summaryrefslogtreecommitdiff
path: root/Theory_Of_Machines_by__B._K._Sarkar/Chapter5.ipynb
diff options
context:
space:
mode:
authorkinitrupti2017-05-12 18:40:35 +0530
committerkinitrupti2017-05-12 18:40:35 +0530
commitd36fc3b8f88cc3108ffff6151e376b619b9abb01 (patch)
tree9806b0d68a708d2cfc4efc8ae3751423c56b7721 /Theory_Of_Machines_by__B._K._Sarkar/Chapter5.ipynb
parent1b1bb67e9ea912be5c8591523c8b328766e3680f (diff)
downloadPython-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.gz
Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.bz2
Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.zip
Revised list of TBCs
Diffstat (limited to 'Theory_Of_Machines_by__B._K._Sarkar/Chapter5.ipynb')
-rwxr-xr-xTheory_Of_Machines_by__B._K._Sarkar/Chapter5.ipynb413
1 files changed, 0 insertions, 413 deletions
diff --git a/Theory_Of_Machines_by__B._K._Sarkar/Chapter5.ipynb b/Theory_Of_Machines_by__B._K._Sarkar/Chapter5.ipynb
deleted file mode 100755
index f33e7643..00000000
--- a/Theory_Of_Machines_by__B._K._Sarkar/Chapter5.ipynb
+++ /dev/null
@@ -1,413 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:5906799cfbbbc1071564cbe6c16af88dcd0f4ba1965a4d189758faaa2356010c"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter5-Inertia Force Analysis in Machines"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex1-pg160"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "##CHAPTER 5 ILLUSRTATION 1 PAGE NO 160\n",
- "##TITLE:Inertia Force Analysis in Machines\n",
- "import math\n",
- "pi=3.141\n",
- "r=.3## radius of crank in m\n",
- "l=1.## length of connecting rod in m\n",
- "N=200.## speed of the engine in rpm\n",
- "n=l/r\n",
- "##===================\n",
- "w=2.*pi*N/60.## angular speed in rad/s\n",
- "\n",
- "teeta=math.acos((-n+((n**2)+4*2*1)**.5)/(2*2))*57.3## angle of inclination of crank in degrees\n",
- "Vp=w*r*(math.sin(teeta/57.3)+(math.sin((2*teeta)/57.3)/n))## maximum velocity of the piston in m/s\n",
- "print'%s %.1f %s'%('Maximum velocity of the piston = ',Vp,' m/s')\n",
- "print'%s %.2f %s'%('teeta',teeta,'')"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Maximum velocity of the piston = 7.0 m/s\n",
- "teeta 74.96 \n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex2-pg161"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "##CHAPTER 5 ILLUSRTATION 2 PAGE NO 161\n",
- "##TITLE:Inertia Force Analysis in Machines\n",
- "import math\n",
- "PI=3.141\n",
- "r=.3## length of crank in metres\n",
- "l=1.5## length of connecting rod in metres\n",
- "N=180.## speed of rotation in rpm\n",
- "teeta=40.## angle of inclination of crank in degrees\n",
- "##============================\n",
- "n=l/r\n",
- "w=2.*PI*N/60## angular speed in rad/s\n",
- "Vp=w*r*(math.sin(teeta/57.3)+math.sin((2.*teeta/57.3)/(2.*n)))## velocity of piston in m/s\n",
- "fp=w**2.*r*(math.cos(teeta/57.3)+math.cos(2.*teeta/57.3)/(2.*n))## acceleration of piston in m/s**2\n",
- "costeeta1=(-n+(n**2.+4.*2.*1.)**.5)/4.\n",
- "teeta1=math.acos(costeeta1)*(57.3)## position of crank from inner dead centre position for zero acceleration of piston\n",
- "##===========================\n",
- "print'%s %.1f %s %.1f %s %.1f %s'%('Velocity of Piston = ',Vp,' m/s'' Acceleration of piston =',fp,' m/s**2'' position of crank from inner dead centre position for zero acceleration of piston=',teeta1,' degrees')\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Velocity of Piston = 4.4 m/s Acceleration of piston = 83.5 m/s**2 position of crank from inner dead centre position for zero acceleration of piston= 79.3 degrees\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex3-pg161"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "##CHAPTER 5 ILLUSRTATION 3 PAGE NO 161\n",
