summaryrefslogtreecommitdiff
path: root/Fluid_Mechanics-Fundamentals_&_Applications/Chapter08.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Fluid_Mechanics-Fundamentals_&_Applications/Chapter08.ipynb')
-rwxr-xr-xFluid_Mechanics-Fundamentals_&_Applications/Chapter08.ipynb475
1 files changed, 0 insertions, 475 deletions
diff --git a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter08.ipynb b/Fluid_Mechanics-Fundamentals_&_Applications/Chapter08.ipynb
deleted file mode 100755
index e70edd03..00000000
--- a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter08.ipynb
+++ /dev/null
@@ -1,475 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:11a32dcbb7adff422edff329d33e29629cd83e2f8ab7cf7ac7803e8cbd9385ca"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter 08:Internal Flow"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 8.8-1, Page No:349"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#Variable Decleration\n",
- "u_max=6 #Maximum Velocity in m/s\n",
- "R=0.02 #Radius of the Pipe in m\n",
- "L=70 #Length of the pipe in m\n",
- "rho=1252 #Density of glycerin in kg/m^3\n",
- "u=0.3073 #Viscosity of glycerin in kg/m.s\n",
- "g=9.81 #Acceleration due to gravity in m/s^2\n",
- "C=10**-3 #Conversion factor\n",
- "\n",
- "#Calculations\n",
- "D=R*2 #Diameter of the pipe in m\n",
- "V=u_max/2 #Average Velocity in m/s\n",
- "V_dot=V*(pi*R**2) #Volumertic Flow rate in m^3/s\n",
- "Re=(rho*V*D)/u #Reynolds Number \n",
- "f=64/Re #Friction Factor\n",
- "h_L=(f*L*V**2)/(2*g*D) #Head loss in m\n",
- "theta=(pi*15)/180 #Angle in radians\n",
- "\n",
- "#Applying the energy balance equation\n",
- "#As z2=z1 z2-z1=0 hence we do not consider it in the computation\n",
- "delta_P=rho*g*(h_L)*C #Pressure difference in kPa\n",
- "W_dot=V_dot*delta_P #Useful pumping Power in kW\n",
- "\n",
- "#Inclined Case\n",
- "delta_z=L*sin(theta) #elevation difference in m\n",
- "delta_P_up=(rho*g*delta_z*C)+(rho*g*h_L*C) #Pressure difference up in kPa\n",
- "V_dot_upward=W_dot/delta_P_up #Flow rate through the upward pipe in m^3/s\n",
- "\n",
- "#Percentage Calculations\n",
- "per_V=((V_dot-V_dot_upward)/V_dot)*100 #Percentage change in the flow rate\n",
- "\n",
- "#Result\n",
- "print \"The velocity of the flow is\",round(V),\"m/s\"\n",
- "print \"The pressure difference across 70m long pipe is\",round(delta_P),\"kPa\"\n",
- "print \"The power required to maintain the flow is\",round(W_dot,2),\"kW\"\n",
- "print \"The percentage change in the flow rate is\",round(per_V,1),\"%\"\n",
- "#Answer for percentage change and flow rate through the pipe upward direction are incorrect"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The velocity of the flow is 3.0 m/s\n",
- "The pressure difference across 70m long pipe is 1291.0 kPa\n",
- "The power required to maintain the flow is 4.87 kW\n",
- "The percentage change in the flow rate is 14.7 %\n"
- ]
- }
- ],
- "prompt_number": 10
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 8.8-2, Page No:350"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#Variable Decleration\n",
- "rho=1000 #Density of water in kg/m^3\n",
- "u=1.519*10**-3 #Viscosity of water in kg/m.s\n",
- "L=9 #Length of the pipe in m\n",
- "D=0.003 #Diameter of the pipe in m\n",
- "V=0.9 #Average velocity inside the pipe of water in m/s\n",
- "g=9.81 #Acceleration due to gravity in m/s^2\n",
- "\n",
- "#Calculations\n",
- "#Part(a)\n",
- "\n",
- "Re=(rho*V*D)/u #Reynolds Number\n",
- "f=64/Re #Friction Factor\n",
- "h_L=(f*L*V**2)/(2*g*D) #Head Loss in m\n",
- "\n",
- "#Part(b)\n",
- "delta_P=(f*L*V**2)/(2*D) #Pressure difference in kPa\n",
- "\n",
- "#Part(c)\n",
- "V_dot=(V*pi*D**2)/4 #Volumetric Flow rate in m^3/s\n",
- "W_dot=V_dot*delta_P*1000 #Pumping power required in W\n",
- "\n",
- "#Result\n",
- "print \"The Head Loss is\",round(h_L,2),\"m\"\n",
- "print \"The pressure drop is\",round(delta_P,1),\"kPa\"\n",
- "print \"The pumping power required is\",round(W_dot,2),\"W\"\n",
