in m\n", - "rho_water=998 #Density of water in kg/m^3\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "n_pump_A=0.81 #Efficiency of pump A in fraction\n", - "H_B=4.5 #Head in m\n", - "rho_B=1226 #Density of fluid in kg/m^3\n", - "\n", - "#Calculations\n", - "#Part(a)\n", - "bhp_A=(rho_water*g*V_A_dot*H_A)/n_pump_A #Required Power in W\n", - "\n", - "C_Q=V_A_dot/(w_A*D_A**3) #Capacity Coefficient \n", - "\n", - "C_H=(g*H_A)/(w_A**2*D_A**2) #Head Coefficient\n", - "\n", - "C_P=bhp_A/(rho_water*w_A**3*D_A**5) #Power Coefficient\n", - "#Plotting\n", - "V_dot1=range(100,800,100) #Volumetric flow rate in cm^3/s\n", - "H1=[180,185,175,170,150,95,54] #Head in cm\n", - "n_pump1=[32,54,70,79,81,66,38] #Efficiency of the pump in percentage\n", - "#BHP calculations\n", - "V_dot=transpose(V_dot1)\n", - "H=transpose(H1)\n", - "n_pump=transpose(n_pump1)\n", - "bhp_A1=rho_water*g*V_dot\n", - "bhp_A2=bhp_A1*H\n", - "bhp_A=bhp_A2/n_pump\n", - "\n", - "\n", - "fig = plt.figure()\n", - "ax = fig.add_subplot(111)\n", - "ax.plot(V_dot1,bhp_A)\n", - "plt.xlabel('V_dot,cm^3/s')\n", - "plt.ylabel('H,cm and n in %')\n", - "ax2 = ax.twinx()\n", - "ax2.plot(V_dot1,H1,V_dot1,n_pump1)\n", - "plt.ylabel('bhp,W')\n", - "ax.grid()\n", - "plt.show()\n", - "\n", - "\n", - "#Curve Fitted Data Yields\n", - "CQ_star=0.0112\n", - "CH_star=0.133\n", - "CP_star=0.00184\n", - "npump_star=0.812\n", - "\n", - "#Part(b)\n", - "Db=((V_B_dot**2*CH_star)/(CQ_star**2*g*H_B))**0.25 #Design Diameter of pump B in m\n", - "\n", - "w_B=V_B_dot/(CQ_star*Db**3) #Angular speed at B in rad/s\n", - "\n", - "bhp_B=CP_star*rho_B*w_B**3*Db**5 #Required brake horse power in W\n", - "\n", - "\n", - "#Result\n", - "print \"The required diameter of Pump is\",round(Db,3),\"m\"\n", - "print \"The required rotational speed is\",round(w_B),\"rad/s\"\n", - "print \"The required Brake Horse Power is\",round(bhp_B),\"W\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAakAAAEWCAYAAADcsGj7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXmczdX7wN+PsRRiLEW2JokQ0SKijOxtilRoUVokWr4k\n6qfyTaQ9UmklX5H6Wiq7ciWR5YvsUhSRJcLIMmae3x/nM7nGLHdm7ufe+/nMeb9e9zX3nM85n8/z\nzJ05zz3Pec5zRFWxWCwWiyUWKRBtASwWi8ViyQxrpCwWi8USs1gjZbFYLJaYxRopi8ViscQs1khZ\nLBaLJWaxRspisVgsMYunjZSIfCgiO0VkVQhtXxWR5c5rg4jsi4SMFovFYsk94uV9UiJyJZAEfKyq\ndXLQrydQT1XvdU04i8ViseQZT8+kVHU+cNKMSETOE5HpIrJURL4VkRoZdO0MjIuIkBaLxWLJNQWj\nLYALvAs8oKqbRORy4C2gedpFETkHSAC+iY54FovFYgkVXxkpESkONAI+E5G06sLpmt0GfKZe9nNa\nLBZLPsFXRgrjvvxLVetn0eZWoEeE5LFYLBZLHnB1TSqU6DsRGSYiP4nIShGpH1TfRkTWO9eeCOV5\nqnoA2CwiNzv3EBGpG3TPC4BSqroo91pZLBaLvxCRyiIyV0TWiMhqEXnYqS8tIrNFZKOIzBKR+KA+\n/Z3xeb2ItHJLNrcDJz4C2mR2UUSuAaqp6vnA/cDbTn0c8KbTtxbQSURqZtB/HPA9UENEtorI3UAX\noJuIrABWAzcEdbkVGzBhsVgs6UkGHlPV2kBD4CFnzO0HzFbV6sDXThkRqYUZT2thxum3RMQVe+Kq\nu09V54tIQhZNbgBGO21/EJF4ESkPnAtsUtUtACIyHmgHrEt3/06Z3LdtJvIMzIn8FovFkh9Q1T+A\nP5z3SSKyDqiIGaObOs1GAwGMoWoHjFPVZGCLiGwCGgBh91JFOwS9IrA1qLzNqauQSb3FYrFYXMSZ\nWNQHfgDKqepO59JOoJzzvgJmXE7DtTE62kYKQLJvYrFYLBa3cSKk/ws8oqoHg685EdFZRUW7EjEd\n7ei+34HKQeVKGItcKF19ZU622gCIiA0jt1gsllygqidNEESkEMZAjVHVyU71ThEpr6p/iMjZwC6n\nPqOx+3c35Iz2TOoL4E4AEWmICR/fCSwFzheRBBEpjFmg+yKjG6iqb1/PPPNM1GWw+ln98ptu+UG/\n9IjZWPoBsFZVX083Rt/lvL8LmBxUf5uIFBaRc4HzgcV5tAcZ4upMyom+awqUFZGtwDOYWRKqOlJV\np4nINc6i2yHgbufacSe/3kwgDvhAVddl+BAfs2XLlmiL4CpWP+/iZ93A//plQGPgduBHEVnu1PUH\nXgAmiEg3YAtwC4CqrhWRCcBa4DjQQzOyfmHA7ei+zKLvgtv0zKR+OjA97EJZLBaL5SRU9Tsy96y1\nyKTPYGCwa0I5RNvdZ8mCrl27RlsEV7H6eRc/6wb+189LeP2oDrdmmBaLxeJbRARNFzgRq9iZVAwT\nCASiLYKrWP28i591A//r5yWskbJYLBZLzGLdfRaLxZLPsO4+i8VisVjCgDVSMYzf/eJWP+/iZ93A\n//p5CWukLBaLJR/htRUSuyZlsVgs+Yi+feGll+yalMVisVhijBEjYMqUaEuRM6yRimH87he3+nkX\nP+sG/tTviy/g+edhuseSzUX7qA6LxWKxuMzixdCtG0ybBlWrRluanGHXpCwWi8XH/PwzNGkC774L\n119v6uw+KUueSEqC9eth2ynHPFosFkvo7NkDbdvCgAEnDJTXsDOpCJOUZIzP1q3mZ/D7tJ9Hj0LF\nirB79zGKFy9Mo0b887r4YihSJNpahIdAIEBiYmK0xXANP+vnZ93AH/odPgwtWphZ1NChJ1/z0kzK\nrkmFkfQGKCNDdPQoVKpkXpUrm58XXww33HCiXLo0iMDcud9TuXIiCxfCwoUwZgxs3Ah163KS4apU\nKdqaWyyWWCI1Fe68E6pUgSFDoi1N3nB1JiUibYDXMafrvq+qQ9NdLwV8CFQFjgD3qOoa59oW4ACQ\nAiSraoMM7h+xmVRuDVD6n2kGKC9yLF3KP4Zr4UIzs/LrbMtiseSc3r3NODFrVsZjQfqZlIh8CFwL\n7FLVOk5dA+BNzGnqaafvLnGu9QfuwYzPD6vqLLd0cc1IiUgcsAFzquPvwBKgU/Ax8CLyEnBAVZ8T\nkRrACFVt4VzbDFyiqnuzeEZYjFRmBijYEEXCAOUGVbMwGmy07GzLYsm/DBsGb78NCxaYMSkjMjBS\nVwJJwMdBRioADFHVmSLSFuirqs1EpBbwCXAZUBGYA1RX1VQ39HHT3dcA2KSqWwBEZDzQDlgX1KYm\n8AKAqm4QkQQROVNVdzvX8zzk59YAZeaCiySh+MVFoFo187rjDlMXPNsaMwZ69IjN2ZYf/P5Z4Wf9\n/KwbeFe/SZPM+lNWBiojVHW+iCSkq94BlHTex2MmG2DG8XGqmgxsEZFNmPF+UR5EzxQ3jVRFYGtQ\neRtwebo2K4H2wHfO1PIcoBKwG1BgjoikACNV9b2MHrJ+vTcNkJsULw6JieYFp8627NqWxeI/Fi2C\n+++HGTMgISEst+yHGZtfxkSCN3LqK3CyQdqGGe9dwU0jFYof7gXgDRFZDqwClmN8nABNVHW7iJwJ\nzBaR9ao6P/0NLr/8D0qXPkzJkvs588xj1KkTz0MPVadyZdiy5TtKlDhOs2aJwIld5GnfkAKBAPv2\nnVxOfz2a5bS6cNyvWjXYti1A5crw1luJJCXB+++vYM2aEowZU5UePQCOUrv2fm644SwaNYKDB+dR\nuLB6Qr9YLPtZv8TExJiSJ7/rt2kTXHNNgL594ZJLTr0eCAQYNWoUAAmhW7APMOtNk0SkIyZ+oGUm\nbV0LDnBzTaoh8KyqtnHK/YHU9MET6fpsBuqoalK6+meAJFV9JV2950LQYxW7tmWxeJPdu+GKK+Dx\nx81MKhQyCkF33H1fBq1JHVDVEs57Af5S1ZIi0g9AVV9wrs0AnlHVH8Kk0km4uZl3KXC+s85UGLgV\n+CK4gYiUdK4hIvcB81Q1SUSKisgZTn0xoBVmppWvSPsmFAnS1rbuuAPeeguWL4edO2HwYChb1rgI\n69c3RqpjR3j1VWPIjh7N/TMjqV808LN+ftYNvKPf4cNm6aJjx9ANVA7YJCJNnfdXAxud918At4lI\nYRE5FzgfWBz2pzu45u5T1eMi0hOYiQlB/0BV14nIA871kUAtYJSIKLAa6OZ0LwdMMsabgsBYN0Mc\nLRlTvDg0a2ZeYNe2LJZYIiUFunQxufiefz5v9xKRcUBToKyIbAWeBu4HRohIEeCwU0ZV14rIBGAt\nJ0LTvefuiwTW3Rd9kpJgyRJjtBYtsvu2LJZI8eijsHKlCZTI6f+XlzJOWCNlCSt2bcticZ/XXoP3\n3zeh5vHxOe9vjVSE8LuRCo4M8zKZzbbKldtHnTqlMtwcHR/v/W0Bfvn8MsLPukFs6/f552YW9f33\nJu1RbvCSkbK5+yyuk9Ha1i+/wMSJv1G6dCm2bTNGbNKkE/vcjh8/YbQyy/LhB0NmseSE7783m/Nn\nzsy9gfIadiZliUkOHMg8S3xGhiwzg2YNmcUvbNwIV10Fo0ZBmzZ5u5eXZlLWSFk8S24NWXqDZg2Z\nJdbZtcus5fbvD/fem/f7WSMVIfxupGLZLx4OIqFfKIYsJSX75MG5MWR+/vz8rBvEln6HDsHVV0Or\nVvDcc+G5p5eMlF2TsviaEiWgVi3zyoyMDNnixTBxovuGzGLJipQU6NwZatSAf/872tJEBzuTslhC\nIKczsoQEs9EyMdEaLkvuUIVevUwS7WnToHDh8N3bSzMpa6QsljARbMjWrYN33oHTToN//QtuvTW8\ng4zF/7z8MoweDd99ByVLZt8+J3jJSLmZu8+SR7ySPyy3+E2/NNdiq1bwyCMwYkSAwYPh44/NzGrw\nYPjzz2hLGR789tmlJ9r6TZgAb7xhZlDhNlBewxopi8UlChSAtm1h9myTumbTJpPEt0cPE05ssWTE\n/PnQsyd89ZVZ78zvWHefxRJB/vjDZJl/5x24/HLjCrTrVpY01q+Hpk1N8uZWrdx7jpfcfdZIWSxR\n4PBh+M9/zJEndt3KAuZonEaN4OmnoWtXd5/lJSNl3X0xTLT94m6Tn/U7/XS47z5YswZPrlvl58/O\nDQ4dguuug7vuct9AeQ1rpCyWKGLXrSzHj8Ntt8GFF5pZlOVkrLvPYokx7LpV/kEVHnrIfDmZOhUK\nFYrMc627z0FE2ojIehH5SUSeyOB6KRGZJCIrReQHEakdal+Lxa+UL2+yC/z6qzkavEcPc3DkmDFw\n7Fi0pTPuyAkT4MiRaEvifV580ZwJ9fnnkTNQGSEiH4rIThFZla6+l4isE5HVIjI0qL6/MzavFxEX\nQzwAVXXlhTkyfhOQABQCVgA107V5CRjgvK8BzAm1r9NO/czcuXOjLYKrWP1CIyVFddo01RYtVM8+\nW/X551X37AnLrXPE0aOqr76qWrasas2ac7VKFdVRo1SPH4+8LG4Tib/NTz5RrVxZdds21x91Cs7Y\nGTyWXgnUB1YF1TUDZgOFnPKZzs9azphcyBmjNwEFNA/2IquXmzOpBsAmVd2iqsnAeKBdujY1gbmO\ntdkAJIjIWSH2tVjyBdFet1KFKVPMmsns2TBvnnFHfvIJvPsu1K9vNp1az3vozJtnNnxPnQoVK0Zb\nGlDV+cC+dNUPAkOcMRhV3e3UtwPGqWqyqm7BGKkGbsnmppGqCGwNKm9z6oJZCbQHEJEGwDlApRD7\n+p5YycLsFla/nFO3Lnz4oUm7VLYsNGkC118Pc+e6YyRWroQWLeDJJ2HYMGOMatUyujVubFL2/Pvf\n0Lu3ydS9ZEn4ZYgGbv5trl0Lt9wC48ZBnTquPSYcnA9cJSKLRCQgIpc69RUwY3Iaro7PbmZBD+Vf\n5gXgDRFZDqwClgMpIfYFoGvXriQkJAAQHx9PvXr1/vkDSwsjtWVb9lu5fHm4+uoAjRsX4LffruKh\nhyA5+SAdO27j2WdrUrhw3u7/xx/QrVuA77+H559P5P774bvvAgQCp7a/8cZErrsO+vUL0LYtNG+e\nyPPPw7ZtsfP7ipXyn39Cnz6JvPQSxMVl/Pt0oxwIBBg1ahTAP+NlCBQESqlqQxG5DJgAVM2krXvz\naLf8iEBDYEZQuT/wRDZ9NgPFQ+2LXZPyNFa/8JG2btWypWqFCrlftzp8WHXwYNUyZVR791bdty/j\ndpnplpSkOmiQ6d+zp+rOnTmXIRZw47M7eFD14otVn3su7LfOMaRbkzJVJHDymtR0oGlQeRNQFugH\n9AuqnwFcnv5+4Xq56e5bCpwvIgkiUhi4FfgiuIGIlHSuISL3AfNUNSmUvhaL5QQFnHWrWbNyt26l\nCp9+ChdcYM7SWrTIZOGOj8+ZHMWKwVNPmfQ+cXHGNfjvf0NSUu708gvHjxsXX/365vfjESYDVwOI\nSHWgsKruwYzFt4lIYRE5F+MWXOyaFG5ZP8fCtgU2YCxwf6fuAeAB530j5/p64HOgZFZ9M7h/3r5O\nWCw+ZscO1aefVj3rLNXrrlP95hvV1NRT2y1erNq4sWq9eqZNOPn5Z9VOnUxU4ltvqR47Ft77e4HU\nVNX77lNt3Tp29OfU6L5xwHbgKCYe4G5M9N4YzFLMMiAxqP2Tzti8HmitYbAXmb3sZl6Lxeek5Ql8\n7TUoUuREnsBdu6B/f/j6axg0yKTkiYtzR4Zly+CJJ8zhkIMHQ/v2+Wdz8uDB8Nln8O23cMYZ0ZbG\nYDfzWsJC2sKnX7H6RYa0PIGrV5sBc9QoExlYvbr5uWED3HNPzgxUTnW75BITvj58uDGIV1xhjqSI\nVcL12f3nPyZMf+rU2DFQXsMaKYslH7F7tzFKjRubhKajRpkZTiT2W4mY4yeWLTOpgO64w4TPr1nj\n/rOjwTffmND8qVOhQoVoS+NdrLvPYskHfPcdPPaYmS299po5EgJMnsC33zZ5Ahs0iGyewKNHzabg\nIUOMsRo4ECpVcv+5kWD1arNv7NNPoVmzaEtzKtbdZ7FYYoLNm6FjR+jcGR59FL7//oSBApMncOBA\n2LLF5Al86KHI5QksUsQYzo0b4ayz4KKLzBrZX3+5+1y32b4drr3WfBmIRQPlNayRimFiZU3DLax+\n7nHgAPTrB5dearJUrF8PXbqYUPWMSL9uNWYMnHuumeXs3Xtq+3DqFh9vnrNypXFHVq9uDoM8ejRs\nj8gxudXv4EFjoLp3N79vS96xRspi8REpKWahvkYNc9LrqlUwYAAULRpa//T7rX76KXJ5AitVgvff\nNymeAgGjw5gxkJrq7nPDRXKymbU2aGC+IFjCg12Tslh8wtdfG/dZqVLG1XTxxeG5b/C61eWXm2dE\nYt1q/nzo29eE0A8daoIuYjVsXRXuvdf8rqZMgYJuJpwLA15ak7JGymLxOBs3Qp8+JkruxRfd24MU\nvN8qPt7MtEqUCP9zglGFSZPMWlXlysZYXXKJu8/MDc89B5Mnm+zmxYtHW5rs8ZKRsu6+GMau2Xgb\nt/Xbu9cEQ1xxBVx5pcmu3aGDe7ON4HWrM8/8ndtvd98VJ2KM7urVcPPNJgqwc2f45Rd3n5uTz270\naJOZfupUbxgor2GNlMXiMZKTzabYCy4wwQVr18Ljj5touUhQoAD06rWJAwfMelckKFTIBCNs3Ag1\na5p1n0ceMYEW0WTOHOOSnDbNREpawo9191ksHkHVDIZ9+hjX1yuvRPc8ot27jbEYMgRuuy2yz961\ny7jYxo0za2SPPmqS20aSH380Z219/jlcdVVkn51XvOTus0bKYvEAq1ebjba//WaM0zXXxEYQQdpA\nPWNG+AI1csKmTSar+HffwTPPmPROkQha2LbNuFlffDHyBjoceMlIWXdfDGPXbLxNOPTbvRsefNBk\nL7j+ehNSfu210TdQabrVrWui/m66yYS8R5pq1UxWh8mTYfx4M7OcPDnvpxRn9dnt32++JPTs6U0D\n5TWskbJYYpCjR+Gll8x5TKedZjbj9upl1mZijfbtzQymffvobcC97DITgv/qq/D009CkCSxYEP7n\nJCebAI4mTcw6oMV9rLvPYokhVGHiRLMYX7u2MVQ1akRbquxJTTWH+pUsaTbkRnOml5ICY8eaoI76\n9c2aWc2aeb+vKtx9t4mqnDgx9vdCZYV191kslhyzbJnZJDtwIIwcCV984Q0DBSbib9QoWLrURB5G\nk7g4uPNOk+29SRMT1HD//SanXl4YONDsRRs3ztsGymu4aqREpI2IrBeRn0TkiQyulxWRGSKyQkRW\ni0jXoGtbRORHEVkuIu4dTRzD2DUbbxOqftu3m2/o110Ht98Oy5ebYIRYJiPdihc32RaGDDGh2dHm\ntNNMJOTGjWbzcZ06Jshi//7s+6bX76OP4OOP4auvIh9FGAlE5EMR2SkiqzK41ltEUkWkdFBdf2dc\nXy8irdyUzTUjJSJxwJtAG6AW0ElE0k+6ewLLVbUekAi8IiJp31EUc1xxfVVt4JacFku0+PtvE0Zd\npw6UK2e++d93n3un40aChAQTwNCli4m8iwVKlTJReMuXmy8E1avD66+Hvn42a5bJeDF9uvmcfMpH\nmLH6JESkMtAS+DWorhZwK2ZcbwO8JSLuTXhCPWceOAsYBLwKnB9C+0bAjKByP6BfujYPACOc91WB\njUHXNgNlsnmGWixeIzVVdexY1SpVVDt2VP3ll2hLFH7eflu1Vi3V/fujLcmp/Pij6jXXqJ57rvkc\nUlIyb7t8ueqZZ6rOnx85+SKBM3amH08TgFXp6j4D6jrjcWmnrj/wRFCbGUDD9PcL1ysn1u8VYBYw\nCfgkhPYVga1B5W1OXTDvAbVFZDuwEngk6JoCc0RkqYjclwM5LZaYZeFCc57Tq6+aPHgTJpgjMfxG\n9+7QtCkRSZ2UU+rUMSmMPvzQzKguuyxj9+TWrSbsf8QIs7aV3xCRdsA2Vf0x3aUKmPE8jYzG9rCR\n6fKfiMwEnlfVb52qwhhrqkAoCVhCCbt7Elihqokich4wW0QuUtWDQGNV3SEiZzr161V1fvobdO3a\nlYSEBADi4+OpV68eiYmJwAm/slfLr7/+uq/0yc/6/for3H13gFWr4JVXErn9dvj22wCBQOzIm5Ny\n8JpNZu3bt59Hnz4XMWBAPM8/H1vyGwIMHQp79iTy4IMQHx/g/vvhvvsS+eqrAL16mXXCjh1jQ968\nfl6jRo0C+Ge8zAoRKYoZn1sGV2fRxb0w68ymWEA88DIwHjgPOB/4DzARaJLdFA1oyMnuvpOmiE7d\nNIwxSit/DVyawb2eAXpnUJ+3OW+MM3fu3GiL4Cr5Qb+DB1Wfekq1dGnVZ55RTUqKtlThIdTPbtcu\n1YQE1XHj3JUnrxw7pvrmm6rlyql26aJar95c7dnTuGb9CNm4+4A6wE7MxGQzkAxsAcqRbukG4+67\nPP39wvXKdp+UM8MZBGwHBqnqvlCMnxMAsQFo7vRdDHRS1XVBbV4F9qvqQBEpByzD+D+PAHGqelBE\nimHcjANVdVa6Z2h28lss0SAlxWTHHjDAZIsYMsQc6pcfSUudNH16bB6zEczBgybt1Pbt5gwtLwex\nZEVG+6REJAH4UlVPyQgpIpuBS1R1rxM48QnQAOPmmwNUc2swzsrdVw3oDhwD+mBmU+NFZCom2CEl\nqxur6nER6QnMBOKAD1R1nYg84FwfCQwGPhKRlZhIw77OL6EqMFHMjsCCwNj0BspiiVV27oQbbjB7\naSZNMklY8zPBqZMWL47tbOFnnAHPPhttKSKPiIwDmgJlRGQr8LSqfhTU5B8DpKprRWQCsBY4DvRw\nc7aQ6UxKRJYAjwLFMG665mKsxp3AXap6tVtChYrfZ1KBQCDIf+4//Kjf779D8+Ymp1vTpgGaNUuM\ntkiukJvPbuBAE879zTeRO1Ykt/jxbzMYv2ScSAuU2AwUhX8WgEYD10VANovFU/z6q4lou+ce8208\n2klgY40BA+Dss6FHj7wngLXkH7KaSTUG/oVZMBuiqisjKVgo+H0mZfEOmzaZGVSfPiYRrCVjkpKg\ncWPo1g0efjja0uRfvDSTsglmLZY8snYttGplzjO6z+7oy5YtW8xesTFjYj/9k1/xkpGyCWZjmOC9\nKH7ED/qtXGlmUC+8cKqB8oN+mZEX3WIxdVJ6/PzZeQ1rpCyWXLJkiZlBDRtmMitYQqdpUxNI0a4d\nHDgQbWkssYx191ksuWDBAhNS/cEHJnWOJXc8+KCJiJw82Rz3YYkMXnL3hbKZtwZmn1QCJ/ZVqQ1B\nt+RXvvkGbr3VHKzXytVDCvzPsWPmd9i4MTz/fLSlyT94yUiF8t3lM+B/wP8Bjwe9LC7jd7+4F/Wb\nMcPsgfr88+wNlBf1C5Vw6Va4MHz2GXzyiVmnihX8/Nl5jVDOl0xW1bddl8RiiXEmTzYnvE6ZYqLT\nLOHhzDPN77RFCzj//NhPnWSJLKG4+54FdmMSy/5zTJiq7nVVshCw7j5LpPj0U3jkEXPEgx1E3WHi\nRHj00dhPneQHvOTuC8VIbSGDNOyqGvVTcKyRskSC0aPNyawzZ5qziCzu4aXUSV7GS0Yq2zUpVU1Q\n1XPTvyIhXH7H735xL+j3zjvwf/9nBs2cGigv6Jdb3NItVlIn+fmz8xpZZUFvrqpfi0gHMp5JTXRV\nMoslyrz+OrzxBgQCcN550ZYmf1CgAIwaZaL9hg+3qZMsWefuG6iqz4jIKDI2Une7LFu2WHefxS2G\nDDHHi3/9NVSpEm1p8h82dZK7eMndZzfzWixBqJocfJ9/DnPmQIUK0ZYo/zJvHtxyi9k4Xa1atKXx\nF14yUq7u8RaRNiKyXkR+EpEnMrheVkRmiMgKEVktIl1D7Zsf8LtfPNb0U4W+fU04dCCQdwMVa/qF\nk0jolpY66YYbIp86yc+fXUaIyIcislNEVgXVvSQi60RkpYhMFJGSQdf6O2PzehFxdUu7a0ZKROKA\nN4E2QC2gk4jUTNesJ7BcVesBicArIlIwxL4WS9hITYWePY1xmjsXzjor2hJZALp3N8aqSxdIyfIs\ncEse+Qgz3gYzC6itqhcBG4H+AM7x8bdixuY2wFsi4potcXMm1QDYpKpbVDUZGA+0S9dmB1DCeV8C\n+FNVj4fY1/f4+WRQiB39UlJMBvOVK42Lr3Tp8Nw3VvRzg0jq9sYbcPCgifyLFH7+7DJCVecD+9LV\nzVbVVKf4A1DJed8OGKeqyaq6BdiEGbNdIZSME2kHICZwcu6+j7PpVhHYGlTeBlyers17wDcish04\nA7glB30tljxz/DjcdRfs2GFSHhUvHm2JLOlJS53UoAHUrWvSUlkizj3AOOd9BWBR0LVtmDH7FETk\nMWAB8D9nApJjsp1Jich/gJeAxsClzuuyEO4dSkTDk8AKVa0A1ANGiMgZIfTLF/jdLx5t/Y4dM4li\n9+41mSTCbaCirZ+bRFq3tNRJDz8My5a5/zw/f3Y5RUSeAo6p6idZNMtsvK8EvA7sFpFvRWSwiFwn\nIiH7K0KZSV0C1MpFGN3vQOWgcmWMxQ3mCuB5AFX9WUQ2AzWcdtn1BaBr164kJCQAEB8fT7169f6Z\nqqf9oXm1vGLFipiSx0/6HTkCzZoFiIuDr79OpEgRf+nnx/LevQF69izLTTddyOLFsH59bMkXy+VA\nIMCoUaMA/hkvQ8EJZrsGaB5UnX5sr+TUnYKq9nbuUwQzwWmEmZW9JyJ/qWq2sQahpEX6DHhEVbdn\nd7N0/QoCGzDKbQcWA51UdV1Qm1eB/ao6UETKAcuAusCB7Po6/W0IuiXHHDoEN94IZcqYfTiFCkVb\nIktOePZZmD3bpk7KCxmFoItIAvClqtZxym2AV4CmqronqF0t4BPMOlRFYA5QLavBWETiMQbqCucV\nD/wYyn7bUIxUAOOKW8yJBLOqqjdke3ORtpipXhzwgaoOEZEHnBuMFJGymKiSKhjX45C0KWVGfTO4\nvzVSlhxx4ABcdx1UrWoOLIyLi7ZElpySmgodO0J8PLz/PogndvvEFumNlIiMA5oCZYGdwDOYaL7C\nQFoy8YWQ32idAAAgAElEQVSq2sNp/yRmRnQcM4mZmclz3sNEAR7E2JCFwCJV3ZdR+wzvEYKRSsyg\nWlV1XqgPcQu/G6lAIPDP1N2PRFq/ffugbVuoXx9GjHD/JFg/f37R1i0pyaRO6tbNndRJ0dbPbSK1\nmVdEZgJlgNUYA7UQWJWTgTvbNSlVDeRWQIslVtizB1q2hMREePVV++3b6xQvfuJcr1q1bOqkWEVV\nWzt7qGpj3H3/AuqIyJ+YGdXT2d3DpkWy+J4//jCDWLt2MGiQNVB+wqZOyh3RSIskIpUx61GNgeuA\nMqpaMute1khZfM7WrdC8Odx5pzlyw+I/3nkHhg2DRYugRIns21si6u57BGOYGmHWr77H7Jv6Hlit\nqtnmEXHZK2/JC2khpH7Fbf02bzYpdR54IDoGys+fXyzp5kbqpFjSz+MkABOAhqpaVVVvV9W3VXVl\nKAYKsj5PalVm1zCBE3VzJqvFEjk2bjQuvieegIceirY0Frd54w1o1cqkTho8ONrSWNJQ1cfyeo+s\nzpNKcN72cH6OAQTo4jw86pnJrbvPkhFr1pgB67nn4J57oi2NJVLs3m1SJw0eDJ06RVua2CbaR3WI\nyHrn7Zuq+maWbUMIQV/hZCkPrluuqvXzJmbesUbKkp7ly+Gaa+CVV6Bz52hLY4k0K1eaGfSMGXDJ\nJdGWJnaJtpFyZCgLXK6qU7NqF8qalIhIk6BCY8yMyuIyfveLh1u/H36ANm3gzTdjw0D5+fOLVd0u\nusgEUtx0k4nqzC2xqp+XEZGzRaSdiFwvIuVVdU92BgpCM1L3YM4L+VVEfgXecuoslphh/ny4/npz\n5HuHDtGWxhJNOnQwbt727eHo0ezbW9xHRO7FHPfRHrgZ+EFEuoXUN1R3WdqpjKq6P5dyhh3r7rOA\nOQOqc2f45BO7qdNisKmTsibS7j4R2Qg0UtU/nXIZTJql6tn1zTbjhIicBnTAOU9KzKetqvrvvAht\nsYSDqVPh7rvhv/+FK6+MtjSWWKFAARg92qROGj7cndRJlhyxB0gKKic5ddkSirtvCnADkOzcOAk4\nlEMBLbnA737xvOo3caJx63z5ZWwaKD9/fl7QLS110pAhZradE7ygn8f4GVgkIs+KyLOYQxN/EpHe\nIvKvrDqGcp5URVVtHQYhLZaw8ckn0Lu3ieKqH/U4U0uskpAA48fb1EkxwM/OK219ZorzPtujRkMJ\nQX8XE8v+Yx6FDDt2TSp/8uGHZtPmrFlQu3a0pbF4AZs66WRiIQQ9VEIxUuuAasBmTj5PKuoZJ6yR\nyn+MGAFDhxr3TfVsl1wtlhM8+CBs2waTJ9tzxKIQOFED6IMT2+BUq6penV3fUNak2gLnA62A651X\ntgceWvKO3/3iOdXvlVfMa948bxgoP39+XtTtjTfMoZcDBmTf1ov6xTifAf8D/g94POiVLdkaKVXd\noqpbgL+B1KBXtohIGxFZLyI/icgpaZREpI+ILHdeq0TkuHPMMCKyRUR+dK4tDuV5Fv8yaBCMHGkM\n1LnnRlsaixcpXBg+/xzGjTMvywlE5EMR2Rmcs1VESovIbBHZKCKz0sZm51p/Z1xfLyKtQnhEspNY\n9gdVXeq8loUkWwjuvhsw59xXAHYB5wDrVDXL1QARiQM2AC2A34ElQCdVXZdJ++uAR1W1hVPeDFyi\nqnszau+0se4+n6NqMphPmWJcfOXLR1sii9exqZMyPD7+Skzk9seqWsepexHYo6ovOpOMUqraT0Rq\nAZ8AlwEVgTlAdVU9ZfIiIqUxGYp6AbuBiZxYNiKr8T2NUNx9gzBngWxU1XOB5pidw9nRANjkzMSS\ngfFAuyzadwbSf7/xxMKexR1U4V//gmnTIBCwBsoSHsKVOslPqOp8YF+66huA0c770cCNzvt2wDhV\nTXa8bJsw431G/A9YCtyFWZP6HlgW9MqWUIxUsqruAQqISJyqzgUuDaFfRWBrUHmbU3cKIlIUaA38\nN6hagTkislRE7gvheb7D737xrPRLTYUePeD77+Gbb6Bs2cjJFS78/Pl5XbfsUid5Xb8wUU5Vdzrv\ndwLlnPcVMON5GpmO7aqa4ExuagEjgJXAcmC4U5ctoRipfSJyBjAfGCsiwzh553Bm5MQPdz3wnar+\nFVTX2Mm03hZ4yJmOWvIBKSnQrRusXg2zZ0OpUtGWyOJHnn4azj7bRP3ZVYOscdZVsvotZfcb/Bio\nCbwBvIkxUB+H8uxQNvO2A44Aj2HOkioBDAyh3+9A5aByZU62vsHcRjpXn6rucH7uFpFJmOnk/PQd\nu3btSkJCAgDx8fHUq1ePxMRE4MS3Ia+W0+piRZ5I6Hf8OLz/fiJ79sCTTwb43/9iR177+Z0oJyYm\nxpQ8uSl/+22Ae++No1+/Kxk2DC66yF/6BZcDgQCjRo0C+Ge8DIGdTrbyP0TkbExMApw6tldy6rKi\ntqoGz5y+EZG1oQgRcoLZnCIiBTGBE82B7cBiMgiccBLX/gJUUtXDTl1RIE5VD4pIMWAWMFBVZ6Xr\nawMnfMTRo3DbbXDsmMnFd9pp0ZbIkh/YsgUaNYKPP4aWLaMtTWTIaJ+Uc9Dtl+kCJ/5U1aEi0g+I\nTxc40YATgRPVshqMReQ/wAhVXeiUGwIPqeod2ckairsvV6jqcaAnMBNYC3yqqutE5AEReSCo6Y3A\nzDQD5VAOmC8iKzBBGl+lN1D5gbRvQn4lWL/Dh+HGG01i0EmT/GGg/Pz5+Um3tNRJt98OmzaZOj/p\nFwoiMg4T1FBDRLaKyN3AC0BLJ4P51U4ZVV0LTMCM69OBHpkZKGdr0SrgEmCBc+TTFudZocQ2hOTu\nyzWqOh2jRHDdyHTl0ZyIIEmr2wycdBqwxb8kJcENN5j1gdGjoaCrf5UWy6k0bQrPPmv+DhctirY0\nkUdVO2VyKcPDb1R1MDA4hFtfn9VjQ+jvnrsvElh3n/fZvx+uvRZq1IB337XpaizRJb+kTvJS7r5s\n3X3OUb/LRWSfiBx0XgciIZzF3+zda9YALroI3nvP34OCxRukpU7q29dG/MUKoaxJvY7ZiFVGVc9w\nXjaPcATws1981y647LIAV10Fb75p1qL8hp8/P7/qVriwCdqZOvUA3bub7RCW6BLK0LANWJNRyguL\nJaekppqzoC69FK64Al56yR7tbYktypaFV19dyS+/mCPojxyJtkT5m1By9zUE/g3MBY451aqqr7os\nW7bYNSlvsWCBSXOUmgqvvQZNmkRbIoslc44ehbvuMqmTpkyBkiWjLVH48NWaFPAcJsPEaZhTFIsD\nZ7gplMVfbN4Mt95q9kD16gU//GANlCX2KVLEzPrr1DHRfzbPX3QIxUidrartVfUZVR2Y9nJdMovn\n/f7798MTTxjX3oUXwoYNZi9K2vqT1/XLDj/r52fd4IR+BQqYE307dIDGjeHnn6MrV34kFCM1TURa\nuy6JxTccP26yTNeoAbt3w6pV5qC5okWjLZnFknNEzN9v375w5ZWwfHm0JcpfhLImlQQUxaxHJTvV\nGgsRfnZNKvaYORN694Yzz4RXX4X69aMtkcUSPiZOhO7d4dNPoVmzaEuTe7y0JmU381rCwtq1xjht\n2gQvv2x27tuoPYsfmTvXrLG+/bZxA3oRLxmpUDbz3pTu2OB4Ebkxqz6W8OAFv//u3ebcp6ZNoXVr\nWLMG2rULzUB5Qb+84Gf9/KwbZK1fs2bGY9CrF4wcmWkzS5gIZU3q2eBznpz3z7omkcUTHD1q9jjV\nrAmFCsH69fDoo2YzpMXid+rXh/nzzf/Ac8/Z7BRuEsqa1I+qWjdd3aq0dO7RxLr7Io+q2ZHft68J\nzX3xRRMgYbHkR/74A9q2NZF/w4Z5J3OKl9x9oRipj4B9mKN/BXgIKKWqXV2XLhuskYosS5aYzbgH\nD8Irr0Dz5tGWyGKJPvv3m2NmypUzWfyLFIm2RNnjJSMVit3vhYnq+xQYjzml9yE3hbIYYsXvv3Ur\n3HGHWWu6+25Ytiw8BipW9HMLP+vnZ90gZ/qVLAnTp0NyMlx3nfkSZwkf2RopVU1S1SdU9VLn1V9V\nD0VCOEt0SUqCp5+GevXgnHPMZtx77rHZyi2W9Jx2GkyYAFWrwtVXm4AiS3jIcQi6iAwG9gPvq+qf\n2bRtg8miHue0H5rueh+gi1MsCNQEyqrqX9n1dfpbd58LpKSYo7T/7/9MJNPgwVClSrSlslhiH1Xz\nxe7TT2HWLHPqbyySyfHx/YHbgVRgFXA3UAzjRTsH2ALcEhxIFxFZc2GkbgLOAy7K6nx6EYkDNmBO\ndvwdWAJ0UtV1mbS/DnhUVVuE2tcaqfAzd65Zdypa1GzGvfzyaEtksXiP4cNh6FDjBqwT9RCzU0lv\npEQkAfgGqKmqR0XkU2AaUBvYo6ovisgTmHiEfpGUNcexKKo6SVVfzspAOTQANqnqFlVNxqxntcui\nfWdgXC77+pJI+v03bjSLv/fcA08+Cd99576BsusasY+qcuT4Efb8vYdf//qVtbvXsvj3xYz8ciQp\nqf49bCmvn12vXmZTe4sW5n/JAxzAxB4UFZGCmCxD24EbgNFOm9FAxPfIFszsgogMDyoqJrLvn7Kq\nPpzNvSsCW4PK24AMhz0RKQq0BnrktK8lb+zda/Z5jBljwsrHjzf+dYu3SElN4VDyIQ4dO0TSsaRT\n3icdS+LQsUMnvf+nXTbXCxYoSPHCxSlWqBjFChejeOHi7P5rNwM3DqRDzQ50rN2RxpUbE1fALlYG\nc9ttUKYMtG8P779vsrDEKqq6V0ReAX4DDgMzVXW2iJRT1Z1Os51AuUjLlqmRApZxwjgNBJ7mhKEK\nxceWEz/c9cB3Qb7OkPt27dqVBMfxGx8fT7169UhMTAROfBvyajmtzo37JyfDY48F+M9/oFOnRNau\nhbVrAyxa5A/9YqGcXr+5c+eSrMlc3PBiDh07xNwFczmccpgL6lxA0rEklqxcwuGUw1Q6txKHkg+x\ndtNaDqccptRZpUg6lsRvO37jSOoRChYtyKHkQ/x54E8OpxzmGMc4lnKMIgWKcHrc6ZQqVopihYuR\ncjiF0+NOp1K5ShQvXJz9u/dzWtxp1KxakzOLnUny7mRKxpXk0rqXUrxwcTau3shpcaeReEUixQoV\nY/ni5ZwedzrNmzXPUL8x08Ywb/c8ek3vxe5Du2lYoiFNz2xKzxt6ElcgLuq//7yUExMTw3K/QoVg\n6tREbrgBFixYT9u2f0RFn0AgwKhRowD+GS+DEZHzgEeBBEzMwWcicntwG1VVEYn4+kpIa1IislxV\nc5Qq1Dks8VlVbeOU+wOpmQRATAI+VdXxOelr16Ryjip8+SU8/jice67Z71S7drSl8j4pqSls/HMj\ny3YsY+n2pfy480f2Hdl3ygylUIFCFCtcjGKFzIwk/fvihU6tO+l6uhlN2vvTC56ORDFZ4sY/N/LZ\nms+YsHYCuw/ttjOsdGzYAG3amOS0fftGP69lBmtStwItVfVep3wH0BC4Gmimqn+IyNnAXFW9IKKy\numikCmKCH5pjfJuLyTj4oSTwC1BJVQ/nsK+vjVTwt/BwsGKFSQL7xx/GOLVpE7Zb54pw6xcp0huk\nZTuWseKPFZxV7CwuOfsSLq1wKfXK1+PXtb/S9IqmJxmZggWycl54h6w+Oz8YLDf+Nn//3fzPtWxp\n1qsKRDE7RQZG6iJgLHAZZi/sKMy4ew7wp6oOFZF+QHykAydc+49R1eMi0hOYiQkj/0BV14nIA871\ntNSMN2L8n4ez6+uWrH5nxw5zHs5XX8Ezz8B990FBf4yVrhOKQbq++vVcfPbFlDq91El9A1sDVC9T\nPUqSR4/qZarz1FVP8dRVT/1jsNJcgl40WOGiYkX49lu4/npzLP2HH5q8l7GAqq4UkY+BpZgQ9P8B\n72JOYZ8gIt1wQtAjLVumMynnHKm0i6djFtPSsOdJeYDDh82M6bXXoFs3eOopszvekjGhGKRLzr4k\nQ4NkyR4/zLDCwd9/m6M+jh+Hzz+HYsUiL4OX0iLZ86R8SGoqjBsH/fubMPKhQ81OeMsJrEGKLvnd\nYB0/bjwa69bB1KkmCjCSWCMVIfxupHLjF1+wwGzGTU01M6gmTdyRLRxEak0qO4OUZpTCbZC8uuYW\nCuHULRYNViQ+O1Xo188EMs2cCZUru/q4k/CSkbIrEz5h82Z44glYtMikMerc2TvHBoSTUAzSs02f\ntTOkGCK/rmGJGC9HuXLmqI8ZM6BWrWhLFXvYmZTH2b/fGKUPPjCHDqalNMoPhGKQLqlgXHalTy8d\nbXEtOSQWZ1huMWaM2RYyaRI0auT+87w0k7JGyqMcP252sT/7LFxzDQwaBBUqRFsq97AGKX8TbLB2\nHdrFzTVv9p3Bmj4d7rzTJHdu29bdZ1kjFSH8bqQy84vPnGn2O515pkkCWz9HO9hih8z084tBsmtS\n7hAJgxUt/RYuhJtuMvuobr89+/a5xUtGyq5JeYi1a41x+vlneOklkwss2jvX80ooBumZps/EvEGy\nRI7M1rD8MMNq1Ai++cZs+t21y7jv8zt2JuUBdu82m3A//9zsdXrwQShcONpS5Z4fd/7I+NXjmf/b\nfE/OkCyxiZ9cglu3QqtW5ovoCy+E/8uol2ZS1kjFMEePwrBh8OKL0KWLOUyttEfH7t/2/8Ynqz5h\n7Kqx7D+yn04XdqLleS2tQbK4gh8M1p9/wrXXmoi/d98Nb5YYa6QihJ+NVCAAnToFaNAgkZdeguoe\nzK6z9/BePlvzGWNXjWXN7jXcXPNmutTtQpMqTSggBXy9ZgN2TSpWyI3BihX9Dh2Cm2826ZPGjw9f\n5K6XjFQ+3EkT+yxYALfcYkLKp0zxloE6nHyYCWsm0G58O85941y+3vw1vRv1Zvu/tjPy+pFcdc5V\nFBD7Z2eJHGlrWCu7r2Re13mUL16eXtN7Uem1SvSa1otvf/02Zg9wLFYMvvgCSpQw7r99+6ItUeSx\nM6kYY8UKaN3a7Jto1Sra0oRGSmoK32z+hrGrxjJlwxQurXApXep