summaryrefslogtreecommitdiff
path: root/Fluid_Mechanics-Fundamentals_&_Applications/Chapter05.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Fluid_Mechanics-Fundamentals_&_Applications/Chapter05.ipynb')
-rwxr-xr-xFluid_Mechanics-Fundamentals_&_Applications/Chapter05.ipynb626
1 files changed, 0 insertions, 626 deletions
diff --git a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter05.ipynb b/Fluid_Mechanics-Fundamentals_&_Applications/Chapter05.ipynb
deleted file mode 100755
index e6b94086..00000000
--- a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter05.ipynb
+++ /dev/null
@@ -1,626 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:8bd11344481cd08353414df9b95ff36a77bcdb1a4b70dab675e71546fa1a4453"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter 05:Mass, Bernoulli and Energy Equations"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5.5-1, Page No:190"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#Vairable Decleration\n",
- "V=10#Volume of the bucket in Gal\n",
- "r_in=1 #Radius of the hose in cm\n",
- "r_e=0.4 #Radius of the hose at the nozzle exit in cm\n",
- "t=50 #Time taken to fill the bucket in s\n",
- "C_gl=3.7854 #Conversion factor gal to Lit\n",
- "rho=1 #Denisty of water in kg/Lit\n",
- "C_v=10**-3 #Conersion factor in m^3/lit\n",
- "\n",
- "#Calculations\n",
- "\n",
- "#Part (a)\n",
- "V_dot=(V*C_gl)/t #Volume flow rate in Lit/s\n",
- "m_dot=rho*V_dot #Mass flow rate in kg/s\n",
- "\n",
- "#Part(b)\n",
- "A_e=pi*r_e**2*10**-4 #Cross-Sectional Area of the nozzle at exit in m^2\n",
- "V_e=(V_dot*C_v)/A_e #Average Velocity of water at nozzle exit in m/s\n",
- "\n",
- "#Result\n",
- "print \"The Volume Flow rate is\",round(V_dot,3),\"L/s and the mass flow rate is\",round(m_dot,3),\"kg/s\"\n",
- "print \"The area of cross section at nozzle exit is\",round(A_e,5),\"m^2\"\n",
- "print \"The Average Velocity of water is\",round(V_e,1),\"m/s\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The Volume Flow rate is 0.757 L/s and the mass flow rate is 0.757 kg/s\n",
- "The area of cross section at nozzle exit is 5e-05 m^2\n",
- "The Average Velocity of water is 15.1 m/s\n"
- ]
- }
- ],
- "prompt_number": 24
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5.5-2, Page No:191"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#Variable Decleration\n",
- "h_o=1.2 #Original Height in m\n",
- "h_2=0.6 #Water level drop in m\n",
- "g=9.81 #Acceleration due to gravity in m/s^2\n",
- "D_tank=0.9 #Diameter of the tank in m\n",
- "D_jet=0.013 #Diameter at the jet in m\n",
- "\n",
- "#Calculations\n",
- "#After carrying out the theroetical calculations and integration we arrive to obtain\n",
- "t_min=((h_o**0.5-h_2**0.5)/((g/2)**0.5))*((D_tank/D_jet)**2) #Time required to reach a level 0.6m in s\n",
- "t=t_min/60 #Converting time from sec to min\n",
- "\n",
- "#Result\n",
- "print \"The time it takes to half empty the tank is\",round(t,1),\"min\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The time it takes to half empty the tank is 11.6 min\n"
- ]
- }
- ],
- "prompt_number": 34
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5.5-3, Page No:195"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "##Note:The symbols in the textbook are cumbersome to code hence a different one has been used in this coding\n",
- "\n",
- "#Variable Decleration\n",
- "h=50 #Elevation difference in m\n",
- "m_dot=5000 #Mass flow rate at which the water is to be supplied in kg/s\n",
- "W_dot_out=1862 #Electric Power generated in kWh\n",
- "n_generator=0.95 #Efficiency of the generator in fraction\n",
- "g=9.81 #Acceleration due to gravity in m/s^2\n",
- "C=10**-3 #Conversion factor in kJ/kg/m^2/s^2\n",
- "\n",
- "#Calculations\n",
- "\n",
- "#Part(a)\n",
- "\n",
- "#Calling e_mech_in-e_mech_out as del_e for convienence \n",