- "\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The Head Loss is 4.46 m\n",
- "The pressure drop is 43.7 kPa\n",
- "The pumping power required is 0.28 W\n"
- ]
- }
- ],
- "prompt_number": 17
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 8.8-3, Page No:360"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#Variable Decleration\n",
- "rho=999 #Density of water in kg/m^3\n",
- "u=1.138*10**-3 #Viscosity in kg/m.s\n",
- "D=0.05 #Diameter of the pipe in m\n",
- "V_dot= 0.006 #Volumetric Flow rate in m^3/s\n",
- "L=60 #Length of the pipe in m\n",
- "e=0.002 #Relative roughness value from table\n",
- "f=0.0172 #Value from Moody Chart\n",
- "g=9.81 #Acceleration due to gravity in m/s^2\n",
- "\n",
- "#Calculations\n",
- "V=round((V_dot*4)/(pi*D**2),2) #Velocity of the flow in the pipe in m/s\n",
- "Re=(rho*V*D)/u #Reynolds Number\n",
- "e_D=e/(D*1000) #Relative roughness\n",
- "\n",
- "#Taking the value for root f from Moody Chart as f=0.0172\n",
- "delta_P=(f*L*rho*V**2)/(D*2) #Pressure Drop in N/m^2\n",
- "h_L=delta_P/(rho*g) #Head Loss in m\n",
- "W_pump=V_dot*delta_P #Required Power in W\n",
- "\n",
- "#Result\n",
- "print \"The Pressure Drop is\",round(delta_P),\"N/m^2\"\n",
- "print \"The head loss is\",round(h_L,2),\"m\"\n",
- "print \"The Power required is\",round(W_pump),\"W\" \n",
- "\n",
- "#The answer for delta_P is off by 4 due to decimal accuracy in the formula\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The Pressure Drop is 96536.0 N/m^2\n",
- "The head loss is 9.85 m\n",
- "The Power required is 579.0 W\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 8.8-4, Page No:361"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#Variable Decleration\n",
- "V_dot=0.35 #Volumertic flow rate in m^3/s\n",
- "L=150 #Length of the pipe in m\n",
- "rho=1.145 #Density of the fluid in kg/m^3\n",
- "u=1.895*10**-5 #Dynamic viscosity of the fluid in kg/m.s\n",
- "v=1.655*10**-5 #Kinematic Viscosity of the fluid in m^2/s\n",
- "h_l=20 #Allowable head loss in m\n",
- "g= 9.81 #Acceleration due to gravity in m/s^2\n",
- "\n",
- "#The following three equations are solved using EES hence we will be taking the values directly here\n",
- "D=0.267 #Diameter of the pipe in m\n",
- "f=0.0180\n",
- "V=6.24 #Velocity of low in m/s\n",
- "Re=100800 #Reynolds Number\n",
- "\n",
- "#Calculations\n",
- "#Simplfying the calculations\n",
- "c=V_dot**9.4\n",
- "d=L/(g*h_l)\n",
- "f=d**5.2\n",
- "#Using Swamee-Jain Formula\n",
- "D=0.66*((v*c*f)**0.04) #Diameter of the pipe in m\n",
- "\n",
- "#Result\n",
- "print \"The diameter of the pipe is\",round(D,3),\"m\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The diameter of the pipe is 0.271 m\n"
- ]
- }
- ],
- "prompt_number": 18
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 8.8-5, Page No:362"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#Variable Deceleration\n",
- "#Using the computationally simple method given in the discussion\n",
- "\n",
- "g=9.81 #Acceleration due to gravity in m/s^2\n",
- "D=0.267 #Diameter in m\n",
- "h_l=20 #Head loss in m\n",
- "L=300 #Length of the pipe in m\n",
- "v=1.655*10**-5 #Kinematic Voscosity in m^2/s\n",
- "V_dot_old=0.35 #Volumetric Flow rate in m^3/s\n",
- "\n",
- "#Calculations\n",
- "a=((3.17*v**2*L)/(g*D**3*h_l))**0.5\n",
- "b=log(a)\n",
- "c=((g*D**5*h_l)/L)**0.5\n",
- "\n",
- "V_dot_new=-0.965*b*c #Volumetric Flow rate in m^3/s\n",
- "V_dot=V_dot_old-V_dot_new #Drop in the flow rate in m^/s\n",
- "\n",
- "print \"The drop in the flow rate is\",round(V_dot,2),\"m^3/s\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The drop in the flow rate is 0.11 m^3/s\n"
- ]
- }
- ],
- "prompt_number": 12
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 8.8-6, Page No:370"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#Variable Decleration\n",
- "D1=0.06 #Diameter of the pipe at section 1 in m\n",
- "D2=0.09 #Diameter of the pipe at section 2 in m\n",
- "V1=7 #Average Velocity at section 1 in m/s\n",