0oX3N9pQoEvUUjxZLhnjJJZia\nCn36wOzZZtNvxYp5u5+XZlLWSMUQGzdCYiIMHw4dOkRbmqxRVZbtWMbYH8cyfs14Kp5RkS51unDb\nhbdx9hlnR1s8iyVHpDdYXS/qylNXPUXxwsWjLdo/qJr16XfeMYaqRo3c38tLRgpV9ezLiO8Pfv1V\ntUoV1Q8/PFE3d+7cqMmTGZv+3KQDAwO1xvAaWvWNqjrgmwG6bve6XN0rFvULJ37Wz8+6bdizQVu9\n3UqrvFZFJ6+bHG1xTuGDD1TLl1ddsiT393DGzqiP4aG87D6pGGDXLnMQ2mOPwd13R1uaU9l1aBef\nrv6UsavG8su+X7il9i181O4jGlZqGNXTYC0WN6hepjr9L+hP6jmpPDj1QUatHMWwNsOoXDKCGWCz\n4J57oGxZk2nmk0+gRYtoS+Qu1t0XZf76C5o1g3btTIqjWCHpWBKT109m7KqxLNy6kGurX0uXOl1o\nWbUlheJi5KQ2i8Vljhw/wtDvhjJ88XD+76r/o2eDnjFzuvL8+Sbyb9gwcz5VTvCSu89VIyUibYDX\nMafrvq+qQzNokwi8BhQC9qhqolO/BTgApADJqtogg76eNlKHDpkgiUsvNcdqRHtSkpySzKyfZzF2\n1Vim/jSVxpUb06VOF9pd0C6mfPMWS6TZsGcDD059kL+O/MXI60ZyWcXLoi0SAKtWmTx//fpBz56h\n98vISIlIPPA+UBtz4O3dwE/Ap5hj5LcAt6jqX+GRPkTc8iNiDNMmIAFjgFYANdO1iQfWAJWcctmg\na5uB0tk8I1QXbMxx5Ihqq1aqXbuqpqRk3CYSfv/U1FRd8NsC7fFVDz3zxTO14fsNdfgPw3Vn0k7X\nn+3ndQ1Vf+vnZ91UM9YvNTVVP17xsZZ7qZz2nNpT9x/ZH3nBMmDzZtXzz1cdMEA1NTW0PmSwJgWM\nBu5x3hcESgIvAn2duieAF9L3c/vl5oaVBsAmVd2iqsnAeKBdujadgf+q6jbH4uxJd90T09Gccvy4\nySBRvDi89150zn1av2c9A74ZQLXh1bhnyj2UL16ehd0WsrDbQno26MlZxc6KvFAWSwwjItxx0R2s\nfWgtR44fodaIWny+9vO0AT5qJCTAd9/BtGnQvTuk5GLLl4iUBK5U1Q8BVPW4qu4HbsAYL5yfN4ZH\n6hzI5tYvWERuBlqr6n1O+XbgclXtFdQmzc1XGzgDeENVxzjXfgH2Y9x9I1X1vQyeodH+A8kpqnDv\nvSY315dfQpEikXv29oPbGb96PGNXjWXHwR3cduFtdKnThYvPvtgGQFgsOWT+r/PpPrU7CfEJjLhm\nBAnxCVGV5+BBaN/ebPwdOxZOOy3ztundfSJSDxgJrAUuApYBjwLbVLWU00aAvWnlSOHmCmAo1qMQ\ncDHQHCgKLBSRRar6E9BEVbeLyJnAbBFZr6rz09+ga9euJCQkABAfH0+9evX+SWcSCAQAYqY8d26A\nt96C339PZPZsWLjQ/ecnHU9id5ndjF01lh+2/kCTMk0Y2moozRKaMf/b+RzceBCpIDHx+7FlW/ZS\nOWVzCq9f8DpLCi3h0ncvpUP5DnSs1JEWV7eIijzLlgV4/HHhgw+a0rYt9O49n+LFU0hMTCQQCDBq\n1CiAf8bLdBTEjMU9VXWJiLwO9AtuoKoqIpGfFbjlRwQaAjOCyv2BJ9K1eQJ4Nqj8PnBzBvd6Buid\nQX32ztcY4t//Vq1bV3Xv3tDa59bvfyT5iE5aN0lvnnCzlhhSQtuNa6cTVk/Qv4/9nav7uUV+XNfw\nC37WTTXn+m36c5O2HtNa67xVR7//7Xt3hAqR48dVH3pItV491R07Mm5DujUpoDywOajcBJgKrAPK\nO3VnA+s1RBsQrpebqyFLgfNFJEFECgO3Al+kazMFaCIicSJSFLgcWCsiRUXkDAARKQa0Ala5KKvr\nDBtmTtycNQtKuTBZTtVU5m2Zx/1f3k+FVyvw2qLXaFm1JZsf2czk2ybTsXZHTi90evgfbLFYOK/0\neUzvMp0nr3ySDhM60P2r7uw7HJ1Ee3FxJmvNTTdBkybm/LnsUNU/gK0ikpYptAUmqO1L4C6n7i5g\nsgsiZ4nbIehtORGC/oGqDhGRBwBUdaTTpg8m1DEVeE9Vh4lIVWCic5uCwFhVHZLB/dVN+cPF6NEw\nYIDZ13DOOeG99487f2Tsj2MZt3oc8afF06VOFzrV6USVklXC+yCLxRISfx35iye/fpLJ6yfzcquX\n6XRhp6it+b7zDjz3HHz11ckneGcSgn4RxptVGPgZMy7HAROAKkQpBN1u5nWZSZOgRw+YOxcuuCA8\n90x/NlPnOp3pUqcLdcrVCc8DLBZLnlm0bREPfPUA5YqV461r36Ja6WpRkeO//zUHpU6YYHKDgrc2\n89ozE1xkzhx44AGYOjV3BiptYRTM2Uwjl47kqo+uov7I+mzet5kR14xgy6NbeKHFC540UMH6+RE/\n6+dn3SA8+jWs1JCl9y2l1XmtaPh+QwZ9O4ijx4/mXbgc0qEDfPqpOf5n4sTs28casZHfw4csXAid\nOpk/iosvzt09jqYcZcKaCYxdNZbAlgCtz2tN70a9aVOtDUUKRjB23WKx5IpCcYXoc0UfOtbqSM/p\nPak3sh4jrzPnqkWSZs1g5kxz0u+e9LtRYxzr7nOBH380CWNHjTIpS3LKb/t/48UFLzJ21Vh7NpPF\n4hNUlUnrJ/HIjEdoWbUlL7Z8kbJFy0ZUhk2bTCq2X36x7r58y08/GcM0fHjODdQv+37hvi/uo/7I\n+hQrVIw1PdYw+47ZdK3X1Rooi8XjiAjta7ZnbY+1lChSgtpv1Wb0itERzVhRrZo5+dtLWCMVRrZt\nM6fpDhxo/L+hsvHPjXSd3JUG7zWgfPHybOy5kaEth7Jx2Ub3hI0B7LqGd/GzbuCufmcUOYPX27zO\ntM7TGL54OFd/fDXr96x37XnpKV8+Yo8KC9ZIhYndu42Lr2dPk/YoFNbsWkPn/3am8YeNOa/UeWx6\neBPPXf0cZYqWcVdYi8USdS6pcAk/3PsDN11wE00+bMLTc5/myPEj0RYr5rBrUmFg/364+mrj3hs0\nKPv2K/5YwaBvBzH/t/k81vAxelzWw7rzLJZ8zLYD23hkxiOs2rmKt699m+ZVm7v6PC+FoFsjlUf+\n/hvatIG6dc06VFZ79pZuX8pz3z7Hkt+X0OeKPjxwyQMUK1wscsJaLJaY5quNX9FzWk+aVGnCq61f\nde00Ai8ZKevuywPHjpmTMc85x6Q9ysxAfb/1e9qObctNn95Ey6ot+fnhn/lXo39la6Cs39/b+Fk/\nP+sG0dPvuurXsabHGs4ufjYXvnUh7y17j1RNjYossYI1UrkkJQXuvBMKF4aPPsr4TKh5W+bR/OPm\ndJnYhRtr3MimXpvo2aCnzaFnsVgypVjhYrzU6iVm3zGbD5Z/wFUfXcXqXaujLVbUsO6+XKBqMkn8\n/LPJJhF8bouqMueXOTz37XPsSNrBk02e5Pa6t1MorlDE5bRYLN4mVVN5d9m7DJg7gHvr38uApgMo\nWqhonu/rJXefNVI5RBX69oVvvzVpj844I61emfbTNJ779jkOHD3AU1c+xa0X3krBAjaph8ViyRt/\nJP3BYzMf44dtPzDimhG0PT8XWQKC8JKRsu6+HDJkCMyYAdOnGwOVqqlMWjeJS9+7lP5f96d3o96s\nenAVXep2ybOBsn5/b+Nn/fysG8SefuWLl2dch3G8fe3b9Jzek1s+u4XtB7dHW6yIYI1UDnjrLfjw\nQ3MmVMn4FCasmUC9d+oxaP4gBlw1gBXdV9CxdkfiCsRFW1SLxeJDWldrzeoHV3N+6fO56J2LGLF4\nBCmpKdEWy1Wsuy9E/vMf6N8fvgkc54dD43l+/vPEnxbPgKsG0LZa26idF2OxWPIna3atofvU7hxL\nOcbI60ZSr3y9kPt6yd1njVQIfPEF3Nc9mV7vjWHUz4OpWKIiA64aQPNzm1vjZLFYokaqpvLR8o/o\n/yuZncsAAA9PSURBVHV/7qh7BwObDaR44eLZ9vOSkXLV3ScibURkvYj8JCJPZNImUUSWi8hqEQnk\npG8kmDHnKF1ee4e4R88n8OcnfHDDB8zrOo8WVVu4bqBizS8ebqx+3sXPuoF39CsgBeh2cTdW91jN\n7r93U/ut2kxZPyXX9xOROGc8/tIplxaR2SKyUURmiUh82IQPEdeMlIjEAW8CbYBaQCcRqZmuTTww\nArheVS8Ebg61r9scTj5MnwnDuXZGNWq3/4L/dhrHnDvn0DShaSTFsFgslmw5q9hZfHzTx3zU7iP6\nzunLTZ/exNb9W3Nzq0eAtUCai6ofMFtVqwNfO+WI4pq7T0QaAc+oahun3A9AVV8IatMDKK+qT+e0\nr1MfdnffoWOHeGfpOwyd/woH1jXghWv+j0dvuTSsz7BYLBa3OHL8CEO/G8rwxcN56sqn6HV5r1Mi\njTNy94lIJWAU8DzwL1W9XkTWA01VdaeIlAcCqpqLc8Zzj5vuvopAsCnf5tQFcz5QWkTmishSEbkj\nB33DyoGjBxgyfwhVh1VlzoZFyNjpfNR6sjVQFovFU5xW8DSeSXyGBfcs4MuNX9LgvQYs+X1JKF1f\nAx4HgvMwlVPVnc77nUC5MIubLW7uNA1lilMIuBhoDhQFForIohD7AtC1a1cSEhIAiI+Pp169eiQm\nJgIn/MpZlQ8mH+R/hf7Hm0ve5KLiF9Gv/FCGP92VgX3h7LMDBAJZ93ez/Prrr+dYHy+VrX7eLQev\n2cSCPFa/U8s7Vu9gQJUBbCu9jdaDWlNuWznql6pP9arVSY+IXAfsUtXlIpJ4SgNAVVVEopHiR115\nAQ2BGUHl/sAT6do8ATwbVH4fsy6VbV+nXnPLnkN79Kmvn9IyQ8to18lddcOeDbp7t2qtWqovvJDr\n24aVuXPnRlsEV7H6eRc/66bqP/32HNqj3aZ004qvVNTP1nymztgZPJYOxnivNgM7gEPAGGA9ZkkG\n4GxgvebBLuTm5eaaVEFgA2aWtB1YDHRS1XVBbS7ABEi0BooAPwC3Ahuz6+v015zKvzNpJ68sfIUP\nln9Ah5od6NekH1VLVeXAAWjeHFq0MFklLBaLxW/M/3U+3ad2Z+1DazMNQReRpkAfNWtSLwJ/qupQ\nJzYgXlUjGjzh6j4pEWkLvA7EAR+o6hAReQBAVUc6bfoAd2P8oO+p6rDM+mZw/5CN1PaD23lxwYt8\nvPJjOtfpTN/GfalSsgoAhw+bAwtr1jRZJezWJ4vF4leOpRyjSMEi2Rmp3qp6g4iUBiYAVYAtwC2q\n+lfkpM0Hm3l/2/8bQ78byrjV4+haryt9ruhDhTMq/HM9ORnatzd5+MaMgbgYymgUCAT+8S/7Eauf\nd/GzbuB//by0mde3Kbp/2fcLQ+YPYeL6idxb/17W91x/yimXKSlw110ms/no0bFloCwWi8Xiw5nU\nhj0bGPzdYKZunMqDlz7Iow0fpUzRMqf0VYUePWDdOpPR/HR7DqHFYskn2JlUFFizaw3Pz3+e2b/M\n5uEGD7Pp4U3En5Z5Bo+nnoKlS+Hrr62BslgslljF80d1rPhjBTdPuJmrP76auuXq8vPDPzOg6YAs\nDdTQoTB5splBlSgRQWFzSPBeDT9i9fMuftYN/K+fl/D8TOqasdfQ54o+jL5xNMUKF8u2/ciR5jV/\nPpQtGwEBLRaLxZJrPL8m9fexvzm9UGj+unHj4PHHYd48OO88l4WzWCyWGMVLa1KeN1Khyj91KnTr\nBnPmwIUXuiyYxWKxxDBeMlKeX5MKhXnz4O67YcoUbxkov/vFrX7exc+6gf/18xK+N1JLl0LHjjB+\nPFx+ebSlsVgsFktO8LW7b+1auPpqEyjRrl0EBbNYLJYYxrr7YoDNm6F1a3j5ZWugLBaLxav40kjt\n2AEtW0K/fnD77dGWJvf43S9u9fMuftYN/K+fl/Cdkdq7F1q1MoESDz0UbWksFsv/t3fuwXaNZxj/\nPRIZDkrTi2umwaBktEKlKqRIREJrepUwpaW3MTWJmioxjHZMp2Sm07tRRjUM0RIyoSUJMqop4pIj\nEY5L5UxdkqAGiZBG8/SP79uy7NnnIrLP3mt5fzN7zlrvt9Ze73P2nv3Od3vfIHg/VGpOavXqVA9q\nzBiYPj1KbgRBEDSiTHNSlQlSb70Fxx0He+wBl18eASoIgqAnyhSkmjrcJ2mCpC5JT0k6p0H7EZJe\nk7Q4vy4otHVLWpLti3p7zvr1MHlySnN02WXVCVBVHxcPfeWlytqg+vrqkTRM0gJJyyQ9KmlKtg+V\nNF/Sk5LmSeo5KWqTaFqQkjSIVBp+ArAfcKKkfRtcerftkfl1UcFu4IhsH9XTczZsgNNOg3Xr2q9o\n4fuls7Oz1S40ldBXXqqsDaqvrwHrgR/aHgEcAvwg/16fC8y3vTdwZz4fUJrZkxoFPG272/Z64Hqg\n0WLw3vo9ffaJpk6F7m6YNQuGDNk0R9uVV18d0CrNA07oKy9V1gbV11eP7ZW2O/PxGuBxYFfgeGBG\nvmwG8KWB9q2ZQWpX4NnC+XPZVsTAoZIekfQ3SfvVtd0h6UFJ3+3pIQsXwq23QkfHZvM7CILgA4uk\n4cBI4H5gR9urctMqYMeB9qeZpTr6syLjYWCY7bWSJgKzgb1z22jbKyR9DJgvqcv2PfVvMHcubL/9\n5nO6neju7m61C00l9JWXKmuD6uvrCUnbArOAqbZXqzDBb9uSBnylXdNW90k6BPiJ7Qn5fBqwwfYl\nvdyzHDjI9it19guBNbZ/UWcv79LEIAiCFlK/uk/SlsCtwG22f5VtXaS1ASsl7QwssP3JgfSzmT2p\nB4G9ctfxBWAScGLxAkk7Ai/mCD2KFDRfkdQBDMqRfBtgPPDT+geUZQllEARBO6PUZboSeKwWoDJz\ngG8Cl+S/swfat6YFKdtvSzoDmAsMAq60/bik7+f2PwBfA06X9DawFpicb98JuCl3NQcD19qe1yxf\ngyAIPuCMBr4BLJG0ONumARcDf5H0baAbOGGgHSv1Zt4gCIKg2rR17j5Jf5S0StLSgq3HzWWSpuWN\nw12SxrfG6/6xKZvnSqZvK0n3S+qU9Jikn2d7JfTVkDQobzi/JZ9XRl+jDfVV0SdpB0k3Sno8fz8/\nWyFt+2hjgoTFSgkTppRWn+22fQGHk5ZCLi3YpgM/zsfnABfn4/2ATmBLYDjwNLBFqzX0om0n4IB8\nvC3wBLBvVfRlnzvy38HAfcBhVdKX/T4LuBaYU6XvZ/Z5OTC0zlYJfaQ9P6cVvp/bV0Vbnc4tgBXA\nsLLqa7kD/fgnD68LUl2ktfu1H/qufDwNOKdw3e3AIa32/z3onA2Mq6I+oAN4ABhRJX3AbsAdwJHA\nLdlWJX3LgY/U2UqvLwekZxrYS6+tgabxwD1l1tfWw3090NPmsl1IG4ZrNNo83Jb0c/Nc6fRJ2kJS\nJ0nHAtvLqJA+4JfA2cCGgq1K+hptqK+Cvt2BlyRdJelhSVfkVcRV0FbPZGBmPi6lvjIGqXdwCvu9\nrfxo+1Uh9Zvnim1l12d7g+0DSD2OMZKOrGsvrT5JXyBtn1hMD+m7yqwvM9r2SGAiKZfb4cXGEusb\nDBwIXGr7QOAN6nLSlVjbO0gaAnwRuKG+rUz6yhikVknaCSBvLnsx258njbvW2C3b2pa8eW4WcI3t\n2v6DyuirYfs14K/AQVRH36HA8Uob0GcCR0m6hurow/aK/Pcl4GZSPs4q6HsOeM72A/n8RlLQWlkB\nbUUmAg/lzw9K+tmVMUjVNpfBuzeXzQEmSxoiaXdgL6DXEh+tROpz8xyUW99Ha6uHJG0NHA0spiL6\nbJ9ne5jt3UlDKnfZPpmK6JPUIWm7fFzbUL+UCuizvRJ4VlItBds4YBlwCyXXVseJbBzqg7J+dq2e\nFOtj0m8mKVvFf0nJak8FhpImq58E5gE7FK4/j7QypQs4ptX+96HtMNJcRifpx3sxqaxJVfTtT8rN\n2AksAc7O9kroq9P6eTau7quEPtK8TWd+PQpMq5i+T5MW8zwC3ERaTFEJbdnfbYCXge0KtlLqi828\nQRAEQdtSxuG+IAiC4ANCBKkgCIKgbYkgFQRBELQtEaSCIAiCtiWCVBAEQdC2RJAKgiAI2pYIUkEQ\nBEHbEkEqqBSS7qqvhyPpTEmX9uPeP0n6ah/XnJkzaDQFSSdJWifp/Dr7qEJ9oCWSJtW1nyvppGb5\nFQStIoJUUDVmktIUFZkEXNePe/tKugkwlVR6ZLMj6ShSVvV9gXGSTik0LwUOckr4Oh74vaRBhfbx\nwNxm+BUErSSCVFA1ZgHHSRoM75RB2cX2PxpdLOl3uRrpfODj5IzmksbmMg5LJF2Z85pNIZU1WCDp\nzgbvdbCkhUrViO+TtK2kb0manSuhLpd0hqQf5fe+V9KH8737AxcB420/AxwLnCTpaADbb9qulQTZ\nGnjN9v/yvR8Chtj+j6SvS1qafbh7s/xHg6CFRJAKKoXtV0jJMY/NpsnAnxtdK+krwN6knssppMzm\nlrQVcBVwgu1PkUo7nG77N6RckkfYHlv3XkOA64EpTuVJxgFv5uYRwJeBg4GfAa87lYi4Nz8X20tt\nj3bOWG17re0JtucXnjFK0jJSMtSzCo8fR8rJBnABKdAdQCrTEASlJoJUUEWKQ36TeHcm6CKHA9c5\nsQK4K9v3AZbbfjqfzwDG9PHMfYAVth8CsL0m93RMKvj4hu2XgVdJ2bYhDeEN768o24tsjyCVlfh1\n7kEBHAPclo8XAjMkfYcUXIOg1ESQCqrIHGCspJFAh1Nhwp5oVLCwfl5KDWzvhXWF4w2F8w1sQiCx\n3QX8i1RSAVKdp0W57XTgfFJ9oIckDd1En4OgLYggFVQO22uABaQhu94WTPwdmJTL3O8M1CoHPwEM\nl7RnPj8ZqM3vrAZqPRgkXS3pM6QSBzvnYyRtlxc2NKzaW7u9v5okDS/Ms32CFKCekjQC6HIuZyBp\nz9zjuhB4iVTALghKSwwHBFVlJqlO0Ak9XWD75ryi7jHg38A/s32dpFOBG3JgWARclm+7HLhd0vN5\nXmp/4AXb6/Oy8N/mJeprSYUe61cM1h/3t4d2GHCupPXAeuB7tl+XNJGNQ30A0yXtRQqAd9he0s/3\nD4K2JOpJBcEmkueErrA9qc+Lm+fDPOBk26ta5UMQNJMIUkEQBEHbEsN9QeXJe5CurjO/ZftzrfAn\nCIL+Ez2pIAiCoG2J1X1BEARB2xJBKgiCIGhbIkgFQRAEbUsEqSAIgqBtiSAVBEEQtC3/BzGnaNSG\n31xmAAAAAElFTkSuQmCC\n", - "text": [ - "<matplotlib.figure.Figure at 0x10b66eed0>" - ] - }, - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The required diameter of Pump is 0.108 m\n", - "The required rotational speed is 168.0 rad/s\n", - "The required Brake Horse Power is 160.0 W\n" - ] - } - ], - "prompt_number": 33 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-12, Page No:819" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "rho=998 #Density of fluid in kg/m^3\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "V_dot=12.8 #Volumetric Flow rate in m^3/s\n", - "H_gross=325 #Gross Head in m\n", - "C=10**-6 #COnversion Factor\n", - "n_turbine=0.952 #Efficiency of turbine in fraction\n", - "n_generator=0.945 #Efficiency of generator in fraction\n", - "n_other=1-0.035 #Other efficieny in fraction\n", - "no=12 #Number of Turbines\n", - "\n", - "#Calculations\n", - "W_dot=rho*g*V_dot*H_gross*C #Ideal Power produced in MW\n", - "\n", - "W_electrical_dot=W_dot*n_turbine*n_other*n_generator #Actual Electric Power in mW\n", - "\n", - "W_total=no*W_electrical_dot #Total Power produced in MW\n", - "\n", - "#Result\n", - "print \"The electrical power generated is\",round(W_total),\"MW\"\n", - "#The answer differs due to decimal point accuracy\n", - "#Answer in the text has been rounded off and multiplied hence the inconsistency" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The electrical power generated is 424.0 MW\n" - ] - } - ], - "prompt_number": 18 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-13, Page No:820" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "r2=2.5 #Inlet Radius in m\n", - "r1=1.77 #Outlet raius in m\n", - "b2=0.914 #Runner blade width at inlet in m\n", - "b1=2.62 #Runner blade width at outlet in m\n", - "n_dot=120 #Speed in rpm\n", - "w=12.57 #Rad/s\n", - "alpha1=10 #Angle in degrees\n", - "alpha2=33 #turning of flow in degrees\n", - "V_dot=599 #Volumetric Flow rate in m^3/s\n", - "H_gross=92.4 #Gross Head in m\n", - "C=10**-6 #Conversion Factor\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "\n", - "#Calculations\n", - "#Part(a)\n", - "#Runner Inlet\n", - "V2_n=V_dot/(2*pi*r2*b2) #Normal Component of velocity in m/s\n", - "V2_t=V2_n*tan((alpha2*pi)/180) #Tangential Component in m/s\n", - "beta2=(arctan(V2_n/(w*r2-V2_t)))*(180/pi) #Runner leading edge angle in degrees\n", - "\n", - "#Runner Outlet\n", - "V1_n=V_dot/(2*pi*r1*b1) #Normal Component of velocity in m/s\n", - "V1_t=V1_n*tan((alpha1*pi)/180) #Tangential Component in m/s\n", - "beta1=(arctan(V1_n/(w*r1-V1_t)))*(180/pi) #Runner leading edge angle in degrees\n", - "\n", - "#Using Euler Turbomachine Equation\n", - "W_shaft=rho*w*V_dot*(r2*V2_t-r1*V1_t)*C #Shaft output power in MW\n", - "\n", - "H=W_shaft/(rho*g*V_dot*C) #Net Head in m\n", - "\n", - "#Part(b)\n", - "#Similiary repeat calculations for part(b) and part(c)\n", - "#Result\n", - "#Results are for only part a\n", - "print \"The inlet runner blade angle is\",round(beta2,1),\"degrees\"\n", - "print \"The outlet runner blade angle is\",round(beta1,1),\"degrees\"\n", - "print \"The output power is\",round(W_shaft),\"MW\"\n", - "print \"The net head required is\",round(H,1),\"m\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The inlet runner blade angle is 84.1 degrees\n", - "The outlet runner blade angle is 47.8 degrees\n", - "The output power is 461.0 MW\n", - "The net head required is 78.6 m\n" - ] - } - ], - "prompt_number": 32 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-14, Page no:830" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "Cp=0.4 #Power Coefficient \n", - "n_gearbox=0.85 #Efficiency in fraction\n", - "rho=1.204 #Density of air in kg/m^3\n", - "V=10 #Velocity of flow in m/s\n", - "D=12.5 #Diameter in m\n", - "\n", - "#Calculations\n", - "W_dot_op=(n_gearbox*Cp*pi*rho*V**3*D**2)/8 #Work done in W\n", - "\n", - "#Result\n", - "print \"Electric Power produced is\",round(W_dot_op),\"W\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Electric Power produced is 25118.0 W\n" - ] - } - ], - "prompt_number": 36 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-15,Page No:832" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "D_A=2.05 #Diameter in m\n", - "n_A=120 #Speed in rpm\n", - "w_A=12.57 #Angular Speed in rad/s\n", - "V_A_dot=350 #Volumetric Flwo rate in m^3/s\n", - "H_A=7.5 #Head of water in m*10\n", - "H_B=10.4 #Head of water in m*10\n", - "bhp_A=242 #Brake Horse Power at A in MW\n", - "n_turbine_A=0.942 #Efficiency of turbine A\n", - "rho_A=998 #Density of water in kg/m^3\n", - "\n", - "#Calculations\n", - "a=H_B/H_A\n", - "rho_B=rho_A #Density in kg/m^3\n", - "n_B=n_A #Speed at b in rpm\n", - "D_B=D_A*(a**0.5) #Diameter of the new pump in m\n", - "V_B_dot=V_A_dot*(n_B/n_A)*((D_B/D_A)**3) #Volumetric Flow rate at B in m^3/s\n", - "bhp_B=bhp_A*(rho_B/rho_A)*((n_B/n_A)**3)*((D_B/D_A)**5) #Brake Horse Power in MW\n", - "\n", - "n_turbine=1-(1-n_turbine_A)*((D_A/D_B)**0.2) #Efficiency correction in fraction\n", - "\n", - "#Result\n", - "print \"The brake horse power is\",round(bhp_B),\"MW\"\n", - "print \"The diameter of the new turbine is\",round(D_B,2),\"m\"\n", - "print \"The volumetric Flow rate is\",round(V_B_dot),\"m^3/s\"\n", - "print \"The corrected efficiency is\",round(n_turbine,3)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The brake horse power is 548.0 MW\n", - "The diameter of the new turbine is 2.41 m\n", - "The volumetric Flow rate is 572.0 m^3/s\n", - "The corrected efficiency is 0.944\n" - ] - } - ], - "prompt_number": 54 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-16, Page No:836" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "w_A=12.57 #Angular Speed in rad/s\n", - "rho_A=998 #Density of fluid in kg/m^3\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "H_A=75 #Head in m\n", - "bhp_A=242*10**6 #Brake Horse Power at A in W\n", - "H_B=104 #Head in m\n", - "bhp_B=548 *10**6 #Brake Horse Power at B in W\n", - "\n", - "#Calculations\n", - "#For Turbine A\n", - "Nst_A=(w_A*bhp_A**0.5)/(rho_A**0.5*g**1.25*H_A**1.25) #Dimensionless specific speed at A\n", - "\n", - "#For turbine B\n", - "w_B=w_A #Angular Speed in rad/s\n", - "rho_B=rho_A #Density of fluid in kg/m^3\n", - "Nst_B=(w_B*bhp_B**0.5)/(rho_B**0.5*g**1.25*H_B**1.25) #Dimensionless specific speed at B\n", - "\n", - "Nst_US_A=43.46*Nst_B #Turbine specific speed in US units\n", - "\n", - "#Result\n", - "print \"The Turbine Specific Speed in US units is\",round(Nst_US_A,1)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Turbine Specific Speed in US units is 70.2\n" - ] - } - ], - "prompt_number": 55 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter14_1.ipynb b/Fluid_Mechanics-Fundamentals_&_Applications/Chapter14_1.ipynb deleted file mode 100755 index c9c070b2..00000000 --- a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter14_1.ipynb +++ /dev/null @@ -1,865 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:450c4477ee136f31039f9403e53a08ecb268b501d205d040bb2cfe54fe53ca91" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 14: Turbomachinery" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-1, Page No:767" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "import matplotlib.pyplot as plt\n", - "%matplotlib inline\n", - "\n", - "#Variable Deceleration\n", - "V_dot_cfm=range(0,1500,250) #Volumetric Flow rate in cubic feet per second\n", - "V_dot_mps=transpose(V_dot_cfm)/2118.83 #Volumetric flow rate in m^/s\n", - "rho_air=1.184 #Density of air in kg/m^3\n", - "rho_water=998 #Density of water in kg/m^3\n", - "Patm=101.3 #Atmospheric Pressure in kPa\n", - "v=1.562*10**-5 #Kinematic Viscosity in m^2/s\n", - "D=0.23 #Diameter in m\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "f=0.0209 #Friction coefficient from table\n", - "L=13.4 #Length in m\n", - "V=6.81 #Velocity of flow in m/s\n", - "alpha=1.05 #Constant\n", - "C=(1/0.0254) #Conversion factor\n", - "\n", - "#Minor Loss Coefficients\n", - "ml_1=1.3\n", - "ml_2=0.21\n", - "ml_3=1.8\n", - "\n", - "#Calculations\n", - "Re=(4*V_dot_mps)/(v*pi*D) #Reynolds Number\n", - "\n", - "#Friction coefficient values from Moddy Chart\n", - "f1=[0,0.023,0.022,0.0185,0.0175,0.0162]\n", - "f=transpose(f1)\n", - "\n", - "#Cross Sectional Area\n", - "A=(pi*D**2)/4 #Area of the pipe cross section in m^2\n", - "\n", - "V1=transpose(V_dot_mps)/A #Velocity array in m/s\n", - "V=transpose(V1) #Velocity in m/s\n", - "\n", - "#Minor Losses\n", - "Kl=ml_1+(5*ml_2)+ml_3 #Minor losses \n", - "\n", - "H_required=(alpha+(f*(L/D))+Kl)*(V**2/(2*g)) #Required net head in m of air\n", - "\n", - "H_required_inches=H_required*(rho_air/rho_water)*C #Head Required in inches of water\n", - "\n", - "H_av=[0.9,0.95,0.9,0.77,0.4,0] #Table values taken fro plotting\n", - "\n", - "#Result\n", - "print \"The Plot shows the variation of the head required and the head available as a function\"\n", - "print \"Of V_dot. The intersection point tells the operating point.\"\n", - "\n", - "plt.plot(V_dot_cfm,H_required_inches,V_dot_cfm,H_av)\n", - "plt.ylabel('H,inches H2O')\n", - "plt.xlabel('V_dot,cfm')\n", - "plt.show()\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Plot shows the variation of the head required and the head available as a function\n", - "Of V_dot. The intersection point tells the operating point.