- "##TITLE:Inertia Force Analysis in Machines\n",
- "import math\n",
- "pi=3.141\n",
- "D=.3## Diameter of steam engine in m\n",
- "L=.5## length of stroke in m\n",
- "r=L/2.\n",
- "mR=100.## equivalent of mass of reciprocating parts in kg\n",
- "N=200.## speed of engine in rpm\n",
- "teeta=45## angle of inclination of crank in degrees\n",
- "p1=1.*10**6## gas pressure in N/m**2\n",
- "p2=35.*10**3## back pressure in N/m**2\n",
- "n=4.## ratio of crank radius to the length of stroke\n",
- "##=================================\n",
- "w=2.*pi*N/60## angular speed in rad/s\n",
- "Fl=pi/4.*D**2.*(p1-p2)## Net load on piston in N\n",
- "Fi=mR*w**2*r*(math.cos(teeta/57.3)+math.cos((2*teeta)/57.3)/(2*n))## inertia force due to reciprocating parts\n",
- "Fp=Fl-Fi## Piston effort\n",
- "T=Fp*r*(math.sin(teeta/57.3)+(math.sin((2*teeta)/57.3))/(2.*(n**2-(math.sin(teeta/57.3))**2)**.5))\n",
- "print'%s %.1f %s %.1f %s '%('Piston effort = ',Fp,' N' 'Turning moment on the crank shaft = ',T,' N-m')\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Piston effort = 60447.0 NTurning moment on the crank shaft = 12604.2 N-m \n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex4-pg162"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "##CHAPTER 5 ILLUSRTATION 4 PAGE NO 162\n",
- "##TITLE:Inertia Force Analysis in Machines\n",
- "import math\n",
- "pi=3.141\n",
- "D=.10## Diameter of petrol engine in m\n",
- "L=.12## Stroke length in m\n",
- "l=.25## length of connecting in m\n",
- "r=L/2.\n",
- "mR=1.2## mass of piston in kg\n",
- "N=1800.## speed in rpm\n",
- "teeta=25.## angle of inclination of crank in degrees\n",
- "p=680.*10**3## gas pressure in N/m**2\n",
- "n=l/r\n",
- "g=9.81## acceleration due to gravity\n",
- "##=======================================\n",
- "w=2.*pi*N/60.## angular speed in rpm\n",
- "Fl=pi/4.*D**2.*p## force due to gas pressure in N\n",
- "Fi=mR*w**2.*r*(math.cos(teeta/57.3)+math.cos((2*teeta)/57.3)/(n))## inertia force due to reciprocating parts in N\n",
- "Fp=Fl-Fi+mR*g## net force on piston in N\n",
- "Fq=n*Fp/((n**2-(math.sin(teeta/57.3))**2.)**.5)## resultant load on gudgeon pin in N\n",
- "Fn=Fp*math.sin(teeta/57.3)/((n**2-(math.sin(teeta/57.3))**2.)**.5)## thrust on cylinder walls in N\n",
- "fi=Fl+mR*g## inertia force of the reciprocating parts before the gudgeon pin load is reversed in N\n",
- "w1=(fi/mR/r/(math.cos(teeta/57.3)+math.cos((2*teeta)/57.3)/(n)))**.5\n",
- "N1=60.*w1/(2.*pi)\n",
- "print'%s %.1f %s %.1f %s %.1f %s %.1f %s '%('Net force on piston = ',Fp,' N'' Resultant load on gudgeon pin = ',Fq,' N'' Thrust on cylinder walls = ',Fn,' N'' speed at which other things remining same,the gudgeon pin load would be reversed in directionm= ',N1,' rpm')\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Net force on piston = 2639.3 N Resultant load on gudgeon pin = 2652.9 N Thrust on cylinder walls = 269.1 N speed at which other things remining same,the gudgeon pin load would be reversed in directionm= 2528.4 rpm \n"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex5-pg163"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "##CHAPTER 5 ILLUSRTATION 5 PAGE NO 163\n",
