1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
|
{
"metadata": {
"name": "",
"signature": "sha256:5906799cfbbbc1071564cbe6c16af88dcd0f4ba1965a4d189758faaa2356010c"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter5-Inertia Force Analysis in Machines"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex1-pg160"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"##CHAPTER 5 ILLUSRTATION 1 PAGE NO 160\n",
"##TITLE:Inertia Force Analysis in Machines\n",
"import math\n",
"pi=3.141\n",
"r=.3## radius of crank in m\n",
"l=1.## length of connecting rod in m\n",
"N=200.## speed of the engine in rpm\n",
"n=l/r\n",
"##===================\n",
"w=2.*pi*N/60.## angular speed in rad/s\n",
"\n",
"teeta=math.acos((-n+((n**2)+4*2*1)**.5)/(2*2))*57.3## angle of inclination of crank in degrees\n",
"Vp=w*r*(math.sin(teeta/57.3)+(math.sin((2*teeta)/57.3)/n))## maximum velocity of the piston in m/s\n",
"print'%s %.1f %s'%('Maximum velocity of the piston = ',Vp,' m/s')\n",
"print'%s %.2f %s'%('teeta',teeta,'')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Maximum velocity of the piston = 7.0 m/s\n",
"teeta 74.96 \n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2-pg161"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"##CHAPTER 5 ILLUSRTATION 2 PAGE NO 161\n",
"##TITLE:Inertia Force Analysis in Machines\n",
"import math\n",
"PI=3.141\n",
"r=.3## length of crank in metres\n",
"l=1.5## length of connecting rod in metres\n",
"N=180.## speed of rotation in rpm\n",
"teeta=40.## angle of inclination of crank in degrees\n",
"##============================\n",
"n=l/r\n",
"w=2.*PI*N/60## angular speed in rad/s\n",
"Vp=w*r*(math.sin(teeta/57.3)+math.sin((2.*teeta/57.3)/(2.*n)))## velocity of piston in m/s\n",
"fp=w**2.*r*(math.cos(teeta/57.3)+math.cos(2.*teeta/57.3)/(2.*n))## acceleration of piston in m/s**2\n",
"costeeta1=(-n+(n**2.+4.*2.*1.)**.5)/4.\n",
"teeta1=math.acos(costeeta1)*(57.3)## position of crank from inner dead centre position for zero acceleration of piston\n",
"##===========================\n",
"print'%s %.1f %s %.1f %s %.1f %s'%('Velocity of Piston = ',Vp,' m/s'' Acceleration of piston =',fp,' m/s**2'' position of crank from inner dead centre position for zero acceleration of piston=',teeta1,' degrees')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Velocity of Piston = 4.4 m/s Acceleration of piston = 83.5 m/s**2 position of crank from inner dead centre position for zero acceleration of piston= 79.3 degrees\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex3-pg161"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"##CHAPTER 5 ILLUSRTATION 3 PAGE NO 161\n",
"##TITLE:Inertia Force Analysis in Machines\n",
"import math\n",
"pi=3.141\n",
"D=.3## Diameter of steam engine in m\n",
"L=.5## length of stroke in m\n",
"r=L/2.\n",
"mR=100.## equivalent of mass of reciprocating parts in kg\n",
"N=200.## speed of engine in rpm\n",
"teeta=45## angle of inclination of crank in degrees\n",
"p1=1.*10**6## gas pressure in N/m**2\n",
"p2=35.*10**3## back pressure in N/m**2\n",
"n=4.## ratio of crank radius to the length of stroke\n",
"##=================================\n",
"w=2.*pi*N/60## angular speed in rad/s\n",
"Fl=pi/4.*D**2.*(p1-p2)## Net load on piston in N\n",
"Fi=mR*w**2*r*(math.cos(teeta/57.3)+math.cos((2*teeta)/57.3)/(2*n))## inertia force due to reciprocating parts\n",
"Fp=Fl-Fi## Piston effort\n",
"T=Fp*r*(math.sin(teeta/57.3)+(math.sin((2*teeta)/57.3))/(2.*(n**2-(math.sin(teeta/57.3))**2)**.5))\n",
"print'%s %.1f %s %.1f %s '%('Piston effort = ',Fp,' N' 'Turning moment on the crank shaft = ',T,' N-m')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Piston effort = 60447.0 NTurning moment on the crank shaft = 12604.2 N-m \n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex4-pg162"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"##CHAPTER 5 ILLUSRTATION 4 PAGE NO 162\n",
"##TITLE:Inertia Force Analysis in Machines\n",
"import math\n",
"pi=3.141\n",
"D=.10## Diameter of petrol engine in m\n",
"L=.12## Stroke length in m\n",
"l=.25## length of connecting in m\n",
"r=L/2.\n",