\n" - ] - }, - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEQCAYAAACugzM1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VOX5xvHvwy6yKoiyKCAiIFQRRERpUnGlbq2i6K/u\ntWpR61ZsbWtStSogrlTcUMEFqGIV6opL0IIisiiyKChWRAUE2SFkeX5/vAOEEEJCZnJmMvfnuuZi\n5szJzD2I8+Q972bujoiIyM5UizqAiIgkNxUKEREplQqFiIiUSoVCRERKpUIhIiKlUqEQEZFSJaxQ\nmFkdM5tqZrPMbK6Z3bmT8x4wswVm9omZdU1UHhER2T01EvXC7r7JzH7h7hvMrAbwXzM7xt3/u+Uc\nM+sLtHP3g8zsSGA40DNRmUREpPwSeunJ3TfE7tYCqgMri51yGjAydu5UoJGZNUtkJhERKZ+EFgoz\nq2Zms4ClwLvuPrfYKS2AxUUefwu0TGQmEREpn0S3KArd/TDCl//PzSyzhNOs+I8lMpOIiJRPwvoo\ninL31Wb2CtAdyCny1BKgVZHHLWPHtmNmKh4iIrvB3Yv/Ml5uiRz11MTMGsXu7wEcD8wsdtp44ILY\nOT2BVe6+tKTXc/eUvWVlZUWeIR2zK3/0N+WP9hYviWxR7AeMNLNqhIL0tLu/bWaXA7j7I+7+qpn1\nNbOFwHrg4gTmERFJmHXroF69qFMkRiKHx84GDi/h+CPFHl+VqAwiIpVh7Vro0QOeegqOPDLqNPGn\nmdmVIDMzM+oIuy2Vs4PyRy0d8rvDb38LvXtXzSIBYPG8jpUoZuapkFNE0s/998OoUTB5MtSpE3Wa\n7ZkZHofObBUKEZHdNHky/PrX8OGH0KZN1Gl2FK9CoUtPIiK7YelS6N8fnnwyOYtEPKlQiIiUU34+\nnHsuXHwx9O0bdZrE06UnEZFy+vOfYcYMePVVqF496jQ7F69LT5UyM1tEpKp4+WV47jmYPj25i0Q8\nqUUhIlJGCxdCr17wn/+EeRPJTp3ZIiKVaMMGOPNM+PvfU6NIxJNaFCIiu+AOF10EhYVhzoRV+Hf0\nyqE+ChGRSvLYY6Hz+sMPU6dIxJNaFCIipfj44zAE9r//hfbto05TPuqjEBFJsBUroF8/ePjh1CsS\n8aQWhYhICQoL4Ze/hM6dYciQqNPsHrUoREQS6Pbbw0inO++MOkn01JktIlLM66/Do4+G/oka+pZU\noRARKep//wtDYZ9/HvbdN+o0yUGXnkREYnJz4ayzYODAsBGRBOrMFhGJufJKWL48tCaqwnwJTbgT\nEYmjUaPgnXdg2rSqUSTiSS0KEUl7n34KffrAu++G4bBVhYbHiojEwerVYbG/++6rWkUintSiEJG0\n5R72vG7RAoYNizpN/KmPQkSkgu6+G77/HsaMiTpJclOhEJG0lJMD99wDH30EtWtHnSa5qY9CRNLO\nd9/BeefB009Dq1ZRp0l+KhQiklby8uDss2HAADjuuKjTpAZ1ZotIWrn+evjiCxg/HqpV8V+Vk354\nrJm1MrN3zWyOmX1mZteUcE6mma02s5mx218TlUdE5Pnn4aWXwiWnql4k4imRndl5wHXuPsvM6gHT\nzWyiu88rdt4kdz8tgTlERJg/H37/e3jjDWjcOOo0qSVhNdXdf3D3WbH764B5QPMSTtVkeRFJqHXr\nwqS6u+6Cww+POk3qqZTGl5m1BroCU4s95UAvM/vEzF41s06VkUdE0oc7/O530LMnXHpp1GlSU8Ln\nUcQuO70A/CHWsihqBtDK3TeY2cnAS0Aa70wrIvE2bFi47DR5ctRJUldCC4WZ1QTGAc+4+0vFn3f3\ntUXuv2ZmD5nZXu6+svi52dnZW+9nZmaSmZmZkMwiUnV88EHY0vSDD2CPPaJOk3g5OTnk5OTE/XUT\nNjzWzAwYCaxw9+t2ck4zYJm7u5n1AP7l7q1LOE/DY0WkXJYtg27dYPhwOOWUqNNEIxXWejoa+A3w\nqZnNjB27GdgfwN0fAc4CrjSzfGAD0D+BeUQkTRQUwLnnwoUXpm+RiCdNuBORKucvf4GpU8NQ2OrV\no04TnVRoUYiIVLoJE8KEuunT07tIxJMKhYhUGV99Bb/9Lbz8MjRtGnWaqkOT2EWkSti4MUyq+9vf\nwpwJiR/1UYhIynMPk+k2bYJnnwXTeg+A+ihERLYaMSJ0Xk+dqiKRCGpRiEhKmz4dTj4Z3n8fDj44\n6jTJJemXGRcRSbSVK+Gss+Chh1QkEkktChFJSYWFcOqp0KEDDB0adZrkpBaFiKS1O+6ANWvC0uGS\nWOrMFpGUM3FiWMNp2jSoWTPqNFWfCoWIpJRvvoHzz4exY6F5SVuhSdzp0pOIpIzcXOjXD264ATIy\nok6TPtSZLSIpY8AA+O47ePFFzZcoC024E5G08swzoW9i2jQVicqmFoWIJL3Zs+HYY+Gdd6BLl6jT\npA4NjxWRtLBmTVjs7957VSSiohaFiCQt9zDzulmzMPtaykd9FCJS5d1zDyxeDM89F3WS9KZCISJJ\n6b33YMgQ+OgjqF076jTpTX0UIpJ0vv8ezj0XRo6E/fePOo2oUIhIUsnLg3POgcsvhxNPjDqNgDqz\nRSTJ3HgjzJ0L//kPVNOvshWizmwRqXJeeAHGjYOPP1aRSCZqUYhIUvj8c+jdG157Dbp1izpN1aAJ\ndyJSZaxfHybV/eMfKhLJSC0KEYmUO/zmN1CrFjzxhNZxiif1UYhIlTB8OMyZA1OmqEgkK7UoRCQy\nU6eGfa+nTIF27aJOU/Woj0JEUtry5XD22fDYYyoSyS5hhcLMWpnZu2Y2x8w+M7NrdnLeA2a2wMw+\nMbOuicojIsmjoADOOy/cTj896jSyK4nso8gDrnP3WWZWD5huZhPdfd6WE8ysL9DO3Q8ysyOB4UDP\nBGYSkSSQnR2KxW23RZ1EyiJhhcLdfwB+iN1fZ2bzgObAvCKnnQaMjJ0z1cwamVkzd1+aqFwiEq1X\nXoGnngqT6mpoOE1KqJQ+CjNrDXQFphZ7qgWwuMjjb4GWlZFJRCrfokVwySUwdmzYY0JSQ8Lreeyy\n0wvAH9x9XUmnFHtc4vCm7OzsrfczMzPJzMyMU0IRqQybNoVJdX/5C/TqFXWaqiknJ4ecnJy4v25C\nh8eaWU3gP8Br7n5fCc8/DOS4+5jY4/lARvFLTxoeK5L6LrsM1q6F0aM1X6KyJP3wWDMzYAQwt6Qi\nETMeuCB2fk9glfonRKqeJ56AyZPh8cdVJFJRwloUZnYM8B7wKdsuJ90M7A/g7o/EzhsGnASsBy52\n9xklvJZaFCIpauZMOOGEsGNdx45Rp0kv8WpR7LJQmFlb4BDCl/1cd/+qom9aXioUIqnpp5+ge3e4\n446wGZFUroQXCjNrADwOdAdmxQ4fBkwHLnX3NRV987JSoRBJPYWFYTLdgQfCfTu7+CwJVRmLAj4I\nzAX6u3th7E2rAX8FhhHrWxARKUlWFqxcGTYiktRWWotiobuXuAJLac8lgloUIqnlrrvCpLpJkzRf\nIkqV0aLQN7OIlNu994bRTSoSVUdpw2M/MLNbYsNcgTDk1cz+BnyQ+Ggikmr++U944AF45x1o0SLq\nNBIvpV16akiYB3E423dmzyR0Zq+qlITo0pNIKnjsMbj9dsjJgTZtok4jULnDY9sBnQiXoua5+8KK\nvml5qVCIJLeRI8PSHDk52lsimVRmoajp7nnFjjV19+UVffOyUqEQSV5jxsD114fLTR06RJ1Gikr4\nEh5m9gsz+xb4wczeNLOijck3K/rGIpL6xo2Da6+FN99UkajKSuvMHgKcCDQBHgUmmtlRlZJKRJLe\nhAnw+9/Da69B585Rp5FEKm14bC13nxO7/0Js46EXzeymSsglIkns9dfh0kvDJkRdtYFxlVdaodhs\nZvvGdqrD3eeYWR/gFeDASkknIknn7bfhggvgpZfgiCOiTiOVobRLT38G9i16wN2/BTKAuxIZSkSS\n03vvQf/+8MIL2nwonSR046J40agnkeh98EFY5G/0aOjTJ+o0UhYJX8LDzGYXeehsv2Wpu/vPKvrm\nIpIapk0LRWLUKBWJdFRaH8WpRe6/AvRlx/2tRaSKmzULTjkFRoyAk06KOo1EYaeFwt2/3nLfzDa7\n+/8qJZGIJI3PPoOTT4aHHoJTT931+VI1JWzPbBFJbfPnhy1M77kHzjwz6jQSpdL6KLqxrW9iDzM7\nPHbfAUra21pEqoaFC+H44+HOO+Hcc6NOI1ErbfXYHLbtSWEU25/C3X+R0GTbZ9GoJ5FK8vXXkJEB\nf/0rXHZZ1GmkIiptUcBkoEIhUjkWLw5F4oYbYMCAqNNIRSV8UUARSS/ffQfHHgtXXaUiIdtToRAR\nli4N8yMuvTQsGS5SlAqFSJr78Uc47riwNMef/hR1GklGuywUZnaMmdWL3T/fzO4xswMSH01EEm3l\nyjC66dRT4ZZbok4jyaosLYrhwHozOxS4HvgSGJXQVCKScKtXw4knhn6Jf/wDTOsuyE6UpVDkx4Yc\nnQH8093/CdRPbCwRSaS1a8OM65494e67VSSkdKWt9bTFWjO7GfgN0NvMqgM1ExtLRBJl/fqwdlPn\nznD//SoSsmtlaVGcA2wCLoltYtSCsE3qLpnZE2a2tNhKtEWfzzSz1WY2M3b7a5mTi0i5bdwYVoFt\n0wYefhiqaTiLlEGZJtyZWWugnbu/ZWZ1gRruvqYMP9cbWAeMcvcuJTyfCVzv7qft4nU04U6kgnJz\n4YwzoHFjePppqF496kSSaJU24c7Mfgc8DzwSO9QS+HdZXtzd3wd+2tVblOW1RGT3bd4M/frBnnuG\nPSVUJKQ8ytLwHAAcA6wBcPcvgH3i9P4O9DKzT8zsVTPrFKfXFZGY/Hw477zQF/Hcc1CjLD2TIkWU\n5Z9MrrvnWqzHy8xqUGyBwAqYAbRy9w1mdjLwEtC+pBOzs7O33s/MzCQzMzNOEUSqroICOP982LAB\n/v1vqFUr6kSSSDk5OeTk5MT9dXfZR2FmQ4BVwAXAVcDvgbnu/pcyvUHo35hQUh9FCecuArq5+8pi\nx9VHIVJOhYVwySWwZAmMHw977BF1Iqlslbko4J+A5cBs4HLgVSAuo5PMrJnFmipm1oNQuFbu4sdE\nZBcKC+GKK2DRInj5ZRUJqZiELjNuZqOBDKAJsBTIIjYHw90fMbMBwJVAPrCBMALqwxJeRy0KkTJy\nh6uvhhkz4I03oL6mx6atStuPwsyOIXzBt2Zbn4a7e9uKvnlZqVCIlI073HgjvP8+TJwIDRtGnUii\nFK9CUZbO7BHAtYSO54KKvqGIJIY7/OUv8M474aYiIfFSlkKxyt1fS3gSEamQW2+FCRPg3XfDpDqR\neCltz+xusbv9gOrAi0DulufdfUbC023LoktPIqW4884wkS4nB5o1izqNJIuE91GYWQ6lzJdw919U\n9M3LSoVCZOfuuQeGD4dJk6B586jTSDKptM7sZKBCIVKyYcNCoZg0CVq1ijqNJJvKXOvpDjNrVORx\nYzO7vaJvLCIV8+ijMGRI6LhWkZBEKsuEu77uvmrLA3f/Cfhl4iKJyK6MHAm33QZvvw2tW0edRqq6\nshSKamZWZ8sDM9sD0IoxIhEZPRpuvjnMk2jXLuo0kg7KMjz2WeBtM3uCsCT4xWjPbJFIjBsH118f\nikSHDlGnkXRR1o2LTgaOI4yCmujubyQ6WLH3V2e2pL3x4+Gyy8KyHIcdFnUaSQUa9SSSRl57DS68\nEF59Fbp3jzqNpIrKHPV0ppktMLM1ZrY2dtvlNqgiEh9vvRWKxMsvq0hINMqyKOCXwCnuPq9yIpWY\nQS0KSUuTJoUtTMeNg969o04jqaYy96P4IcoiIZKupkwJRWLMGBUJiVZZRj19bGZjCduUbo4dc3d/\nMXGxRNLbtGlwxhnw9NNw7LFRp5F0V5ZC0RDYCJxQ7LgKhUgCzJwJp5wCI0bAiSdGnUZEo55Eksrs\n2XD88fDQQ/DrX0edRlJdwjcuMrOb3H2QmT1YwtPu7tdU9M1FZJv580ML4r77VCQkuZR26Wlu7M/p\nbL/cuFHK8uMiUn4LFsBxx8Fdd0H//lGnEdmeLj2JRGzRIsjIgFtugd/+Nuo0UpVU5p7Zxd/4DmA1\n8Li7r6hoAJF09s03YVTTn/6kIiHJqyzzKIqbBhQA98U5i0haWbIkFIk//AF+//uo04jsnC49iUTg\nhx8gMxMuvhhuuinqNFJVVcaop6KjnZzQib31sUY9ieye5ctDx/V556lISGoorY9iy2gnA/4O3MK2\nYqFf70V2w8qVYZ7E6afD3/4WdRqRsinrfhQz3b1rJeTZ2fvr0pOkvJ9+ghNOCCOchgwBq/AFAZHS\nVeaigCJSQVOmQNeuofNaRUJSTbmHx4pI2RUUwKBB8MAD8OijcNppUScSKb/SOrPXsa0vYg8zW1vk\naXf3Brt68dg+278Elrl7l52c8wBwMrABuMjdZ5Y1vEgy++47OP98yM+Hjz+Gli2jTiSye3Z66cnd\n67l7/ditRpH79ctSJGKeBE7a2ZNm1hdo5+4HAb8DhpcrvUiSeuUVOPzw0B/xzjsqEpLaEnrpyd3f\nN7PWpZxyGjAydu5UM2tkZs3cfWkic4kkSm4u/PnPYUe655/XhkNSNUTdR9ECWFzk8bdAS0CFQlLO\nggVhQb/99w97Suy1V9SJROIj6kIB20/kg53M0cjOzt56PzMzk8zMzMQlEimnp5+G66+Hv/8drrxS\no5okGjk5OeTk5MT9dRO+hEfs0tOEkjqzzexhIMfdx8Qezwcyil960jwKSVZr14Z1mqZPD3tb/+xn\nUScS2aaqzKMYD1wAYGY9gVXqn5BUMX166LCuUyfsca0iIVVVQi89mdloIANoYmaLgSygJoC7P+Lu\nr5pZXzNbCKwHLk5knmTj7mzK38SqTatYnbuaVZtWsSZ3DXVr1qVRnUZbb3vW3BPTtYykUVgYdqG7\n6y548EE455yoE4kkllaPrQB3Z2P+RlZtWrX1tnrT6u0eb73llnBs0yoAGtdpvLUo1K9dnw15G7Y7\nZ3PBZhrWbrhd8WhYpyGNajfa7tjObvVq1VOhiZNly8KKrytWwOjR0KZN1IlEdi5el57SulC4+w5f\nylu/8HN38oVf7Fa9WvWSv6BL+BJvWKfhDsfq1Kizy5x5BXllzlNS/o15G2lYp+EOxaast3q16lHN\nor5KGb2334YLLgi3W2+FmjWjTiRSOhUKwhf9+rz1pX9hbvkNfye/0deqXit8ie/Gl2jD2g2pXaN2\nBH8j5ZNXkMea3DVlLizFb+vz1tOgdoMyF8TiRbFB7QYpXWjy8iArC0aOhKeeCqu/iqSCtCsUZ449\ns8Qvt9rVa5f8JVWGyzIN6zSkVvVaUX+8pJdfmF9iodnhMttOivG6zeuoX6t+if8NmtRtwsF7H0zH\nph3p2KQje9fdO+qPu52vv4Zzz4VGjUKh2GefqBOJlF3aFYrn5zxf4m/0Naur/Z/sCgoLWJO7psRW\ny7L1y5j/43zm/TiPucvnUqdGHTo26Uinpp22/dm0I/vV26/S+1mefx4GDAibC113HVRL3UaRpKm0\nKxSpkFMqxt35ft33zF0+l3nL520tHvN+nEdufu7WVkfRInJAowPifllrw4ZQGN5+O8yN6N49ri8v\nUmlUKCStrNiwYlvhKFJEVmxcQfu922/fAmnSkXZ7tdut1uZnn4Xhrl27wkMPQYOyLn8pkoRUKESA\ntblrt7t0Ne/HecxbPo9vVn9D28Zt6di0I52adNraGjm4ycHUrVl3h9dxh0ceCduT3n13GNmkEcWS\n6lQoREqxKX8TC1Ys2Fo8tvy5cOVC9qu339aWR8emHWlZuxPDsjqyeGFDxoyBgw+OOr1IfKhQiOyG\n/MJ8vvrpK+YtD8Vj0tx5vPvZXHzv+TSt3zC0QIoUkU5NO9G0blNNWJSUpEIhUgEFBXDnnTBsGDz+\nOPT9ZSHfrvl2ax9I0ZaIme3QB9KxaUdaNWilAiJJTYVCZDctWQK/+U24/8wz0KLFzs91d5atX7Zd\n/8fcH0MxWbt5LR2adNhWPGKFpE3jNtSolgwr+Eu6U6EQ2Q3/+Q/89rdw1VVhJ7rq1Xf/tVZtWrXD\nMN65y+fyw7ofOGivg3boSG+/d/uUmMkvVYcKhUg55ObCwIHw0kvw3HNw9NGJe6/1m9fz+YrPdygi\ni35axKH7Hsr1Pa/nzE5nqtUhCadCIVJGn38etiht2zb0RzRuHE2OzQWbeX3h6wyZMoQla5Zww1E3\ncHHXi0scrisSDyoUIrvgDqNGwY03wm23weWXJ8/ciCmLpzBkyhAmfzOZAUcMYECPATSp2yTqWFLF\nqFCIlGLNmrBF6cyZMHYsdO4cdaKSzf9xPkOnDGXcvHH8X5f/4/qjrqdNY21yIfFRVbZCFYm7jz8O\nW5TuuWfYojRZiwRAhyYdeOy0x5jz+znUq1WP7o91p/8L/Zn+3fSoo4lspRaFVBmFhXDvvTBoEPzz\nn9CvX9SJym9N7hoem/4Y9354Lx2adGDg0QM5vu3xmq8hu0WXnkSKWLYMLrwQVq8Oo5pat446UcVs\nLtjMmM/GMHjyYGpUq8HAowfSr1M/Lasv5aJCIRLz1luhSFx0EWRnV60tSt2d1xa+xuDJg/l61ddc\n1/M6Lj38UurVqhd1NEkBKhSS9vLy4JZbwsimUaOgT5+oEyXW1G+nMmTKECb9bxJXdLuCq4+8mn32\n1JZ7snMqFJLWFi0KW5TuvXfYx7pp06gTVZ4FKxYw9IOhjJ0zlv6H9OeGXjfQbq92UceSJKRRT5K2\nxo6FI48MGwxNmJBeRQLgoL0P4uFTHmb+gPk0qduEo0YcRb/n+/HRko+ijiZVlFoUkjLWr4drr4Wc\nnLBFabduUSdKDus2r2PEjBHc8+E9tGnUhoFHD+TkdidrpJTo0pOkl08/DS2II44IQ1/r1486UfLJ\nK8jjX3P+xeApgyn0Qv7Y64/079yfWtVrRR1NIqJCIWnBPexdnZ0N99wD558fdaLk5+5M/GoigycP\n5vMVn3Ndz+u47PDLqF9b1TXdqFBIlbdyJVx6KXzzTbjUdNBBUSdKPdO/m86QKUN466u3uOzwy7jm\nyGvYr/5+UceSSqLObKnS3n8funaFNm1gyhQVid3VrXk3xpw1ho8u+4i1m9fS6aFOXDb+Mj7/8fOo\no0kKSWihMLOTzGy+mS0ws5tKeD7TzFab2czY7a+JzCPJr6AAbr0Vzj4bhg8Pl5tqa6+fCmvbuC3D\n+g7ji6u+oEWDFvR+sje/GvsrPlj8QdTRJAUk7NKTmVUHPgeOA5YA04Bz3X1ekXMygevd/bRdvJYu\nPaWBb78NW5RWqxa2KG3ePOpEVdeGvA08OfNJhn4wlBYNWjCw10B+2f6XVDNdZKhKUuHSUw9gobt/\n7e55wBjg9BLO0xg+Yfx46N4dTjgBJk5UkUi0ujXrMqDHAL64+guuOuIqsidlc8hDh/DEzCfIzc+N\nOp4kmUQWihbA4iKPv40dK8qBXmb2iZm9amadEphHktCmTXDNNeH24otw880V28dayqdGtRqc0/kc\nPr7sY4adPIyxc8bS9oG2DJ48mNWbVkcdT5JEIgtFWa4VzQBaufuhwIPASwnMI0nEHV5/HXr2hO++\nCxsM9eoVdar0ZWb0aduHN37zBq+c9wqfLv2Utg+0ZeDEgSxZsyTqeBKxRO7uvgRoVeRxK0KrYit3\nX1vk/mtm9pCZ7eXuK4u/WHZ29tb7mZmZZGZmxjuvVIL8/LAEx+DBoVjcfHOYSKdJxMnjsH0P45lf\nP8P/Vv2Pez+8ly7Du3BGhzO4sdeNdGqqRn8yy8nJIScnJ+6vm8jO7BqEzuw+wHfAR+zYmd0MWObu\nbmY9gH+5e+sSXkud2Slu/XoYMSKMYmrdGm66CU46SQUiFazYsILhHw9n2EfD6NGiBwOPHsjRrY7W\nEiEpICUm3JnZycB9QHVghLvfaWaXA7j7I2Y2ALgSyAc2EEZAfVjC66hQpKgff4QHHwxDXXv3hoED\nw4J+kno25m1k5CcjGfrBUJrUbcLAXgM5vcPpGimVxFKiUMSLCkXqWbQotB6efRbOOgtuvBHat486\nlcRDQWEBL81/iUGTB7E6dzU3HnUj5x96PnVq1Ik6mhSjQiFJadas0P/w5ptw2WVhNNN+WjGiSnJ3\n3vvfewyeMpgZ38/gmh7XcEX3K2i8R+Ooo0mMCoUkDXd4910YNAjmzAlLgf/ud9CgQdTJpLLMXjqb\nuz+4mwmfT+Diwy7m2p7X0qphq13/oCSUCoVErqAgzH0YNCh0Vg8cCOedpyU30tni1Yu5f+r9PDHz\nCU5pfwo3HX0Th+xzSNSx0pYKhURm40YYORLuvhv22SeMYDr11LD0hgjAqk2rGD5tOPdNvY+MAzK4\nJeMWOu/TOepYaUeFQirdTz+FvSEefBB69AgtiGOOiTqVJLN1m9cxfNpwhn4wlN4H9OaWn99Cl2Zd\noo6VNlJhrSepIhYvhhtugHbtYOFCePvtsDaTioTsSr1a9fjj0X/ky2u+5MgWR3L808dz1r/O4tOl\nn0YdTcpBhUJ2as4cuOgiOPTQ8PiTT+DJJ+EQXXKWctqz1p7c2OtGvrzmS45qeRQnPnMiZ/7rTD75\n4ZOoo0kZqFDIdtzDpkGnngp9+oS5D19+CUOHQsuWUaeTVLdnrT25odcNfHnNlxzd6mhOevYkfjX2\nV8z6YVbU0aQU6qMQAAoLYcKEMIJp+fIwQe7CC6GO5lBJAm3I28Cj0x9l8OTB9GjRg6yMLLru1zXq\nWFWGOrMlLnJzw+zpIUOgXr0wgulXv9JS31K5NuZt5NHpjzJo8iCOaHEEWRlZHL7f4VHHSnkqFFIh\na9bAI4/AffdBly6hQGRmapE+idbGvI08NuMxBk0eRLf9upGVkUW35t2ijpWyVChkt3z/Pdx/Pzz+\nOJx4Ivzxj3DYYVGnEtnepvxNPDY9FIyu+3UlKyOL7s27Rx0r5Wh4rJTLF1+EtZcOOQQ2bICPPw6X\nnFQkJBnVqVGHq4+8moXXLOTEA0/kjDFncMpzpzBtybSoo6UltSiquKlTwyJ9778PAwaEW5MmUacS\nKZ9N+ZvCq+9AAAAL3ElEQVQYMWMEd02+iy77dCErI4sjW2q9+l3RpSfZKXd47bVQIL7+OkyWu+QS\n2HPPqJOJVExufi5PzHyCO/57B5336UxWRhY9W/aMOlbSUqGQHeTlwZgxoUBUrx6W2Dj7bKiRyA1v\nRSKQm5/Lk7Oe5I7376BT005kZWRxVKujoo6VdFQoZKt167ZtM3rggWEE0wknaASTVH25+bk8Nesp\n7vjvHXRo0oGsjCx6teoVdaykoUIhLFsGw4aFbUYzM0ML4ogjok4lUvk2F2wOBeP9O2i/d3uyMrI4\nev+jo44VORWKNPbVV2FJjdGjw6WlG28MC/aJpLvNBZsZOWskd/z3Dtrt1Y6sjCyO2T99V69UoUhD\nM2aE/oe33oLLLw/bjDZrFnUqkeSzuWAzoz4ZxT/e/wdtG7clOyOb3gf0jjpWpVOhSBPuYVnvQYNg\n/ny47rowH6J+/aiTiSS/vIK8rQWjdaPWZGdm8/MDfh51rEqjQlHF5efDuHGhBbFpU+h/OPdcqFUr\n6mQiqSevII9nPn2G29+/nf0b7k9WRhaZrTOjjpVwKhRV1MaNYc+HoUOhefMwgqlvX20zKhIPeQV5\nPDv7WW5/73ZaNmhJdmZ2lS4YKhQpLi8v7PMwf/72t3nz4Be/CC2IXhrlJ5IQ+YX5PPvps9z23m20\naNCC7IxQMKyKjSlXoUgRP/0En3++Y0H4+mto1Qo6dNjxtvfeUacWSQ/5hfk8N/s5bn/vdvatty9Z\nGVkc2+bYKlMwVCiSSGEhfPPNjsVg/nxYv77kYtCuHdSuHXVyEYFQMEbPHs1t791Gs3rNyMrIok+b\nPilfMFQoIrBhQ1iFtXgx+OKL0AooqSA0b64Z0iKpIr8wnzGfjeG2926jad2mZGVkcVzb41K2YKhQ\nJIg7LF1acutg6dLQEiheDNq313BVkaqkoLCAsXPGcuukW9lrj73Izszm+LbHp1zBSIlCYWYnAfcB\n1YHH3X1QCec8AJwMbAAucveZJZwT90Kxs87k+fOhZs2SWwetW2uLUJF0UlBYwL/m/Itb37uVRnUa\nkZ2RzQkHnpAyBSPpC4WZVQc+B44DlgDTgHPdfV6Rc/oCV7l7XzM7Erjf3XdYM7gihaK8nckHHxz/\n/RpycnLIzMyM74tWklTODsoftaqSv6CwgOfnPs+tk26lQe0GZGdmc+KBJyZ9wUiFHe56AAvd/Wt3\nzwPGAKcXO+c0YCSAu08FGplZuRelKCyERYvCHgz33QdXXBEWydt3X9h/f7j66jC7uX59OP/8MJFt\n9WpYsAAmTIAhQ+DSS+HooxOzqU9OTk78X7SSpHJ2UP6oVZX81atVp3/n/sy+cjbX9byOG968gZ4j\nevLqgldJhcv3FZXInQpaAIuLPP4WKL4lVUnntASWlvSC69eX3Jm8YMH2ncldukC/fupMFpH4ql6t\nOud0Pod+h/TjhbkvMHDiQLJzssnKyKLvQX2TvoWxuxJZKMpaZov/zZb4cwccEJbVLtqZfNppYWKa\nOpNFpDJVs2qcfcjZnNXpLMbNHcef3v4T2ZOyGXXGKDo27Rh1vLhLZB9FTyDb3U+KPf4zUFi0Q9vM\nHgZy3H1M7PF8IMPdlxZ7rarfthMRSYB49FEkskXxMXCQmbUGvgPOAc4tds544CpgTKywrCpeJCA+\nH1RERHZPwgqFu+eb2VXAG4ThsSPcfZ6ZXR57/hF3f9XM+prZQmA9cHGi8oiIyO5JiQl3IiISnaRe\nvNrMTjKz+Wa2wMxuijpPScyslZm9a2ZzzOwzM7smdnwvM5toZl+Y2Ztm1qjIz/w59pnmm9kJ0aXf\nxsyqm9lMM5sQe5wS+c2skZm9YGbzzGyumR2ZKtmL5JljZrPN7Dkzq53M+c3sCTNbamazixwrd14z\n6xb7zAvM7P6I8w+J/fv5xMxeNLOGqZS/yHM3mFmhme0V9/zunpQ3wuWqhUBroCYwC+gYda4Scu4L\nHBa7X48wybAjMBgYGDt+E3BX7H6n2GepGftsC4FqSfA5rgeeBcbHHqdEfsI8nEti92sADVMoe2vg\nK6B27PFY4MJkzg/0BroCs4scK0/eLVcxPgJ6xO6/CpwUYf7jt/w9AnelWv7Y8VbA68AiYK9450/m\nFkVZJuxFzt1/cPdZsfvrgHmE+SFbJxPG/jwjdv90YLS757n714T/eD0qNXQxZtYS6As8zrbhykmf\nP/abX293fwJCv5i7ryYFssesAfKAumZWA6hLGPiRtPnd/X3gp2KHy5P3SDPbD6jv7h/FzhtV5GcS\nqqT87j7R3QtjD6cS5nJBiuSPuQcYWOxY3PInc6EoaTJei4iylElshFdXwj+2Zr5tBNdSYMuM8+aE\nz7JFMnyue4E/AoVFjqVC/jbAcjN70sxmmNljZrYnqZEdd18JDAW+IRSIVe4+kRTJX0R58xY/voTk\n+BwAlxB+w4YUyW9mpwPfuvunxZ6KW/5kLhQp1ctuZvWAccAf3H1t0ec8tO9K+zyRfVYzOwVY5mEx\nxhKHISdx/hrA4cBD7n44YeTcn4qekMTZMbMDgWsJlwWaA/XM7DdFz0nm/CUpQ96kZWZ/ATa7+3NR\nZykrM6sL3AxkFT0c7/dJ5kKxhHDdbYtWbF8Fk4aZ1SQUiafd/aXY4aVmtm/s+f2AZbHjxT9Xy9ix\nqPQCTjOzRcBo4Fgze5rUyP8t4TepabHHLxAKxw8pkB2gOzDF3Ve4ez7wInAUqZN/i/L8W/k2drxl\nseORfg4zu4hw+fX/ihxOhfwHEn7R+CT2/3BLYLqFNfPilj+ZC8XWCXtmVoswYW98xJl2YGYGjADm\nuvt9RZ4aT+iYJPbnS0WO9zezWmbWBjiI0LEUCXe/2d1buXsboD/wjrufTwrkd/cfgMVm1j526Dhg\nDjCBJM8eMx/oaWZ7xP4dHQfMJXXyb1Gufyux/25rYiPUDDi/yM9UOgvbIfwRON3dNxV5Kunzu/ts\nd2/m7m1i/w9/CxweuxQYv/yV0VNfgR7+kwmjiBYCf446z04yHkO4tj8LmBm7nQTsBbwFfAG8CTQq\n8jM3xz7TfODEqD9DkVwZbBv1lBL5gUMJS9h/QviNvGGqZI/lGUgobrMJHcE1kzk/odX5HbCZ0Id4\n8e7kBbrFPvNC4IEI818CLAD+V+T/34dSIH/ulr//Ys9/RWzUUzzza8KdiIiUKpkvPYmISBJQoRAR\nkVKpUIiISKlUKEREpFQqFCIiUioVChERKZUKhYiIlEqFQqo0M3un+L4NZnatmT1Uhp99yszO3MU5\n15rZHuXMNDq298EfyvNzIlFRoZCqbjRhaZKizgHKsvBbWRa4+wNhefAyia2J1N3dD3X3StvwRqQi\nVCikqhsH/DK238OWpeCbu/t/SzrZzIbFdgObCOxDbCVOM+sTW8r8UzMbEVs/5xrCqq/vmtnbJbzW\nEWY22cxmmdmHsRWG3wRaWNhN8BgzyzGze8xsWmyXtSPM7N8Wdou7LRF/ISLlpUIhVZqHPR8+IqwM\nCqF1Mbakc83s10B7wg6FFxBW1nUzqwM8CZzt7j8jLG9+pbs/QFh3J9Pd+xR7rVqEzbaucffDCAv+\nbQROBb50966xYuVArrsfAQwHXgauADoDF5lZ4/j8TYjsPhUKSQdFLz+dE3tckt7Acx58D7wTO34w\nsMjdF8YejwR+vov3PBj43t2nQ9j90N0LKHmvgC2rIn8GfObuS919M2GBt/138T4iCadCIelgPNDH\nzLoCdT1s0rQzJX2RF++nsBKOVURu7M/CIve3PK4ex/cR2S0qFFLledjL/F3C5aPSOrHfA84xs2qx\nDXh+ETv+OdA6tiMdhPX7J8XurwUabHkBMxtlZt0JyzrvF7uPmdU3M33pS0pSoZB0MRrows4vO+Hu\n/ybsTTCXcHlpSux4LmHfhefN7FMgH3g49mOPAq8X6czuAnzn7nmEy1wPmtks4A2g9pa32lmEUp4T\niYz2oxCJEzNrADzm7udEnUUknlQoRESkVDWiDiBS2cysCzCq2OFN7n5UFHlEkp1aFCIiUip1ZouI\nSKlUKEREpFQqFCIiUioVChERKZUKhYiIlOr/AXlSO7gvU2MeAAAAAElFTkSuQmCC\n", - "text": [ - "<matplotlib.figure.Figure at 0x10bc1ac10>" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-2, Page No:770" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "rho=998 #Density in kg/m^3\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "V_dot=0.0233 #Volumetric flow rate in m^3/s\n", - "H_small=7.3 #Head in m\n", - "H_big=21.9 #Head in m\n", - "n_pump_small=0.7 #Efficiency of the pump in fraction small\n", - "n_pump_big=0.765 #Efficiency of pump in fraction big\n", - "#Calculations\n", - "bhp_small=(rho*g*V_dot*H)/n_pump_small #Required bhp in kW\n", - "\n", - "#Similarly for 241.3mm impeller we get 6.53kW\n", - "bhp_big=(rho*g*V_dot*H_big)/n_pump_big\n", - "\n", - "#Result\n", - "print \"The required bhp is\",round(bhp_small,2),\"W\"\n", - "print \"The required bhp is\",round(bhp_big,2),\"W\"\n", - "print \"Clearly the small one is better as it uses less power\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The required bhp is 2378.92 W\n", - "The required bhp is 6530.38 W\n", - "Clearly the small one is better as it uses less power\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-4, Page No:780" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "n_dot=900 #Speed in rpm\n", - "V_closed=0.45 #Volume of motor oil in cm^3\n", - "n=0.5 #Number of rotations\n", - "\n", - "#Calculations\n", - "V_dot=n_dot*(2*V_closed/n) #Volumetric Fow rate in cm^3/min\n", - "\n", - "#Result\n", - "print \"The volumetric Flow rate is\",round(V_dot),\"cm^3/min\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The volumetric Flow rate is 1620.0 cm^3/min\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-5, Page No:784" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "n_dot=1750 #Speed in rpm\n", - "w=183.3 #Angular Speed in rad/s\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "alpha1=0 #Angle in degrees\n", - "alpha2=40 #Angle in degrees\n", - "b1=0.052 #Inlet blade width in m\n", - "b2=0.023 #Outlet blade width in m\n", - "V_dot=0.13 #Volumetric Flow rate in m^3/s\n", - "rho_water=1000 #Density of water in kg/m^3\n", - "rho_air=1.2 #Density of air in kg/m^3\n", - "r1=0.04 #Inlet radius in m\n", - "r2=0.08 #Outlet radius in m\n", - "\n", - "#Calcualtions\n", - "V1_n=V_dot/(2*pi*r1*b1) #Normal Component of Velocity in m/s\n", - "V1=V1_n #Since Vt is zero Velocity in m/s\n", - "V2_n=V_dot/(2*pi*r2*b2) #Normal Component of velocity in m/s\n", - "V2_t=V2_n*tan((alpha2*pi)/180) #Tangential Component of velocity in m/s\n", - "\n", - "#Applying the Bernoullis principle \n", - "H=(w/g)*(r2*V2_t) #Net head in m\n", - "Hwater_column=H*(rho_air/rho_water)*1000 #Equivalent water column in mm of water\n", - "\n", - "bhp=rho_air*g*V_dot*H #bhp required in W\n", - "\n", - "#Result\n", - "print \"The net Head produced is\",round(Hwater_column),\"mm of water\"\n", - "print \"The brake horsepower required is\",round(bhp,1),\"W\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The net Head produced is 17.0 mm of water\n", - "The brake horsepower required is 21.6 W\n" - ] - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-6, Page No:786" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "r1=0.1 #Inlet Radius in m\n", - "r2=0.18 #Outlet radius in m\n", - "b1=0.05 #Inlet width in m\n", - "b2=0.03 #Outlet width in m\n", - "V_dot=0.25 #Volumetric Flow rate delivered in m^3/s\n", - "n=1720 #Speed of the impeller in rpm\n", - "rho=1226 #Density of the fluid in kg/m^3\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "H=14.5 #Head in m\n", - "\n", - "#Calculations\n", - "#Required horse power\n", - "W_water_horsepower=rho*g*V_dot*H #Required Horse Power in W\n", - "W_dot_water_hp=W_water_horsepower/745.7 #Required Horse Power in hp\n", - "\n", - "w=n*(2*pi/60) #Angular Speed in rad/s\n", - "\n", - "beta1=(arctan((V_dot)/(2*pi*b1*w*r1**2)))*(180/pi) #Blade inlet angle in degrees\n", - "\n", - "#Using elemetary analysis\n", - "V2_n=V_dot/(2*pi*r2*b2) #Normal Component of Velocity in m/s\n", - "\n", - "V2_t=(g*H)/(w*r2) #Tangential Component of velocity in m/s\n", - "\n", - "#Simplfying Calculation\n", - "a=w*r2-V2_t\n", - "\n", - "beta2=arctan(V2_n/a)*(180/pi) #Angle in degrees\n", - "\n", - "#Result\n", - "print \"The angel beta1 is\",round(beta1,2),\"degrees\"\n", - "print \"The angle beta2 is\",round(beta2,2),\"degrees\"\n", - "print \"The horsepower required is\",round(W_dot_water_hp,1),\"hp\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The angel beta1 is 23.84 degrees\n", - "The angle beta2 is 14.73 degrees\n", - "The horsepower required is 58.5 hp\n" - ] - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-7, Page No:792" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "D_propeller=0.34 #Overall Diameter of the propeller in m\n", - "alpha=14 #Angle of attack in degrees\n", - "n=1700 #Speed of the propeller in rpm\n", - "D_hub=0.055 #Diameter of the hub assembly in m\n", - "V=13.4 #Velocity of the plane in m/s\n", - "\n", - "#Calculations\n", - "C=60/(2*pi) #Conversion factor\n", - "phi1=(arctan((V*C)/(n*D_hub*0.5)))*(180/pi) #Angle in degrees\n", - "theta1=alpha+phi1 #Pitch Angle at arbitrary radius in degrees\n", - "phi2=(arctan((V*C)/(n*D_propeller*0.5)))*(180/pi) #Angle in degrees\n", - "theta2=alpha+phi2 #Pitch angle at the tip in degrees\n", - "\n", - "#Result\n", - "print \"The pitch angle at any radius is\",round(theta1,1),\"degrees\"\n", - "print \"The pitch angle at the tip is\",round(theta2,1),\"degrees\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The pitch angle at any radius is 83.9 degrees\n", - "The pitch angle at the tip is 37.9 degrees\n" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-8,Page No:797" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V_in=47.1 #Velocity at the inlet in m/s\n", - "beta_st=60 #trailing edge at Angle in degrees\n", - "n=1750 #Speed of the impeller in rpm\n", - "r=0.4 #Radius in m\n", - "\n", - "#Calculations\n", - "V_st=V_in/cos((beta_st*pi)/180) #Velocity leaving the trail in m/s\n", - "\n", - "u_theta=((n*2*pi)/60)*r #Tangential Velocity of rotor blades in m/s\n", - "\n", - "beta_r1=(arctan((u_theta+V_in*tan((beta_st*pi)/180))/V_in))*(180/pi) #Angle of leading edge in degrees\n", - "\n", - "beta_rt=(arctan(u_theta/V_in))*(180/pi) #Angle in degrees\n", - "\n", - "#Result\n", - "print \"The leading edge and trailing edge angles are\",round(beta_r1,2),\"degrees