- "del_e=g*h*C #Change in water's mechanical energy per unit mass in kJ/kg\n",
- "delta_E_fluid=m_dot*del_e # Change in energy of the fluid in kW\n",
- "\n",
- "n_overall=W_dot_out/delta_E_fluid #Overall Efficiency in fraction\n",
- "\n",
- "#Part(b)\n",
- "n_turbine_gen=n_overall/n_generator #Mechanical efficiency os the turbine in fraction\n",
- "\n",
- "#Part(c)\n",
- "W_dot_shaft_out=n_turbine_gen*delta_E_fluid #Shaft power output in kW\n",
- "\n",
- "#Result\n",
- "print \"The overall efficiency is\",round(n_overall,2)\n",
- "print \"The mechanical efficiency of the turbine is\",round(n_turbine_gen,1)\n",
- "print \"The shaft power output is\",round(W_dot_shaft_out,1),\"kW\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The overall efficiency is 0.76\n",
- "The mechanical efficiency of the turbine is 0.8\n",
- "The shaft power output is 1960.0 kW\n"
- ]
- }
- ],
- "prompt_number": 36
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5.5-5, Page No:205"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#Variable Decleration\n",
- "P1=400 #Pressure at upstream of the jet in kPa\n",
- "g=9.81 #Acceleration due to gravity in m/s^2\n",
- "rho=1000 #Density of water in kg/m^3\n",
- "C1=1000 #Conversion factor in N/m^2.kPa\n",
- "C2=1 #Conversion factor in kg.m/s^2.N\n",
- "\n",
- "#Calculations\n",
- "#Applying the Bernoulli Equation\n",
- "z2=(P1*C1*C2)/(rho*g) #maximun height the water jet reaches in m\n",
- "\n",
- "#Result\n",
- "print \"The water jet rises up to\",round(z2,1),\"m\"\n",
- "\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The water jet rises up to 40.8 m\n"
- ]
- }
- ],
- "prompt_number": 39
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5.5-6, Page No:206"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#Variable Decleration\n",
- "h=5 #Height at which the water tank is filled in m\n",
- "g=9.81 #Acceleration due to gravity in m/s^2\n",
- "\n",
- "#Calculations\n",
- "z1=h #Decleration in terms of datum in m\n",
- "#Applying the Bernoulli Equation\n",
- "V2=(2*g*z1)**0.5 #Maximum velocity that the water jet can attain in m/s\n",
- "\n",
- "#Result\n",
- "print \"The maximum velocity that the water jet can attain is\",round(V2,1),\"m/s\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The maximum velocity that the water jet can attain is 9.9 m/s\n"
- ]
- }
- ],
- "prompt_number": 40
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5.5-7, Page No:207"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#Variable Decleration\n",
- "P_atm=101.3 #Atmospheric pressure in kPa\n",
- "g=9.81 #Acceleration due to gravity in m/s^2\n",
- "rho=750 #Denisty of gasoline in kg/m^3\n",
- "z1=0.75 #Location of point 2 w.r.t point 1\n",
- "D=5*10**-3 #Diameter of the siphon pipe in m\n",
- "V=4 #Volume of gasoline to be siphoned in Lit\n",
- "z3=2.75 #Height of point 3 w.r.t to point 2 in m\n",
- "C1=1 #conversion factor in N.s^2/kg.m\n",
- "C2=10**-3 #Conversion factor in kPa.m^2/N\n",
- "#Calculations\n",
- "\n",
- "#Part (a)\n",
- "#Applying the Bernoulli Equation\n",
- "V2=(2*g*z1)**0.5 #Velocity in m/s\n",
- "A=(pi*D**2)/4 #Cross-Sectional Area in m^2\n",
- "V_dot=V2*A*1000#Volume flow rate in L/s\n",
- "delta_t=V/V_dot #Time required to siphon gasoline in s\n",
- "\n",
- "#Part(b)\n",
- "#Applying Bernoulli Equations\n",
- "P3=P_atm-(rho*g*z3*C1*C2) #Pressure at point 3 in kPa\n",
- "\n",
- "#result\n",
- "print \"The time requires to siphon 4L gasoline is\",round(delta_t,1),\"s\"\n",
- "print \"The pressure at point 3 is\",round(P3,1),\"kPa\"\n",
- "\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The time requires to siphon 4L gasoline is 53.1 s\n",
- "The pressure at point 3 is 81.1 kPa\n"
- ]
- }
- ],
- "prompt_number": 45
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5.5-8, Page No:208"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#Variable Declerations\n",