- "K_l=0.133 # interpolating from table\n",
- "g=9.81 #Acceleration due to gravity in m/s^2\n",
- "P1=150 #Pressure head at section one in kPa\n",
- "rho=1000 #Density of the fluid in kg/m^3\n",
- "alpha1=1.06 #momentum correction factor\n",
- "alpha2=alpha1 #momentum correction factor\n",
- "C=10**-3 #Conversion factor\n",
- "\n",
- "#Calculations\n",
- "#Applying the one dimensional continuity equation\n",
- "V2=(D1**2/D2**2)*V1 #Velocity of the fluid at section 2 in m/s\n",
- "\n",
- "#Irreversible head loss\n",
- "h_l=K_l*(V1**2/(2*g)) #Irreversible head loss in m\n",
- "\n",
- "#Using the energy equation\n",
- "P2=P1+rho*(((alpha1*V1**2-alpha2*V2**2)*0.5)-g*h_l)*C #Pressure head at section 2 in kPa\n",
- "\n",
- "#Result\n",
- "print \"The head loss is\",round(h_l,4),\"m\"\n",
- "print \"The pressure head at section two is\",round(P2),\"kPa\"\n",
- "#The answer differs due to decimal point accuracy\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The head loss is 0.3322 m\n",
- "The pressure head at section two is 168.0 kPa\n"
- ]
- }
- ],
- "prompt_number": 21
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 8.8-8, Page No:377"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#Variable decleration\n",
- "rho=999.7 #Density of the fluid in kg/m^3\n",
- "u=1.307*10**-3 # Dynamic Viscosity in kg/m.s \n",
- "e=0.00026 #Roughness of cast iron in m\n",
- "V_dot=0.006 #Volumetric Flow rate in m^3/s\n",
- "z2=4 #static head at section 2 in m\n",
- "D=0.05 #Diameter of the pipe in m\n",
- "#Kl declerations\n",
- "Kl_entrance=0.5\n",
- "Kl_elbow=0.3\n",
- "Kl_valve=0.2\n",
- "Kl_exit=1.06\n",
- "f=0.0315 #Using Moody Chart and Colebrook Equation friction factor\n",
- "L=89 #Length of the pipe in m \n",
- "g=9.81 #Acceleration due to gravity in m/s^2\n",
- "\n",
- "#Calculations\n",
- "V=(V_dot*4)/(pi*D**2) #Average Velocity in the pipe in m/s\n",
- "Re=(rho*V*D)/u #Reynolds Number\n",
- "e_D=e/D\n",
- "sum_Kl=Kl_entrance+2*Kl_elbow+Kl_valve+Kl_exit #Summation of all Kl\n",
- "#Total Head Loss\n",
- "h_l=(((f*L)/D)+sum_Kl)*(V**2/(2*g)) #Total head loss in m\n",
- "\n",
- "#Using Energy equation\n",
- "z1=z2+h_l #Free surface of the first reservoir in m\n",
- "\n",
- "#Result\n",
- "print \"The elevation of the free surface of the first reservoir is\",round(z1,1),\"m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The elevation of the free surface of the first reservoir is 31.8 m\n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 8.8-10, Page No:385"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#Variable Decleration\n",
- "rho_met=788.4 #Density of the fluid in kg/m^3\n",
- "u=5.857*10**-4 #Dynamic Viscosity in kg/m.s\n",
- "rho_hg=13600 #Density of mercury in kg/m^3\n",
- "d=0.03 #diameter of the orifice meter in m\n",
- "D=0.04 #Diameter of the pipe in m\n",
- "h=0.11 #differential height of the manometer in m\n",
- "g=9.81 #Acceleration due to gravity in m/s^2\n",
- "Cd=0.61 #Coefficient of discharge\n",
- "\n",
- "#Calculations\n",
- "beta=d/D #Diameter ratio\n",
- "Ao=(pi*d**2)/4 #Area of throat in m^2\n",
- "\n",
- "#Pressure Drop\n",
- "delta_P=(rho_hg-rho_met)*g*h #Pressure drop in m\n",
- "\n",
- "#Flow rate\n",
- "V_dot=Ao*Cd*(((2*delta_P)/(rho_met*(1-beta**4)))**0.5) #Volumetric Flow rate in m^3/s\n",
- "V=(V_dot*4)/(pi*D**2) #Average Velocity in m/s\n",
- "\n",
- "#Reynolds Number\n",
- "Re=(rho_met*V*D)/u #Reynolds Number\n",
- "\n",
- "#Coefficient of Discharge\n",
- "Cd_calculations=0.5959+0.0312*beta**2.1-0.184*beta**8+((91.71*beta**2.50)/Re**0.75)\n",
- "\n",
- "#Result\n",
- "print \"The flow rate of methanol in the pipe is\",round(V_dot,5),\"m^3/s\"\n",
- "print \"The average velocity of low in the pipe is\",round(V,2),\"m/s\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The flow rate of methanol in the pipe is 0.00309 m^3/s\n",
- "The average velocity of low in the pipe is 2.46 m/s\n"
- ]
- }
- ],
- "prompt_number": 5
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file