and\",round(beta_rt,2),\"degrees\"\n", - "print \"We select number like 13 15 and 17 rotor blades\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The leading edge and trailing edge angles are 73.09 degrees and 57.28 degrees\n", - "We select number like 13 15 and 17 rotor blades\n" - ] - } - ], - "prompt_number": 22 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-9, Page No:802" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "n=1170 #Speed of the pump in rpm\n", - "H=23.5 #Required head in ft\n", - "V_dot=320 #Gasoline pumped gallon/minute\n", - "Ratio=3.658*10**-4 #Nsp/Nsp_US ratio\n", - "\n", - "#Calcualtions\n", - "Nsp_US=(n*V_dot**0.5)/(H**0.75) #Pump specific speed in US units\n", - "Nsp=Nsp_US*(Ratio) #Normalizes pump specific speed\n", - "\n", - "#Result\n", - "print \"The Nsp_US value is\",round(Nsp_US,2),\"and Nsp value is\",round(Nsp,3),\"which tells\"\n", - "print \"A centrifugal Pump is the best suitable one\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Nsp_US value is 1960.92 and Nsp value is 0.717 which tells\n", - "A centrifugal Pump is the best suitable one\n" - ] - } - ], - "prompt_number": 23 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-10, Page No:804" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "wa=1 #Setting as unit speed\n", - "\n", - "#Calculations\n", - "wb=2*wa #Speed \n", - "bhp_ratio=(wb/wa)**3 #Ratio od required shaft power \n", - "\n", - "#Result\n", - "print \"The ratio of required shaft power is\",round(bhp_ratio)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The ratio of required shaft power is 8.0\n" - ] - } - ], - "prompt_number": 24 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-11, Page No:805" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "import matplotlib.pyplot as plt\n", - "%matplotlib inline\n", - "\n", - "#Variable Decleration\n", - "D_A=0.06 #Diameter of pump A in m\n", - "n_A=1725 #Operating Speed in rpm\n", - "w_A=180.6 #Operating Angular Speed in rad/s\n", - "V_B_dot=2.4*10**-3 #Volumetric Flow rate in m^3/s\n", - "V_A_dot=5*10**-4 #Volumetric Flow rate in m^3/s\n", - "H_A=1.5 #Head in m\n", - "rho_water=998 #Density of water in kg/m^3\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "n_pump_A=0.81 #Efficiency of pump A in fraction\n", - "H_B=4.5 #Head in m\n", - "rho_B=1226 #Density of fluid in kg/m^3\n", - "\n", - "#Calculations\n", - "#Part(a)\n", - "bhp_A=(rho_water*g*V_A_dot*H_A)/n_pump_A #Required Power in W\n", - "\n", - "C_Q=V_A_dot/(w_A*D_A**3) #Capacity Coefficient \n", - "\n", - "C_H=(g*H_A)/(w_A**2*D_A**2) #Head Coefficient\n", - "\n", - "C_P=bhp_A/(rho_water*w_A**3*D_A**5) #Power Coefficient\n", - "#Plotting\n", - "V_dot1=range(100,800,100) #Volumetric flow rate in cm^3/s\n", - "H1=[180,185,175,170,150,95,54] #Head in cm\n", - "n_pump1=[32,54,70,79,81,66,38] #Efficiency of the pump in percentage\n", - "#BHP calculations\n", - "V_dot=transpose(V_dot1)\n", - "H=transpose(H1)\n", - "n_pump=transpose(n_pump1)\n", - "bhp_A1=rho_water*g*V_dot\n", - "bhp_A2=bhp_A1*H\n", - "bhp_A=bhp_A2/n_pump\n", - "\n", - "\n", - "fig = plt.figure()\n", - "ax = fig.add_subplot(111)\n", - "ax.plot(V_dot1,bhp_A)\n", - "plt.xlabel('V_dot,cm^3/s')\n", - "plt.ylabel('H,cm and n in %')\n", - "ax2 = ax.twinx()\n", - "ax2.plot(V_dot1,H1,V_dot1,n_pump1)\n", - "plt.ylabel('bhp,W')\n", - "ax.grid()\n", - "plt.show()\n", - "\n", - "\n", - "#Curve Fitted Data Yields\n", - "CQ_star=0.0112\n", - "CH_star=0.133\n", - "CP_star=0.00184\n", - "npump_star=0.812\n", - "\n", - "#Part(b)\n", - "Db=((V_B_dot**2*CH_star)/(CQ_star**2*g*H_B))**0.25 #Design Diameter of pump B in m\n", - "\n", - "w_B=V_B_dot/(CQ_star*Db**3) #Angular speed at B in rad/s\n", - "\n", - "bhp_B=CP_star*rho_B*w_B**3*Db**5 #Required brake horse power in W\n", - "\n", - "\n", - "#Result\n", - "print \"The required diameter of Pump is\",round(Db,3),\"m\"\n", - "print \"The required rotational speed is\",round(w_B),\"rad/s\"\n", - "print \"The required Brake Horse Power is\",round(bhp_B),\"W\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAakAAAEWCAYAAADcsGj7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXmczdX7wN+PsRRiLEW2JokQ0SKijOxtilRoUVokWr4k\n6qfyTaQ9UmklX5H6Wiq7ciWR5YvsUhSRJcLIMmae3x/nM7nGLHdm7ufe+/nMeb9e9zX3nM85n8/z\nzJ05zz3Pec5zRFWxWCwWiyUWKRBtASwWi8ViyQxrpCwWi8USs1gjZbFYLJaYxRopi8ViscQs1khZ\nLBaLJWaxRspisVgsMYunjZSIfCgiO0VkVQhtXxWR5c5rg4jsi4SMFovFYsk94uV9UiJyJZAEfKyq\ndXLQrydQT1XvdU04i8ViseQZT8+kVHU+cNKMSETOE5HpIrJURL4VkRoZdO0MjIuIkBaLxWLJNQWj\nLYALvAs8oKqbRORy4C2gedpFETkHSAC+iY54FovFYgkVXxkpESkONAI+E5G06sLpmt0GfKZe9nNa\nLBZLPsFXRgrjvvxLVetn0eZWoEeE5LFYLBZLHnB1TSqU6DsRGSYiP4nIShGpH1TfRkTWO9eeCOV5\nqnoA2CwiNzv3EBGpG3TPC4BSqroo91pZLBaLvxCRyiIyV0TWiMhqEXnYqS8tIrNFZKOIzBKR+KA+\n/Z3xeb2ItHJLNrcDJz4C2mR2UUSuAaqp6vnA/cDbTn0c8KbTtxbQSURqZtB/HPA9UENEtorI3UAX\noJuIrABWAzcEdbkVGzBhsVgs6UkGHlPV2kBD4CFnzO0HzFbV6sDXThkRqYUZT2thxum3RMQVe+Kq\nu09V54tIQhZNbgBGO21/EJF4ESkPnAtsUtUtACIyHmgHrEt3/06Z3LdtJvIMzIn8FovFkh9Q1T+A\nP5z3SSKyDqiIGaObOs1GAwGMoWoHjFPVZGCLiGwCGgBh91JFOwS9IrA1qLzNqauQSb3FYrFYXMSZ\nWNQHfgDKqepO59JOoJzzvgJmXE7DtTE62kYKQLJvYrFYLBa3cSKk/ws8oqoHg685EdFZRUW7EjEd\n7ei+34HKQeVKGItcKF19ZU622gCIiA0jt1gsllygqidNEESkEMZAjVHVyU71ThEpr6p/iMjZwC6n\nPqOx+3c35Iz2TOoL4E4AEWmICR/fCSwFzheRBBEpjFmg+yKjG6iqb1/PPPNM1GWw+ln98ptu+UG/\n9IjZWPoBsFZVX083Rt/lvL8LmBxUf5uIFBaRc4HzgcV5tAcZ4upMyom+awqUFZGtwDOYWRKqOlJV\np4nINc6i2yHgbufacSe/3kwgDvhAVddl+BAfs2XLlmiL4CpWP+/iZ93A//plQGPgduBHEVnu1PUH\nXgAmiEg3YAtwC4CqrhWRCcBa4DjQQzOyfmHA7ei+zKLvgtv0zKR+OjA97EJZLBaL5SRU9Tsy96y1\nyKTPYGCwa0I5RNvdZ8mCrl27RlsEV7H6eRc/6wb+189LeP2oDrdmmBaLxeJbRARNFzgRq9iZVAwT\nCASiLYKrWP28i591A//r5yWskbJYLBZLzGLdfRaLxZLPsO4+i8VisVjCgDVSMYzf/eJWP+/iZ93A\n//p5CWukLBaLJR/htRUSuyZlsVgs+Yi+feGll+yalMVisVhijBEjYMqUaEuRM6yRimH87he3+nkX\nP+sG/tTviy/g+edhuseSzUX7qA6LxWKxuMzixdCtG0ybBlWrRluanGHXpCwWi8XH/PwzNGkC774L\n119v6uw+KUueSEqC9eth2ynHPFosFkvo7NkDbdvCgAEnDJTXsDOpCJOUZIzP1q3mZ/D7tJ9Hj0LF\nirB79zGKFy9Mo0b887r4YihSJNpahIdAIEBiYmK0xXANP+vnZ93AH/odPgwtWphZ1NChJ1/z0kzK\nrkmFkfQGKCNDdPQoVKpkXpUrm58XXww33HCiXLo0iMDcud9TuXIiCxfCwoUwZgxs3Ah163KS4apU\nKdqaWyyWWCI1Fe68E6pUgSFDoi1N3nB1JiUibYDXMafrvq+qQ9NdLwV8CFQFjgD3qOoa59oW4ACQ\nAiSraoMM7h+xmVRuDVD6n2kGKC9yLF3KP4Zr4UIzs/LrbMtiseSc3r3NODFrVsZjQfqZlIh8CFwL\n7FLVOk5dA+BNzGnqaafvLnGu9QfuwYzPD6vqLLd0cc1IiUgcsAFzquPvwBKgU/Ax8CLyEnBAVZ8T\nkRrACFVt4VzbDFyiqnuzeEZYjFRmBijYEEXCAOUGVbMwGmy07GzLYsm/DBsGb78NCxaYMSkjMjBS\nVwJJwMdBRioADFHVmSLSFuirqs1EpBbwCXAZUBGYA1RX1VQ39HHT3dcA2KSqWwBEZDzQDlgX1KYm\n8AKAqm4QkQQROVNVdzvX8zzk59YAZeaCiySh+MVFoFo187rjDlMXPNsaMwZ69IjN2ZYf/P5Z4Wf9\n/KwbeFe/SZPM+lNWBiojVHW+iCSkq94BlHTex2MmG2DG8XGqmgxsEZFNmPF+UR5EzxQ3jVRFYGtQ\neRtwebo2K4H2wHfO1PIcoBKwG1BgjoikACNV9b2MHrJ+vTcNkJsULw6JieYFp8627NqWxeI/Fi2C\n+++HGTMgISEst+yHGZtfxkSCN3LqK3CyQdqGGe9dwU0jFYof7gXgDRFZDqwClmN8nABNVHW7iJwJ\nzBaR9ao6P/0NLr/8D0qXPkzJkvs588xj1KkTz0MPVadyZdiy5TtKlDhOs2aJwIld5GnfkAKBAPv2\nnVxOfz2a5bS6cNyvWjXYti1A5crw1luJJCXB+++vYM2aEowZU5UePQCOUrv2fm644SwaNYKDB+dR\nuLB6Qr9YLPtZv8TExJiSJ7/rt2kTXHNNgL594ZJLTr0eCAQYNWoUAAmhW7APMOtNk0SkIyZ+oGUm\nbV0LDnBzTaoh8KyqtnHK/YHU9MET6fpsBuqoalK6+meAJFV9JV2950LQYxW7tmWxeJPdu+GKK+Dx\nx81MKhQyCkF33H1fBq1JHVDVEs57Af5S1ZIi0g9AVV9wrs0AnlHVH8Kk0km4uZl3KXC+s85UGLgV\n+CK4gYiUdK4hIvcB81Q1SUSKisgZTn0xoBVmppWvSPsmFAnS1rbuuAPeeguWL4edO2HwYChb1rgI\n69c3RqpjR3j1VWPIjh7N/TMjqV808LN+ftYNvKPf4cNm6aJjx9ANVA7YJCJNnfdXAxud918At4lI\nYRE5FzgfWBz2pzu45u5T1eMi0hOYiQlB/0BV14nIA871kUAtYJSIKLAa6OZ0LwdMMsabgsBYN0Mc\nLRlTvDg0a2ZeYNe2LJZYIiUFunQxufiefz5v9xKRcUBToKyIbAWeBu4HRohIEeCwU0ZV14rIBGAt\nJ0LTvefuiwTW3Rd9kpJgyRJjtBYtsvu2LJZI8eijsHKlCZTI6f+XlzJOWCNlCSt2bcticZ/XXoP3\n3zeh5vHxOe9vjVSE8LuRCo4M8zKZzbbKldtHnTqlMtwcHR/v/W0Bfvn8MsLPukFs6/f552YW9f33\nJu1RbvCSkbK5+yyuk9Ha1i+/wMSJv1G6dCm2bTNGbNKkE/vcjh8/YbQyy/LhB0NmseSE7783m/Nn\nzsy9gfIadiZliUkOHMg8S3xGhiwzg2YNmcUvbNwIV10Fo0ZBmzZ5u5eXZlLWSFk8S24NWXqDZg2Z\nJdbZtcus5fbvD/fem/f7WSMVIfxupGLZLx4OIqFfKIYsJSX75MG5MWR+/vz8rBvEln6HDsHVV0Or\nVvDcc+G5p5eMlF2TsviaEiWgVi3zyoyMDNnixTBxovuGzGLJipQU6NwZatSAf/872tJEBzuTslhC\nIKczsoQEs9EyMdEaLkvuUIVevUwS7WnToHDh8N3bSzMpa6QsljARbMjWrYN33oHTToN//QtuvTW8\ng4zF/7z8MoweDd99ByVLZt8+J3jJSLmZu8+SR7ySPyy3+E2/NNdiq1bwyCMwYkSAwYPh44/NzGrw\nYPjzz2hLGR789tmlJ9r6TZgAb7xhZlDhNlBewxopi8UlChSAtm1h9myTumbTJpPEt0cPE05ssWTE\n/PnQsyd89ZVZ78zvWHefxRJB/vjDZJl/5x24/HLjCrTrVpY01q+Hpk1N8uZWrdx7jpfcfdZIWSxR\n4PBh+M9/zJEndt3KAuZonEaN4OmnoWtXd5/lJSNl3X0xTLT94m6Tn/U7/XS47z5YswZPrlvl58/O\nDQ4dguuug7vuct9AeQ1rpCyWKGLXrSzHj8Ntt8GFF5pZlOVkrLvPYokx7LpV/kEVHnrIfDmZOhUK\nFYrMc627z0FE2ojIehH5SUSeyOB6KRGZJCIrReQHEakdal+Lxa+UL2+yC/z6qzkavEcPc3DkmDFw\n7Fi0pTPuyAkT4MiRaEvifV580ZwJ9fnnkTNQGSEiH4rIThFZla6+l4isE5HVIjI0qL6/MzavFxEX\nQzwAVXXlhTkyfhOQABQCVgA107V5CRjgvK8BzAm1r9NO/czcuXOjLYKrWP1CIyVFddo01RYtVM8+\nW/X551X37AnLrXPE0aOqr76qWrasas2ac7VKFdVRo1SPH4+8LG4Tib/NTz5RrVxZdds21x91Cs7Y\nGTyWXgnUB1YF1TUDZgOFnPKZzs9azphcyBmjNwEFNA/2IquXmzOpBsAmVd2iqsnAeKBdujY1gbmO\ntdkAJIjIWSH2tVjyBdFet1KFKVPMmsns2TBvnnFHfvIJvPsu1K9vNp1az3vozJtnNnxPnQoVK0Zb\nGlDV+cC+dNUPAkOcMRhV3e3UtwPGqWqyqm7BGKkGbsnmppGqCGwNKm9z6oJZCbQHEJEGwDlApRD7\n+p5YycLsFla/nFO3Lnz4oUm7VLYsNGkC118Pc+e6YyRWroQWLeDJJ2HYMGOMatUyujVubFL2/Pvf\n0Lu3ydS9ZEn4ZYgGbv5trl0Lt9wC48ZBnTquPSYcnA9cJSKLRCQgIpc69RUwY3Iaro7PbmZBD+Vf\n5gXgDRFZDqwClgMpIfYFoGvXriQkJAAQHx9PvXr1/vkDSwsjtWVb9lu5fHm4+uoAjRsX4LffruKh\nhyA5+SAdO27j2WdrUrhw3u7/xx/QrVuA77+H559P5P774bvvAgQCp7a/8cZErrsO+vUL0LYtNG+e\nyPPPw7ZtsfP7ipXyn39Cnz6JvPQSxMVl/Pt0oxwIBBg1ahTAP+NlCBQESqlqQxG5DJgAVM2krXvz\naLf8iEBDYEZQuT/wRDZ9NgPFQ+2LXZPyNFa/8JG2btWypWqFCrlftzp8WHXwYNUyZVR791bdty/j\ndpnplpSkOmiQ6d+zp+rOnTmXIRZw47M7eFD14otVn3su7LfOMaRbkzJVJHDymtR0oGlQeRNQFugH\n9AuqnwFcnv5+4Xq56e5bCpwvIgkiUhi4FfgiuIGIlHSuISL3AfNUNSmUvhaL5QQFnHWrWbNyt26l\nCp9+ChdcYM7SWrTIZOGOj8+ZHMWKwVNPmfQ+cXHGNfjvf0NSUu708gvHjxsXX/365vfjESYDVwOI\nSHWgsKruwYzFt4lIYRE5F+MWXOyaFG5ZP8fCtgU2YCxwf6fuAeAB530j5/p64HOgZFZ9M7h/3r5O\nWCw+ZscO1aefVj3rLNXrrlP95hvV1NRT2y1erNq4sWq9eqZNOPn5Z9VOnUxU4ltvqR47Ft77e4HU\nVNX77lNt3Tp29OfU6L5xwHbgKCYe4G5M9N4YzFLMMiAxqP2Tzti8HmitYbAXmb3sZl6Lxeek5Ql8\n7TUoUuREnsBdu6B/f/j6axg0yKTkiYtzR4Zly+CJJ8zhkIMHQ/v2+Wdz8uDB8Nln8O23cMYZ0ZbG\nYDfzWsJC2sKnX7H6RYa0PIGrV5sBc9QoExlYvbr5uWED3HNPzgxUTnW75BITvj58uDGIV1xhjqSI\nVcL12f3nPyZMf+rU2DFQXsMaKYslH7F7tzFKjRubhKajRpkZTiT2W4mY4yeWLTOpgO64w4TPr1nj\n/rOjwTffmND8qVOhQoVoS+NdrLvPYskHfPcdPPaYmS299po5EgJMnsC33zZ5Ahs0iGyewKNHzabg\nIUOMsRo4ECpVcv+5kWD1arNv7NNPoVmzaEtzKtbdZ7FYYoLNm6FjR+jcGR59FL7//oSBApMncOBA\n2LLF5Al86KHI5QksUsQYzo0b4ayz4KKLzBrZX3+5+1y32b4drr3WfBmIRQPlNayRimFiZU3DLax+\n7nHgAPTrB5dearJUrF8PXbqYUPWMSL9uNWYMnHuumeXs3Xtq+3DqFh9vnrNypXFHVq9uDoM8ejRs\nj8gxudXv4EFjoLp3N79vS96xRspi8REpKWahvkYNc9LrqlUwYAAULRpa//T7rX76KXJ5AitVgvff\nNymeAgGjw5gxkJrq7nPDRXKymbU2aGC+IFjCg12Tslh8wtdfG/dZqVLG1XTxxeG5b/C61eWXm2dE\nYt1q/nzo29eE0A8daoIuYjVsXRXuvdf8rqZMgYJuJpwLA15ak7JGymLxOBs3Qp8+JkruxRfd24MU\nvN8qPt7MtEqUCP9zglGFSZPMWlXlysZYXXKJu8/MDc89B5Mnm+zmxYtHW5rs8ZKRsu6+GMau2Xgb\nt/Xbu9cEQ1xxBVx5pcmu3aGDe7ON4HWrM8/8ndtvd98VJ2KM7urVcPPNJgqwc2f45Rd3n5uTz270\naJOZfupUbxgor2GNlMXiMZKTzabYCy4wwQVr18Ljj5touUhQoAD06rWJAwfMelckKFTIBCNs3Ag1\na5p1n0ceMYEW0WTOHOOSnDbNREpawo9191ksHkHVDIZ9+hjX1yuvRPc8ot27jbEYMgRuuy2yz961\ny7jYxo0za2SPPmqS20aSH380Z219/jlcdVVkn51XvOTus0bKYvEAq1ebjba//WaM0zXXxEYQQdpA\nPWNG+AI1csKmTSar+HffwTPPmPROkQha2LbNuFlffDHyBjoceMlIWXdfDGPXbLxNOPTbvRsefNBk\nL7j+ehNSfu210TdQabrVrWui/m66yYS8R5pq1UxWh8mTYfx4M7OcPDnvpxRn9dnt32++JPTs6U0D\n5TWskbJYYpCjR+Gll8x5TKedZjbj9upl1mZijfbtzQymffvobcC97DITgv/qq/D009CkCSxYEP7n\nJCebAI4mTcw6oMV9rLvPYokhVGHiRLMYX7u2MVQ1akRbquxJTTWH+pUsaTbkRnOml5ICY8eaoI76\n9c2aWc2aeb+vKtx9t4mqnDgx9vdCZYV191kslhyzbJnZJDtwIIwcCV984Q0DBSbib9QoWLrURB5G\nk7g4uPNOk+29SRMT1HD//SanXl4YONDsRRs3ztsGymu4aqREpI2IrBeRn0TkiQyulxWRGSKyQkRW\ni0jXoGtbRORHEVkuIu4dTRzD2DUbbxOqftu3m2/o110Ht98Oy5ebYIRYJiPdihc32RaGDDGh2dHm\ntNNMJOTGjWbzcZ06Jshi//7s+6bX76OP4OOP4auvIh9FGAlE5EMR2SkiqzK41ltEUkWkdFBdf2dc\nXy8irdyUzTUjJSJxwJtAG6AW0ElE0k+6ewLLVbUekAi8IiJp31EUc1xxfVVt4JacFku0+PtvE0Zd\npw6UK2e++d93n3un40aChAQTwNCli4m8iwVKlTJReMuXmy8E1avD66+Hvn42a5bJeDF9uvmcfMpH\nmLH6JESkMtAS+DWorhZwK2ZcbwO8JSLuTXhCPWceOAsYBLwKnB9C+0bAjKByP6BfujYPACOc91WB\njUHXNgNlsnmGWixeIzVVdexY1SpVVDt2VP3ll2hLFH7eflu1Vi3V/fujLcmp/Pij6jXXqJ57rvkc\nUlIyb7t8ueqZZ6rOnx85+SKBM3amH08TgFXp6j4D6jrjcWmnrj/wRFCbGUDD9PcL1ysn1u8VYBYw\nCfgkhPYVga1B5W1OXTDvAbVFZDuwEngk6JoCc0RkqYjclwM5LZaYZeFCc57Tq6+aPHgTJpgjMfxG\n9+7QtCkRSZ2UU+rUMSmMPvzQzKguuyxj9+TWrSbsf8QIs7aV3xCRdsA2Vf0x3aUKmPE8jYzG9rCR\n6fKfiMwEnlfVb52qwhhrqkAoCVhCCbt7Elihqokich4wW0QuUtWDQGNV3SEiZzr161V1fvobdO3a\nlYSEBADi4+OpV68eiYmJwAm/slfLr7/+uq/0yc/6/for3H13gFWr4JVXErn9dvj22wCBQOzIm5Ny\n8JpNZu3bt59Hnz4XMWBAPM8/H1vyGwIMHQp79iTy4IMQHx/g/vvhvvsS+eqrAL16mXXCjh1jQ968\nfl6jRo0C+Ge8zAoRKYoZn1sGV2fRxb0w68ymWEA88DIwHjgPOB/4DzARaJLdFA1oyMnuvpOmiE7d\nNIwxSit/DVyawb2eAXpnUJ+3OW+MM3fu3GiL4Cr5Qb+DB1Wfekq1dGnVZ55RTUqKtlThIdTPbtcu\n1YQE1XHj3JUnrxw7pvrmm6rlyql26aJar95c7dnTuGb9CNm4+4A6wE7MxGQzkAxsAcqRbukG4+67\nPP39wvXKdp+UM8MZBGwHBqnqvlCMnxMAsQFo7vRdDHRS1XVBbV4F9qvqQBEpByzD+D+PAHGqelBE\nimHcjANVdVa6Z2h28lss0SAlxWTHHjDAZIsYMsQc6pcfSUudNH16bB6zEczBgybt1Pbt5gwtLwex\nZEVG+6REJAH4UlVPyQgpIpuBS1R1rxM48QnQAOPmmwNUc2swzsrdVw3oDhwD+mBmU+NFZCom2CEl\nqxur6nER6QnMBOKAD1R1nYg84FwfCQwGPhKRlZhIw77OL6EqMFHMjsCCwNj0BspiiVV27oQbbjB7\naSZNMklY8zPBqZMWL47tbOFnnAHPPhttKSKPiIwDmgJlRGQr8LSqfhTU5B8DpKprRWQCsBY4DvRw\nc7aQ6UxKRJYAjwLFMG665mKsxp3AXap6tVtChYrfZ1KBQCDIf+4//Kjf779D8+Ymp1vTpgGaNUuM\ntkiukJvPbuBAE879zTeRO1Ykt/jxbzMYv2ScSAuU2AwUhX8WgEYD10VANovFU/z6q4lou+ce8208\n2klgY40BA+Dss6FHj7wngLXkH7KaSTUG/oVZMBuiqisjKVgo+H0mZfEOmzaZGVSfPiYRrCVjkpKg\ncWPo1g0efjja0uRfvDSTsglmLZY8snYttGplzjO6z+7oy5YtW8xesTFjYj/9k1/xkpGyCWZjmOC9\nKH7ED/qtXGlmUC+8cKqB8oN+mZEX3WIxdVJ6/PzZeQ1rpCyWXLJkiZlBDRtmMitYQqdpUxNI0a4d\nHDgQbWkssYx191ksuWDBAhNS/cEHJnWOJXc8+KCJiJw82Rz3YYkMXnL3hbKZtwZmn1QCJ/ZVqQ1B\nt+RXvvkGbr3VHKzXytVDCvzPsWPmd9i4MTz/fLSlyT94yUiF8t3lM+B/wP8Bjwe9LC7jd7+4F/Wb\nMcPsgfr88+wNlBf1C5Vw6Va4MHz2GXzyiVmnihX8/Nl5jVDOl0xW1bddl8RiiXEmTzYnvE6ZYqLT\nLOHhzDPN77RFCzj//NhPnWSJLKG4+54FdmMSy/5zTJiq7nVVshCw7j5LpPj0U3jkEXPEgx1E3WHi\nRHj00dhPneQHvOTuC8VIbSGDNOyqGvVTcKyRskSC0aPNyawzZ5qziCzu4aXUSV7GS0Yq2zUpVU1Q\n1XPTvyIhXH7H735xL+j3zjvwf/9nBs2cGigv6Jdb3NItVlIn+fmz8xpZZUFvrqpfi0gHMp5JTXRV\nMoslyrz+OrzxBgQCcN550ZYmf1CgAIwaZaL9hg+3qZMsWefuG6iqz4jIKDI2Une7LFu2WHefxS2G\nDDHHi3/9NVSpEm1p8h82dZK7eMndZzfzWixBqJocfJ9/DnPmQIUK0ZYo/zJvHtxyi9k4Xa1atKXx\nF14yUq7u8RaRNiKyXkR+EpEnMrheVkRmiMgKEVktIl1D7Zsf8LtfPNb0U4W+fU04dCCQdwMVa/qF\nk0jolpY66YYbIp86yc+fXUaIyIcislNEVgXVvSQi60RkpYhMFJGSQdf6O2PzehFxdUu7a0ZKROKA\nN4E2QC2gk4jUTNesJ7BcVesBicArIlIwxL4WS9hITYWePY1xmjsXzjor2hJZALp3N8aqSxdIyfIs\ncEse+Qgz3gYzC6itqhcBG4H+AM7x8bdixuY2wFsi4potcXMm1QDYpKpbVDUZGA+0S9dmB1DCeV8C\n+FNVj4fY1/f4+WRQiB39UlJMBvOVK42Lr3Tp8Nw3VvRzg0jq9sYbcPCgifyLFH7+7DJCVecD+9LV\nzVbVVKf4A1DJed8OGKeqyaq6BdiEGbNdIZSME2kHICZwcu6+j7PpVhHYGlTeBlyers17wDcish04\nA7glB30tljxz/DjcdRfs2GFSHhUvHm2JLOlJS53UoAHUrWvSUlkizj3AOOd9BWBR0LVtmDH7FETk\nMWAB8D9nApJjsp1Jich/gJeAxsClzuuyEO4dSkTDk8AKVa0A1ANGiMgZIfTLF/jdLx5t/Y4dM4li\n9+41mSTCbaCirZ+bRFq3tNRJDz8My5a5/zw/f3Y5RUSeAo6p6idZNMtsvK8EvA7sFpFvRWSwiFwn\nIiH7K0KZSV0C1MpFGN3vQOWgcmWMxQ3mCuB5AFX9WUQ2AzWcdtn1BaBr164kJCQAEB8fT7169f6Z\nqqf9oXm1vGLFipiSx0/6HTkCzZoFiIuDr79OpEgRf+nnx/LevQF69izLTTddyOLFsH59bMkXy+VA\nIMCoUaMA/hkvQ8EJZrsGaB5UnX5sr+TUnYKq9nbuUwQzwWmEmZW9JyJ/qWq2sQahpEX6DHhEVbdn\nd7N0/QoCGzDKbQcWA51UdV1Qm1eB/ao6UETKAcuAusCB7Po6/W0IuiXHHDoEN94IZcqYfTiFCkVb\nIktOePZZmD3bpk7KCxmFoItIAvClqtZxym2AV4CmqronqF0t4BPMOlRFYA5QLavBWETiMQbqCucV\nD/wYyn7bUIxUAOOKW8yJBLOqqjdke3ORtpipXhzwgaoOEZEHnBuMFJGymKiSKhjX45C0KWVGfTO4\nvzVSlhxx4ABcdx1UrWoOLIyLi7ZElpySmgodO0J8PLz/PogndvvEFumNlIiMA5oCZYGdwDOYaL7C\nQFoy8YWQ32idAAAgAElEQVSq2sNp/yRmRnQcM4mZmclz3sNEAR7E2JCFwCJV3ZdR+wzvEYKRSsyg\nWlV1XqgPcQu/G6lAIPDP1N2PRFq/ffugbVuoXx9GjHD/JFg/f37R1i0pyaRO6tbNndRJ0dbPbSK1\nmVdEZgJlgNUYA7UQWJWTgTvbNSlVDeRWQIslVtizB1q2hMREePVV++3b6xQvfuJcr1q1bOqkWEVV\nWzt7qGpj3H3/AuqIyJ+YGdXT2d3DpkWy+J4//jCDWLt2MGiQNVB+wqZOyh3RSIskIpUx61GNgeuA\nMqpaMute1khZfM7WrdC8Odx5pzlyw+I/3nkHhg2DRYugRIns21si6u57BGOYGmHWr77H7Jv6Hlit\nqtnmEXHZK2/JC2khpH7Fbf02bzYpdR54IDoGys+fXyzp5kbqpFjSz+MkABOAhqpaVVVvV9W3VXVl\nKAYKsj5PalVm1zCBE3VzJqvFEjk2bjQuvieegIceirY0Frd54w1o1cqkTho8ONrSWNJQ1cfyeo+s\nzpNKcN72cH6OAQTo4jw86pnJrbvPkhFr1pgB67nn4J57oi2NJVLs3m1SJw0eDJ06RVua2CbaR3WI\nyHrn7Zuq+maWbUMIQV/hZCkPrluuqvXzJmbesUbKkp7ly+Gaa+CVV6Bz52hLY4k0K1eaGfSMGXDJ\nJdGWJnaJtpFyZCgLXK6qU7NqF8qalIhIk6BCY8yMyuIyfveLh1u/H36ANm3gzTdjw0D5+fOLVd0u\nusgEUtx0k4nqzC2xqp+XEZGzRaSdiFwvIuVVdU92BgpCM1L3YM4L+VVEfgXecuoslphh/ny4/npz\n5HuHDtGWxhJNOnQwbt727eHo0ezbW9xHRO7FHPfRHrgZ+EFEuoXUN1R3WdqpjKq6P5dyhh3r7rOA\nOQOqc2f45BO7qdNisKmTsibS7j4R2Qg0UtU/nXIZTJql6tn1zTbjhIicBnTAOU9KzKetqvrvvAht\nsYSDqVPh7rvhv/+FK6+MtjSWWKFAARg92qROGj7cndRJlhyxB0gKKic5ddkSirtvCnADkOzcOAk4\nlEMBLbnA737xvOo3caJx63z5ZWwaKD9/fl7QLS110pAhZradE7ygn8f4GVgkIs+KyLOYQxN/EpHe\nIvKvrDqGcp5URVVtHQYhLZaw8ckn0Lu3ieKqH/U4U0uskpAA48fb1EkxwM/OK219ZorzPtujRkMJ\nQX8XE8v+Yx6FDDt2TSp/8uGHZtPmrFlQu3a0pbF4AZs66WRiIQQ9VEIxUuuAasBmTj5PKuoZJ6yR\nyn+MGAFDhxr3TfVsl1wtlhM8+CBs2waTJ9tzxKIQOFED6IMT2+BUq6penV3fUNak2gLnA62A651X\ntgceWvKO3/3iOdXvlVfMa948bxgoP39+XtTtjTfMoZcDBmTf1ov6xTifAf8D/g94POiVLdkaKVXd\noqpbgL+B1KBXtohIGxFZLyI/icgpaZREpI+ILHdeq0TkuHPMMCKyRUR+dK4tDuV5Fv8yaBCMHGkM\n1LnnRlsaixcpXBg+/xzGjTMvywlE5EMR2Rmcs1VESovIbBHZKCKz0sZm51p/Z1xfLyKtQnhEspNY\n9gdVXeq8loUkWwjuvhsw59xXAHYB5wDrVDXL1QARiQM2AC2A34ElQCdVXZdJ++uAR1W1hVPeDFyi\nqnszau+0se4+n6NqMphPmWJcfOXLR1sii9exqZMyPD7+Skzk9seqWsepexHYo6ovOpOMUqraT0Rq\nAZ8AlwEVgTlAdVU9ZfIiIqUxGYp6AbuBiZxYNiKr8T2NUNx9gzBngWxU1XOB5pidw9nRANjkzMSS\ngfFAuyzadwbSf7/xxMKexR1U4V//gmnTIBCwBsoSHsKVOslPqOp8YF+66huA0c770cCNzvt2wDhV\nTXa8bJsw431G/A9YCtyFWZP6HlgW9MqWUIxUsqruAQqISJyqzgUuDaFfRWBrUHmbU3cKIlIUaA38\nN6hagTkislRE7gvheb7D737xrPRLTYUePeD77+Gbb6Bs2cjJFS78/Pl5XbfsUid5Xb8wUU5Vdzrv\ndwLlnPcVMON5GpmO7aqa4ExuagEjgJXAcmC4U5ctoRipfSJyBjAfGCsiwzh553Bm5MQPdz3wnar+\nFVTX2Mm03hZ4yJmOWvIBKSnQrRusXg2zZ0OpUtGWyOJHnn4azj7bRP3ZVYOscdZVsvotZfcb/Bio\nCbwBvIkxUB+H8uxQNvO2A44Aj2HOkioBDAyh3+9A5aByZU62vsHcRjpXn6rucH7uFpFJmOnk/PQd\nu3btSkJCAgDx8fHUq1ePxMRE4MS3Ia+W0+piRZ5I6Hf8OLz/fiJ79sCTTwb43/9iR177+Z0oJyYm\nxpQ8uSl/+22Ae++No1+/Kxk2DC66yF/6BZcDgQCjRo0C+Ge8DIGdTrbyP0TkbExMApw6tldy6rKi\ntqoGz5y+EZG1oQgRcoLZnCIiBTGBE82B7cBiMgiccBLX/gJUUtXDTl1RIE5VD4pIMWAWMFBVZ6Xr\nawMnfMTRo3DbbXDsmMnFd9pp0ZbIkh/YsgUaNYKPP4aWLaMtTWTIaJ+Uc9Dtl+kCJ/5U1aEi0g+I\nTxc40YATgRPVshqMReQ/wAhVXeiUGwIPqeod2ckairsvV6jqcaAnMBNYC3yqqutE5AEReSCo6Y3A\nzDQD5VAOmC8iKzBBGl+lN1D5gbRvQn4lWL/Dh+HGG01i0EmT/GGg/Pz5+Um3tNRJt98OmzaZOj/p\nFwoiMg4T1FBDRLaKyN3AC0BLJ4P51U4ZVV0LTMCM69OBHpkZKGdr0SrgEmCBc+TTFudZocQ2hOTu\nyzWqOh2jRHDdyHTl0ZyIIEmr2wycdBqwxb8kJcENN5j1gdGjoaCrf5UWy6k0bQrPPmv+DhctirY0\nkUdVO2VyKcPDb1R1MDA4hFtfn9VjQ+jvnrsvElh3n/fZvx+uvRZq1IB337XpaizRJb+kTvJS7r5s\n3X3OUb/LRWSfiBx0XgciIZzF3+zda9YALroI3nvP34OCxRukpU7q29dG/MUKoaxJvY7ZiFVGVc9w\nXjaPcATws1981y647LIAV10Fb75p1qL8hp8/P7/qVriwCdqZOvUA3bub7RCW6BLK0LANWJNRyguL\nJaekppqzoC69FK64Al56yR7tbYktypaFV19dyS+/mCPojxyJtkT5m1By9zUE/g3MBY451aqqr7os\nW7bYNSlvsWCBSXOUmgqvvQZNmkRbIoslc44ehbvuMqmTpkyBkiWjLVH48NWaFPAcJsPEaZhTFIsD\nZ7gplMVfbN4Mt95q9kD16gU//GANlCX2KVLEzPrr1DHRfzbPX3QIxUidrartVfUZVR2Y9nJdMovn\n/f7798MTTxjX3oUXwoYNZi9K2vqT1/XLDj/r52fd4IR+BQqYE307dIDGjeHnn6MrV34kFCM1TURa\nuy6JxTccP26yTNeoAbt3w6pV5qC5okWjLZnFknNEzN9v375w5ZWwfHm0JcpfhLImlQQUxaxHJTvV\nGgsRfnZNKvaYORN694Yzz4RXX4X69aMtkcUSPiZOhO7d4dNPoVmzaEuTe7y0JmU381rCwtq1xjht\n2gQvv2x27tuoPYsfmTvXrLG+/bZxA3oRLxmpUDbz3pTu2OB4Ebkxqz6W8OAFv//u3ebcp6ZNoXVr\nWLMG2rULzUB5Qb+84Gf9/KwbZK1fs2bGY9CrF4wcmWkzS5gIZU3q2eBznpz3z7omkcUTHD1q9jjV\nrAmFCsH69fDoo2YzpMXid+rXh/nzzf/Ac8/Z7BRuEsqa1I+qWjdd3aq0dO7RxLr7Io+q2ZHft68J\nzX3xRRMgYbHkR/74A9q2NZF/w4Z5J3OKl9x9oRipj4B9mKN/BXgIKKWqXV2XLhuskYosS5aYzbgH\nD8Irr0Dz5tGWyGKJPvv3m2NmypUzWfyLFIm2RNnjJSMVit3vhYnq+xQYjzml9yE3hbIYYsXvv3Ur\n3HGHWWu6+25Ytiw8BipW9HMLP+vnZ90gZ/qVLAnTp0NyMlx3nfkSZwkf2RopVU1S1SdU9VLn1V9V\nD0VCOEt0SUqCp5+GevXgnHPMZtx77rHZyi2W9Jx2GkyYAFWrwtVXm4AiS3jIcQi6iAwG9gPvq+qf\n2bRtg8miHue0H5rueh+gi1MsCNQEyqrqX9n1dfpbd58LpKSYo7T/7/9MJNPgwVClSrSlslhiH1Xz\nxe7TT2HWLHPqbyySyfHx/YHbgVRgFXA3UAzjRTsH2ALcEhxIFxFZc2GkbgLOAy7K6nx6EYkDNmBO\ndvwdWAJ0UtV1mbS/DnhUVVuE2tcaqfAzd65Zdypa1GzGvfzyaEtksXiP4cNh6FDjBqwT9RCzU0lv\npEQkAfgGqKmqR0XkU2AaUBvYo6ovisgTmHiEfpGUNcexKKo6SVVfzspAOTQANqnqFlVNxqxntcui\nfWdgXC77+pJI+v03bjSLv/fcA08+Cd99576BsusasY+qcuT4Efb8vYdf//qVtbvXsvj3xYz8ciQp\nqf49bCmvn12vXmZTe4sW5n/JAxzAxB4UFZGCmCxD24EbgNFOm9FAxPfIFszsgogMDyoqJrLvn7Kq\nPpzNvSsCW4PK24AMhz0RKQq0BnrktK8lb+zda/Z5jBljwsrHjzf+dYu3SElN4VDyIQ4dO0TSsaRT\n3icdS+LQsUMnvf+nXTbXCxYoSPHCxSlWqBjFChejeOHi7P5rNwM3DqRDzQ50rN2RxpUbE1fALlYG\nc9ttUKYMtG8P779vsrDEKqq6V0ReAX4DDgMzVXW2iJRT1Z1Os51AuUjLlqmRApZxwjgNBJ7mhKEK\nxceWEz/c9cB3Qb7OkPt27dqVBMfxGx8fT7169UhMTAROfBvyajmtzo37JyfDY48F+M9/oFOnRNau\nhbVrAyxa5A/9YqGcXr+5c+eSrMlc3PBiDh07xNwFczmccpgL6lxA0rEklqxcwuGUw1Q6txKHkg+x\ndtNaDqccptRZpUg6lsRvO37jSOoRChYtyKHkQ/x54E8OpxzmGMc4lnKMIgWKcHrc6ZQqVopihYuR\ncjiF0+NOp1K5ShQvXJz9u/dzWtxp1KxakzOLnUny7mRKxpXk0rqXUrxwcTau3shpcaeReEUixQoV\nY/ni5ZwedzrNmzXPUL8x08Ywb/c8ek3vxe5Du2lYoiFNz2xKzxt6ElcgLuq//7yUExMTw3K/QoVg\n6tREbrgBFixYT9u2f0RFn0AgwKhRowD+GS+DEZHzgEeBBEzMwWcicntwG1VVEYn4+kpIa1IislxV\nc5Qq1Dks8VlVbeOU+wOpmQRATAI+VdXxOelr16Ryjip8+SU8/jice67Z71S7drSl8j4pqSls/HMj\ny3YsY+n2pfy480f2Hdl3ygylUIFCFCtcjGKFzIwk/fvihU6tO+l6uhlN2vvTC56ORDFZ4sY/N/LZ\nms+YsHYCuw/ttjOsdGzYAG3amOS0fftGP69lBmtStwItVfVep3wH0BC4Gmimqn+IyNnAXFW9IKKy\numikCmKCH5pjfJuLyTj4oSTwC1BJVQ/nsK+vjVTwt/BwsGKFSQL7xx/GOLVpE7Zb54pw6xcp0huk\nZTuWseKPFZxV7CwuOfsSLq1wKfXK1+PXtb/S9IqmJxmZggWycl54h6w+Oz8YLDf+Nn//3fzPtWxp\n1qsKRDE7RQZG6iJgLHAZZi/sKMy4ew7wp6oOFZF+QHykAydc+49R1eMi0hOYiQkj/0BV14nIA871\ntNSMN2L8n4ez6+uWrH5nxw5zHs5XX8Ezz8B990FBf4yVrhOKQbq++vVcfPbFlDq91El9A1sDVC9T\nPUqSR4/qZarz1FVP8dRVT/1jsNJcgl40WOGiYkX49lu4/npzLP2HH5q8l7GAqq4UkY+BpZgQ9P8B\n72JOYZ8gIt1wQtAjLVumMynnHKm0i6djFtPSsOdJeYDDh82M6bXXoFs3eOopszvekjGhGKRLzr4k\nQ4NkyR4/zLDCwd9/m6M+jh+Hzz+HYsUiL4OX0iLZ86R8SGoqjBsH/fubMPKhQ81OeMsJrEGKLvnd\nYB0/bjwa69bB1KkmCjCSWCMVIfxupHLjF1+wwGzGTU01M6gmTdyRLRxEak0qO4OUZpTCbZC8uuYW\nCuHULRYNViQ+O1Xo188EMs2cCZUru/q4k/CSkbIrEz5h82Z44glYtMikMerc2TvHBoSTUAzSs02f\ntTOkGCK/rmGJGC9HuXLmqI8ZM6BWrWhLFXvYmZTH2b/fGKUPPjCHDqalNMoPhGKQLqlgXHalTy8d\nbXEtOSQWZ1huMWaM2RYyaRI0auT+87w0k7JGyqMcP252sT/7LFxzDQwaBBUqRFsq97AGKX8TbLB2\nHdrFzTVv9p3Bmj4d7rzTJHdu29bdZ1kjFSH8bqQy84vPnGn2O515pkkCWz9HO9hih8z084tBsmtS\n7hAJgxUt/RYuhJtuMvuobr89+/a5xUtGyq5JeYi1a41x+vlneOklkwss2jvX80ooBumZps/EvEGy\nRI7M1rD8MMNq1Ai++cZs+t21y7jv8zt2JuUBdu82m3A//9zsdXrwQShcONpS5Z4fd/7I+NXjmf/b\nfE/OkCyxiZ9cglu3QqtW5ovoCy+E/8uol2ZS1kjFMEePwrBh8OKL0KWLOUyttEfH7t/2/8Ynqz5h\n7Kqx7D+yn04XdqLleS2tQbK4gh8M1p9/wrXXmoi/d98Nb5YYa6QihJ+NVCAAnToFaNAgkZdeguoe\nzK6z9/BePlvzGWNXjWXN7jXcXPNmutTtQpMqTSggBXy9ZgN2TSpWyI3BihX9Dh2Cm2826ZPGjw9f\n5K6XjFQ+3EkT+yxYALfcYkLKp0zxloE6nHyYCWsm0G58O85941y+3vw1vRv1Zvu/tjPy+pFcdc5V\nFBD7Z2eJHGlrWCu7r2Re13mUL16eXtN7Uem1SvSa1otvf/02Zg9wLFYMvvgCSpQw7r99+6ItUeSx\nM6kYY8UKaN3a7Jto1Sra0oRGSmoK32z+hrGrxjJlwxQurXApXep0oX3N9pQoEvUUjxZLhnjJJZia\nCn36wOzZZtNvxYp5u5+XZlLWSMUQGzdCYiIMHw4dOkRbmqxRVZbtWMbYH8cyfs14Kp5RkS51unDb\nhbdx9hlnR1s8iyVHpDdYXS/qylNXPUXxwsWjLdo/qJr16XfeMYaqRo3c38tLRgpV9ezLiO8Pfv1V\ntUoV1Q8/PFE3d+7cqMmTGZv+3KQDAwO1xvAaWvWNqjrgmwG6bve6XN0rFvULJ37Wz8+6bdizQVu9\n3UqrvFZFJ6+bHG1xTuGDD1TLl1ddsiT393DGzqiP4aG87D6pGGDXLnMQ2mOPwd13R1uaU9l1aBef\nrv6UsavG8su+X7il9i181O4jGlZqGNXTYC0WN6hepjr9L+hP6jmpPDj1QUatHMWwNsOoXDKCGWCz\n4J57oGxZk2nmk0+gRYtoS+Qu1t0XZf76C5o1g3btTIqjWCHpWBKT109m7KqxLNy6kGurX0uXOl1o\nWbUlheJi5KQ2i8Vljhw/wtDvhjJ88XD+76r/o2eDnjFzuvL8+Sbyb9gwcz5VTvCSu89VIyUibYDX\nMafrvq+qQzNokwi8BhQC9qhqolO/BTgApADJqtogg76eNlKHDpkgiUsvNcdqRHtSkpySzKyfZzF2\n1Vim/jSVxpUb06VOF9pd0C6mfPMWS6TZsGcDD059kL+O/MXI60ZyWcXLoi0SAKtWmTx//fpBz56h\n98vISIlIPPA+UBtz4O3dwE/Ap5hj5LcAt6jqX+GRPkTc8iNiDNMmIAFjgFYANdO1iQfWAJWcctmg\na5uB0tk8I1QXbMxx5Ihqq1aqXbuqpqRk3CYSfv/U1FRd8NsC7fFVDz3zxTO14fsNdfgPw3Vn0k7X\nn+3ndQ1Vf+vnZ91UM9YvNTVVP17xsZZ7qZz2nNpT9x/ZH3nBMmDzZtXzz1cdMEA1NTW0PmSwJgWM\nBu5x3hcESgIvAn2duieAF9L3c/vl5oaVBsAmVd2iqsnAeKBdujadgf+q6jbH4uxJd90T09Gccvy4\nySBRvDi89150zn1av2c9A74ZQLXh1bhnyj2UL16ehd0WsrDbQno26MlZxc6KvFAWSwwjItxx0R2s\nfWgtR44fodaIWny+9vO0AT5qJCTAd9/BtGnQvTuk5GLLl4iUBK5U1Q8BVPW4qu4HbsAYL5yfN4ZH\n6hzI5tYvWERuBlqr6n1O+XbgclXtFdQmzc1XGzgDeENVxzjXfgH2Y9x9I1X1vQyeodH+A8kpqnDv\nvSY315dfQpEikXv29oPbGb96PGNXjWXHwR3cduFtdKnThYvPvtgGQFgsOWT+r/PpPrU7CfEJjLhm\nBAnxCVGV5+BBaN/ebPwdOxZOOy3ztundfSJSDxgJrAUuApYBjwLbVLWU00aAvWnlSOHmCmAo1qMQ\ncDHQHCgKLBSRRar6E9BEVbeLyJnAbBFZr6rz09+ga9euJCQkABAfH0+9evX+SWcSCAQAYqY8d26A\nt96C339PZPZsWLjQ/ecnHU9id5ndjF01lh+2/kCTMk0Y2moozRKaMf/b+RzceBCpIDHx+7FlW/ZS\nOWVzCq9f8DpLCi3h0ncvpUP5DnSs1JEWV7eIijzLlgV4/HHhgw+a0rYt9O49n+LFU0hMTCQQCDBq\n1CiAf8bLdBTEjMU9VXWJiLwO9AtuoKoqIpGfFbjlRwQaAjOCyv2BJ9K1eQJ4Nqj8PnBzBvd6Buid\nQX32ztcY4t//Vq1bV3Xv3tDa59bvfyT5iE5aN0lvnnCzlhhSQtuNa6cTVk/Qv4/9nav7uUV+XNfw\nC37WTTXn+m36c5O2HtNa67xVR7//7Xt3hAqR48dVH3pItV491R07Mm5DujUpoDywOajcBJgKrAPK\nO3VnA+s1RBsQrpebqyFLgfNFJEFECgO3Al+kazMFaCIicSJSFLgcWCsiRUXkDAARKQa0Ala5KKvr\nDBtmTtycNQtKuTBZTtVU5m2Zx/1f3k+FVyvw2qLXaFm1JZsf2czk2ybTsXZHTi90evgfbLFYOK/0\neUzvMp0nr3ySDhM60P2r7uw7HJ1Ee3FxJmvNTTdBkybm/LnsUNU/gK0ikpYptAUmqO1L4C6n7i5g\nsgsiZ4nbIehtORGC/oGqDhGRBwBUdaTTpg8m1DEVeE9Vh4lIVWCic5uCwFhVHZLB/dVN+cPF6NEw\nYIDZ13DOOeG99487f2Tsj2MZt3oc8afF06VOFzrV6USVklXC+yCLxRISfx35iye/fpLJ6yfzcquX\n6XRhp6it+b7zDjz3HHz11ckneGcSgn4RxptVGPgZMy7HAROAKkQpBN1u5nWZSZOgRw+YOxcuuCA8\n90x/NlPnOp3pUqcLdcrVCc8DLBZLnlm0bREPfPUA5YqV461r36Ja6WpRkeO//zUHpU6YYHKDgrc2\n89ozE1xkzhx44AGYOjV3BiptYRTM2Uwjl47kqo+uov7I+mzet5kR14xgy6NbeKHFC540UMH6+RE/\n6+dn3SA8+jWs1JCl9y2l1XmtaPh+QwZ9O4ijx4/mXbgc0qEDfPqpOf5n4sTs28casZHfw4csXAid\nOpk/iosvzt09jqYcZcKaCYxdNZbAlgCtz2tN70a9aVOtDUUKRjB23WKx5IpCcYXoc0UfOtbqSM/p\nPak3sh4jrzPnqkWSZs1g5kxz0u+e9LtRYxzr7nOBH380CWNHjTIpS3LKb/t/48UFLzJ21Vh7NpPF\n4hNUlUnrJ/HIjEdoWbUlL7Z8kbJFy0ZUhk2bTCq2X36x7r58y08/GcM0fHjODdQv+37hvi/uo/7I\n+hQrVIw1PdYw+47ZdK3X1Rooi8XjiAjta7ZnbY+1lChSgtpv1Wb0itERzVhRrZo5+dtLWCMVRrZt\nM6fpDhxo/L+hsvHPjXSd3JUG7zWgfPHybOy5kaEth7Jx2Ub3hI0B7LqGd/GzbuCufmcUOYPX27zO\ntM7TGL54OFd/fDXr96x37XnpKV8+Yo8KC9ZIhYndu42Lr2dPk/YoFNbsWkPn/3am8YeNOa/UeWx6\neBPPXf0cZYqWcVdYi8USdS6pcAk/3PsDN11wE00+bMLTc5/myPEj0RYr5rBrUmFg/364+mrj3hs0\nKPv2K/5YwaBvBzH/t/k81vAxelzWw7rzLJZ8zLYD23hkxiOs2rmKt699m+ZVm7v6PC+FoFsjlUf+\n/hvatIG6dc06VFZ79pZuX8pz3z7Hkt+X0OeKPjxwyQMUK1wscsJaLJaY5quNX9FzWk+aVGnCq61f\nde00Ai8ZKevuywPHjpmTMc85x6Q9ysxAfb/1e9qObctNn95Ey6ot+fnhn/lXo39la6Cs39/b+Fk/\nP+sG0dPvuurXsabHGs4ufjYXvnUh7y17j1RNjYossYI1UrkkJQXuvBMKF4aPPsr4TKh5W+bR/OPm\ndJnYhRtr3MimXpvo2aCnzaFnsVgypVjhYrzU6iVm3zGbD5Z/wFUfXcXqXaujLVbUsO6+XKBqMkn8\n/LPJJhF8bouqMueXOTz37XPsSNrBk02e5Pa6t1MorlDE5bRYLN4mVVN5d9m7DJg7gHvr38uApgMo\nWqhonu/rJXefNVI5RBX69oVvvzVpj844I61emfbTNJ779jkOHD3AU1c+xa0X3krBAjaph8ViyRt/\nJP3BYzMf44dtPzDimhG0PT8XWQKC8JKRsu6+HDJkCMyYAdOnGwOVqqlMWjeJS9+7lP5f96d3o96s\nenAVXep2ybOBsn5/b+Nn/fysG8SefuWLl2dch3G8fe3b9Jzek1s+u4XtB7dHW6yIYI1UDnjrLfjw\nQ3MmVMn4FCasmUC9d+oxaP4gBlw1gBXdV9CxdkfiCsRFW1SLxeJDWldrzeoHV3N+6fO56J2LGLF4\nBCmpKdEWy1Wsuy9E/vMf6N8fvgkc54dD43l+/vPEnxbPgKsG0LZa26idF2OxWPIna3atofvU7hxL\nOcbI60ZSr3y9kPt6yd1njVQIfPEF3Nc9mV7vjWHUz4OpWKIiA64aQPNzm1vjZLFYokaqpvLR8o/o\n/yuZncsAAA9PSURBVHV/7qh7BwObDaR44eLZ9vOSkXLV3ScibURkvYj8JCJPZNImUUSWi8hqEQnk\npG8kmDHnKF1ee4e4R88n8OcnfHDDB8zrOo8WVVu4bqBizS8ebqx+3sXPuoF39CsgBeh2cTdW91jN\n7r93U/ut2kxZPyXX9xOROGc8/tIplxaR2SKyUURmiUh82IQPEdeMlIjEAW8CbYBaQCcRqZmuTTww\nArheVS8Ebg61r9scTj5MnwnDuXZGNWq3/4L/dhrHnDvn0DShaSTFsFgslmw5q9hZfHzTx3zU7iP6\nzunLTZ/exNb9W3Nzq0eAtUCai6ofMFtVqwNfO+WI4pq7T0QaAc+oahun3A9AVV8IatMDKK+qT+e0\nr1MfdnffoWOHeGfpOwyd/woH1jXghWv+j0dvuTSsz7BYLBa3OHL8CEO/G8rwxcN56sqn6HV5r1Mi\njTNy94lIJWAU8DzwL1W9XkTWA01VdaeIlAcCqpqLc8Zzj5vuvopAsCnf5tQFcz5QWkTmishSEbkj\nB33DyoGjBxgyfwhVh1VlzoZFyNjpfNR6sjVQFovFU5xW8DSeSXyGBfcs4MuNX9LgvQYs+X1JKF1f\nAx4HgvMwlVPVnc77nUC5MIubLW7uNA1lilMIuBhoDhQFForIohD7AtC1a1cSEhIAiI+Pp169eiQm\nJgIn/MpZlQ8mH+R/hf7Hm0ve5KLiF9Gv/FCGP92VgX3h7LMDBAJZ93ez/Prrr+dYHy+VrX7eLQev\n2cSCPFa/U8s7Vu9gQJUBbCu9jdaDWlNuWznql6pP9arVSY+IXAfsUtXlIpJ4SgNAVVVEopHiR115\nAQ2BGUHl/sAT6do8ATwbVH4fsy6VbV+nXnPLnkN79Kmvn9IyQ8to18lddcOeDbp7t2qtWqovvJDr\n24aVuXPnRlsEV7H6eRc/66bqP/32HNqj3aZ004qvVNTP1nymztgZPJYOxnivNgM7gEPAGGA9ZkkG\n4GxgvebBLuTm5eaaVEFgA2aWtB1YDHRS1XVBbS7ABEi0BooAPwC3Ahuz6+v015zKvzNpJ68sfIUP\nln9Ah5od6NekH1VLVeXAAWjeHFq0MFklLBaLxW/M/3U+3ad2Z+1DazMNQReRpkAfNWtSLwJ/qupQ\nJzYgXlUjGjzh6j4pEWkLvA7EAR+o6hAReQBAVUc6bfoAd2P8oO+p6rDM+mZw/5CN1PaD23lxwYt8\nvPJjOtfpTN/GfalSsgoAhw+bAwtr1jRZJezWJ4vF4leOpRyjSMEi2Rmp3qp6g4iUBiYAVYAtwC2q\n+lfkpM0Hm3l/2/8bQ78byrjV4+haryt9ruhDhTMq/HM9ORnatzd5+MaMgbgYymgUCAT+8S/7Eauf\nd/GzbuB//by0mde3Kbp/2fcLQ+YPYeL6idxb/17W91x/yimXKSlw110ms/no0bFloCwWi8Xiw5nU\nhj0bGPzdYKZunMqDlz7Iow0fpUzRMqf0VYUePWDdOpPR/HR7DqHFYskn2JlUFFizaw3Pz3+e2b/M\n5uEGD7Pp4U3En5Z5Bo+nnoKlS+Hrr62BslgslljF80d1rPhjBTdPuJmrP76auuXq8vPDPzOg6YAs\nDdTQoTB5splBlSgRQWFzSPBeDT9i9fMuftYN/K+fl/D8TOqasdfQ54o+jL5xNMUKF8u2/ciR5jV/\nPpQtGwEBLRaLxZJrPL8m9fexvzm9UGj+unHj4PHHYd48OO88l4WzWCyWGMVLa1KeN1Khyj91KnTr\nBnPmwIUXuiyYxWKxxDBeMlKeX5MKhXnz4O67YcoUbxkov/vFrX7exc+6gf/18xK+N1JLl0LHjjB+\nPFx+ebSlsVgsFktO8LW7b+1auPpqEyjRrl0EBbNYLJYYxrr7YoDNm6F1a3j5ZWugLBaLxav40kjt\n2AEtW0K/fnD77dGWJvf43S9u9fMuftYN/K+fl/Cdkdq7F1q1MoESDz0UbWksFsv/t3fuwXaNZxj/\nPRIZDkrTi2umwaBktEKlKqRIREJrepUwpaW3MTWJmioxjHZMp2Sm07tRRjUM0RIyoSUJMqop4pIj\nEY5L5UxdkqAGiZBG8/SP79uy7NnnIrLP3mt5fzN7zlrvt9Ze73P2nv3Od3vfIHg/VGpOavXqVA9q\nzBiYPj1KbgRBEDSiTHNSlQlSb70Fxx0He+wBl18eASoIgqAnyhSkmjrcJ2mCpC5JT0k6p0H7EZJe\nk7Q4vy4otHVLWpLti3p7zvr1MHlySnN02WXVCVBVHxcPfeWlytqg+vrqkTRM0gJJyyQ9KmlKtg+V\nNF/Sk5LmSeo5KWqTaFqQkjSIVBp+ArAfcKKkfRtcerftkfl1UcFu4IhsH9XTczZsgNNOg3Xr2q9o\n4fuls7Oz1S40ldBXXqqsDaqvrwHrgR/aHgEcAvwg/16fC8y3vTdwZz4fUJrZkxoFPG272/Z64Hqg\n0WLw3vo9ffaJpk6F7m6YNQuGDNk0R9uVV18d0CrNA07oKy9V1gbV11eP7ZW2O/PxGuBxYFfgeGBG\nvmwG8KWB9q2ZQWpX4NnC+XPZVsTAoZIekfQ3SfvVtd0h6UFJ3+3pIQsXwq23QkfHZvM7CILgA4uk\n4cBI4H5gR9urctMqYMeB9qeZpTr6syLjYWCY7bWSJgKzgb1z22jbKyR9DJgvqcv2PfVvMHcubL/9\n5nO6neju7m61C00l9JWXKmuD6uvrCUnbArOAqbZXqzDBb9uSBnylXdNW90k6BPiJ7Qn5fBqwwfYl\nvdyzHDjI9it19guBNbZ/UWcv79LEIAiCFlK/uk/SlsCtwG22f5VtXaS1ASsl7QwssP3JgfSzmT2p\nB4G9ctfxBWAScGLxAkk7Ai/mCD2KFDRfkdQBDMqRfBtgPPDT+geUZQllEARBO6PUZboSeKwWoDJz\ngG8Cl+S/swfat6YFKdtvSzoDmAsMAq60/bik7+f2PwBfA06X9DawFpicb98JuCl3NQcD19qe1yxf\ngyAIPuCMBr4BLJG0ONumARcDf5H0baAbOGGgHSv1Zt4gCIKg2rR17j5Jf5S0StLSgq3HzWWSpuWN\nw12SxrfG6/6xKZvnSqZvK0n3S+qU9Jikn2d7JfTVkDQobzi/JZ9XRl+jDfVV0SdpB0k3Sno8fz8/\nWyFt+2hjgoTFSgkTppRWn+22fQGHk5ZCLi3YpgM/zsfnABfn4/2ATmBLYDjwNLBFqzX0om0n4IB8\nvC3wBLBvVfRlnzvy38HAfcBhVdKX/T4LuBaYU6XvZ/Z5OTC0zlYJfaQ9P6cVvp/bV0Vbnc4tgBXA\nsLLqa7kD/fgnD68LUl2ktfu1H/qufDwNOKdw3e3AIa32/z3onA2Mq6I+oAN4ABhRJX3AbsAdwJHA\nLdlWJX3LgY/U2UqvLwekZxrYS6+tgabxwD1l1tfWw3090NPmsl1IG4ZrNNo83Jb0c/Nc6fRJ2kJS\nJ0nHAtvLqJA+4JfA2cCGgq1K+hptqK+Cvt2BlyRdJelhSVfkVcRV0FbPZGBmPi6lvjIGqXdwCvu9\nrfxo+1Uh9Zvnim1l12d7g+0DSD2OMZKOrGsvrT5JXyBtn1hMD+m7yqwvM9r2SGAiKZfb4cXGEusb\nDBwIXGr7QOAN6nLSlVjbO0gaAnwRuKG+rUz6yhikVknaCSBvLnsx258njbvW2C3b2pa8eW4WcI3t\n2v6DyuirYfs14K/AQVRH36HA8Uob0GcCR0m6hurow/aK/Pcl4GZSPs4q6HsOeM72A/n8RlLQWlkB\nbUUmAg/lzw9K+tmVMUjVNpfBuzeXzQEmSxoiaXdgL6DXEh+tROpz8xyUW99Ha6uHJG0NHA0spiL6\nbJ9ne5jt3UlDKnfZPpmK6JPUIWm7fFzbUL+UCuizvRJ4VlItBds4YBlwCyXXVseJbBzqg7J+dq2e\nFOtj0m8mKVvFf0nJak8FhpImq58E5gE7FK4/j7QypQs4ptX+96HtMNJcRifpx3sxqaxJVfTtT8rN\n2AksAc7O9kroq9P6eTau7quEPtK8TWd+PQpMq5i+T5MW8zwC3ERaTFEJbdnfbYCXge0KtlLqi828\nQRAEQdtSxuG+IAiC4ANCBKkgCIKgbYkgFQRBELQtEaSCIAiCtiWCVBAEQdC2RJAKgiAI2pYIUkEQ\nBEHbEkEqqBSS7qqvhyPpTEmX9uPeP0n6ah/XnJkzaDQFSSdJWifp/Dr7qEJ9oCWSJtW1nyvppGb5\nFQStIoJUUDVmktIUFZkEXNePe/tKugkwlVR6ZLMj6ShSVvV9gXGSTik0LwUOckr4Oh74vaRBhfbx\nwNxm+BUErSSCVFA1ZgHHSRoM75RB2cX2PxpdLOl3uRrpfODj5IzmksbmMg5LJF2Z85pNIZU1WCDp\nzgbvdbCkhUrViO+TtK2kb0manSuhLpd0hqQf5fe+V9KH8737AxcB420/AxwLnCTpaADbb9qulQTZ\nGnjN9v/yvR8Chtj+j6SvS1qafbh7s/xHg6CFRJAKKoXtV0jJMY/NpsnAnxtdK+krwN6knssppMzm\nlrQVcBVwgu1PkUo7nG77N6RckkfYHlv3XkOA64EpTuVJxgFv5uYRwJeBg4GfAa87lYi4Nz8X20tt\nj3bOWG17re0JtucXnjFK0jJSMtSzCo8fR8rJBnABKdAdQCrTEASlJoJUUEWKQ36TeHcm6CKHA9c5\nsQK4K9v3AZbbfjqfzwDG9PHMfYAVth8CsL0m93RMKvj4hu2XgVdJ2bYhDeEN768o24tsjyCVlfh1\n7kEBHAPclo8XAjMkfYcUXIOg1ESQCqrIHGCspJFAh1Nhwp5oVLCwfl5KDWzvhXWF4w2F8w1sQiCx\n3QX8i1RSAVKdp0W57XTgfFJ9oIckDd1En4OgLYggFVQO22uABaQhu94WTPwdmJTL3O8M1CoHPwEM\nl7RnPj8ZqM3vrAZqPRgkXS3pM6QSBzvnYyRtlxc2NKzaW7u9v5okDS/Ms32CFKCekjQC6HIuZyBp\nz9zjuhB4iVTALghKSwwHBFVlJqlO0Ak9XWD75ryi7jHg38A/s32dpFOBG3JgWARclm+7HLhd0vN5\nXmp/4AXb6/Oy8N/mJeprSYUe61cM1h/3t4d2GHCupPXAeuB7tl+XNJGNQ30A0yXtRQqAd9he0s/3\nD4K2JOpJBcEmkueErrA9qc+Lm+fDPOBk26ta5UMQNJMIUkEQBEHbEsN9QeXJe5CurjO/ZftzrfAn\nCIL+Ez2pIAiCoG2J1X1BEARB2xJBKgiCIGhbIkgFQRAEbUsEqSAIgqBtiSAVBEEQtC3/BzGnaNSG\n31xmAAAAAElFTkSuQmCC\n", - "text": [ - "<matplotlib.figure.Figure at 0x10b66eed0>" - ] - }, - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The required diameter of Pump is 0.108 m\n", - "The required rotational speed is 168.0 rad/s\n", - "The required Brake Horse Power is 160.0 W\n" - ] - } - ], - "prompt_number": 33 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-12, Page No:819" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "rho=998 #Density of fluid in kg/m^3\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "V_dot=12.8 #Volumetric Flow rate in m^3/s\n", - "H_gross=325 #Gross Head in m\n", - "C=10**-6 #COnversion Factor\n", - "n_turbine=0.952 #Efficiency of turbine in fraction\n", - "n_generator=0.945 #Efficiency of generator in fraction\n", - "n_other=1-0.035 #Other efficieny in fraction\n", - "no=12 #Number of Turbines\n", - "\n", - "#Calculations\n", - "W_dot=rho*g*V_dot*H_gross*C #Ideal Power produced in MW\n", - "\n", - "W_electrical_dot=W_dot*n_turbine*n_other*n_generator #Actual Electric Power in mW\n", - "\n", - "W_total=no*W_electrical_dot #Total Power produced in MW\n", - "\n", - "#Result\n", - "print \"The electrical power generated is\",round(W_total),\"MW\"\n", - "#The answer differs due to decimal point accuracy\n", - "#Answer in the text has been rounded off and multiplied hence the inconsistency" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The electrical power generated is 424.0 MW\n" - ] - } - ], - "prompt_number": 18 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-13, Page No:820" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "r2=2.5 #Inlet Radius in m\n", - "r1=1.77 #Outlet raius in m\n", - "b2=0.914 #Runner blade width at inlet in m\n", - "b1=2.62 #Runner blade width at outlet in m\n", - "n_dot=120 #Speed in rpm\n", - "w=12.57 #Rad/s\n", - "alpha1=10 #Angle in degrees\n", - "alpha2=33 #turning of flow in degrees\n", - "V_dot=599 #Volumetric Flow rate in m^3/s\n", - "H_gross=92.4 #Gross Head in m\n", - "C=10**-6 #Conversion Factor\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "\n", - "#Calculations\n", - "#Part(a)\n", - "#Runner Inlet\n", - "V2_n=V_dot/(2*pi*r2*b2) #Normal Component of velocity in m/s\n", - "V2_t=V2_n*tan((alpha2*pi)/180) #Tangential Component in m/s\n", - "beta2=(arctan(V2_n/(w*r2-V2_t)))*(180/pi) #Runner leading edge angle in degrees\n", - "\n", - "#Runner Outlet\n", - "V1_n=V_dot/(2*pi*r1*b1) #Normal Component of velocity in m/s\n", - "V1_t=V1_n*tan((alpha1*pi)/180) #Tangential Component in m/s\n", - "beta1=(arctan(V1_n/(w*r1-V1_t)))*(180/pi) #Runner leading edge angle in degrees\n", - "\n", - "#Using Euler Turbomachine Equation\n", - "W_shaft=rho*w*V_dot*(r2*V2_t-r1*V1_t)*C #Shaft output power in MW\n", - "\n", - "H=W_shaft/(rho*g*V_dot*C) #Net Head in m\n", - "\n", - "#Part(b)\n", - "#Similiary repeat calculations for part(b) and part(c)\n", - "#Result\n", - "#Results are for only part a\n", - "print \"The inlet runner blade angle is\",round(beta2,1),\"degrees\"\n", - "print \"The outlet runner blade angle is\",round(beta1,1),\"degrees\"\n", - "print \"The output power is\",round(W_shaft),\"MW\"\n", - "print \"The net head required is\",round(H,1),\"m\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The inlet runner blade angle is 84.1 degrees\n", - "The outlet runner blade angle is 47.8 degrees\n", - "The output power is 461.0 MW\n", - "The net head required is 78.6 m\n" - ] - } - ], - "prompt_number": 32 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-14, Page no:830" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "Cp=0.4 #Power Coefficient \n", - "n_gearbox=0.85 #Efficiency in fraction\n", - "rho=1.204 #Density of air in kg/m^3\n", - "V=10 #Velocity of flow in m/s\n", - "D=12.5 #Diameter in m\n", - "\n", - "#Calculations\n", - "W_dot_op=(n_gearbox*Cp*pi*rho*V**3*D**2)/8 #Work done in W\n", - "\n", - "#Result\n", - "print \"Electric Power produced is\",round(W_dot_op),\"W\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Electric Power produced is 25118.0 W\n" - ] - } - ], - "prompt_number": 36 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-15,Page No:832" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "D_A=2.05 #Diameter in m\n", - "n_A=120 #Speed in rpm\n", - "w_A=12.57 #Angular Speed in rad/s\n", - "V_A_dot=350 #Volumetric Flwo rate in m^3/s\n", - "H_A=7.5 #Head of water in m*10\n", - "H_B=10.4 #Head of water in m*10\n", - "bhp_A=242 #Brake Horse Power at A in MW\n", - "n_turbine_A=0.942 #Efficiency of turbine A\n", - "rho_A=998 #Density of water in kg/m^3\n", - "\n", - "#Calculations\n", - "a=H_B/H_A\n", - "rho_B=rho_A #Density in kg/m^3\n", - "n_B=n_A #Speed at b in rpm\n", - "D_B=D_A*(a**0.5) #Diameter of the new pump in m\n", - "V_B_dot=V_A_dot*(n_B/n_A)*((D_B/D_A)**3) #Volumetric Flow rate at B in m^3/s\n", - "bhp_B=bhp_A*(rho_B/rho_A)*((n_B/n_A)**3)*((D_B/D_A)**5) #Brake Horse Power in MW\n", - "\n", - "n_turbine=1-(1-n_turbine_A)*((D_A/D_B)**0.2) #Efficiency correction in fraction\n", - "\n", - "#Result\n", - "print \"The brake horse power is\",round(bhp_B),\"MW\"\n", - "print \"The diameter of the new turbine is\",round(D_B,2),\"m\"\n", - "print \"The volumetric Flow rate is\",round(V_B_dot),\"m^3/s\"\n", - "print \"The corrected efficiency is\",round(n_turbine,3)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The brake horse power is 548.0 MW\n", - "The diameter of the new turbine is 2.41 m\n", - "The volumetric Flow rate is 572.0 m^3/s\n", - "The corrected efficiency is 0.944\n" - ] - } - ], - "prompt_number": 54 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-16, Page No:836" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "w_A=12.57 #Angular Speed in rad/s\n", - "rho_A=998 #Density of fluid in kg/m^3\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "H_A=75 #Head in m\n", - "bhp_A=242*10**6 #Brake Horse Power at A in W\n", - "H_B=104 #Head in m\n", - "bhp_B=548 *10**6 #Brake Horse Power at B in W\n", - "\n", - "#Calculations\n", - "#For Turbine A\n", - "Nst_A=(w_A*bhp_A**0.5)/(rho_A**0.5*g**1.25*H_A**1.25) #Dimensionless specific speed at A\n", - "\n", - "#For turbine B\n", - "w_B=w_A #Angular Speed in rad/s\n", - "rho_B=rho_A #Density of fluid in kg/m^3\n", - "Nst_B=(w_B*bhp_B**0.5)/(rho_B**0.5*g**1.25*H_B**1.25) #Dimensionless specific speed at B\n", - "\n", - "Nst_US_A=43.46*Nst_B #Turbine specific speed in US units\n", - "\n", - "#Result\n", - "print \"The Turbine Specific Speed in US units is\",round(Nst_US_A,1)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Turbine Specific Speed in US units is 70.2\n" - ] - } - ], - "prompt_number": 55 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter14_2.ipynb b/Fluid_Mechanics-Fundamentals_&_Applications/Chapter14_2.ipynb deleted file mode 100755 index c9c070b2..00000000 --- a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter14_2.ipynb +++ /dev/null @@ -1,865 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:450c4477ee136f31039f9403e53a08ecb268b501d205d040bb2cfe54fe53ca91" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 14: Turbomachinery" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-1, Page No:767" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "import matplotlib.pyplot as plt\n", - "%matplotlib inline\n", - "\n", - "#Variable Deceleration\n", - "V_dot_cfm=range(0,1500,250) #Volumetric Flow rate in cubic feet per second\n", - "V_dot_mps=transpose(V_dot_cfm)/2118.83 #Volumetric flow rate in m^/s\n", - "rho_air=1.184 #Density of air in kg/m^3\n", - "rho_water=998 #Density of water in kg/m^3\n", - "Patm=101.3 #Atmospheric Pressure in kPa\n", - "v=1.562*10**-5 #Kinematic Viscosity in m^2/s\n", - "D=0.23 #Diameter in m\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "f=0.0209 #Friction coefficient from table\n", - "L=13.4 #Length in m\n", - "V=6.81 #Velocity of flow in m/s\n", - "alpha=1.05 #Constant\n", - "C=(1/0.0254) #Conversion factor\n", - "\n", - "#Minor Loss Coefficients\n", - "ml_1=1.3\n", - "ml_2=0.21\n", - "ml_3=1.8\n", - "\n", - "#Calculations\n", - "Re=(4*V_dot_mps)/(v*pi*D) #Reynolds Number\n", - "\n", - "#Friction coefficient values from Moddy Chart\n", - "f1=[0,0.023,0.022,0.0185,0.0175,0.0162]\n", - "f=transpose(f1)\n", - "\n", - "#Cross Sectional Area\n", - "A=(pi*D**2)/4 #Area of the pipe cross section in m^2\n", - "\n", - "V1=transpose(V_dot_mps)/A #Velocity array in m/s\n", - "V=transpose(V1) #Velocity in m/s\n", - "\n", - "#Minor Losses\n", - "Kl=ml_1+(5*ml_2)+ml_3 #Minor losses \n", - "\n", - "H_required=(alpha+(f*(L/D))+Kl)*(V**2/(2*g)) #Required net head in m of air\n", - "\n", - "H_required_inches=H_required*(rho_air/rho_water)*C #Head Required in inches of water\n", - "\n", - "H_av=[0.9,0.95,0.9,0.77,0.4,0] #Table values taken fro plotting\n", - "\n", - "#Result\n", - "print \"The Plot shows the variation of the head required and the head available as a function\"\n", - "print \"Of V_dot. The intersection point tells the operating point.