- "g=9.81 #Acceleration due to Gravity in m/s^2\n",
- "h3=0.12 #Difference in level in m\n",
- "\n",
- "#Calculations\n",
- "#Applying Bernoulli Equations\n",
- "V1=(2*g*h3)**0.5 #Velocity of Fluid in m/s\n",
- "\n",
- "#Result\n",
- "print \"The velocity of fkuid is\",round(V1,2),\"m/s\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The velocity of fkuid is 1.53 m/s\n"
- ]
- }
- ],
- "prompt_number": 46
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5.5-9, Page No:209"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#Variable Decleration\n",
- "rho_hg=13600 #density of mercury in kg/m^3\n",
- "rho_sw=1025 #density of sea-water in kg/m^3\n",
- "rho_atm_air=1.2 #Density of air in kg/m^3\n",
- "P_atm_air=762 #Atmospheric pressure 320km away from the eye in mm oh Hg\n",
- "P_air=560 #Atmospheric pressure at the eye of the strom in mm og Hg\n",
- "C=10**-3 #Conversion factor in m/mm\n",
- "V_A=250 #Hurricane Wind Velocity in km/hr\n",
- "C_k=1/3.6 #Conversion Factor from km/hr to m/s \n",
- "g=9.81 #Acceleration due to gravity in m/s^2\n",
- "\n",
- "#Calculations\n",
- "\n",
- "#part(a)\n",
- "h3=(rho_hg*(P_atm_air-P_air)*C)/rho_sw #Pressure difference in m\n",
- "\n",
- "#Part(b)\n",
- "#Applying Bernoulli Equations\n",
- "h_air=(V_A**2*C_k**2)/(2*g) #Height of air column in m\n",
- "rho_air=(P_air*rho_atm_air)/P_atm_air #Density of Air in the hurricane in kg/m^3\n",
- "h_dynamic=(rho_air*h_air)/rho_sw #Sea-Water column equivalent to air-column in m\n",
- "h2=h3+h_dynamic #Total storm surge at point 2 in m\n",
- "\n",
- "#Result\n",
- "print \"The pressure difference between point's 1 and 3 in terms of sea-water column is\",round(h3,2),\"m\"\n",
- "print \"The total Storm Surge at point2 is\",round(h2,2),\"m\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The pressure difference between point's 1 and 3 in terms of sea-water column is 2.68 m\n",
- "The total Storm Surge at point2 is 2.89 m\n"
- ]
- }
- ],
- "prompt_number": 61
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5.5-12, Page No:221"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#Variable Decleration\n",
- "V_dot=50 #Volumetric Flow rate in L/s\n",
- "rho=1 #Density of water \n",
- "n_motor=0.9 #efficiency of the electric motor in fraction\n",
- "W_dot_electric=15 #Power of the electric motor in kW\n",
- "P2=300 #Absolute pressure at the outlet in kPa\n",
- "P1=100 #Absolute pressure at the inlet in kPa\n",
- "c=4.18 #Specific heat of water in kJ/kg C\n",
- "#Calculations\n",
- "\n",
- "#Part(a)\n",
- "m_dot=rho*V_dot #Mass flow rate in kg/s\n",
- "W_dot_pump=n_motor*W_dot_electric #Mechanical shaft power delivered in kW\n",
- "delta_E_dot_mech_fluid=(m_dot*((P2-P1)/rho))/1000 #Increase in mechanical energy in kW\n",
- "n_pump=delta_E_dot_mech_fluid/W_dot_pump #Efficiency in fraction\n",
- "\n",
- "#part (b)\n",
- "E_dot_loss=W_dot_pump-delta_E_dot_mech_fluid #Lost mechanical energy in kW\n",
- "delta_T=(E_dot_loss)/(m_dot*c) #Temperature rise of water due to mechanical inefficiency in degree C\n",
- "\n",
- "#Result\n",
- "print \"The Mechanical efficiency of the pump is\",round(n_pump,3)\n",
- "print \"The temperature rise of water due to mechanical inefficiency is\",round(delta_T,3),\"Degree Centigrade\"\n",
- "\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The Mechanical efficiency of the pump is 0.741\n",
- "The temperature rise of water due to mechanical inefficiency is 0.017 Degree Centigrade\n"
- ]
- }
- ],
- "prompt_number": 14
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5.5-13, Page No:222"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#Variable Decleration\n",
- "V_dot=100 #Discharge through the power plant in m^3/s\n",
- "rho=1000 #Density of water in kg/m^3\n",