"mR=1.2## mass of piston in kg\n",
"N=1800.## speed in rpm\n",
"teeta=25.## angle of inclination of crank in degrees\n",
"p=680.*10**3## gas pressure in N/m**2\n",
"n=l/r\n",
"g=9.81## acceleration due to gravity\n",
"##=======================================\n",
"w=2.*pi*N/60.## angular speed in rpm\n",
"Fl=pi/4.*D**2.*p## force due to gas pressure in N\n",
"Fi=mR*w**2.*r*(math.cos(teeta/57.3)+math.cos((2*teeta)/57.3)/(n))## inertia force due to reciprocating parts in N\n",
"Fp=Fl-Fi+mR*g## net force on piston in N\n",
"Fq=n*Fp/((n**2-(math.sin(teeta/57.3))**2.)**.5)## resultant load on gudgeon pin in N\n",
"Fn=Fp*math.sin(teeta/57.3)/((n**2-(math.sin(teeta/57.3))**2.)**.5)## thrust on cylinder walls in N\n",
"fi=Fl+mR*g## inertia force of the reciprocating parts before the gudgeon pin load is reversed in N\n",
"w1=(fi/mR/r/(math.cos(teeta/57.3)+math.cos((2*teeta)/57.3)/(n)))**.5\n",
"N1=60.*w1/(2.*pi)\n",
"print'%s %.1f %s %.1f %s %.1f %s %.1f %s '%('Net force on piston = ',Fp,' N'' Resultant load on gudgeon pin = ',Fq,' N'' Thrust on cylinder walls = ',Fn,' N'' speed at which other things remining same,the gudgeon pin load would be reversed in directionm= ',N1,' rpm')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Net force on piston = 2639.3 N Resultant load on gudgeon pin = 2652.9 N Thrust on cylinder walls = 269.1 N speed at which other things remining same,the gudgeon pin load would be reversed in directionm= 2528.4 rpm \n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex5-pg163"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"##CHAPTER 5 ILLUSRTATION 5 PAGE NO 163\n",
"##TITLE:Inertia Force Analysis in Machines\n",
"##Figure 5.3\n",
"import math\n",
"pi=3.141\n",
"N=1800.## speed of the petrol engine in rpm\n",
"r=.06## radius of crank in m\n",
"l=.240## length of connecting rod in m\n",
"D=.1## diameter of the piston in m\n",
"mR=1## mass of piston in kg\n",
"p=.8*10**6## gas pressure in N/m**2\n",
"x=.012## distance moved by piston in m\n",
"##===============================================\n",
"w=2.*pi*N/60.## angular velocity of the engine in rad/s\n",
"n=l/r\n",
"Fl=pi/4.*D**2.*p## load on the piston in N\n",
"teeta=32.## by mearument from the figure 5.3\n",
"Fi=mR*w**2.*r*(math.cos(teeta/57.3)+math.cos((2*teeta)/57.3)/n)## inertia force due to reciprocating parts in N\n",
"Fp=Fl-Fi## net load on the gudgeon pin in N\n",
"Fq=n*Fp/((n**2.-(math.sin(teeta/57.3))**2.)**.5)## thrust in the connecting rod in N\n",
"Fn=Fp*math.sin(teeta/57.3)/((n**2-(math.sin(teeta/57.3))**2)**.5)## reaction between the piston and cylinder in N\n",
"w1=(Fl/mR/r/(math.cos(teeta/57.3)+math.cos((2*teeta)/57.3)/(n)))**.5\n",
"N1=60.*w1/(2.*pi)## \n",
"print'%s %.1f %s %.1f %s %.1f %s %.1f %s'%('Net load on the gudgeon pin= ',Fp,' N''Thrust in the connecting rod= ',Fq,' N'' Reaction between the cylinder and piston= ',Fn,' N'' The engine speed at which the above values become zero= ',N1,' rpm')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Net load on the gudgeon pin= 4241.2 NThrust in the connecting rod= 4278.9 N Reaction between the cylinder and piston= 566.8 N The engine speed at which the above values become zero= 3158.0 rpm\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex6-pg165"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"##CHAPTER 5 ILLUSRTATION 6 PAGE NO 165\n",
"##TITLE:Inertia Force Analysis in Machines\n",
"import math\n",
"pi=3.141\n",
"D=.25## diameter of horizontal steam engine in m\n",
"N=180.## speed of the engine in rpm\n",
"d=.05## diameter of piston in m\n",
"P=36000.## power of the engine in watts\n",
"n=3.## ration of length of connecting rod to the crank radius\n",
"p1=5.8*10**5## pressure on cover end side in N/m**2\n",
"p2=0.5*10**5## pressure on crank end side in N/m**2\n",
"teeta=40.## angle of inclination of crank in degrees\n",
"m=45.## mass of flywheel in kg\n",
"k=.65## radius of gyration in m\n",
"##==============================\n",
"Fl=(pi/4.*D**2.*p1)-(pi/4.*(D**2.-d**2.)*p2)## load on the piston in N\n",
"ph=(math.sin(teeta/57.3)/n)\n",
"phi=math.asin(ph)*57.3## angle of inclination of the connecting rod to the line of stroke in degrees\n",
