summaryrefslogtreecommitdiff
path: root/Principles_of_Physics_by_F.J.Bueche/Chapter8.ipynb
diff options
context:
space:
mode:
authorkinitrupti2017-05-12 18:40:35 +0530
committerkinitrupti2017-05-12 18:40:35 +0530
commitd36fc3b8f88cc3108ffff6151e376b619b9abb01 (patch)
tree9806b0d68a708d2cfc4efc8ae3751423c56b7721 /Principles_of_Physics_by_F.J.Bueche/Chapter8.ipynb
parent1b1bb67e9ea912be5c8591523c8b328766e3680f (diff)
downloadPython-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.gz
Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.bz2
Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.zip
Revised list of TBCs
Diffstat (limited to 'Principles_of_Physics_by_F.J.Bueche/Chapter8.ipynb')
-rwxr-xr-xPrinciples_of_Physics_by_F.J.Bueche/Chapter8.ipynb299
1 files changed, 0 insertions, 299 deletions
diff --git a/Principles_of_Physics_by_F.J.Bueche/Chapter8.ipynb b/Principles_of_Physics_by_F.J.Bueche/Chapter8.ipynb
deleted file mode 100755
index b6b6ca79..00000000
--- a/Principles_of_Physics_by_F.J.Bueche/Chapter8.ipynb
+++ /dev/null
@@ -1,299 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Chapter 08: Rotational work energy and momentum"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Ex8.1:pg-240"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": false
- },
- "outputs": [],
- "source": [
- " #Example 8_1\n",
- " \n",
- " \n",
- " #To find the rotational kinetic energy\n",
- "m=5.98*10**24 #units in Kg\n",
- "r=6.37*10**6 #units in meters\n",
- "I=(2/5)*m*r**2 #units in Kg meter**2\n",
- "t=86400 #units in sec\n",
- "w=(2*math.pi)/(t) #units in rad/sec\n",
- "KE=0.5*(I*w**2) #units in joules\n",
- "print \"The rotational kinetic energy is KE=\")\n",
- "print KE)\n",
- "print \"Joules\")\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Ex8.2:pg-242"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Angular acceleration is alpha= 0.384 rad/sec**2\n"
- ]
- }
- ],
- "source": [
- " #Example 8_2\n",
- " \n",
- " \n",
- " #To find the angular acceleration of the wheel\n",
- "m=30 #units in Kg\n",
- "k=0.25 #units in meters\n",
- "I=m*k**2 #units in Kg meter**2\n",
- "force=1.8 #units in Newtons\n",
- "levelarm=0.40 #nits in meters\n",
- "tou=force*levelarm #units in Newton meter\n",
- "alpha=tou/I #units in rad/sec**2\n",
- "print \"Angular acceleration is alpha=\",round(alpha,3),\" rad/sec**2\"\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Ex8.3:pg-242"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "The time taken is t= 15.7 sec\n",
- "\n",
- "The wheel goes a distance of theta= 98.7 rad\n",
- "\n",
- "The rotational kinetic energy is KE= 197.0 Joules\n"
- ]
- }
- ],
- "source": [
- " #Example 8_3\n",
- " \n",
- " \n",
- " #To find out how long does it take to accelerate and how far does wheel turn in this time and the rotational kinetic energy\n",
- "force=8 #units in Newtons\n",
- "arm=0.25 #units in meters\n",
- "tou=force*arm #units in Newton meter\n",
- "m=80 #units in Kg\n",
- "b=arm #units in meters\n",
- "I=0.5*m*b**2 #units in Kg meter**2\n",
- "alpha=tou/I #units in rad/sec**2\n",
- "wf=4*math.pi #units in rad/sec\n",
- "w0=0 #units in rad/sec\n",
- "t=(wf-w0)/alpha #units in sec\n",
- "print \"The time taken is t=\",round(t,1),\" sec\\n\"\n",
- "theta=0.5*(wf+w0)*t #units in radians\n",
- "print \"The wheel goes a distance of theta=\",round(theta,1),\" rad\\n\"\n",
- "KE=0.5*I*wf**2 #units in Joules\n",
- "print \"The rotational kinetic energy is KE=\",round(KE),\" Joules\"\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Ex8.4:pg-243"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "The angular acceleration is alpha= 1.37 rad/sec**2\n",
- "\n",
- "The objects goes a distance of y= 51.4 meters\n"
- ]
- }
- ],
- "source": [
- " #Example 8_4\n",
- " \n",
- " \n",
- " #To find out the angular acceleration and the distance the object falls\n",
- "f1=29.4 #units in Newtons\n",
- "r1=0.75 #units in meters\n",
- "m1=40 #units in Kgs\n",
- "r2=0.6 #units in meters\n",
- "m2=3 #units in Kgs\n",
- "alpha=(f1*r1)/((m1*r2**2)+(m2*r1**2)) #units in rad/sec**2\n",
- "print \"The angular acceleration is alpha=\",round(alpha,2),\" rad/sec**2\\n\"\n",
- "a=r1*alpha #units in meters/sec**2\n",
- "t=10 #units in sec\n",
- "y=0.5*a*t**2 #units in meters\n",
- "print \"The objects goes a distance of y=\",round(y,1),\" meters\"\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Ex8.5:pg-244"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "The object is moving at v= 1.28 meters/sec\n"
- ]
- }
- ],
- "source": [
- " #Example 8_5\n",
- " \n",
- " \n",
- " #To find the speed of the object\n",
- "m=3 #units in Kg\n",
- "g=9.8 #units in meters/sec**2\n",
- "h=0.80 #units in meters\n",
- "m1=3 #units in Kg\n",
- "m2=14.4 #units in Kg\n",
- "r=0.75 #units in meters\n",
- "v=sqrt((m*g*h)/((0.5*m1)+((0.5*m2)/r**2)))\n",
- "print \"The object is moving at v=\",round(v,2),\" meters/sec\"\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Ex8.8:pg-247"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "The sun would take for one revolution in time=\n",
- "0.000216 sec\n"
- ]
- }
- ],
- "source": [
- " #Example 8_8\n",
- " \n",
- " \n",
- " #To find out how long does the sun take to complete one revolution\n",
- "ra_rb=10.0**5\n",
- "noofrev=1.0/25 #units in rev/day\n",
- "wafter=(ra_rb)**2*(noofrev)\n",
- "t=86400 #units in sec\n",
- "time=t/wafter #units in sec\n",
- "print \"The sun would take for one revolution in time=\"\n",
- "print time,\"sec\"\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Ex8.9:pg-248"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "The rotational speed is Wf= 1.63 rev/sec\n"
- ]
- }
- ],
- "source": [
- " #Example 8_9\n",
- " \n",
- " \n",
- " #To find out the rotational speed \n",
- "m=0.3 #units in Kg\n",
- "r=0.035 #units in meters\n",
- "Iw=0.5*m*r**2 #units in Kg meter**2\n",
- "Ibt=8*10**-4 #units in Kg meter**2\n",
- "w0=2 #units in rev/sec\n",
- "wf=(Ibt*w0)/(Ibt+Iw) #units in rev/sec\n",
- "print \"The rotational speed is Wf=\",round(wf,2),\" rev/sec\"\n"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}