- "z1=120 #Elevation from which the water flows in m\n",
- "h_l=35 #Elevation of point 2 in m\n",
- "n_turbine_gen=0.8 #Overall efficiency of the generator in fraction\n",
- "g=9.81 #Acceleration due to gravity in m/s^2\n",
- "C=10**-3 #Conversion Factor\n",
- "\n",
- "#Calculations\n",
- "m_dot=rho*V_dot #mass flow rate through the turbine in kg/s\n",
- "\n",
- "#Applying Bernoullis principle and taking point 2 as reference point z2=0\n",
- "h_turbine=z1-h_l #extracted turbine head in m\n",
- "W_dot_turbine=m_dot*g*h_turbine*C #Turbine Power in kW\n",
- "W_dot_electric=C*n_turbine_gen*W_dot_turbine #Electrical Power Generated by the actual Unit in MW\n",
- "\n",
- "#Result\n",
- "print \"The electrical Power generated is\",round(W_dot_electric,1),\"MW\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The electrical Power generated is 66.7 MW\n"
- ]
- }
- ],
- "prompt_number": 15
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5.5-14, Page No:223"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#Variable Decleration\n",
- "void_fraction=0.5 #Void Fraction\n",
- "l=12 #Dimension of the fan in cm\n",
- "w=40 #Dimension of the fan in cm\n",
- "h=40 #Dimension of the fan in cm\n",
- "delta_t=1 #time in s\n",
- "rho=1.2 #Ddensity of air in kg/m^3\n",
- "D=0.05 #Diameter of opening in the case in m\n",
- "alpha2=1.1 #kinetic correction factor\n",
- "n_fan=0.3 #Efficiency of the fan-motor\n",
- "#Calculations\n",
- "#Part(a)\n",
- "V=void_fraction*l*w*h #Volume in cm^3\n",
- "V_dot=(V/delta_t)*10**-6 #Volumetric flow rate in m^3/s\n",
- "m_dot=rho*V_dot #mass flow rate in kg/s\n",
- "A=(pi*D**2)/4 #Area of the opening is the case in m^2\n",
- "\n",
- "#Notation has been changed to avoid conflict\n",
- "Vel=V_dot/A #Velocity of the air thorught the opening in m/s\n",
- "\n",
- "#Applying Bernoullis principle\n",
- "W_dot_fan=m_dot*alpha2*Vel**2*0.5 #Work done in W\n",
- "W_dot_electric=W_dot_fan/n_fan #Electric Work done in W\n",
- "\n",
- "#Part(b)\n",
- "#Applying Brnoullis principle\n",
- "#Notation has been changed here\n",
- "delta_P=(rho*W_dot_fan)/m_dot #Pressure rise across fan in Pa\n",
- "\n",
- "#Result\n",
- "print \"Wattage of the fan to be purchased is\",round(W_dot_electric,4),\"W\"\n",
- "print \"The pressure difference across the fan is\",round(delta_P,1),\"Pa\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Wattage of the fan to be purchased is 0.5049 W\n",
- "The pressure difference across the fan is 15.8 Pa\n"
- ]
- }
- ],
- "prompt_number": 18
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 5.5-15, Page No:225"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#Variable Decleration\n",
- "W_shaft=5 #Shaft Power in kW\n",
- "n_pump=0.72 #Efficiency of the pump in fraction\n",
- "g=9.81 #Acceleration due to gravity in m/s^2\n",
- "h_l=4 #Head loss in m\n",
- "z2=25 #Datum in m\n",
- "rho=1000 #Density of water in kg/m^3\n",
- "\n",
- "#Calculations\n",
- "W_dot_pump=n_pump*W_shaft #Useful mechanical power returned in kW\n",
- "\n",
- "#Applying Bernoullis Principle\n",
- "m_dot=(W_dot_pump/(g*(z2+h_l)))*1000 #mass floe rate in kg/s\n",
- "V_dot=(m_dot/rho) #Volumetric flow rate in m^3/s\n",
- "delta_P=W_dot_pump/V_dot #Pressure difference in kPa\n",
- "\n",
- "#Result\n",
- "print \"Discharge of water is\",round(V_dot,4),\"m^3/s\"\n",
- "print \"The pressure difference across the pump is\",round(delta_P),\"kPa\"\n",
- "#Answer in the coding is off by 1 kPa due to decimal point accuracy"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Discharge of water is 0.0127 m^3/s\n",
- "The pressure difference across the pump is 284.0 kPa\n"
- ]
- }
- ],
- "prompt_number": 21
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [],
- "language": "python",
- "metadata": {},
- "outputs": []
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file