"r=1.6*D/2.\n",
"T=Fl*math.sin((teeta+phi)/57.3)/math.cos(phi/57.3)*r## torque exerted on crank shaft in N-m\n",
"Fb=Fl*math.cos((teeta+phi)/57.3)/math.cos(phi/57.3)## thrust on the crank shaft bearing in N\n",
"TR=P*60./(2.*pi*N)## steady resisting torque in N-m\n",
"Ts=T-TR## surplus torque available in N-m\n",
"a=Ts/(m*k**2)## acceleration of the flywheel in rad/s**2\n",
"print'%s %.1f %s %.1f %s %.1f %s '%('Torque exerted on the crank shaft= ',T,' N-m'' Thrust on the crank shaft bearing= ',Fb,'N''Acceleration of the flywheel= ',a,' rad/s**2')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Torque exerted on the crank shaft= 4233.8 N-m Thrust on the crank shaft bearing= 16321.0 NAcceleration of the flywheel= 122.2 rad/s**2 \n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex7-pg166"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"##CHAPTER 5 ILLUSRTATION 7 PAGE NO 166\n",
"##TITLE:Inertia Force Analysis in Machines\n",
"import math\n",
"pi=3.141\n",
"D=.25## diameter of vertical cylinder of steam engine in m\n",
"L=.45## stroke length in m\n",
"r=L/2.\n",
"n=4.\n",
"N=360.## speed of the engine in rpm\n",
"teeta=45.## angle of inclination of crank in degrees\n",
"p=1050000.## net pressure in N/m**2\n",
"mR=180.## mass of reciprocating parts in kg\n",
"g=9.81## acceleration due to gravity\n",
"##========================\n",
"Fl=p*pi*D**2./4.## force on piston due to steam pressure in N\n",
"w=2.*pi*N/60.## angular speed in rad/s\n",
"Fi=mR*w**2.*r*(math.cos(teeta/57.3)+math.cos((2*teeta)/57.3)/(n))## inertia force due to reciprocating parts in N\n",
"Fp=Fl-Fi+mR*g## piston effort in N\n",
"phi=math.asin((math.sin(teeta/57.3)/n))*57.3## angle of inclination of the connecting rod to the line of stroke in degrees\n",
"T=Fp*math.sin((teeta+phi)/57.3)/math.cos(phi/57.3)*r## torque exerted on crank shaft in N-m\n",
"print'%s %.1f %s'%('Effective turning moment on the crank shaft= ',T,' N-m')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Effective turning moment on the crank shaft= 2366.2 N-m\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex8-pg166"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"##CHAPTER 5 ILLUSRTATION 8 PAGE NO 166\n",
"##TITLE:Inertia Force Analysis in Machines\n",
"##figure 5.4\n",
"import math\n",
"pi=3.141\n",
"D=.25## diameter of vertical cylinder of diesel engine in m\n",
"L=.40## stroke length in m\n",
"r=L/2.\n",
"n=4.\n",
"N=300.## speed of the engine in rpm\n",
"teeta=60.## angle of inclination of crank in degrees\n",
"mR=200.## mass of reciprocating parts in kg\n",
"g=9.81## acceleration due to gravity\n",
"l=.8## length of connecting rod in m\n",
"c=14.## compression ratio=v1/v2\n",
"p1=.1*10**6.## suction pressure in n/m**2\n",
"i=1.35## index of the law of expansion and compression \n",
"##==============================================================\n",
"Vs=pi/4.*D**2.*L## swept volume in m**3\n",
"w=2.*pi*N/60.## angular speed in rad/s\n",
"Vc=Vs/(c-1.)\n",
"V3=Vc+Vs/10.## volume at the end of injection of fuel in m**3\n",
"p2=p1*c**i## final pressure in N/m**2\n",
"p3=p2## from figure\n",
"x=r*((1.-math.cos(teeta/57.3)+(math.sin(teeta/57.3))**2/(2.*n)))## the displacement of the piston when the crank makes an angle 60 degrees with T.D.C\n",
"Va=Vc+pi*D**2.*x/4.\n",
"pa=p3*(V3/Va)**i\n",
"p=pa-p1## difference of pressues on 2 sides of piston in N/m**2\n",
"Fl=p*pi*D**2./4.## net load on piston in N\n",
"Fi=mR*w**2.*r*(math.cos(teeta/57.3)+math.cos(2.*teeta/57.3)/(n))## inertia force due to reciprocating parts in N\n",
"Fp=Fl-Fi+mR*g## piston effort in N\n",
"phi=math.asin((math.sin(teeta/57.3)/n))*57.3## angle of inclination of the connecting rod to the line of stroke in degrees\n",
"T=Fp*math.sin((teeta+phi)/57.3)/math.cos(phi/57.3)*r## torque exerted on crank shaft in N-m\n",
"print'%s %.1f %s'%('Effective turning moment on the crank shaft= ',T,' N-m')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Effective turning moment on the crank shaft= 8850.3 N-m\n"
]
}
],
"prompt_number": 8
}
],
"metadata": {}
}
]
}
|