- "##TITLE:Inertia Force Analysis in Machines\n",
- "##Figure 5.3\n",
- "import math\n",
- "pi=3.141\n",
- "N=1800.## speed of the petrol engine in rpm\n",
- "r=.06## radius of crank in m\n",
- "l=.240## length of connecting rod in m\n",
- "D=.1## diameter of the piston in m\n",
- "mR=1## mass of piston in kg\n",
- "p=.8*10**6## gas pressure in N/m**2\n",
- "x=.012## distance moved by piston in m\n",
- "##===============================================\n",
- "w=2.*pi*N/60.## angular velocity of the engine in rad/s\n",
- "n=l/r\n",
- "Fl=pi/4.*D**2.*p## load on the piston in N\n",
- "teeta=32.## by mearument from the figure 5.3\n",
- "Fi=mR*w**2.*r*(math.cos(teeta/57.3)+math.cos((2*teeta)/57.3)/n)## inertia force due to reciprocating parts in N\n",
- "Fp=Fl-Fi## net load on the gudgeon pin in N\n",
- "Fq=n*Fp/((n**2.-(math.sin(teeta/57.3))**2.)**.5)## thrust in the connecting rod in N\n",
- "Fn=Fp*math.sin(teeta/57.3)/((n**2-(math.sin(teeta/57.3))**2)**.5)## reaction between the piston and cylinder in N\n",
- "w1=(Fl/mR/r/(math.cos(teeta/57.3)+math.cos((2*teeta)/57.3)/(n)))**.5\n",
- "N1=60.*w1/(2.*pi)## \n",
- "print'%s %.1f %s %.1f %s %.1f %s %.1f %s'%('Net load on the gudgeon pin= ',Fp,' N''Thrust in the connecting rod= ',Fq,' N'' Reaction between the cylinder and piston= ',Fn,' N'' The engine speed at which the above values become zero= ',N1,' rpm')\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Net load on the gudgeon pin= 4241.2 NThrust in the connecting rod= 4278.9 N Reaction between the cylinder and piston= 566.8 N The engine speed at which the above values become zero= 3158.0 rpm\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex6-pg165"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "##CHAPTER 5 ILLUSRTATION 6 PAGE NO 165\n",
- "##TITLE:Inertia Force Analysis in Machines\n",
- "import math\n",
- "pi=3.141\n",
- "D=.25## diameter of horizontal steam engine in m\n",
- "N=180.## speed of the engine in rpm\n",
- "d=.05## diameter of piston in m\n",
- "P=36000.## power of the engine in watts\n",
- "n=3.## ration of length of connecting rod to the crank radius\n",
- "p1=5.8*10**5## pressure on cover end side in N/m**2\n",
- "p2=0.5*10**5## pressure on crank end side in N/m**2\n",
- "teeta=40.## angle of inclination of crank in degrees\n",
- "m=45.## mass of flywheel in kg\n",
- "k=.65## radius of gyration in m\n",
- "##==============================\n",
- "Fl=(pi/4.*D**2.*p1)-(pi/4.*(D**2.-d**2.)*p2)## load on the piston in N\n",
- "ph=(math.sin(teeta/57.3)/n)\n",
- "phi=math.asin(ph)*57.3## angle of inclination of the connecting rod to the line of stroke in degrees\n",
- "r=1.6*D/2.\n",
- "T=Fl*math.sin((teeta+phi)/57.3)/math.cos(phi/57.3)*r## torque exerted on crank shaft in N-m\n",
- "Fb=Fl*math.cos((teeta+phi)/57.3)/math.cos(phi/57.3)## thrust on the crank shaft bearing in N\n",
- "TR=P*60./(2.*pi*N)## steady resisting torque in N-m\n",
- "Ts=T-TR## surplus torque available in N-m\n",
- "a=Ts/(m*k**2)## acceleration of the flywheel in rad/s**2\n",
- "print'%s %.1f %s %.1f %s %.1f %s '%('Torque exerted on the crank shaft= ',T,' N-m'' Thrust on the crank shaft bearing= ',Fb,'N''Acceleration of the flywheel= ',a,' rad/s**2')\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Torque exerted on the crank shaft= 4233.8 N-m Thrust on the crank shaft bearing= 16321.0 NAcceleration of the flywheel= 122.2 rad/s**2 \n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex7-pg166"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "##CHAPTER 5 ILLUSRTATION 7 PAGE NO 166\n",