\"\n", - "\n", - "plt.plot(V_dot_cfm,H_required_inches,V_dot_cfm,H_av)\n", - "plt.ylabel('H,inches H2O')\n", - "plt.xlabel('V_dot,cfm')\n", - "plt.show()\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Plot shows the variation of the head required and the head available as a function\n", - "Of V_dot. The intersection point tells the operating point.\n" - ] - }, - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEQCAYAAACugzM1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VOX5xvHvwy6yKoiyKCAiIFQRRERpUnGlbq2i6K/u\ntWpR61ZsbWtStSogrlTcUMEFqGIV6opL0IIisiiyKChWRAUE2SFkeX5/vAOEEEJCZnJmMvfnuuZi\n5szJzD2I8+Q972bujoiIyM5UizqAiIgkNxUKEREplQqFiIiUSoVCRERKpUIhIiKlUqEQEZFSJaxQ\nmFkdM5tqZrPMbK6Z3bmT8x4wswVm9omZdU1UHhER2T01EvXC7r7JzH7h7hvMrAbwXzM7xt3/u+Uc\nM+sLtHP3g8zsSGA40DNRmUREpPwSeunJ3TfE7tYCqgMri51yGjAydu5UoJGZNUtkJhERKZ+EFgoz\nq2Zms4ClwLvuPrfYKS2AxUUefwu0TGQmEREpn0S3KArd/TDCl//PzSyzhNOs+I8lMpOIiJRPwvoo\ninL31Wb2CtAdyCny1BKgVZHHLWPHtmNmKh4iIrvB3Yv/Ml5uiRz11MTMGsXu7wEcD8wsdtp44ILY\nOT2BVe6+tKTXc/eUvWVlZUWeIR2zK3/0N+WP9hYviWxR7AeMNLNqhIL0tLu/bWaXA7j7I+7+qpn1\nNbOFwHrg4gTmERFJmHXroF69qFMkRiKHx84GDi/h+CPFHl+VqAwiIpVh7Vro0QOeegqOPDLqNPGn\nmdmVIDMzM+oIuy2Vs4PyRy0d8rvDb38LvXtXzSIBYPG8jpUoZuapkFNE0s/998OoUTB5MtSpE3Wa\n7ZkZHofObBUKEZHdNHky/PrX8OGH0KZN1Gl2FK9CoUtPIiK7YelS6N8fnnwyOYtEPKlQiIiUU34+\nnHsuXHwx9O0bdZrE06UnEZFy+vOfYcYMePVVqF496jQ7F69LT5UyM1tEpKp4+WV47jmYPj25i0Q8\nqUUhIlJGCxdCr17wn/+EeRPJTp3ZIiKVaMMGOPNM+PvfU6NIxJNaFCIiu+AOF10EhYVhzoRV+Hf0\nyqE+ChGRSvLYY6Hz+sMPU6dIxJNaFCIipfj44zAE9r//hfbto05TPuqjEBFJsBUroF8/ePjh1CsS\n8aQWhYhICQoL4Ze/hM6dYciQqNPsHrUoREQS6Pbbw0inO++MOkn01JktIlLM66/Do4+G/oka+pZU\noRARKep//wtDYZ9/HvbdN+o0yUGXnkREYnJz4ayzYODAsBGRBOrMFhGJufJKWL48tCaqwnwJTbgT\nEYmjUaPgnXdg2rSqUSTiSS0KEUl7n34KffrAu++G4bBVhYbHiojEwerVYbG/++6rWkUintSiEJG0\n5R72vG7RAoYNizpN/KmPQkSkgu6+G77/HsaMiTpJclOhEJG0lJMD99wDH30EtWtHnSa5qY9CRNLO\nd9/BeefB009Dq1ZRp0l+KhQiklby8uDss2HAADjuuKjTpAZ1ZotIWrn+evjiCxg/HqpV8V+Vk354\nrJm1MrN3zWyOmX1mZteUcE6mma02s5mx218TlUdE5Pnn4aWXwiWnql4k4imRndl5wHXuPsvM6gHT\nzWyiu88rdt4kdz8tgTlERJg/H37/e3jjDWjcOOo0qSVhNdXdf3D3WbH764B5QPMSTtVkeRFJqHXr\nwqS6u+6Cww+POk3qqZTGl5m1BroCU4s95UAvM/vEzF41s06VkUdE0oc7/O530LMnXHpp1GlSU8Ln\nUcQuO70A/CHWsihqBtDK3TeY2cnAS0Aa70wrIvE2bFi47DR5ctRJUldCC4WZ1QTGAc+4+0vFn3f3\ntUXuv2ZmD5nZXu6+svi52dnZW+9nZmaSmZmZkMwiUnV88EHY0vSDD2CPPaJOk3g5OTnk5OTE/XUT\nNjzWzAwYCaxw9+t2ck4zYJm7u5n1AP7l7q1LOE/DY0WkXJYtg27dYPhwOOWUqNNEIxXWejoa+A3w\nqZnNjB27GdgfwN0fAc4CrjSzfGAD0D+BeUQkTRQUwLnnwoUXpm+RiCdNuBORKucvf4GpU8NQ2OrV\no04TnVRoUYiIVLoJE8KEuunT07tIxJMKhYhUGV99Bb/9Lbz8MjRtGnWaqkOT2EWkSti4MUyq+9vf\nwpwJiR/1UYhIynMPk+k2bYJnnwXTeg+A+ihERLYaMSJ0Xk+dqiKRCGpRiEhKmz4dTj4Z3n8fDj44\n6jTJJemXGRcRSbSVK+Gss+Chh1QkEkktChFJSYWFcOqp0KEDDB0adZrkpBaFiKS1O+6ANWvC0uGS\nWOrMFpGUM3FiWMNp2jSoWTPqNFWfCoWIpJRvvoHzz4exY6F5SVuhSdzp0pOIpIzcXOjXD264ATIy\nok6TPtSZLSIpY8AA+O47ePFFzZcoC024E5G08swzoW9i2jQVicqmFoWIJL3Zs+HYY+Gdd6BLl6jT\npA4NjxWRtLBmTVjs7957VSSiohaFiCQt9zDzulmzMPtaykd9FCJS5d1zDyxeDM89F3WS9KZCISJJ\n6b33YMgQ+OgjqF076jTpTX0UIpJ0vv8ezj0XRo6E/fePOo2oUIhIUsnLg3POgcsvhxNPjDqNgDqz\nRSTJ3HgjzJ0L//kPVNOvshWizmwRqXJeeAHGjYOPP1aRSCZqUYhIUvj8c+jdG157Dbp1izpN1aAJ\ndyJSZaxfHybV/eMfKhLJSC0KEYmUO/zmN1CrFjzxhNZxiif1UYhIlTB8OMyZA1OmqEgkK7UoRCQy\nU6eGfa+nTIF27aJOU/Woj0JEUtry5XD22fDYYyoSyS5hhcLMWpnZu2Y2x8w+M7NrdnLeA2a2wMw+\nMbOuicojIsmjoADOOy/cTj896jSyK4nso8gDrnP3WWZWD5huZhPdfd6WE8ysL9DO3Q8ysyOB4UDP\nBGYSkSSQnR2KxW23RZ1EyiJhhcLdfwB+iN1fZ2bzgObAvCKnnQaMjJ0z1cwamVkzd1+aqFwiEq1X\nXoGnngqT6mpoOE1KqJQ+CjNrDXQFphZ7qgWwuMjjb4GWlZFJRCrfokVwySUwdmzYY0JSQ8Lreeyy\n0wvAH9x9XUmnFHtc4vCm7OzsrfczMzPJzMyMU0IRqQybNoVJdX/5C/TqFXWaqiknJ4ecnJy4v25C\nh8eaWU3gP8Br7n5fCc8/DOS4+5jY4/lARvFLTxoeK5L6LrsM1q6F0aM1X6KyJP3wWDMzYAQwt6Qi\nETMeuCB2fk9glfonRKqeJ56AyZPh8cdVJFJRwloUZnYM8B7wKdsuJ90M7A/g7o/EzhsGnASsBy52\n9xklvJZaFCIpauZMOOGEsGNdx45Rp0kv8WpR7LJQmFlb4BDCl/1cd/+qom9aXioUIqnpp5+ge3e4\n446wGZFUroQXCjNrADwOdAdmxQ4fBkwHLnX3NRV987JSoRBJPYWFYTLdgQfCfTu7+CwJVRmLAj4I\nzAX6u3th7E2rAX8FhhHrWxARKUlWFqxcGTYiktRWWotiobuXuAJLac8lgloUIqnlrrvCpLpJkzRf\nIkqV0aLQN7OIlNu994bRTSoSVUdpw2M/MLNbYsNcgTDk1cz+BnyQ+Ggikmr++U944AF45x1o0SLq\nNBIvpV16akiYB3E423dmzyR0Zq+qlITo0pNIKnjsMbj9dsjJgTZtok4jULnDY9sBnQiXoua5+8KK\nvml5qVCIJLeRI8PSHDk52lsimVRmoajp7nnFjjV19+UVffOyUqEQSV5jxsD114fLTR06RJ1Gikr4\nEh5m9gsz+xb4wczeNLOijck3K/rGIpL6xo2Da6+FN99UkajKSuvMHgKcCDQBHgUmmtlRlZJKRJLe\nhAnw+9/Da69B585Rp5FEKm14bC13nxO7/0Js46EXzeymSsglIkns9dfh0kvDJkRdtYFxlVdaodhs\nZvvGdqrD3eeYWR/gFeDASkknIknn7bfhggvgpZfgiCOiTiOVobRLT38G9i16wN2/BTKAuxIZSkSS\n03vvQf/+8MIL2nwonSR046J40agnkeh98EFY5G/0aOjTJ+o0UhYJX8LDzGYXeehsv2Wpu/vPKvrm\nIpIapk0LRWLUKBWJdFRaH8WpRe6/AvRlx/2tRaSKmzULTjkFRoyAk06KOo1EYaeFwt2/3nLfzDa7\n+/8qJZGIJI3PPoOTT4aHHoJTT931+VI1JWzPbBFJbfPnhy1M77kHzjwz6jQSpdL6KLqxrW9iDzM7\nPHbfAUra21pEqoaFC+H44+HOO+Hcc6NOI1ErbfXYHLbtSWEU25/C3X+R0GTbZ9GoJ5FK8vXXkJEB\nf/0rXHZZ1GmkIiptUcBkoEIhUjkWLw5F4oYbYMCAqNNIRSV8UUARSS/ffQfHHgtXXaUiIdtToRAR\nli4N8yMuvTQsGS5SlAqFSJr78Uc47riwNMef/hR1GklGuywUZnaMmdWL3T/fzO4xswMSH01EEm3l\nyjC66dRT4ZZbok4jyaosLYrhwHozOxS4HvgSGJXQVCKScKtXw4knhn6Jf/wDTOsuyE6UpVDkx4Yc\nnQH8093/CdRPbCwRSaS1a8OM65494e67VSSkdKWt9bTFWjO7GfgN0NvMqgM1ExtLRBJl/fqwdlPn\nznD//SoSsmtlaVGcA2wCLoltYtSCsE3qLpnZE2a2tNhKtEWfzzSz1WY2M3b7a5mTi0i5bdwYVoFt\n0wYefhiqaTiLlEGZJtyZWWugnbu/ZWZ1gRruvqYMP9cbWAeMcvcuJTyfCVzv7qft4nU04U6kgnJz\n4YwzoHFjePppqF496kSSaJU24c7Mfgc8DzwSO9QS+HdZXtzd3wd+2tVblOW1RGT3bd4M/frBnnuG\nPSVUJKQ8ytLwHAAcA6wBcPcvgH3i9P4O9DKzT8zsVTPrFKfXFZGY/Hw477zQF/Hcc1CjLD2TIkWU\n5Z9MrrvnWqzHy8xqUGyBwAqYAbRy9w1mdjLwEtC+pBOzs7O33s/MzCQzMzNOEUSqroICOP982LAB\n/v1vqFUr6kSSSDk5OeTk5MT9dXfZR2FmQ4BVwAXAVcDvgbnu/pcyvUHo35hQUh9FCecuArq5+8pi\nx9VHIVJOhYVwySWwZAmMHw977BF1Iqlslbko4J+A5cBs4HLgVSAuo5PMrJnFmipm1oNQuFbu4sdE\nZBcKC+GKK2DRInj5ZRUJqZiELjNuZqOBDKAJsBTIIjYHw90fMbMBwJVAPrCBMALqwxJeRy0KkTJy\nh6uvhhkz4I03oL6mx6atStuPwsyOIXzBt2Zbn4a7e9uKvnlZqVCIlI073HgjvP8+TJwIDRtGnUii\nFK9CUZbO7BHAtYSO54KKvqGIJIY7/OUv8M474aYiIfFSlkKxyt1fS3gSEamQW2+FCRPg3XfDpDqR\neCltz+xusbv9gOrAi0DulufdfUbC023LoktPIqW4884wkS4nB5o1izqNJIuE91GYWQ6lzJdw919U\n9M3LSoVCZOfuuQeGD4dJk6B586jTSDKptM7sZKBCIVKyYcNCoZg0CVq1ijqNJJvKXOvpDjNrVORx\nYzO7vaJvLCIV8+ijMGRI6LhWkZBEKsuEu77uvmrLA3f/Cfhl4iKJyK6MHAm33QZvvw2tW0edRqq6\nshSKamZWZ8sDM9sD0IoxIhEZPRpuvjnMk2jXLuo0kg7KMjz2WeBtM3uCsCT4xWjPbJFIjBsH118f\nikSHDlGnkXRR1o2LTgaOI4yCmujubyQ6WLH3V2e2pL3x4+Gyy8KyHIcdFnUaSQUa9SSSRl57DS68\nEF59Fbp3jzqNpIrKHPV0ppktMLM1ZrY2dtvlNqgiEh9vvRWKxMsvq0hINMqyKOCXwCnuPq9yIpWY\nQS0KSUuTJoUtTMeNg969o04jqaYy96P4IcoiIZKupkwJRWLMGBUJiVZZRj19bGZjCduUbo4dc3d/\nMXGxRNLbtGlwxhnw9NNw7LFRp5F0V5ZC0RDYCJxQ7LgKhUgCzJwJp5wCI0bAiSdGnUZEo55Eksrs\n2XD88fDQQ/DrX0edRlJdwjcuMrOb3H2QmT1YwtPu7tdU9M1FZJv580ML4r77VCQkuZR26Wlu7M/p\nbL/cuFHK8uMiUn4LFsBxx8Fdd0H//lGnEdmeLj2JRGzRIsjIgFtugd/+Nuo0UpVU5p7Zxd/4DmA1\n8Li7r6hoAJF09s03YVTTn/6kIiHJqyzzKIqbBhQA98U5i0haWbIkFIk//AF+//uo04jsnC49iUTg\nhx8gMxMuvhhuuinqNFJVVcaop6KjnZzQib31sUY9ieye5ctDx/V556lISGoorY9iy2gnA/4O3MK2\nYqFf70V2w8qVYZ7E6afD3/4WdRqRsinrfhQz3b1rJeTZ2fvr0pOkvJ9+ghNOCCOchgwBq/AFAZHS\nVeaigCJSQVOmQNeuofNaRUJSTbmHx4pI2RUUwKBB8MAD8OijcNppUScSKb/SOrPXsa0vYg8zW1vk\naXf3Brt68dg+278Elrl7l52c8wBwMrABuMjdZ5Y1vEgy++47OP98yM+Hjz+Gli2jTiSye3Z66cnd\n67l7/ditRpH79ctSJGKeBE7a2ZNm1hdo5+4HAb8DhpcrvUiSeuUVOPzw0B/xzjsqEpLaEnrpyd3f\nN7PWpZxyGjAydu5UM2tkZs3cfWkic4kkSm4u/PnPYUe655/XhkNSNUTdR9ECWFzk8bdAS0CFQlLO\nggVhQb/99w97Suy1V9SJROIj6kIB20/kg53M0cjOzt56PzMzk8zMzMQlEimnp5+G66+Hv/8drrxS\no5okGjk5OeTk5MT9dRO+hEfs0tOEkjqzzexhIMfdx8Qezwcyil960jwKSVZr14Z1mqZPD3tb/+xn\nUScS2aaqzKMYD1wAYGY9gVXqn5BUMX166LCuUyfsca0iIVVVQi89mdloIANoYmaLgSygJoC7P+Lu\nr5pZXzNbCKwHLk5knmTj7mzK38SqTatYnbuaVZtWsSZ3DXVr1qVRnUZbb3vW3BPTtYykUVgYdqG7\n6y548EE455yoE4kkllaPrQB3Z2P+RlZtWrX1tnrT6u0eb73llnBs0yoAGtdpvLUo1K9dnw15G7Y7\nZ3PBZhrWbrhd8WhYpyGNajfa7tjObvVq1VOhiZNly8KKrytWwOjR0KZN1IlEdi5el57SulC4+w5f\nylu/8HN38oVf7Fa9WvWSv6BL+BJvWKfhDsfq1Kizy5x5BXllzlNS/o15G2lYp+EOxaast3q16lHN\nor5KGb2334YLLgi3W2+FmjWjTiRSOhUKwhf9+rz1pX9hbvkNfye/0deqXit8ie/Gl2jD2g2pXaN2\nBH8j5ZNXkMea3DVlLizFb+vz1tOgdoMyF8TiRbFB7QYpXWjy8iArC0aOhKeeCqu/iqSCtCsUZ449\ns8Qvt9rVa5f8JVWGyzIN6zSkVvVaUX+8pJdfmF9iodnhMttOivG6zeuoX6t+if8NmtRtwsF7H0zH\nph3p2KQje9fdO+qPu52vv4Zzz4VGjUKh2GefqBOJlF3aFYrn5zxf4m/0Naur/Z/sCgoLWJO7psRW\ny7L1y5j/43zm/TiPucvnUqdGHTo26Uinpp22/dm0I/vV26/S+1mefx4GDAibC113HVRL3UaRpKm0\nKxSpkFMqxt35ft33zF0+l3nL520tHvN+nEdufu7WVkfRInJAowPifllrw4ZQGN5+O8yN6N49ri8v\nUmlUKCStrNiwYlvhKFJEVmxcQfu922/fAmnSkXZ7tdut1uZnn4Xhrl27wkMPQYOyLn8pkoRUKESA\ntblrt7t0Ne/HecxbPo9vVn9D28Zt6di0I52adNraGjm4ycHUrVl3h9dxh0ceCduT3n13GNmkEcWS\n6lQoREqxKX8TC1Ys2Fo8tvy5cOVC9qu339aWR8emHWlZuxPDsjqyeGFDxoyBgw+OOr1IfKhQiOyG\n/MJ8vvrpK+YtD8Vj0tx5vPvZXHzv+TSt3zC0QIoUkU5NO9G0blNNWJSUpEIhUgEFBXDnnTBsGDz+\nOPT9ZSHfrvl2ax9I0ZaIme3QB9KxaUdaNWilAiJJTYVCZDctWQK/+U24/8wz0KLFzs91d5atX7Zd\n/8fcH0MxWbt5LR2adNhWPGKFpE3jNtSolgwr+Eu6U6EQ2Q3/+Q/89rdw1VVhJ7rq1Xf/tVZtWrXD\nMN65y+fyw7ofOGivg3boSG+/d/uUmMkvVYcKhUg55ObCwIHw0kvw3HNw9NGJe6/1m9fz+YrPdygi\ni35axKH7Hsr1Pa/nzE5nqtUhCadCIVJGn38etiht2zb0RzRuHE2OzQWbeX3h6wyZMoQla5Zww1E3\ncHHXi0scrisSDyoUIrvgDqNGwY03wm23weWXJ8/ciCmLpzBkyhAmfzOZAUcMYECPATSp2yTqWFLF\nqFCIlGLNmrBF6cyZMHYsdO4cdaKSzf9xPkOnDGXcvHH8X5f/4/qjrqdNY21yIfFRVbZCFYm7jz8O\nW5TuuWfYojRZiwRAhyYdeOy0x5jz+znUq1WP7o91p/8L/Zn+3fSoo4lspRaFVBmFhXDvvTBoEPzz\nn9CvX9SJym9N7hoem/4Y9354Lx2adGDg0QM5vu3xmq8hu0WXnkSKWLYMLrwQVq8Oo5pat446UcVs\nLtjMmM/GMHjyYGpUq8HAowfSr1M/Lasv5aJCIRLz1luhSFx0EWRnV60tSt2d1xa+xuDJg/l61ddc\n1/M6Lj38UurVqhd1NEkBKhSS9vLy4JZbwsimUaOgT5+oEyXW1G+nMmTKECb9bxJXdLuCq4+8mn32\n1JZ7snMqFJLWFi0KW5TuvXfYx7pp06gTVZ4FKxYw9IOhjJ0zlv6H9OeGXjfQbq92UceSJKRRT5K2\nxo6FI48MGwxNmJBeRQLgoL0P4uFTHmb+gPk0qduEo0YcRb/n+/HRko+ijiZVlFoUkjLWr4drr4Wc\nnLBFabduUSdKDus2r2PEjBHc8+E9tGnUhoFHD+TkdidrpJTo0pOkl08/DS2II44IQ1/r1486UfLJ\nK8jjX3P+xeApgyn0Qv7Y64/079yfWtVrRR1NIqJCIWnBPexdnZ0N99wD558fdaLk5+5M/GoigycP\n5vMVn3Ndz+u47PDLqF9b1TXdqFBIlbdyJVx6KXzzTbjUdNBBUSdKPdO/m86QKUN466u3uOzwy7jm\nyGvYr/5+UceSSqLObKnS3n8funaFNm1gyhQVid3VrXk3xpw1ho8u+4i1m9fS6aFOXDb+Mj7/8fOo\no0kKSWihMLOTzGy+mS0ws5tKeD7TzFab2czY7a+JzCPJr6AAbr0Vzj4bhg8Pl5tqa6+fCmvbuC3D\n+g7ji6u+oEWDFvR+sje/GvsrPlj8QdTRJAUk7NKTmVUHPgeOA5YA04Bz3X1ekXMygevd/bRdvJYu\nPaWBb78NW5RWqxa2KG3ePOpEVdeGvA08OfNJhn4wlBYNWjCw10B+2f6XVDNdZKhKUuHSUw9gobt/\n7e55wBjg9BLO0xg+Yfx46N4dTjgBJk5UkUi0ujXrMqDHAL64+guuOuIqsidlc8hDh/DEzCfIzc+N\nOp4kmUQWihbA4iKPv40dK8qBXmb2iZm9amadEphHktCmTXDNNeH24otw880V28dayqdGtRqc0/kc\nPr7sY4adPIyxc8bS9oG2DJ48mNWbVkcdT5JEIgtFWa4VzQBaufuhwIPASwnMI0nEHV5/HXr2hO++\nCxsM9eoVdar0ZWb0aduHN37zBq+c9wqfLv2Utg+0ZeDEgSxZsyTqeBKxRO7uvgRoVeRxK0KrYit3\nX1vk/mtm9pCZ7eXuK4u/WHZ29tb7mZmZZGZmxjuvVIL8/LAEx+DBoVjcfHOYSKdJxMnjsH0P45lf\nP8P/Vv2Pez+8ly7Du3BGhzO4sdeNdGqqRn8yy8nJIScnJ+6vm8jO7BqEzuw+wHfAR+zYmd0MWObu\nbmY9gH+5e+sSXkud2Slu/XoYMSKMYmrdGm66CU46SQUiFazYsILhHw9n2EfD6NGiBwOPHsjRrY7W\nEiEpICUm3JnZycB9QHVghLvfaWaXA7j7I2Y2ALgSyAc2EEZAfVjC66hQpKgff4QHHwxDXXv3hoED\nw4J+kno25m1k5CcjGfrBUJrUbcLAXgM5vcPpGimVxFKiUMSLCkXqWbQotB6efRbOOgtuvBHat486\nlcRDQWEBL81/iUGTB7E6dzU3HnUj5x96PnVq1Ik6mhSjQiFJadas0P/w5ptw2WVhNNN+WjGiSnJ3\n3vvfewyeMpgZ38/gmh7XcEX3K2i8R+Ooo0mMCoUkDXd4910YNAjmzAlLgf/ud9CgQdTJpLLMXjqb\nuz+4mwmfT+Diwy7m2p7X0qphq13/oCSUCoVErqAgzH0YNCh0Vg8cCOedpyU30tni1Yu5f+r9PDHz\nCU5pfwo3HX0Th+xzSNSx0pYKhURm40YYORLuvhv22SeMYDr11LD0hgjAqk2rGD5tOPdNvY+MAzK4\nJeMWOu/TOepYaUeFQirdTz+FvSEefBB69AgtiGOOiTqVJLN1m9cxfNpwhn4wlN4H9OaWn99Cl2Zd\noo6VNlJhrSepIhYvhhtugHbtYOFCePvtsDaTioTsSr1a9fjj0X/ky2u+5MgWR3L808dz1r/O4tOl\nn0YdTcpBhUJ2as4cuOgiOPTQ8PiTT+DJJ+EQXXKWctqz1p7c2OtGvrzmS45qeRQnPnMiZ/7rTD75\n4ZOoo0kZqFDIdtzDpkGnngp9+oS5D19+CUOHQsuWUaeTVLdnrT25odcNfHnNlxzd6mhOevYkfjX2\nV8z6YVbU0aQU6qMQAAoLYcKEMIJp+fIwQe7CC6GO5lBJAm3I28Cj0x9l8OTB9GjRg6yMLLru1zXq\nWFWGOrMlLnJzw+zpIUOgXr0wgulXv9JS31K5NuZt5NHpjzJo8iCOaHEEWRlZHL7f4VHHSnkqFFIh\na9bAI4/AffdBly6hQGRmapE+idbGvI08NuMxBk0eRLf9upGVkUW35t2ijpWyVChkt3z/Pdx/Pzz+\nOJx4Ivzxj3DYYVGnEtnepvxNPDY9FIyu+3UlKyOL7s27Rx0r5Wh4rJTLF1+EtZcOOQQ2bICPPw6X\nnFQkJBnVqVGHq4+8moXXLOTEA0/kjDFncMpzpzBtybSoo6UltSiquKlTwyJ9778PAwaEW5MmUacS\nKZ9N+ZvCq+9AAAAL3ElEQVQYMWMEd02+iy77dCErI4sjW2q9+l3RpSfZKXd47bVQIL7+OkyWu+QS\n2HPPqJOJVExufi5PzHyCO/57B5336UxWRhY9W/aMOlbSUqGQHeTlwZgxoUBUrx6W2Dj7bKiRyA1v\nRSKQm5/Lk7Oe5I7376BT005kZWRxVKujoo6VdFQoZKt167ZtM3rggWEE0wknaASTVH25+bk8Nesp\n7vjvHXRo0oGsjCx6teoVdaykoUIhLFsGw4aFbUYzM0ML4ogjok4lUvk2F2wOBeP9O2i/d3uyMrI4\nev+jo44VORWKNPbVV2FJjdGjw6WlG28MC/aJpLvNBZsZOWskd/z3Dtrt1Y6sjCyO2T99V69UoUhD\nM2aE/oe33oLLLw/bjDZrFnUqkeSzuWAzoz4ZxT/e/wdtG7clOyOb3gf0jjpWpVOhSBPuYVnvQYNg\n/ny47rowH6J+/aiTiSS/vIK8rQWjdaPWZGdm8/MDfh51rEqjQlHF5efDuHGhBbFpU+h/OPdcqFUr\n6mQiqSevII9nPn2G29+/nf0b7k9WRhaZrTOjjpVwKhRV1MaNYc+HoUOhefMwgqlvX20zKhIPeQV5\nPDv7WW5/73ZaNmhJdmZ2lS4YKhQpLi8v7PMwf/72t3nz4Be/CC2IXhrlJ5IQ+YX5PPvps9z23m20\naNCC7IxQMKyKjSlXoUgRP/0En3++Y0H4+mto1Qo6dNjxtvfeUacWSQ/5hfk8N/s5bn/vdvatty9Z\nGVkc2+bYKlMwVCiSSGEhfPPNjsVg/nxYv77kYtCuHdSuHXVyEYFQMEbPHs1t791Gs3rNyMrIok+b\nPilfMFQoIrBhQ1iFtXgx+OKL0AooqSA0b64Z0iKpIr8wnzGfjeG2926jad2mZGVkcVzb41K2YKhQ\nJIg7LF1acutg6dLQEiheDNq313BVkaqkoLCAsXPGcuukW9lrj73Izszm+LbHp1zBSIlCYWYnAfcB\n1YHH3X1QCec8AJwMbAAucveZJZwT90Kxs87k+fOhZs2SWwetW2uLUJF0UlBYwL/m/Itb37uVRnUa\nkZ2RzQkHnpAyBSPpC4WZVQc+B44DlgDTgHPdfV6Rc/oCV7l7XzM7Erjf3XdYM7gihaK8nckHHxz/\n/RpycnLIzMyM74tWklTODsoftaqSv6CwgOfnPs+tk26lQe0GZGdmc+KBJyZ9wUiFHe56AAvd/Wt3\nzwPGAKcXO+c0YCSAu08FGplZuRelKCyERYvCHgz33QdXXBEWydt3X9h/f7j66jC7uX59OP/8MJFt\n9WpYsAAmTIAhQ+DSS+HooxOzqU9OTk78X7SSpHJ2UP6oVZX81atVp3/n/sy+cjbX9byOG968gZ4j\nevLqgldJhcv3FZXInQpaAIuLPP4WKL4lVUnntASWlvSC69eX3Jm8YMH2ncldukC/fupMFpH4ql6t\nOud0Pod+h/TjhbkvMHDiQLJzssnKyKLvQX2TvoWxuxJZKMpaZov/zZb4cwccEJbVLtqZfNppYWKa\nOpNFpDJVs2qcfcjZnNXpLMbNHcef3v4T2ZOyGXXGKDo27Rh1vLhLZB9FTyDb3U+KPf4zUFi0Q9vM\nHgZy3H1M7PF8IMPdlxZ7rarfthMRSYB49FEkskXxMXCQmbUGvgPOAc4tds544CpgTKywrCpeJCA+\nH1RERHZPwgqFu+eb2VXAG4ThsSPcfZ6ZXR57/hF3f9XM+prZQmA9cHGi8oiIyO5JiQl3IiISnaRe\nvNrMTjKz+Wa2wMxuijpPScyslZm9a2ZzzOwzM7smdnwvM5toZl+Y2Ztm1qjIz/w59pnmm9kJ0aXf\nxsyqm9lMM5sQe5wS+c2skZm9YGbzzGyumR2ZKtmL5JljZrPN7Dkzq53M+c3sCTNbamazixwrd14z\n6xb7zAvM7P6I8w+J/fv5xMxeNLOGqZS/yHM3mFmhme0V9/zunpQ3wuWqhUBroCYwC+gYda4Scu4L\nHBa7X48wybAjMBgYGDt+E3BX7H6n2GepGftsC4FqSfA5rgeeBcbHHqdEfsI8nEti92sADVMoe2vg\nK6B27PFY4MJkzg/0BroCs4scK0/eLVcxPgJ6xO6/CpwUYf7jt/w9AnelWv7Y8VbA68AiYK9450/m\nFkVZJuxFzt1/cPdZsfvrgHmE+SFbJxPG/jwjdv90YLS757n714T/eD0qNXQxZtYS6As8zrbhykmf\nP/abX293fwJCv5i7ryYFssesAfKAumZWA6hLGPiRtPnd/X3gp2KHy5P3SDPbD6jv7h/FzhtV5GcS\nqqT87j7R3QtjD6cS5nJBiuSPuQcYWOxY3PInc6EoaTJei4iylElshFdXwj+2Zr5tBNdSYMuM8+aE\nz7JFMnyue4E/AoVFjqVC/jbAcjN70sxmmNljZrYnqZEdd18JDAW+IRSIVe4+kRTJX0R58xY/voTk\n+BwAlxB+w4YUyW9mpwPfuvunxZ6KW/5kLhQp1ctuZvWAccAf3H1t0ec8tO9K+zyRfVYzOwVY5mEx\nxhKHISdx/hrA4cBD7n44YeTcn4qekMTZMbMDgWsJlwWaA/XM7DdFz0nm/CUpQ96kZWZ/ATa7+3NR\nZykrM6sL3AxkFT0c7/dJ5kKxhHDdbYtWbF8Fk4aZ1SQUiafd/aXY4aVmtm/s+f2AZbHjxT9Xy9ix\nqPQCTjOzRcBo4Fgze5rUyP8t4TepabHHLxAKxw8pkB2gOzDF3Ve4ez7wInAUqZN/i/L8W/k2drxl\nseORfg4zu4hw+fX/ihxOhfwHEn7R+CT2/3BLYLqFNfPilj+ZC8XWCXtmVoswYW98xJl2YGYGjADm\nuvt9RZ4aT+iYJPbnS0WO9zezWmbWBjiI0LEUCXe/2d1buXsboD/wjrufTwrkd/cfgMVm1j526Dhg\nDjCBJM8eMx/oaWZ7xP4dHQfMJXXyb1Gufyux/25rYiPUDDi/yM9UOgvbIfwRON3dNxV5Kunzu/ts\nd2/m7m1i/w9/CxweuxQYv/yV0VNfgR7+kwmjiBYCf446z04yHkO4tj8LmBm7nQTsBbwFfAG8CTQq\n8jM3xz7TfODEqD9DkVwZbBv1lBL5gUMJS9h/QviNvGGqZI/lGUgobrMJHcE1kzk/odX5HbCZ0Id4\n8e7kBbrFPvNC4IEI818CLAD+V+T/34dSIH/ulr//Ys9/RWzUUzzza8KdiIiUKpkvPYmISBJQoRAR\nkVKpUIiISKlUKEREpFQqFCIiUioVChERKZUKhYiIlEqFQqo0M3un+L4NZnatmT1Uhp99yszO3MU5\n15rZHuXMNDq298EfyvNzIlFRoZCqbjRhaZKizgHKsvBbWRa4+wNhefAyia2J1N3dD3X3StvwRqQi\nVCikqhsH/DK238OWpeCbu/t/SzrZzIbFdgObCOxDbCVOM+sTW8r8UzMbEVs/5xrCqq/vmtnbJbzW\nEWY22cxmmdmHsRWG3wRaWNhN8BgzyzGze8xsWmyXtSPM7N8Wdou7LRF/ISLlpUIhVZqHPR8+IqwM\nCqF1Mbakc83s10B7wg6FFxBW1nUzqwM8CZzt7j8jLG9+pbs/QFh3J9Pd+xR7rVqEzbaucffDCAv+\nbQROBb50966xYuVArrsfAQwHXgauADoDF5lZ4/j8TYjsPhUKSQdFLz+dE3tckt7Acx58D7wTO34w\nsMjdF8YejwR+vov3PBj43t2nQ9j90N0LKHmvgC2rIn8GfObuS919M2GBt/138T4iCadCIelgPNDH\nzLoCdT1s0rQzJX2RF++nsBKOVURu7M/CIve3PK4ex/cR2S0qFFLledjL/F3C5aPSOrHfA84xs2qx\nDXh+ETv+OdA6tiMdhPX7J8XurwUabHkBMxtlZt0JyzrvF7uPmdU3M33pS0pSoZB0MRrows4vO+Hu\n/ybsTTCXcHlpSux4LmHfhefN7FMgH3g49mOPAq8X6czuAnzn7nmEy1wPmtks4A2g9pa32lmEUp4T\niYz2oxCJEzNrADzm7udEnUUknlQoRESkVDWiDiBS2cysCzCq2OFN7n5UFHlEkp1aFCIiUip1ZouI\nSKlUKEREpFQqFCIiUioVChERKZUKhYiIlOr/AXlSO7gvU2MeAAAAAElFTkSuQmCC\n", - "text": [ - "<matplotlib.figure.Figure at 0x10bc1ac10>" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-2, Page No:770" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "rho=998 #Density in kg/m^3\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "V_dot=0.0233 #Volumetric flow rate in m^3/s\n", - "H_small=7.3 #Head in m\n", - "H_big=21.9 #Head in m\n", - "n_pump_small=0.7 #Efficiency of the pump in fraction small\n", - "n_pump_big=0.765 #Efficiency of pump in fraction big\n", - "#Calculations\n", - "bhp_small=(rho*g*V_dot*H)/n_pump_small #Required bhp in kW\n", - "\n", - "#Similarly for 241.3mm impeller we get 6.53kW\n", - "bhp_big=(rho*g*V_dot*H_big)/n_pump_big\n", - "\n", - "#Result\n", - "print \"The required bhp is\",round(bhp_small,2),\"W\"\n", - "print \"The required bhp is\",round(bhp_big,2),\"W\"\n", - "print \"Clearly the small one is better as it uses less power\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The required bhp is 2378.92 W\n", - "The required bhp is 6530.38 W\n", - "Clearly the small one is better as it uses less power\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-4, Page No:780" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "n_dot=900 #Speed in rpm\n", - "V_closed=0.45 #Volume of motor oil in cm^3\n", - "n=0.5 #Number of rotations\n", - "\n", - "#Calculations\n", - "V_dot=n_dot*(2*V_closed/n) #Volumetric Fow rate in cm^3/min\n", - "\n", - "#Result\n", - "print \"The volumetric Flow rate is\",round(V_dot),\"cm^3/min\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The volumetric Flow rate is 1620.0 cm^3/min\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-5, Page No:784" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "n_dot=1750 #Speed in rpm\n", - "w=183.3 #Angular Speed in rad/s\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "alpha1=0 #Angle in degrees\n", - "alpha2=40 #Angle in degrees\n", - "b1=0.052 #Inlet blade width in m\n", - "b2=0.023 #Outlet blade width in m\n", - "V_dot=0.13 #Volumetric Flow rate in m^3/s\n", - "rho_water=1000 #Density of water in kg/m^3\n", - "rho_air=1.2 #Density of air in kg/m^3\n", - "r1=0.04 #Inlet radius in m\n", - "r2=0.08 #Outlet radius in m\n", - "\n", - "#Calcualtions\n", - "V1_n=V_dot/(2*pi*r1*b1) #Normal Component of Velocity in m/s\n", - "V1=V1_n #Since Vt is zero Velocity in m/s\n", - "V2_n=V_dot/(2*pi*r2*b2) #Normal Component of velocity in m/s\n", - "V2_t=V2_n*tan((alpha2*pi)/180) #Tangential Component of velocity in m/s\n", - "\n", - "#Applying the Bernoullis principle \n", - "H=(w/g)*(r2*V2_t) #Net head in m\n", - "Hwater_column=H*(rho_air/rho_water)*1000 #Equivalent water column in mm of water\n", - "\n", - "bhp=rho_air*g*V_dot*H #bhp required in W\n", - "\n", - "#Result\n", - "print \"The net Head produced is\",round(Hwater_column),\"mm of water\"\n", - "print \"The brake horsepower required is\",round(bhp,1),\"W\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The net Head produced is 17.0 mm of water\n", - "The brake horsepower required is 21.6 W\n" - ] - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-6, Page No:786" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "r1=0.1 #Inlet Radius in m\n", - "r2=0.18 #Outlet radius in m\n", - "b1=0.05 #Inlet width in m\n", - "b2=0.03 #Outlet width in m\n", - "V_dot=0.25 #Volumetric Flow rate delivered in m^3/s\n", - "n=1720 #Speed of the impeller in rpm\n", - "rho=1226 #Density of the fluid in kg/m^3\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "H=14.5 #Head in m\n", - "\n", - "#Calculations\n", - "#Required horse power\n", - "W_water_horsepower=rho*g*V_dot*H #Required Horse Power in W\n", - "W_dot_water_hp=W_water_horsepower/745.7 #Required Horse Power in hp\n", - "\n", - "w=n*(2*pi/60) #Angular Speed in rad/s\n", - "\n", - "beta1=(arctan((V_dot)/(2*pi*b1*w*r1**2)))*(180/pi) #Blade inlet angle in degrees\n", - "\n", - "#Using elemetary analysis\n", - "V2_n=V_dot/(2*pi*r2*b2) #Normal Component of Velocity in m/s\n", - "\n", - "V2_t=(g*H)/(w*r2) #Tangential Component of velocity in m/s\n", - "\n", - "#Simplfying Calculation\n", - "a=w*r2-V2_t\n", - "\n", - "beta2=arctan(V2_n/a)*(180/pi) #Angle in degrees\n", - "\n", - "#Result\n", - "print \"The angel beta1 is\",round(beta1,2),\"degrees\"\n", - "print \"The angle beta2 