diff options
author | kinitrupti | 2017-05-12 18:40:35 +0530 |
---|---|---|
committer | kinitrupti | 2017-05-12 18:40:35 +0530 |
commit | d36fc3b8f88cc3108ffff6151e376b619b9abb01 (patch) | |
tree | 9806b0d68a708d2cfc4efc8ae3751423c56b7721 /Principles_of_Physics_by_F.J.Bueche/Chapter8.ipynb | |
parent | 1b1bb67e9ea912be5c8591523c8b328766e3680f (diff) | |
download | Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.gz Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.bz2 Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.zip |
Revised list of TBCs
Diffstat (limited to 'Principles_of_Physics_by_F.J.Bueche/Chapter8.ipynb')
-rwxr-xr-x | Principles_of_Physics_by_F.J.Bueche/Chapter8.ipynb | 299 |
1 files changed, 0 insertions, 299 deletions
diff --git a/Principles_of_Physics_by_F.J.Bueche/Chapter8.ipynb b/Principles_of_Physics_by_F.J.Bueche/Chapter8.ipynb deleted file mode 100755 index b6b6ca79..00000000 --- a/Principles_of_Physics_by_F.J.Bueche/Chapter8.ipynb +++ /dev/null @@ -1,299 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Chapter 08: Rotational work energy and momentum" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Ex8.1:pg-240" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - " #Example 8_1\n", - " \n", - " \n", - " #To find the rotational kinetic energy\n", - "m=5.98*10**24 #units in Kg\n", - "r=6.37*10**6 #units in meters\n", - "I=(2/5)*m*r**2 #units in Kg meter**2\n", - "t=86400 #units in sec\n", - "w=(2*math.pi)/(t) #units in rad/sec\n", - "KE=0.5*(I*w**2) #units in joules\n", - "print \"The rotational kinetic energy is KE=\")\n", - "print KE)\n", - "print \"Joules\")\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Ex8.2:pg-242" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Angular acceleration is alpha= 0.384 rad/sec**2\n" - ] - } - ], - "source": [ - " #Example 8_2\n", - " \n", - " \n", - " #To find the angular acceleration of the wheel\n", - "m=30 #units in Kg\n", - "k=0.25 #units in meters\n", - "I=m*k**2 #units in Kg meter**2\n", - "force=1.8 #units in Newtons\n", - "levelarm=0.40 #nits in meters\n", - "tou=force*levelarm #units in Newton meter\n", - "alpha=tou/I #units in rad/sec**2\n", - "print \"Angular acceleration is alpha=\",round(alpha,3),\" rad/sec**2\"\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Ex8.3:pg-242" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The time taken is t= 15.7 sec\n", - "\n", - "The wheel goes a distance of theta= 98.7 rad\n", - "\n", - "The rotational kinetic energy is KE= 197.0 Joules\n" - ] - } - ], - "source": [ - " #Example 8_3\n", - " \n", - " \n", - " #To find out how long does it take to accelerate and how far does wheel turn in this time and the rotational kinetic energy\n", - "force=8 #units in Newtons\n", - "arm=0.25 #units in meters\n", - "tou=force*arm #units in Newton meter\n", - "m=80 #units in Kg\n", - "b=arm #units in meters\n", - "I=0.5*m*b**2 #units in Kg meter**2\n", - "alpha=tou/I #units in rad/sec**2\n", - "wf=4*math.pi #units in rad/sec\n", - "w0=0 #units in rad/sec\n", - "t=(wf-w0)/alpha #units in sec\n", - "print \"The time taken is t=\",round(t,1),\" sec\\n\"\n", - "theta=0.5*(wf+w0)*t #units in radians\n", - "print \"The wheel goes a distance of theta=\",round(theta,1),\" rad\\n\"\n", - "KE=0.5*I*wf**2 #units in Joules\n", - "print \"The rotational kinetic energy is KE=\",round(KE),\" Joules\"\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Ex8.4:pg-243" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The angular acceleration is alpha= 1.37 rad/sec**2\n", - "\n", - "The objects goes a distance of y= 51.4 meters\n" - ] - } - ], - "source": [ - " #Example 8_4\n", - " \n", - " \n", - " #To find out the angular acceleration and the distance the object falls\n", - "f1=29.4 #units in Newtons\n", - "r1=0.75 #units in meters\n", - "m1=40 #units in Kgs\n", - "r2=0.6 #units in meters\n", - "m2=3 #units in Kgs\n", - "alpha=(f1*r1)/((m1*r2**2)+(m2*r1**2)) #units in rad/sec**2\n", - "print \"The angular acceleration is alpha=\",round(alpha,2),\" rad/sec**2\\n\"\n", - "a=r1*alpha #units in meters/sec**2\n", - "t=10 #units in sec\n", - "y=0.5*a*t**2 #units in meters\n", - "print \"The objects goes a distance of y=\",round(y,1),\" meters\"\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Ex8.5:pg-244" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The object is moving at v= 1.28 meters/sec\n" - ] - } - ], - "source": [ - " #Example 8_5\n", - " \n", - " \n", - " #To find the speed of the object\n", - "m=3 #units in Kg\n", - "g=9.8 #units in meters/sec**2\n", - "h=0.80 #units in meters\n", - "m1=3 #units in Kg\n", - "m2=14.4 #units in Kg\n", - "r=0.75 #units in meters\n", - "v=sqrt((m*g*h)/((0.5*m1)+((0.5*m2)/r**2)))\n", - "print \"The object is moving at v=\",round(v,2),\" meters/sec\"\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Ex8.8:pg-247" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The sun would take for one revolution in time=\n", - "0.000216 sec\n" - ] - } - ], - "source": [ - " #Example 8_8\n", - " \n", - " \n", - " #To find out how long does the sun take to complete one revolution\n", - "ra_rb=10.0**5\n", - "noofrev=1.0/25 #units in rev/day\n", - "wafter=(ra_rb)**2*(noofrev)\n", - "t=86400 #units in sec\n", - "time=t/wafter #units in sec\n", - "print \"The sun would take for one revolution in time=\"\n", - "print time,\"sec\"\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Ex8.9:pg-248" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The rotational speed is Wf= 1.63 rev/sec\n" - ] - } - ], - "source": [ - " #Example 8_9\n", - " \n", - " \n", - " #To find out the rotational speed \n", - "m=0.3 #units in Kg\n", - "r=0.035 #units in meters\n", - "Iw=0.5*m*r**2 #units in Kg meter**2\n", - "Ibt=8*10**-4 #units in Kg meter**2\n", - "w0=2 #units in rev/sec\n", - "wf=(Ibt*w0)/(Ibt+Iw) #units in rev/sec\n", - "print \"The rotational speed is Wf=\",round(wf,2),\" rev/sec\"\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.11" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} |