- "##TITLE:Inertia Force Analysis in Machines\n",
- "import math\n",
- "pi=3.141\n",
- "D=.25## diameter of vertical cylinder of steam engine in m\n",
- "L=.45## stroke length in m\n",
- "r=L/2.\n",
- "n=4.\n",
- "N=360.## speed of the engine in rpm\n",
- "teeta=45.## angle of inclination of crank in degrees\n",
- "p=1050000.## net pressure in N/m**2\n",
- "mR=180.## mass of reciprocating parts in kg\n",
- "g=9.81## acceleration due to gravity\n",
- "##========================\n",
- "Fl=p*pi*D**2./4.## force on piston due to steam pressure in N\n",
- "w=2.*pi*N/60.## angular speed in rad/s\n",
- "Fi=mR*w**2.*r*(math.cos(teeta/57.3)+math.cos((2*teeta)/57.3)/(n))## inertia force due to reciprocating parts in N\n",
- "Fp=Fl-Fi+mR*g## piston effort in N\n",
- "phi=math.asin((math.sin(teeta/57.3)/n))*57.3## angle of inclination of the connecting rod to the line of stroke in degrees\n",
- "T=Fp*math.sin((teeta+phi)/57.3)/math.cos(phi/57.3)*r## torque exerted on crank shaft in N-m\n",
- "print'%s %.1f %s'%('Effective turning moment on the crank shaft= ',T,' N-m')\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Effective turning moment on the crank shaft= 2366.2 N-m\n"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex8-pg166"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "##CHAPTER 5 ILLUSRTATION 8 PAGE NO 166\n",
- "##TITLE:Inertia Force Analysis in Machines\n",
- "##figure 5.4\n",
- "import math\n",
- "pi=3.141\n",
- "D=.25## diameter of vertical cylinder of diesel engine in m\n",
- "L=.40## stroke length in m\n",
- "r=L/2.\n",
- "n=4.\n",
- "N=300.## speed of the engine in rpm\n",
- "teeta=60.## angle of inclination of crank in degrees\n",
- "mR=200.## mass of reciprocating parts in kg\n",
- "g=9.81## acceleration due to gravity\n",
- "l=.8## length of connecting rod in m\n",
- "c=14.## compression ratio=v1/v2\n",
- "p1=.1*10**6.## suction pressure in n/m**2\n",
- "i=1.35## index of the law of expansion and compression \n",
- "##==============================================================\n",
- "Vs=pi/4.*D**2.*L## swept volume in m**3\n",
- "w=2.*pi*N/60.## angular speed in rad/s\n",
- "Vc=Vs/(c-1.)\n",
- "V3=Vc+Vs/10.## volume at the end of injection of fuel in m**3\n",
- "p2=p1*c**i## final pressure in N/m**2\n",
- "p3=p2## from figure\n",
- "x=r*((1.-math.cos(teeta/57.3)+(math.sin(teeta/57.3))**2/(2.*n)))## the displacement of the piston when the crank makes an angle 60 degrees with T.D.C\n",
- "Va=Vc+pi*D**2.*x/4.\n",
- "pa=p3*(V3/Va)**i\n",
- "p=pa-p1## difference of pressues on 2 sides of piston in N/m**2\n",
- "Fl=p*pi*D**2./4.## net load on piston in N\n",
- "Fi=mR*w**2.*r*(math.cos(teeta/57.3)+math.cos(2.*teeta/57.3)/(n))## inertia force due to reciprocating parts in N\n",
- "Fp=Fl-Fi+mR*g## piston effort in N\n",
- "phi=math.asin((math.sin(teeta/57.3)/n))*57.3## angle of inclination of the connecting rod to the line of stroke in degrees\n",
- "T=Fp*math.sin((teeta+phi)/57.3)/math.cos(phi/57.3)*r## torque exerted on crank shaft in N-m\n",
- "print'%s %.1f %s'%('Effective turning moment on the crank shaft= ',T,' N-m')\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Effective turning moment on the crank shaft= 8850.3 N-m\n"
- ]
- }
- ],
- "prompt_number": 8
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file