is\",round(beta2,2),\"degrees\"\n", - "print \"The horsepower required is\",round(W_dot_water_hp,1),\"hp\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The angel beta1 is 23.84 degrees\n", - "The angle beta2 is 14.73 degrees\n", - "The horsepower required is 58.5 hp\n" - ] - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-7, Page No:792" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "D_propeller=0.34 #Overall Diameter of the propeller in m\n", - "alpha=14 #Angle of attack in degrees\n", - "n=1700 #Speed of the propeller in rpm\n", - "D_hub=0.055 #Diameter of the hub assembly in m\n", - "V=13.4 #Velocity of the plane in m/s\n", - "\n", - "#Calculations\n", - "C=60/(2*pi) #Conversion factor\n", - "phi1=(arctan((V*C)/(n*D_hub*0.5)))*(180/pi) #Angle in degrees\n", - "theta1=alpha+phi1 #Pitch Angle at arbitrary radius in degrees\n", - "phi2=(arctan((V*C)/(n*D_propeller*0.5)))*(180/pi) #Angle in degrees\n", - "theta2=alpha+phi2 #Pitch angle at the tip in degrees\n", - "\n", - "#Result\n", - "print \"The pitch angle at any radius is\",round(theta1,1),\"degrees\"\n", - "print \"The pitch angle at the tip is\",round(theta2,1),\"degrees\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The pitch angle at any radius is 83.9 degrees\n", - "The pitch angle at the tip is 37.9 degrees\n" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-8,Page No:797" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "V_in=47.1 #Velocity at the inlet in m/s\n", - "beta_st=60 #trailing edge at Angle in degrees\n", - "n=1750 #Speed of the impeller in rpm\n", - "r=0.4 #Radius in m\n", - "\n", - "#Calculations\n", - "V_st=V_in/cos((beta_st*pi)/180) #Velocity leaving the trail in m/s\n", - "\n", - "u_theta=((n*2*pi)/60)*r #Tangential Velocity of rotor blades in m/s\n", - "\n", - "beta_r1=(arctan((u_theta+V_in*tan((beta_st*pi)/180))/V_in))*(180/pi) #Angle of leading edge in degrees\n", - "\n", - "beta_rt=(arctan(u_theta/V_in))*(180/pi) #Angle in degrees\n", - "\n", - "#Result\n", - "print \"The leading edge and trailing edge angles are\",round(beta_r1,2),\"degrees and\",round(beta_rt,2),\"degrees\"\n", - "print \"We select number like 13 15 and 17 rotor blades\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The leading edge and trailing edge angles are 73.09 degrees and 57.28 degrees\n", - "We select number like 13 15 and 17 rotor blades\n" - ] - } - ], - "prompt_number": 22 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-9, Page No:802" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "n=1170 #Speed of the pump in rpm\n", - "H=23.5 #Required head in ft\n", - "V_dot=320 #Gasoline pumped gallon/minute\n", - "Ratio=3.658*10**-4 #Nsp/Nsp_US ratio\n", - "\n", - "#Calcualtions\n", - "Nsp_US=(n*V_dot**0.5)/(H**0.75) #Pump specific speed in US units\n", - "Nsp=Nsp_US*(Ratio) #Normalizes pump specific speed\n", - "\n", - "#Result\n", - "print \"The Nsp_US value is\",round(Nsp_US,2),\"and Nsp value is\",round(Nsp,3),\"which tells\"\n", - "print \"A centrifugal Pump is the best suitable one\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Nsp_US value is 1960.92 and Nsp value is 0.717 which tells\n", - "A centrifugal Pump is the best suitable one\n" - ] - } - ], - "prompt_number": 23 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-10, Page No:804" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "wa=1 #Setting as unit speed\n", - "\n", - "#Calculations\n", - "wb=2*wa #Speed \n", - "bhp_ratio=(wb/wa)**3 #Ratio od required shaft power \n", - "\n", - "#Result\n", - "print \"The ratio of required shaft power is\",round(bhp_ratio)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The ratio of required shaft power is 8.0\n" - ] - } - ], - "prompt_number": 24 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-11, Page No:805" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "import matplotlib.pyplot as plt\n", - "%matplotlib inline\n", - "\n", - "#Variable Decleration\n", - "D_A=0.06 #Diameter of pump A in m\n", - "n_A=1725 #Operating Speed in rpm\n", - "w_A=180.6 #Operating Angular Speed in rad/s\n", - "V_B_dot=2.4*10**-3 #Volumetric Flow rate in m^3/s\n", - "V_A_dot=5*10**-4 #Volumetric Flow rate in m^3/s\n", - "H_A=1.5 #Head in m\n", - "rho_water=998 #Density of water in kg/m^3\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "n_pump_A=0.81 #Efficiency of pump A in fraction\n", - "H_B=4.5 #Head in m\n", - "rho_B=1226 #Density of fluid in kg/m^3\n", - "\n", - "#Calculations\n", - "#Part(a)\n", - "bhp_A=(rho_water*g*V_A_dot*H_A)/n_pump_A #Required Power in W\n", - "\n", - "C_Q=V_A_dot/(w_A*D_A**3) #Capacity Coefficient \n", - "\n", - "C_H=(g*H_A)/(w_A**2*D_A**2) #Head Coefficient\n", - "\n", - "C_P=bhp_A/(rho_water*w_A**3*D_A**5) #Power Coefficient\n", - "#Plotting\n", - "V_dot1=range(100,800,100) #Volumetric flow rate in cm^3/s\n", - "H1=[180,185,175,170,150,95,54] #Head in cm\n", - "n_pump1=[32,54,70,79,81,66,38] #Efficiency of the pump in percentage\n", - "#BHP calculations\n", - "V_dot=transpose(V_dot1)\n", - "H=transpose(H1)\n", - "n_pump=transpose(n_pump1)\n", - "bhp_A1=rho_water*g*V_dot\n", - "bhp_A2=bhp_A1*H\n", - "bhp_A=bhp_A2/n_pump\n", - "\n", - "\n", - "fig = plt.figure()\n", - "ax = fig.add_subplot(111)\n", - "ax.plot(V_dot1,bhp_A)\n", - "plt.xlabel('V_dot,cm^3/s')\n", - "plt.ylabel('H,cm and n in %')\n", - "ax2 = ax.twinx()\n", - "ax2.plot(V_dot1,H1,V_dot1,n_pump1)\n", - "plt.ylabel('bhp,W')\n", - "ax.grid()\n", - "plt.show()\n", - "\n", - "\n", - "#Curve Fitted Data Yields\n", - "CQ_star=0.0112\n", - "CH_star=0.133\n", - "CP_star=0.00184\n", - "npump_star=0.812\n", - "\n", - "#Part(b)\n", - "Db=((V_B_dot**2*CH_star)/(CQ_star**2*g*H_B))**0.25 #Design Diameter of pump B in m\n", - "\n", - "w_B=V_B_dot/(CQ_star*Db**3) #Angular speed at B in rad/s\n", - "\n", - "bhp_B=CP_star*rho_B*w_B**3*Db**5 #Required brake horse power in W\n", - "\n", - "\n", - "#Result\n", - "print \"The required diameter of Pump is\",round(Db,3),\"m\"\n", - "print \"The required rotational speed is\",round(w_B),\"rad/s\"\n", - "print \"The required Brake Horse Power is\",round(bhp_B),\"W\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAakAAAEWCAYAAADcsGj7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXmczdX7wN+PsRRiLEW2JokQ0SKijOxtilRoUVokWr4k\n6qfyTaQ9UmklX5H6Wiq7ciWR5YvsUhSRJcLIMmae3x/nM7nGLHdm7ufe+/nMeb9e9zX3nM85n8/z\nzJ05zz3Pec5zRFWxWCwWiyUWKRBtASwWi8ViyQxrpCwWi8USs1gjZbFYLJaYxRopi8ViscQs1khZ\nLBaLJWaxRspisVgsMYunjZSIfCgiO0VkVQhtXxWR5c5rg4jsi4SMFovFYsk94uV9UiJyJZAEfKyq\ndXLQrydQT1XvdU04i8ViseQZT8+kVHU+cNKMSETOE5HpIrJURL4VkRoZdO0MjIuIkBaLxWLJNQWj\nLYALvAs8oKqbRORy4C2gedpFETkHSAC+iY54FovFYgkVXxkpESkONAI+E5G06sLpmt0GfKZe9nNa\nLBZLPsFXRgrjvvxLVetn0eZWoEeE5LFYLBZLHnB1TSqU6DsRGSYiP4nIShGpH1TfRkTWO9eeCOV5\nqnoA2CwiNzv3EBGpG3TPC4BSqroo91pZLBaLvxCRyiIyV0TWiMhqEXnYqS8tIrNFZKOIzBKR+KA+\n/Z3xeb2ItHJLNrcDJz4C2mR2UUSuAaqp6vnA/cDbTn0c8KbTtxbQSURqZtB/HPA9UENEtorI3UAX\noJuIrABWAzcEdbkVGzBhsVgs6UkGHlPV2kBD4CFnzO0HzFbV6sDXThkRqYUZT2thxum3RMQVe+Kq\nu09V54tIQhZNbgBGO21/EJF4ESkPnAtsUtUtACIyHmgHrEt3/06Z3LdtJvIMzIn8FovFkh9Q1T+A\nP5z3SSKyDqiIGaObOs1GAwGMoWoHjFPVZGCLiGwCGgBh91JFOwS9IrA1qLzNqauQSb3FYrFYXMSZ\nWNQHfgDKqepO59JOoJzzvgJmXE7DtTE62kYKQLJvYrFYLBa3cSKk/ws8oqoHg685EdFZRUW7EjEd\n7ei+34HKQeVKGItcKF19ZU622gCIiA0jt1gsllygqidNEESkEMZAjVHVyU71ThEpr6p/iMjZwC6n\nPqOx+3c35Iz2TOoL4E4AEWmICR/fCSwFzheRBBEpjFmg+yKjG6iqb1/PPPNM1GWw+ln98ptu+UG/\n9IjZWPoBsFZVX083Rt/lvL8LmBxUf5uIFBaRc4HzgcV5tAcZ4upMyom+awqUFZGtwDOYWRKqOlJV\np4nINc6i2yHgbufacSe/3kwgDvhAVddl+BAfs2XLlmiL4CpWP+/iZ93A//plQGPgduBHEVnu1PUH\nXgAmiEg3YAtwC4CqrhWRCcBa4DjQQzOyfmHA7ei+zKLvgtv0zKR+OjA97EJZLBaL5SRU9Tsy96y1\nyKTPYGCwa0I5RNvdZ8mCrl27RlsEV7H6eRc/6wb+189LeP2oDrdmmBaLxeJbRARNFzgRq9iZVAwT\nCASiLYKrWP28i591A//r5yWskbJYLBZLzGLdfRaLxZLPsO4+i8VisVjCgDVSMYzf/eJWP+/iZ93A\n//p5CWukLBaLJR/htRUSuyZlsVgs+Yi+feGll+yalMVisVhijBEjYMqUaEuRM6yRimH87he3+nkX\nP+sG/tTviy/g+edhuseSzUX7qA6LxWKxuMzixdCtG0ybBlWrRluanGHXpCwWi8XH/PwzNGkC774L\n119v6uw+KUueSEqC9eth2ynHPFosFkvo7NkDbdvCgAEnDJTXsDOpCJOUZIzP1q3mZ/D7tJ9Hj0LF\nirB79zGKFy9Mo0b887r4YihSJNpahIdAIEBiYmK0xXANP+vnZ93AH/odPgwtWphZ1NChJ1/z0kzK\nrkmFkfQGKCNDdPQoVKpkXpUrm58XXww33HCiXLo0iMDcud9TuXIiCxfCwoUwZgxs3Ah163KS4apU\nKdqaWyyWWCI1Fe68E6pUgSFDoi1N3nB1JiUibYDXMafrvq+qQ9NdLwV8CFQFjgD3qOoa59oW4ACQ\nAiSraoMM7h+xmVRuDVD6n2kGKC9yLF3KP4Zr4UIzs/LrbMtiseSc3r3NODFrVsZjQfqZlIh8CFwL\n7FLVOk5dA+BNzGnqaafvLnGu9QfuwYzPD6vqLLd0cc1IiUgcsAFzquPvwBKgU/Ax8CLyEnBAVZ8T\nkRrACFVt4VzbDFyiqnuzeEZYjFRmBijYEEXCAOUGVbMwGmy07GzLYsm/DBsGb78NCxaYMSkjMjBS\nVwJJwMdBRioADFHVmSLSFuirqs1EpBbwCXAZUBGYA1RX1VQ39HHT3dcA2KSqWwBEZDzQDlgX1KYm\n8AKAqm4QkQQROVNVdzvX8zzk59YAZeaCiySh+MVFoFo187rjDlMXPNsaMwZ69IjN2ZYf/P5Z4Wf9\n/KwbeFe/SZPM+lNWBiojVHW+iCSkq94BlHTex2MmG2DG8XGqmgxsEZFNmPF+UR5EzxQ3jVRFYGtQ\neRtwebo2K4H2wHfO1PIcoBKwG1BgjoikACNV9b2MHrJ+vTcNkJsULw6JieYFp8627NqWxeI/Fi2C\n+++HGTMgISEst+yHGZtfxkSCN3LqK3CyQdqGGe9dwU0jFYof7gXgDRFZDqwClmN8nABNVHW7iJwJ\nzBaR9ao6P/0NLr/8D0qXPkzJkvs588xj1KkTz0MPVadyZdiy5TtKlDhOs2aJwIld5GnfkAKBAPv2\nnVxOfz2a5bS6cNyvWjXYti1A5crw1luJJCXB+++vYM2aEowZU5UePQCOUrv2fm644SwaNYKDB+dR\nuLB6Qr9YLPtZv8TExJiSJ7/rt2kTXHNNgL594ZJLTr0eCAQYNWoUAAmhW7APMOtNk0SkIyZ+oGUm\nbV0LDnBzTaoh8KyqtnHK/YHU9MET6fpsBuqoalK6+meAJFV9JV2950LQYxW7tmWxeJPdu+GKK+Dx\nx81MKhQyCkF33H1fBq1JHVDVEs57Af5S1ZIi0g9AVV9wrs0AnlHVH8Kk0km4uZl3KXC+s85UGLgV\n+CK4gYiUdK4hIvcB81Q1SUSKisgZTn0xoBVmppWvSPsmFAnS1rbuuAPeeguWL4edO2HwYChb1rgI\n69c3RqpjR3j1VWPIjh7N/TMjqV808LN+ftYNvKPf4cNm6aJjx9ANVA7YJCJNnfdXAxud918At4lI\nYRE5FzgfWBz2pzu45u5T1eMi0hOYiQlB/0BV14nIA871kUAtYJSIKLAa6OZ0LwdMMsabgsBYN0Mc\nLRlTvDg0a2ZeYNe2LJZYIiUFunQxufiefz5v9xKRcUBToKyIbAWeBu4HRohIEeCwU0ZV14rIBGAt\nJ0LTvefuiwTW3Rd9kpJgyRJjtBYtsvu2LJZI8eijsHKlCZTI6f+XlzJOWCNlCSt2bcticZ/XXoP3\n3zeh5vHxOe9vjVSE8LuRCo4M8zKZzbbKldtHnTqlMtwcHR/v/W0Bfvn8MsLPukFs6/f552YW9f33\nJu1RbvCSkbK5+yyuk9Ha1i+/wMSJv1G6dCm2bTNGbNKkE/vcjh8/YbQyy/LhB0NmseSE7783m/Nn\nzsy9gfIadiZliUkOHMg8S3xGhiwzg2YNmcUvbNwIV10Fo0ZBmzZ5u5eXZlLWSFk8S24NWXqDZg2Z\nJdbZtcus5fbvD/fem/f7WSMVIfxupGLZLx4OIqFfKIYsJSX75MG5MWR+/vz8rBvEln6HDsHVV0Or\nVvDcc+G5p5eMlF2TsviaEiWgVi3zyoyMDNnixTBxovuGzGLJipQU6NwZatSAf/872tJEBzuTslhC\nIKczsoQEs9EyMdEaLkvuUIVevUwS7WnToHDh8N3bSzMpa6QsljARbMjWrYN33oHTToN//QtuvTW8\ng4zF/7z8MoweDd99ByVLZt8+J3jJSLmZu8+SR7ySPyy3+E2/NNdiq1bwyCMwYkSAwYPh44/NzGrw\nYPjzz2hLGR789tmlJ9r6TZgAb7xhZlDhNlBewxopi8UlChSAtm1h9myTumbTJpPEt0cPE05ssWTE\n/PnQsyd89ZVZ78zvWHefxRJB/vjDZJl/5x24/HLjCrTrVpY01q+Hpk1N8uZWrdx7jpfcfdZIWSxR\n4PBh+M9/zJEndt3KAuZonEaN4OmnoWtXd5/lJSNl3X0xTLT94m6Tn/U7/XS47z5YswZPrlvl58/O\nDQ4dguuug7vuct9AeQ1rpCyWKGLXrSzHj8Ntt8GFF5pZlOVkrLvPYokx7LpV/kEVHnrIfDmZOhUK\nFYrMc627z0FE2ojIehH5SUSeyOB6KRGZJCIrReQHEakdal+Lxa+UL2+yC/z6qzkavEcPc3DkmDFw\n7Fi0pTPuyAkT4MiRaEvifV580ZwJ9fnnkTNQGSEiH4rIThFZla6+l4isE5HVIjI0qL6/MzavFxEX\nQzwAVXXlhTkyfhOQABQCVgA107V5CRjgvK8BzAm1r9NO/czcuXOjLYKrWP1CIyVFddo01RYtVM8+\nW/X551X37AnLrXPE0aOqr76qWrasas2ac7VKFdVRo1SPH4+8LG4Tib/NTz5RrVxZdds21x91Cs7Y\nGTyWXgnUB1YF1TUDZgOFnPKZzs9azphcyBmjNwEFNA/2IquXmzOpBsAmVd2iqsnAeKBdujY1gbmO\ntdkAJIjIWSH2tVjyBdFet1KFKVPMmsns2TBvnnFHfvIJvPsu1K9vNp1az3vozJtnNnxPnQoVK0Zb\nGlDV+cC+dNUPAkOcMRhV3e3UtwPGqWqyqm7BGKkGbsnmppGqCGwNKm9z6oJZCbQHEJEGwDlApRD7\n+p5YycLsFla/nFO3Lnz4oUm7VLYsNGkC118Pc+e6YyRWroQWLeDJJ2HYMGOMatUyujVubFL2/Pvf\n0Lu3ydS9ZEn4ZYgGbv5trl0Lt9wC48ZBnTquPSYcnA9cJSKLRCQgIpc69RUwY3Iaro7PbmZBD+Vf\n5gXgDRFZDqwClgMpIfYFoGvXriQkJAAQHx9PvXr1/vkDSwsjtWVb9lu5fHm4+uoAjRsX4LffruKh\nhyA5+SAdO27j2WdrUrhw3u7/xx/QrVuA77+H559P5P774bvvAgQCp7a/8cZErrsO+vUL0LYtNG+e\nyPPPw7ZtsfP7ipXyn39Cnz6JvPQSxMVl/Pt0oxwIBBg1ahTAP+NlCBQESqlqQxG5DJgAVM2krXvz\naLf8iEBDYEZQuT/wRDZ9NgPFQ+2LXZPyNFa/8JG2btWypWqFCrlftzp8WHXwYNUyZVR791bdty/j\ndpnplpSkOmiQ6d+zp+rOnTmXIRZw47M7eFD14otVn3su7LfOMaRbkzJVJHDymtR0oGlQeRNQFugH\n9AuqnwFcnv5+4Xq56e5bCpwvIgkiUhi4FfgiuIGIlHSuISL3AfNUNSmUvhaL5QQFnHWrWbNyt26l\nCp9+ChdcYM7SWrTIZOGOj8+ZHMWKwVNPmfQ+cXHGNfjvf0NSUu708gvHjxsXX/365vfjESYDVwOI\nSHWgsKruwYzFt4lIYRE5F+MWXOyaFG5ZP8fCtgU2YCxwf6fuAeAB530j5/p64HOgZFZ9M7h/3r5O\nWCw+ZscO1aefVj3rLNXrrlP95hvV1NRT2y1erNq4sWq9eqZNOPn5Z9VOnUxU4ltvqR47Ft77e4HU\nVNX77lNt3Tp29OfU6L5xwHbgKCYe4G5M9N4YzFLMMiAxqP2Tzti8HmitYbAXmb3sZl6Lxeek5Ql8\n7TUoUuREnsBdu6B/f/j6axg0yKTkiYtzR4Zly+CJJ8zhkIMHQ/v2+Wdz8uDB8Nln8O23cMYZ0ZbG\nYDfzWsJC2sKnX7H6RYa0PIGrV5sBc9QoExlYvbr5uWED3HNPzgxUTnW75BITvj58uDGIV1xhjqSI\nVcL12f3nPyZMf+rU2DFQXsMaKYslH7F7tzFKjRubhKajRpkZTiT2W4mY4yeWLTOpgO64w4TPr1nj\n/rOjwTffmND8qVOhQoVoS+NdrLvPYskHfPcdPPaYmS299po5EgJMnsC33zZ5Ahs0iGyewKNHzabg\nIUOMsRo4ECpVcv+5kWD1arNv7NNPoVmzaEtzKtbdZ7FYYoLNm6FjR+jcGR59FL7//oSBApMncOBA\n2LLF5Al86KHI5QksUsQYzo0b4ayz4KKLzBrZX3+5+1y32b4drr3WfBmIRQPlNayRimFiZU3DLax+\n7nHgAPTrB5dearJUrF8PXbqYUPWMSL9uNWYMnHuumeXs3Xtq+3DqFh9vnrNypXFHVq9uDoM8ejRs\nj8gxudXv4EFjoLp3N79vS96xRspi8REpKWahvkYNc9LrqlUwYAAULRpa//T7rX76KXJ5AitVgvff\nNymeAgGjw5gxkJrq7nPDRXKymbU2aGC+IFjCg12Tslh8wtdfG/dZqVLG1XTxxeG5b/C61eWXm2dE\nYt1q/nzo29eE0A8daoIuYjVsXRXuvdf8rqZMgYJuJpwLA15ak7JGymLxOBs3Qp8+JkruxRfd24MU\nvN8qPt7MtEqUCP9zglGFSZPMWlXlysZYXXKJu8/MDc89B5Mnm+zmxYtHW5rs8ZKRsu6+GMau2Xgb\nt/Xbu9cEQ1xxBVx5pcmu3aGDe7ON4HWrM8/8ndtvd98VJ2KM7urVcPPNJgqwc2f45Rd3n5uTz270\naJOZfupUbxgor2GNlMXiMZKTzabYCy4wwQVr18Ljj5touUhQoAD06rWJAwfMelckKFTIBCNs3Ag1\na5p1n0ceMYEW0WTOHOOSnDbNREpawo9191ksHkHVDIZ9+hjX1yuvRPc8ot27jbEYMgRuuy2yz961\ny7jYxo0za2SPPmqS20aSH380Z219/jlcdVVkn51XvOTus0bKYvEAq1ebjba//WaM0zXXxEYQQdpA\nPWNG+AI1csKmTSar+HffwTPPmPROkQha2LbNuFlffDHyBjoceMlIWXdfDGPXbLxNOPTbvRsefNBk\nL7j+ehNSfu210TdQabrVrWui/m66yYS8R5pq1UxWh8mTYfx4M7OcPDnvpxRn9dnt32++JPTs6U0D\n5TWskbJYYpCjR+Gll8x5TKedZjbj9upl1mZijfbtzQymffvobcC97DITgv/qq/D009CkCSxYEP7n\nJCebAI4mTcw6oMV9rLvPYokhVGHiRLMYX7u2MVQ1akRbquxJTTWH+pUsaTbkRnOml5ICY8eaoI76\n9c2aWc2aeb+vKtx9t4mqnDgx9vdCZYV191kslhyzbJnZJDtwIIwcCV984Q0DBSbib9QoWLrURB5G\nk7g4uPNOk+29SRMT1HD//SanXl4YONDsRRs3ztsGymu4aqREpI2IrBeRn0TkiQyulxWRGSKyQkRW\ni0jXoGtbRORHEVkuIu4dTRzD2DUbbxOqftu3m2/o110Ht98Oy5ebYIRYJiPdihc32RaGDDGh2dHm\ntNNMJOTGjWbzcZ06Jshi//7s+6bX76OP4OOP4auvIh9FGAlE5EMR2SkiqzK41ltEUkWkdFBdf2dc\nXy8irdyUzTUjJSJxwJtAG6AW0ElE0k+6ewLLVbUekAi8IiJp31EUc1xxfVVt4JacFku0+PtvE0Zd\npw6UK2e++d93n3un40aChAQTwNCli4m8iwVKlTJReMuXmy8E1avD66+Hvn42a5bJeDF9uvmcfMpH\nmLH6JESkMtAS+DWorhZwK2ZcbwO8JSLuTXhCPWceOAsYBLwKnB9C+0bAjKByP6BfujYPACOc91WB\njUHXNgNlsnmGWixeIzVVdexY1SpVVDt2VP3ll2hLFH7eflu1Vi3V/fujLcmp/Pij6jXXqJ57rvkc\nUlIyb7t8ueqZZ6rOnx85+SKBM3amH08TgFXp6j4D6jrjcWmnrj/wRFCbGUDD9PcL1ysn1u8VYBYw\nCfgkhPYVga1B5W1OXTDvAbVFZDuwEngk6JoCc0RkqYjclwM5LZaYZeFCc57Tq6+aPHgTJpgjMfxG\n9+7QtCkRSZ2UU+rUMSmMPvzQzKguuyxj9+TWrSbsf8QIs7aV3xCRdsA2Vf0x3aUKmPE8jYzG9rCR\n6fKfiMwEnlfVb52qwhhrqkAoCVhCCbt7Elihqokich4wW0QuUtWDQGNV3SEiZzr161V1fvobdO3a\nlYSEBADi4+OpV68eiYmJwAm/slfLr7/+uq/0yc/6/for3H13gFWr4JVXErn9dvj22wCBQOzIm5Ny\n8JpNZu3bt59Hnz4XMWBAPM8/H1vyGwIMHQp79iTy4IMQHx/g/vvhvvsS+eqrAL16mXXCjh1jQ968\nfl6jRo0C+Ge8zAoRKYoZn1sGV2fRxb0w68ymWEA88DIwHjgPOB/4DzARaJLdFA1oyMnuvpOmiE7d\nNIwxSit/DVyawb2eAXpnUJ+3OW+MM3fu3GiL4Cr5Qb+DB1Wfekq1dGnVZ55RTUqKtlThIdTPbtcu\n1YQE1XHj3JUnrxw7pvrmm6rlyql26aJar95c7dnTuGb9CNm4+4A6wE7MxGQzkAxsAcqRbukG4+67\nPP39wvXKdp+UM8MZBGwHBqnqvlCMnxMAsQFo7vRdDHRS1XVBbV4F9qvqQBEpByzD+D+PAHGqelBE\nimHcjANVdVa6Z2h28lss0SAlxWTHHjDAZIsYMsQc6pcfSUudNH16bB6zEczBgybt1Pbt5gwtLwex\nZEVG+6REJAH4UlVPyQgpIpuBS1R1rxM48QnQAOPmmwNUc2swzsrdVw3oDhwD+mBmU+NFZCom2CEl\nqxur6nER6QnMBOKAD1R1nYg84FwfCQwGPhKRlZhIw77OL6EqMFHMjsCCwNj0BspiiVV27oQbbjB7\naSZNMklY8zPBqZMWL47tbOFnnAHPPhttKSKPiIwDmgJlRGQr8LSqfhTU5B8DpKprRWQCsBY4DvRw\nc7aQ6UxKRJYAjwLFMG665mKsxp3AXap6tVtChYrfZ1KBQCDIf+4//Kjf779D8+Ymp1vTpgGaNUuM\ntkiukJvPbuBAE879zTeRO1Ykt/jxbzMYv2ScSAuU2AwUhX8WgEYD10VANovFU/z6q4lou+ce8208\n2klgY40BA+Dss6FHj7wngLXkH7KaSTUG/oVZMBuiqisjKVgo+H0mZfEOmzaZGVSfPiYRrCVjkpKg\ncWPo1g0efjja0uRfvDSTsglmLZY8snYttGplzjO6z+7oy5YtW8xesTFjYj/9k1/xkpGyCWZjmOC9\nKH7ED/qtXGlmUC+8cKqB8oN+mZEX3WIxdVJ6/PzZeQ1rpCyWXLJkiZlBDRtmMitYQqdpUxNI0a4d\nHDgQbWkssYx191ksuWDBAhNS/cEHJnWOJXc8+KCJiJw82Rz3YYkMXnL3hbKZtwZmn1QCJ/ZVqQ1B\nt+RXvvkGbr3VHKzXytVDCvzPsWPmd9i4MTz/fLSlyT94yUiF8t3lM+B/wP8Bjwe9LC7jd7+4F/Wb\nMcPsgfr88+wNlBf1C5Vw6Va4MHz2GXzyiVmnihX8/Nl5jVDOl0xW1bddl8RiiXEmTzYnvE6ZYqLT\nLOHhzDPN77RFCzj//NhPnWSJLKG4+54FdmMSy/5zTJiq7nVVshCw7j5LpPj0U3jkEXPEgx1E3WHi\nRHj00dhPneQHvOTuC8VIbSGDNOyqGvVTcKyRskSC0aPNyawzZ5qziCzu4aXUSV7GS0Yq2zUpVU1Q\n1XPTvyIhXH7H735xL+j3zjvwf/9nBs2cGigv6Jdb3NItVlIn+fmz8xpZZUFvrqpfi0gHMp5JTXRV\nMoslyrz+OrzxBgQCcN550ZYmf1CgAIwaZaL9hg+3qZMsWefuG6iqz4jIKDI2Une7LFu2WHefxS2G\nDDHHi3/9NVSpEm1p8h82dZK7eMndZzfzWixBqJocfJ9/DnPmQIUK0ZYo/zJvHtxyi9k4Xa1atKXx\nF14yUq7u8RaRNiKyXkR+EpEnMrheVkRmiMgKEVktIl1D7Zsf8LtfPNb0U4W+fU04dCCQdwMVa/qF\nk0jolpY66YYbIp86yc+fXUaIyIcislNEVgXVvSQi60RkpYhMFJGSQdf6O2PzehFxdUu7a0ZKROKA\nN4E2QC2gk4jUTNesJ7BcVesBicArIlIwxL4WS9hITYWePY1xmjsXzjor2hJZALp3N8aqSxdIyfIs\ncEse+Qgz3gYzC6itqhcBG4H+AM7x8bdixuY2wFsi4potcXMm1QDYpKpbVDUZGA+0S9dmB1DCeV8C\n+FNVj4fY1/f4+WRQiB39UlJMBvOVK42Lr3Tp8Nw3VvRzg0jq9sYbcPCgifyLFH7+7DJCVecD+9LV\nzVbVVKf4A1DJed8OGKeqyaq6BdiEGbNdIZSME2kHICZwcu6+j7PpVhHYGlTeBlyers17wDcish04\nA7glB30tljxz/DjcdRfs2GFSHhUvHm2JLOlJS53UoAHUrWvSUlkizj3AOOd9BWBR0LVtmDH7FETk\nMWAB8D9nApJjsp1Jich/gJeAxsClzuuyEO4dSkTDk8AKVa0A1ANGiMgZIfTLF/jdLx5t/Y4dM4li\n9+41mSTCbaCirZ+bRFq3tNRJDz8My5a5/zw/f3Y5RUSeAo6p6idZNMtsvK8EvA7sFpFvRWSwiFwn\nIiH7K0KZSV0C1MpFGN3vQOWgcmWMxQ3mCuB5AFX9WUQ2AzWcdtn1BaBr164kJCQAEB8fT7169f6Z\nqqf9oXm1vGLFipiSx0/6HTkCzZoFiIuDr79OpEgRf+nnx/LevQF69izLTTddyOLFsH59bMkXy+VA\nIMCoUaMA/hkvQ8EJZrsGaB5UnX5sr+TUnYKq9nbuUwQzwWmEmZW9JyJ/qWq2sQahpEX6DHhEVbdn\nd7N0/QoCGzDKbQcWA51UdV1Qm1eB/ao6UETKAcuAusCB7Po6/W0IuiXHHDoEN94IZcqYfTiFCkVb\nIktOePZZmD3bpk7KCxmFoItIAvClqtZxym2AV4CmqronqF0t4BPMOlRFYA5QLavBWETiMQbqCucV\nD/wYyn7bUIxUAOOKW8yJBLOqqjdke3ORtpipXhzwgaoOEZEHnBuMFJGymKiSKhjX45C0KWVGfTO4\nvzVSlhxx4ABcdx1UrWoOLIyLi7ZElpySmgodO0J8PLz/PogndvvEFumNlIiMA5oCZYGdwDOYaL7C\nQFoy8YWQ32idAAAgAElEQVSq2sNp/yRmRnQcM4mZmclz3sNEAR7E2JCFwCJV3ZdR+wzvEYKRSsyg\nWlV1XqgPcQu/G6lAIPDP1N2PRFq/ffugbVuoXx9GjHD/JFg/f37R1i0pyaRO6tbNndRJ0dbPbSK1\nmVdEZgJlgNUYA7UQWJWTgTvbNSlVDeRWQIslVtizB1q2hMREePVV++3b6xQvfuJcr1q1bOqkWEVV\nWzt7qGpj3H3/AuqIyJ+YGdXT2d3DpkWy+J4//jCDWLt2MGiQNVB+wqZOyh3RSIskIpUx61GNgeuA\nMqpaMute1khZfM7WrdC8Odx5pzlyw+I/3nkHhg2DRYugRIns21si6u57BGOYGmHWr77H7Jv6Hlit\nqtnmEXHZK2/JC2khpH7Fbf02bzYpdR54IDoGys+fXyzp5kbqpFjSz+MkABOAhqpaVVVvV9W3VXVl\nKAYKsj5PalVm1zCBE3VzJqvFEjk2bjQuvieegIceirY0Frd54w1o1cqkTho8ONrSWNJQ1cfyeo+s\nzpNKcN72cH6OAQTo4jw86pnJrbvPkhFr1pgB67nn4J57oi2NJVLs3m1SJw0eDJ06RVua2CbaR3WI\nyHrn7Zuq+maWbUMIQV/hZCkPrluuqvXzJmbesUbKkp7ly+Gaa+CVV6Bz52hLY4k0K1eaGfSMGXDJ\nJdGWJnaJtpFyZCgLXK6qU7NqF8qalIhIk6BCY8yMyuIyfveLh1u/H36ANm3gzTdjw0D5+fOLVd0u\nusgEUtx0k4nqzC2xqp+XEZGzRaSdiFwvIuVVdU92BgpCM1L3YM4L+VVEfgXecuoslphh/ny4/npz\n5HuHDtGWxhJNOnQwbt727eHo0ezbW9xHRO7FHPfRHrgZ+EFEuoXUN1R3WdqpjKq6P5dyhh3r7rOA\nOQOqc2f45BO7qdNisKmTsibS7j4R2Qg0UtU/nXIZTJql6tn1zTbjhIicBnTAOU9KzKetqvrvvAht\nsYSDqVPh7rvhv/+FK6+MtjSWWKFAARg92qROGj7cndRJlhyxB0gKKic5ddkSirtvCnADkOzcOAk4\nlEMBLbnA737xvOo3caJx63z5ZWwaKD9/fl7QLS110pAhZradE7ygn8f4GVgkIs+KyLOYQxN/EpHe\nIvKvrDqGcp5URVVtHQYhLZaw8ckn0Lu3ieKqH/U4U0uskpAA48fb1EkxwM/OK219ZorzPtujRkMJ\nQX8XE8v+Yx6FDDt2TSp/8uGHZtPmrFlQu3a0pbF4AZs66WRiIQQ9VEIxUuuAasBmTj5PKuoZJ6yR\nyn+MGAFDhxr3TfVsl1wtlhM8+CBs2waTJ9tzxKIQOFED6IMT2+BUq6penV3fUNak2gLnA62A651X\ntgceWvKO3/3iOdXvlVfMa948bxgoP39+XtTtjTfMoZcDBmTf1ov6xTifAf8D/g94POiVLdkaKVXd\noqpbgL+B1KBXtohIGxFZLyI/icgpaZREpI+ILHdeq0TkuHPMMCKyRUR+dK4tDuV5Fv8yaBCMHGkM\n1LnnRlsaixcpXBg+/xzGjTMvywlE5EMR2Rmcs1VESovIbBHZKCKz0sZm51p/Z1xfLyKtQnhEspNY\n9gdVXeq8loUkWwjuvhsw59xXAHYB5wDrVDXL1QARiQM2AC2A34ElQCdVXZdJ++uAR1W1hVPeDFyi\nqnszau+0se4+n6NqMphPmWJcfOXLR1sii9exqZMyPD7+Skzk9seqWsepexHYo6ovOpOMUqraT0Rq\nAZ8AlwEVgTlAdVU9ZfIiIqUxGYp6AbuBiZxYNiKr8T2NUNx9gzBngWxU1XOB5pidw9nRANjkzMSS\ngfFAuyzadwbSf7/xxMKexR1U4V//gmnTIBCwBsoSHsKVOslPqOp8YF+66huA0c770cCNzvt2wDhV\nTXa8bJsw431G/A9YCtyFWZP6HlgW9MqWUIxUsqruAQqISJyqzgUuDaFfRWBrUHmbU3cKIlIUaA38\nN6hagTkislRE7gvheb7D737xrPRLTYUePeD77+Gbb6Bs2cjJFS78/Pl5XbfsUid5Xb8wUU5Vdzrv\ndwLlnPcVMON5GpmO7aqa4ExuagEjgJXAcmC4U5ctoRipfSJyBjAfGCsiwzh553Bm5MQPdz3wnar+\nFVTX2Mm03hZ4yJmOWvIBKSnQrRusXg2zZ0OpUtGWyOJHnn4azj7bRP3ZVYOscdZVsvotZfcb/Bio\nCbwBvIkxUB+H8uxQNvO2A44Aj2HOkioBDAyh3+9A5aByZU62vsHcRjpXn6rucH7uFpFJmOnk/PQd\nu3btSkJCAgDx8fHUq1ePxMRE4MS3Ia+W0+piRZ5I6Hf8OLz/fiJ79sCTTwb43/9iR177+Z0oJyYm\nxpQ8uSl/+22Ae++No1+/Kxk2DC66yF/6BZcDgQCjRo0C+Ge8DIGdTrbyP0TkbExMApw6tldy6rKi\ntqoGz5y+EZG1oQgRcoLZnCIiBTGBE82B7cBiMgiccBLX/gJUUtXDTl1RIE5VD4pIMWAWMFBVZ6Xr\nawMnfMTRo3DbbXDsmMnFd9pp0ZbIkh/YsgUaNYKPP4aWLaMtTWTIaJ+Uc9Dtl+kCJ/5U1aEi0g+I\nTxc40YATgRPVshqMReQ/wAhVXeiUGwIPqeod2ckairsvV6jqcaAnMBNYC3yqqutE5AEReSCo6Y3A\nzDQD5VAOmC8iKzBBGl+lN1D5gbRvQn4lWL/Dh+HGG01i0EmT/GGg/Pz5+Um3tNRJt98OmzaZOj/p\nFwoiMg4T1FBDRLaKyN3AC0BLJ4P51U4ZVV0LTMCM69OBHpkZKGdr0SrgEmCBc+TTFudZocQ2hOTu\nyzWqOh2jRHDdyHTl0ZyIIEmr2wycdBqwxb8kJcENN5j1gdGjoaCrf5UWy6k0bQrPPmv+DhctirY0\nkUdVO2VyKcPDb1R1MDA4hFtfn9VjQ+jvnrsvElh3n/fZvx+uvRZq1IB337XpaizRJb+kTvJS7r5s\n3X3OUb/LRWSfiBx0XgciIZzF3+zda9YALroI3nvP34OCxRukpU7q29dG/MUKoaxJvY7ZiFVGVc9w\nXjaPcATws1981y647LIAV10Fb75p1qL8hp8/P7/qVriwCdqZOvUA3bub7RCW6BLK0LANWJNRyguL\nJaekppqzoC69FK64Al56yR7tbYktypaFV19dyS+/mCPojxyJtkT5m1By9zUE/g3MBY451aqqr7os\nW7bYNSlvsWCBSXOUmgqvvQZNmkRbIoslc44ehbvuMqmTpkyBkiWjLVH48NWaFPAcJsPEaZhTFIsD\nZ7gplMVfbN4Mt95q9kD16gU//GANlCX2KVLEzPrr1DHRfzbPX3QIxUidrartVfUZVR2Y9nJdMovn\n/f7798MTTxjX3oUXwoYNZi9K2vqT1/XLDj/r52fd4IR+BQqYE307dIDGjeHnn6MrV34kFCM1TURa\nuy6JxTccP26yTNeoAbt3w6pV5qC5okWjLZnFknNEzN9v375w5ZWwfHm0JcpfhLImlQQUxaxHJTvV\nGgsRfnZNKvaYORN694Yzz4RXX4X69aMtkcUSPiZOhO7d4dNPoVmzaEuTe7y0JmU381rCwtq1xjht\n2gQvv2x27tuoPYsfmTvXrLG+/bZxA3oRLxmpUDbz3pTu2OB4Ebkxqz6W8OAFv//u3ebcp6ZNoXVr\nWLMG2rULzUB5Qb+84Gf9/KwbZK1fs2bGY9CrF4wcmWkzS5gIZU3q2eBznpz3z7omkcUTHD1q9jjV\nrAmFCsH69fDoo2YzpMXid+rXh/nzzf/Ac8/Z7BRuEsqa1I+qWjdd3aq0dO7RxLr7Io+q2ZHft68J\nzX3xRRMgYbHkR/74A9q2NZF/w4Z5J3OKl9x9oRipj4B9mKN/BXgIKKWqXV2XLhuskYosS5aYzbgH\nD8Irr0Dz5tGWyGKJPvv3m2NmypUzWfyLFIm2RNnjJSMVit3vhYnq+xQYjzml9yE3hbIYYsXvv3Ur\n3HGHWWu6+25Ytiw8BipW9HMLP+vnZ90gZ/qVLAnTp0NyMlx3nfkSZwkf2RopVU1S1SdU9VLn1V9V\nD0VCOEt0SUqCp5+GevXgnHPMZtx77rHZyi2W9Jx2GkyYAFWrwtVXm4AiS3jIcQi6iAwG9gPvq+qf\n2bRtg8miHue0H5rueh+gi1MsCNQEyqrqX9n1dfpbd58LpKSYo7T/7/9MJNPgwVClSrSlslhiH1Xz\nxe7TT2HWLHPqbyySyfHx/YHbgVRgFXA3UAzjRTsH2ALcEhxIFxFZc2GkbgLOAy7K6nx6EYkDNmBO\ndvwdWAJ0UtV1mbS/DnhUVVuE2tcaqfAzd65Zdypa1GzGvfzyaEtksXiP4cNh6FDjBqwT9RCzU0lv\npEQkAfgGqKmqR0XkU2AaUBvYo6ovisgTmHiEfpGUNcexKKo6SVVfzspAOTQANqnqFlVNxqxntcui\nfWdgXC77+pJI+v03bjSLv/fcA08+Cd99576BsusasY+qcuT4Efb8vYdf//qVtbvXsvj3xYz8ciQp\nqf49bCmvn12vXmZTe4sW5n/JAxzAxB4UFZGCmCxD24EbgNFOm9FAxPfIFszsgogMDyoqJrLvn7Kq\nPpzNvSsCW4PK24AMhz0RKQq0BnrktK8lb+zda/Z5jBljwsrHjzf+dYu3SElN4VDyIQ4dO0TSsaRT\n3icdS+LQsUMnvf+nXTbXCxYoSPHCxSlWqBjFChejeOHi7P5rNwM3DqRDzQ50rN2RxpUbE1fALlYG\nc9ttUKYMtG8P779vsrDEKqq6V0ReAX4DDgMzVXW2iJRT1Z1Os51AuUjLlqmRApZxwjgNBJ7mhKEK\nxceWEz/c9cB3Qb7OkPt27dqVBMfxGx8fT7169UhMTAROfBvyajmtzo37JyfDY48F+M9/oFOnRNau\nhbVrAyxa5A/9YqGcXr+5c+eSrMlc3PBiDh07xNwFczmccpgL6lxA0rEklqxcwuGUw1Q6txKHkg+x\ndtNaDqccptRZpUg6lsRvO37jSOoRChYtyKHkQ/x54E8OpxzmGMc4lnKMIgWKcHrc6ZQqVopihYuR\ncjiF0+NOp1K5ShQvXJz9u/dzWtxp1KxakzOLnUny7mRKxpXk0rqXUrxwcTau3shpcaeReEUixQoV\nY/ni5ZwedzrNmzXPUL8x08Ywb/c8ek3vxe5Du2lYoiFNz2xKzxt6ElcgLuq//7yUExMTw3K/QoVg\n6tREbrgBFixYT9u2f0RFn0AgwKhRowD+GS+DEZHzgEeBBEzMwWcicntwG1VVEYn4+kpIa1IislxV\nc5Qq1Dks8VlVbeOU+wOpmQRATAI+VdXxOelr16Ryjip8+SU8/jice67Z71S7drSl8j4pqSls/HMj\ny3YsY+n2pfy480f2Hdl3ygylUIFCFCtcjGKFzIwk/fvihU6tO+l6uhlN2vvTC56ORDFZ4sY/N/LZ\nms+YsHYCuw/ttjOsdGzYAG3amOS0fftGP69lBmtStwItVfVep3wH0BC4Gmimqn+IyNnAXFW9IKKy\numikCmKCH5pjfJuLyTj4oSTwC1BJVQ/nsK+vjVTwt/BwsGKFSQL7xx/GOLVpE7Zb54pw6xcp0huk\nZTuWseKPFZxV7CwuOfsSLq1wKfXK1+PXtb/S9IqmJxmZggWycl54h6w+Oz8YLDf+Nn//3fzPtWxp\n1qsKRDE7RQZG6iJgLHAZZi/sKMy4ew7wp6oOFZF+QHykAydc+49R1eMi0hOYiQkj/0BV14nIA871\ntNSMN2L8n4ez6+uWrH5nxw5zHs5XX8Ezz8B990FBf4yVrhOKQbq++vVcfPbFlDq91El9A1sDVC9T\nPUqSR4/qZarz1FVP8dRVT/1jsNJcgl40WOGiYkX49lu4/npzLP2HH5q8l7GAqq4UkY+BpZgQ9P8B\n72JOYZ8gIt1wQtAjLVumMynnHKm0i6djFtPSsOdJeYDDh82M6bXXoFs3eOopszvekjGhGKRLzr4k\nQ4NkyR4/zLDCwd9/m6M+jh+Hzz+HYsUiL4OX0iLZ86R8SGoqjBsH/fubMPKhQ81OeMsJrEGKLvnd\nYB0/bjwa69bB1KkmCjCSWCMVIfxupHLjF1+wwGzGTU01M6gmTdyRLRxEak0qO4OUZpTCbZC8uuYW\nCuHULRYNViQ+O1Xo188EMs2cCZUru/q4k/CSkbIrEz5h82Z44glYtMikMerc2TvHBoSTUAzSs02f\ntTOkGCK/rmGJGC9HuXLmqI8ZM6BWrWhLFXvYmZTH2b/fGKUPPjCHDqalNMoPhGKQLqlgXHalTy8d\nbXEtOSQWZ1huMWaM2RYyaRI0auT+87w0k7JGyqMcP252sT/7LFxzDQwaBBUqRFsq97AGKX8TbLB2\nHdrFzTVv9p3Bmj4d7rzTJHdu29bdZ1kjFSH8bqQy84vPnGn2O515pkkCWz9HO9hih8z084tBsmtS\n7hAJgxUt/RYuhJtuMvuobr89+/a5xUtGyq5JeYi1a41x+vlneOklkwss2jvX80ooBumZps/EvEGy\nRI7M1rD8MMNq1Ai++cZs+t21y7jv8zt2JuUBdu82m3A//9zsdXrwQShcONpS5Z4fd/7I+NXjmf/b\nfE/OkCyxiZ9cglu3QqtW5ovoCy+E/8uol2ZS1kjFMEePwrBh8OKL0KWLOUyttEfH7t/2/8Ynqz5h\n7Kqx7D+yn04XdqLleS2tQbK4gh8M1p9/wrXXmoi/d98Nb5YYa6QihJ+NVCAAnToFaNAgkZdeguoe\nzK6z9/BePlvzGWNXjWXN7jXcXPNmutTtQpMqTSggBXy9ZgN2TSpWyI3BihX9Dh2Cm2826ZPGjw9f\n5K6XjFQ+3EkT+yxYALfcYkLKp0zxloE6nHyYCWsm0G58O85941y+3vw1vRv1Zvu/tjPy+pFcdc5V\nFBD7Z2eJHGlrWCu7r2Re13mUL16eXtN7Uem1SvSa1otvf/02Zg9wLFYMvvgCSpQw7r99+6ItUeSx\nM6kYY8UKaN3a7Jto1Sra0oRGSmoK32z+hrGrxjJlwxQurXApXep0oX3N9pQoEvUUjxZLhnjJJZia\nCn36wOzZZtNvxYp5u5+XZlLWSMUQGzdCYiIMHw4dOkRbmqxRVZbtWMbYH8cyfs14Kp5RkS51unDb\nhbdx9hlnR1s8iyVHpDdYXS/qylNXPUXxwsWjLdo/qJr16XfeMYaqRo3c38tLRgpV9ezLiO8Pfv1V\ntUoV1Q8/PFE3d+7cqMmTGZv+3KQDAwO1xvAaWvWNqjrgmwG6bve6XN0rFvULJ37Wz8+6bdizQVu9\n3UqrvFZFJ6+bHG1xTuGDD1TLl1ddsiT393DGzqiP4aG87D6pGGDXLnMQ2mOPwd13R1uaU9l1aBef\nrv6UsavG8su+X7il9i181O4jGlZqGNXTYC0WN6hepjr9L+hP6jmpPDj1QUatHMWwNsOoXDKCGWCz\n4J57oGxZk2nmk0+gRYtoS+Qu1t0XZf76C5o1g3btTIqjWCHpWBKT109m7KqxLNy6kGurX0uXOl1o\nWbUlheJi5KQ2i8Vljhw/wtDvhjJ88XD+76r/o2eDnjFzuvL8+Sbyb9gwcz5VTvCSu89VIyUibYDX\nMafrvq+qQzNokwi8BhQC9qhqolO/BTgApADJqtogg76eNlKHDpkgiUsvNcdqRHtSkpySzKyfZzF2\n1Vim/jSVxpUb06VOF9pd0C6mfPMWS6TZsGcDD059kL+O/MXI60ZyWcXLoi0SAKtWmTx//fpBz56h\n98vISIlIPPA+UBtz4O3dwE/Ap5hj5LcAt6jqX+GRPkTc8iNiDNMmIAFjgFYANdO1iQfWAJWcctmg\na5uB0tk8I1QXbMxx5Ihqq1aqXbuqpqRk3CYSfv/U1FRd8NsC7fFVDz3zxTO14fsNdfgPw3Vn0k7X\nn+3ndQ1Vf+vnZ91UM9YvNTVVP17xsZZ7qZz2nNpT9x/ZH3nBMmDzZtXzz1cdMEA1NTW0PmSwJgWM\nBu5x3hcESgIvAn2duieAF9L3c/vl5oaVBsAmVd2iqsnAeKBdujadgf+q6jbH4uxJd90T09Gccvy4\nySBRvDi89150zn1av2c9A74ZQLXh1bhnyj2UL16ehd0WsrDbQno26MlZxc6KvFAWSwwjItxx0R2s\nfWgtR44fodaIWny+9vO0AT5qJCTAd9/BtGnQvTuk5GLLl4iUBK5U1Q8BVPW4qu4HbsAYL5yfN4ZH\n6hzI5tYvWERuBlqr6n1O+XbgclXtFdQmzc1XGzgDeENVxzjXfgH2Y9x9I1X1vQyeodH+A8kpqnDv\nvSY315dfQpEikXv29oPbGb96PGNXjWXHwR3cduFtdKnThYvPvtgGQFgsOWT+r/PpPrU7CfEJjLhm\nBAnxCVGV5+BBaN/ebPwdOxZOOy3ztundfSJSDxgJrAUuApYBjwLbVLWU00aAvWnlSOHmCmAo1qMQ\ncDHQHCgKLBSRRar6E9BEVbeLyJnAbBFZr6rz09+ga9euJCQkABAfH0+9evX+SWcSCAQAYqY8d26A\nt96C339PZPZsWLjQ/ecnHU9id5ndjF01lh+2/kCTMk0Y2moozRKaMf/b+RzceBCpIDHx+7FlW/ZS\nOWVzCq9f8DpLCi3h0ncvpUP5DnSs1JEWV7eIijzLlgV4/HHhgw+a0rYt9O49n+LFU0hMTCQQCDBq\n1CiAf8bLdBTEjMU9VXWJiLwO9AtuoKoqIpGfFbjlRwQaAjOCyv2BJ9K1eQJ4Nqj8PnBzBvd6Buid\nQX32ztcY4t//Vq1bV3Xv3tDa59bvfyT5iE5aN0lvnnCzlhhSQtuNa6cTVk/Qv4/9nav7uUV+XNfw\nC37WTTXn+m36c5O2HtNa67xVR7//7Xt3hAqR48dVH3pItV491R07Mm5DujUpoDywOajcBJgKrAPK\nO3VnA+s1RBsQrpebqyFLgfNFJEFECgO3Al+kazMFaCIicSJSFLgcWCsiRUXkDAARKQa0Ala5KKvr\nDBtmTtycNQtKuTBZTtVU5m2Zx/1f3k+FVyvw2qLXaFm1JZsf2czk2ybTsXZHTi90evgfbLFYOK/0\neUzvMp0nr3ySDhM60P2r7uw7HJ1Ee3FxJmvNTTdBkybm/LnsUNU/gK0ikpYptAUmqO1L4C6n7i5g\nsgsiZ4nbIehtORGC/oGqDhGRBwBUdaTTpg8m1DEVeE9Vh4lIVWCic5uCwFhVHZLB/dVN+cPF6NEw\nYIDZ13DOOeG99487f2Tsj2MZt3oc8afF06VOFzrV6USVklXC+yCLxRISfx35iye/fpLJ6yfzcquX\n6XRhp6it+b7zDjz3HHz11ckneGcSgn4RxptVGPgZMy7HAROAKkQpBN1u5nWZSZOgRw+YOxcuuCA8\n90x/NlPnOp3pUqcLdcrVCc8DLBZLnlm0bREPfPUA5YqV461r36Ja6WpRkeO//zUHpU6YYHKDgrc2\n89ozE1xkzhx44AGYOjV3BiptYRTM2Uwjl47kqo+uov7I+mzet5kR14xgy6NbeKHFC540UMH6+RE/\n6+dn3SA8+jWs1JCl9y2l1XmtaPh+QwZ9O4ijx4/mXbgc0qEDfPqpOf5n4sTs28casZHfw4csXAid\nOpk/iosvzt09jqYcZcKaCYxdNZbAlgCtz2tN70a9aVOtDUUKRjB23WKx5IpCcYXoc0UfOtbqSM/p\nPak3sh4jrzPnqkWSZs1g5kxz0u+e9LtRYxzr7nOBH380CWNHjTIpS3LKb/t/48UFLzJ21Vh7NpPF\n4hNUlUnrJ/HIjEdoWbUlL7Z8kbJFy0ZUhk2bTCq2X36x7r58y08/GcM0fHjODdQv+37hvi/uo/7I\n+hQrVIw1PdYw+47ZdK3X1Rooi8XjiAjta7ZnbY+1lChSgtpv1Wb0itERzVhRrZo5+dtLWCMVRrZt\nM6fpDhxo/L+hsvHPjXSd3JUG7zWgfPHybOy5kaEth7Jx2Ub3hI0B7LqGd/GzbuCufmcUOYPX27zO\ntM7TGL54OFd/fDXr96x37XnpKV8+Yo8KC9ZIhYndu42Lr2dPk/YoFNbsWkPn/3am8YeNOa/UeWx6\neBPPXf0cZYqWcVdYi8USdS6pcAk/3PsDN11wE00+bMLTc5/myPEj0RYr5rBrUmFg/364+mrj3hs0\nKPv2K/5YwaBvBzH/t/k81vAxelzWw7rzLJZ8zLYD23hkxiOs2rmKt699m+ZVm7v6PC+FoFsjlUf+\n/hvatIG6dc06VFZ79pZuX8pz3z7Hkt+X0OeKPjxwyQMUK1wscsJaLJaY5quNX9FzWk+aVGnCq61f\nde00Ai8ZKevuywPHjpmTMc85x6Q9ysxAfb/1e9qObctNn95Ey6ot+fnhn/lXo39la6Cs39/b+Fk/\nP+sG0dPvuurXsabHGs4ufjYXvnUh7y17j1RNjYossYI1UrkkJQXuvBMKF4aPPsr4TKh5W+bR/OPm\ndJnYhRtr3MimXpvo2aCnzaFnsVgypVjhYrzU6iVm3zGbD5Z/wFUfXcXqXaujLVbUsO6+XKBqMkn8\n/LPJJhF8bouqMueXOTz37XPsSNrBk02e5Pa6t1MorlDE5bRYLN4mVVN5d9m7DJg7gHvr38uApgMo\nWqhonu/rJXefNVI5RBX69oVvvzVpj844I61emfbTNJ779jkOHD3AU1c+xa0X3krBAjaph8ViyRt/\nJP3BYzMf44dtPzDimhG0PT8XWQKC8JKRsu6+HDJkCMyYAdOnGwOVqqlMWjeJS9+7lP5f96d3o96s\nenAVXep2ybOBsn5/b+Nn/fysG8SefuWLl2dch3G8fe3b9Jzek1s+u4XtB7dHW6yIYI1UDnjrLfjw\nQ3MmVMn4FCasmUC9d+oxaP4gBlw1gBXdV9CxdkfiCsRFW1SLxeJDWldrzeoHV3N+6fO56J2LGLF4\nBCmpKdEWy1Wsuy9E/vMf6N8fvgkc54dD43l+/vPEnxbPgKsG0LZa26idF2OxWPIna3atofvU7hxL\nOcbI60ZSr3y9kPt6yd1njVQIfPEF3Nc9mV7vjWHUz4OpWKIiA64aQPNzm1vjZLFYokaqpvLR8o/o\n/yuZncsAAA9PSURBVHV/7qh7BwObDaR44eLZ9vOSkXLV3ScibURkvYj8JCJPZNImUUSWi8hqEQnk\npG8kmDHnKF1ee4e4R88n8OcnfHDDB8zrOo8WVVu4bqBizS8ebqx+3sXPuoF39CsgBeh2cTdW91jN\n7r93U/ut2kxZPyXX9xOROGc8/tIplxaR2SKyUURmiUh82IQPEdeMlIjEAW8CbYBaQCcRqZmuTTww\nArheVS8Ebg61r9scTj5MnwnDuXZGNWq3/4L/dhrHnDvn0DShaSTFsFgslmw5q9hZfHzTx3zU7iP6\nzunLTZ/exNb9W3Nzq0eAtUCai6ofMFtVqwNfO+WI4pq7T0QaAc+oahun3A9AVV8IatMDKK+qT+e0\nr1MfdnffoWOHeGfpOwyd/woH1jXghWv+j0dvuTSsz7BYLBa3OHL8CEO/G8rwxcN56sqn6HV5r1Mi\njTNy94lIJWAU8DzwL1W9XkTWA01VdaeIlAcCqpqLc8Zzj5vuvopAsCnf5tQFcz5QWkTmishSEbkj\nB33DyoGjBxgyfwhVh1VlzoZFyNjpfNR6sjVQFovFU5xW8DSeSXyGBfcs4MuNX9LgvQYs+X1JKF1f\nAx4HgvMwlVPVnc77nUC5MIubLW7uNA1lilMIuBhoDhQFForIohD7AtC1a1cSEhIAiI+Pp169eiQm\nJgIn/MpZlQ8mH+R/hf7Hm0ve5KLiF9Gv/FCGP92VgX3h7LMDBAJZ93ez/Prrr+dYHy+VrX7eLQev\n2cSCPFa/U8s7Vu9gQJUBbCu9jdaDWlNuWznql6pP9arVSY+IXAfsUtXlIpJ4SgNAVVVEopHiR115\nAQ2BGUHl/sAT6do8ATwbVH4fsy6VbV+nXnPLnkN79Kmvn9IyQ8to18lddcOeDbp7t2qtWqovvJDr\n24aVuXPnRlsEV7H6eRc/66bqP/32HNqj3aZ004qvVNTP1nymztgZPJYOxnivNgM7gEPAGGA9ZkkG\n4GxgvebBLuTm5eaaVEFgA2aWtB1YDHRS1XVBbS7ABEi0BooAPwC3Ahuz6+v015zKvzNpJ68sfIUP\nln9Ah5od6NekH1VLVeXAAWjeHFq0MFklLBaLxW/M/3U+3ad2Z+1DazMNQReRpkAfNWtSLwJ/qupQ\nJzYgXlUjGjzh6j4pEWkLvA7EAR+o6hAReQBAVUc6bfoAd2P8oO+p6rDM+mZw/5CN1PaD23lxwYt8\nvPJjOtfpTN/GfalSsgoAhw+bAwtr1jRZJezWJ4vF4leOpRyjSMEi2Rmp3qp6g4iUBiYAVYAtwC2q\n+lfkpM0Hm3l/2/8bQ78byrjV4+haryt9ruhDhTMq/HM9ORnatzd5+MaMgbgYymgUCAT+8S/7Eauf\nd/GzbuB//by0mde3Kbp/2fcLQ+YPYeL6idxb/17W91x/yimXKSlw110ms/no0bFloCwWi8Xiw5nU\nhj0bGPzdYKZunMqDlz7Iow0fpUzRMqf0VYUePWDdOpPR/HR7DqHFYskn2JlUFFizaw3Pz3+e2b/M\n5uEGD7Pp4U3En5Z5Bo+nnoKlS+Hrr62BslgslljF80d1rPhjBTdPuJmrP76auuXq8vPDPzOg6YAs\nDdTQoTB5splBlSgRQWFzSPBeDT9i9fMuftYN/K+fl/D8TOqasdfQ54o+jL5xNMUKF8u2/ciR5jV/\nPpQtGwEBLRaLxZJrPL8m9fexvzm9UGj+unHj4PHHYd48OO88l4WzWCyWGMVLa1KeN1Khyj91KnTr\nBnPmwIUXuiyYxWKxxDBeMlKeX5MKhXnz4O67YcoUbxkov/vFrX7exc+6gf/18xK+N1JLl0LHjjB+\nPFx+ebSlsVgsFktO8LW7b+1auPpqEyjRrl0EBbNYLJYYxrr7YoDNm6F1a3j5ZWugLBaLxav40kjt\n2AEtW0K/fnD77dGWJvf43S9u9fMuftYN/K+fl/Cdkdq7F1q1MoESDz0UbWksFsv/t3fuwXaNZxj/\nPRIZDkrTi2umwaBktEKlKqRIREJrepUwpaW3MTWJmioxjHZMp2Sm07tRRjUM0RIyoSUJMqop4pIj\nEY5L5UxdkqAGiZBG8/SP79uy7NnnIrLP3mt5fzN7zlrvt9Ze73P2nv3Od3vfIHg/VGpOavXqVA9q\nzBiYPj1KbgRBEDSiTHNSlQlSb70Fxx0He+wBl18eASoIgqAnyhSkmjrcJ2mCpC5JT0k6p0H7EZJe\nk7Q4vy4otHVLWpLti3p7zvr1MHlySnN02WXVCVBVHxcPfeWlytqg+vrqkTRM0gJJyyQ9KmlKtg+V\nNF/Sk5LmSeo5KWqTaFqQkjSIVBp+ArAfcKKkfRtcerftkfl1UcFu4IhsH9XTczZsgNNOg3Xr2q9o\n4fuls7Oz1S40ldBXXqqsDaqvrwHrgR/aHgEcAvwg/16fC8y3vTdwZz4fUJrZkxoFPG272/Z64Hqg\n0WLw3vo9ffaJpk6F7m6YNQuGDNk0R9uVV18d0CrNA07oKy9V1gbV11eP7ZW2O/PxGuBxYFfgeGBG\nvmwG8KWB9q2ZQWpX4NnC+XPZVsTAoZIekfQ3SfvVtd0h6UFJ3+3pIQsXwq23QkfHZvM7CILgA4uk\n4cBI4H5gR9urctMqYMeB9qeZpTr6syLjYWCY7bWSJgKzgb1z22jbKyR9DJgvqcv2PfVvMHcubL/9\n5nO6neju7m61C00l9JWXKmuD6uvrCUnbArOAqbZXqzDBb9uSBnylXdNW90k6BPiJ7Qn5fBqwwfYl\nvdyzHDjI9it19guBNbZ/UWcv79LEIAiCFlK/uk/SlsCtwG22f5VtXaS1ASsl7QwssP3JgfSzmT2p\nB4G9ctfxBWAScGLxAkk7Ai/mCD2KFDRfkdQBDMqRfBtgPPDT+geUZQllEARBO6PUZboSeKwWoDJz\ngG8Cl+S/swfat6YFKdtvSzoDmAsMAq60/bik7+f2PwBfA06X9DawFpicb98JuCl3NQcD19qe1yxf\ngyAIPuCMBr4BLJG0ONumARcDf5H0baAbOGGgHSv1Zt4gCIKg2rR17j5Jf5S0StLSgq3HzWWSpuWN\nw12SxrfG6/6xKZvnSqZvK0n3S+qU9Jikn2d7JfTVkDQobzi/JZ9XRl+jDfVV0SdpB0k3Sno8fz8/\nWyFt+2hjgoTFSgkTppRWn+22fQGHk5ZCLi3YpgM/zsfnABfn4/2ATmBLYDjwNLBFqzX0om0n4IB8\nvC3wBLBvVfRlnzvy38HAfcBhVdKX/T4LuBaYU6XvZ/Z5OTC0zlYJfaQ9P6cVvp/bV0Vbnc4tgBXA\nsLLqa7kD/fgnD68LUl2ktfu1H/qufDwNOKdw3e3AIa32/z3onA2Mq6I+oAN4ABhRJX3AbsAdwJHA\nLdlWJX3LgY/U2UqvLwekZxrYS6+tgabxwD1l1tfWw3090NPmsl1IG4ZrNNo83Jb0c/Nc6fRJ2kJS\nJ0nHAtvLqJA+4JfA2cCGgq1K+hptqK+Cvt2BlyRdJelhSVfkVcRV0FbPZGBmPi6lvjIGqXdwCvu9\nrfxo+1Uh9Zvnim1l12d7g+0DSD2OMZKOrGsvrT5JXyBtn1hMD+m7yqwvM9r2SGAiKZfb4cXGEusb\nDBwIXGr7QOAN6nLSlVjbO0gaAnwRuKG+rUz6yhikVknaCSBvLnsx258njbvW2C3b2pa8eW4WcI3t\n2v6DyuirYfs14K/AQVRH36HA8Uob0GcCR0m6hurow/aK/Pcl4GZSPs4q6HsOeM72A/n8RlLQWlkB\nbUUmAg/lzw9K+tmVMUjVNpfBuzeXzQEmSxoiaXdgL6DXEh+tROpz8xyUW99Ha6uHJG0NHA0spiL6\nbJ9ne5jt3UlDKnfZPpmK6JPUIWm7fFzbUL+UCuizvRJ4VlItBds4YBlwCyXXVseJbBzqg7J+dq2e\nFOtj0m8mKVvFf0nJak8FhpImq58E5gE7FK4/j7QypQs4ptX+96HtMNJcRifpx3sxqaxJVfTtT8rN\n2AksAc7O9kroq9P6eTau7quEPtK8TWd+PQpMq5i+T5MW8zwC3ERaTFEJbdnfbYCXge0KtlLqi828\nQRAEQdtSxuG+IAiC4ANCBKkgCIKgbYkgFQRBELQtEaSCIAiCtiWCVBAEQdC2RJAKgiAI2pYIUkEQ\nBEHbEkEqqBSS7qqvhyPpTEmX9uPeP0n6ah/XnJkzaDQFSSdJWifp/Dr7qEJ9oCWSJtW1nyvppGb5\nFQStIoJUUDVmktIUFZkEXNePe/tKugkwlVR6ZLMj6ShSVvV9gXGSTik0LwUOckr4Oh74vaRBhfbx\nwNxm+BUErSSCVFA1ZgHHSRoM75RB2cX2PxpdLOl3uRrpfODj5IzmksbmMg5LJF2Z85pNIZU1WCDp\nzgbvdbCkhUrViO+TtK2kb0manSuhLpd0hqQf5fe+V9KH8737AxcB420/AxwLnCTpaADbb9qulQTZ\nGnjN9v/yvR8Chtj+j6SvS1qafbh7s/xHg6CFRJAKKoXtV0jJMY/NpsnAnxtdK+krwN6knssppMzm\nlrQVcBVwgu1PkUo7nG77N6RckkfYHlv3XkOA64EpTuVJxgFv5uYRwJeBg4GfAa87lYi4Nz8X20tt\nj3bOWG17re0JtucXnjFK0jJSMtSzCo8fR8rJBnABKdAdQCrTEASlJoJUUEWKQ36TeHcm6CKHA9c5\nsQK4K9v3AZbbfjqfzwDG9PHMfYAVth8CsL0m93RMKvj4hu2XgVdJ2bYhDeEN768o24tsjyCVlfh1\n7kEBHAPclo8XAjMkfYcUXIOg1ESQCqrIHGCspJFAh1Nhwp5oVLCwfl5KDWzvhXWF4w2F8w1sQiCx\n3QX8i1RSAVKdp0W57XTgfFJ9oIckDd1En4OgLYggFVQO22uABaQhu94WTPwdmJTL3O8M1CoHPwEM\nl7RnPj8ZqM3vrAZqPRgkXS3pM6QSBzvnYyRtlxc2NKzaW7u9v5okDS/Ms32CFKCekjQC6HIuZyBp\nz9zjuhB4iVTALghKSwwHBFVlJqlO0Ak9XWD75ryi7jHg38A/s32dpFOBG3JgWARclm+7HLhd0vN5\nXmp/4AXb6/Oy8N/mJeprSYUe61cM1h/3t4d2GHCupPXAeuB7tl+XNJGNQ30A0yXtRQqAd9he0s/3\nD4K2JOpJBcEmkueErrA9qc+Lm+fDPOBk26ta5UMQNJMIUkEQBEHbEsN9QeXJe5CurjO/ZftzrfAn\nCIL+Ez2pIAiCoG2J1X1BEARB2xJBKgiCIGhbIkgFQRAEbUsEqSAIgqBtiSAVBEEQtC3/BzGnaNSG\n31xmAAAAAElFTkSuQmCC\n", - "text": [ - "<matplotlib.figure.Figure at 0x10b66eed0>" - ] - }, - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The required diameter of Pump is 0.108 m\n", - "The required rotational speed is 168.0 rad/s\n", - "The required Brake Horse Power is 160.0 W\n" - ] - } - ], - "prompt_number": 33 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-12, Page No:819" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "rho=998 #Density of fluid in kg/m^3\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "V_dot=12.8 #Volumetric Flow rate in m^3/s\n", - "H_gross=325 #Gross Head in m\n", - "C=10**-6 #COnversion Factor\n", - "n_turbine=0.952 #Efficiency of turbine in fraction\n", - "n_generator=0.945 #Efficiency of generator in fraction\n", - "n_other=1-0.035 #Other efficieny in fraction\n", - "no=12 #Number of Turbines\n", - "\n", - "#Calculations\n", - "W_dot=rho*g*V_dot*H_gross*C #Ideal Power produced in MW\n", - "\n", - "W_electrical_dot=W_dot*n_turbine*n_other*n_generator #Actual Electric Power in mW\n", - "\n", - "W_total=no*W_electrical_dot #Total Power produced in MW\n", - "\n", - "#Result\n", - "print \"The electrical power generated is\",round(W_total),\"MW\"\n", - "#The answer differs due to decimal point accuracy\n", - "#Answer in the text has been rounded off and multiplied hence the inconsistency" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The electrical power generated is 424.0 MW\n" - ] - } - ], - "prompt_number": 18 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-13, Page No:820" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "r2=2.5 #Inlet Radius in m\n", - "r1=1.77 #Outlet raius in m\n", - "b2=0.914 #Runner blade width at inlet in m\n", - "b1=2.62 #Runner blade width at outlet in m\n", - "n_dot=120 #Speed in rpm\n", - "w=12.57 #Rad/s\n", - "alpha1=10 #Angle in degrees\n", - "alpha2=33 #turning of flow in degrees\n", - "V_dot=599 #Volumetric Flow rate in m^3/s\n", - "H_gross=92.4 #Gross Head in m\n", - "C=10**-6 #Conversion Factor\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "\n", - "#Calculations\n", - "#Part(a)\n", - "#Runner Inlet\n", - "V2_n=V_dot/(2*pi*r2*b2) #Normal Component of velocity in m/s\n", - "V2_t=V2_n*tan((alpha2*pi)/180) #Tangential Component in m/s\n", - "beta2=(arctan(V2_n/(w*r2-V2_t)))*(180/pi) #Runner leading edge angle in degrees\n", - "\n", - "#Runner Outlet\n", - "V1_n=V_dot/(2*pi*r1*b1) #Normal Component of velocity in m/s\n", - "V1_t=V1_n*tan((alpha1*pi)/180) #Tangential Component in m/s\n", - "beta1=(arctan(V1_n/(w*r1-V1_t)))*(180/pi) #Runner leading edge angle in degrees\n", - "\n", - "#Using Euler Turbomachine Equation\n", - "W_shaft=rho*w*V_dot*(r2*V2_t-r1*V1_t)*C #Shaft output power in MW\n", - "\n", - "H=W_shaft/(rho*g*V_dot*C) #Net Head in m\n", - "\n", - "#Part(b)\n", - "#Similiary repeat calculations for part(b) and part(c)\n", - "#Result\n", - "#Results are for only part a\n", - "print \"The inlet runner blade angle is\",round(beta2,1),\"degrees\"\n", - "print \"The outlet runner blade angle is\",round(beta1,1),\"degrees\"\n", - "print \"The output power is\",round(W_shaft),\"MW\"\n", - "print \"The net head required is\",round(H,1),\"m\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The inlet runner blade angle is 84.1 degrees\n", - "The outlet runner blade angle is 47.8 degrees\n", - "The output power is 461.0 MW\n", - "The net head required is 78.6 m\n" - ] - } - ], - "prompt_number": 32 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-14, Page no:830" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "Cp=0.4 #Power Coefficient \n", - "n_gearbox=0.85 #Efficiency in fraction\n", - "rho=1.204 #Density of air in kg/m^3\n", - "V=10 #Velocity of flow in m/s\n", - "D=12.5 #Diameter in m\n", - "\n", - "#Calculations\n", - "W_dot_op=(n_gearbox*Cp*pi*rho*V**3*D**2)/8 #Work done in W\n", - "\n", - "#Result\n", - "print \"Electric Power produced is\",round(W_dot_op),\"W\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Electric Power produced is 25118.0 W\n" - ] - } - ], - "prompt_number": 36 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-15,Page No:832" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "D_A=2.05 #Diameter in m\n", - "n_A=120 #Speed in rpm\n", - "w_A=12.57 #Angular Speed in rad/s\n", - "V_A_dot=350 #Volumetric Flwo rate in m^3/s\n", - "H_A=7.5 #Head of water in m*10\n", - "H_B=10.4 #Head of water in m*10\n", - "bhp_A=242 #Brake Horse Power at A in MW\n", - "n_turbine_A=0.942 #Efficiency of turbine A\n", - "rho_A=998 #Density of water in kg/m^3\n", - "\n", - "#Calculations\n", - "a=H_B/H_A\n", - "rho_B=rho_A #Density in kg/m^3\n", - "n_B=n_A #Speed at b in rpm\n", - "D_B=D_A*(a**0.5) #Diameter of the new pump in m\n", - "V_B_dot=V_A_dot*(n_B/n_A)*((D_B/D_A)**3) #Volumetric Flow rate at B in m^3/s\n", - "bhp_B=bhp_A*(rho_B/rho_A)*((n_B/n_A)**3)*((D_B/D_A)**5) #Brake Horse Power in MW\n", - "\n", - "n_turbine=1-(1-n_turbine_A)*((D_A/D_B)**0.2) #Efficiency correction in fraction\n", - "\n", - "#Result\n", - "print \"The brake horse power is\",round(bhp_B),\"MW\"\n", - "print \"The diameter of the new turbine is\",round(D_B,2),\"m\"\n", - "print \"The volumetric Flow rate is\",round(V_B_dot),\"m^3/s\"\n", - "print \"The corrected efficiency is\",round(n_turbine,3)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The brake horse power is 548.0 MW\n", - "The diameter of the new turbine is 2.41 m\n", - "The volumetric Flow rate is 572.0 m^3/s\n", - "The corrected efficiency is 0.944\n" - ] - } - ], - "prompt_number": 54 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.14-16, Page No:836" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "w_A=12.57 #Angular Speed in rad/s\n", - "rho_A=998 #Density of fluid in kg/m^3\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "H_A=75 #Head in m\n", - "bhp_A=242*10**6 #Brake Horse Power at A in W\n", - "H_B=104 #Head in m\n", - "bhp_B=548 *10**6 #Brake Horse Power at B in W\n", - "\n", - "#Calculations\n", - "#For Turbine A\n", - "Nst_A=(w_A*bhp_A**0.5)/(rho_A**0.5*g**1.25*H_A**1.25) #Dimensionless specific speed at A\n", - "\n", - "#For turbine B\n", - "w_B=w_A #Angular Speed in rad/s\n", - "rho_B=rho_A #Density of fluid in kg/m^3\n", - "Nst_B=(w_B*bhp_B**0.5)/(rho_B**0.5*g**1.25*H_B**1.25) #Dimensionless specific speed at B\n", - "\n", - "Nst_US_A=43.46*Nst_B #Turbine specific speed in US units\n", - "\n", - "#Result\n", - "print \"The Turbine Specific Speed in US units is\",round(Nst_US_A,1)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Turbine Specific Speed in US units is 70.2\n" - ] - } - ], - "prompt_number": 55 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file |