1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 08: Rotational work energy and momentum"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex8.1:pg-240"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
" #Example 8_1\n",
" \n",
" \n",
" #To find the rotational kinetic energy\n",
"m=5.98*10**24 #units in Kg\n",
"r=6.37*10**6 #units in meters\n",
"I=(2/5)*m*r**2 #units in Kg meter**2\n",
"t=86400 #units in sec\n",
"w=(2*math.pi)/(t) #units in rad/sec\n",
"KE=0.5*(I*w**2) #units in joules\n",
"print \"The rotational kinetic energy is KE=\")\n",
"print KE)\n",
"print \"Joules\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex8.2:pg-242"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Angular acceleration is alpha= 0.384 rad/sec**2\n"
]
}
],
"source": [
" #Example 8_2\n",
" \n",
" \n",
" #To find the angular acceleration of the wheel\n",
"m=30 #units in Kg\n",
"k=0.25 #units in meters\n",
"I=m*k**2 #units in Kg meter**2\n",
"force=1.8 #units in Newtons\n",
"levelarm=0.40 #nits in meters\n",
"tou=force*levelarm #units in Newton meter\n",
"alpha=tou/I #units in rad/sec**2\n",
"print \"Angular acceleration is alpha=\",round(alpha,3),\" rad/sec**2\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex8.3:pg-242"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The time taken is t= 15.7 sec\n",
"\n",
"The wheel goes a distance of theta= 98.7 rad\n",
"\n",
"The rotational kinetic energy is KE= 197.0 Joules\n"
]
}
],
"source": [
" #Example 8_3\n",
" \n",
" \n",
" #To find out how long does it take to accelerate and how far does wheel turn in this time and the rotational kinetic energy\n",
"force=8 #units in Newtons\n",
"arm=0.25 #units in meters\n",
"tou=force*arm #units in Newton meter\n",
"m=80 #units in Kg\n",
"b=arm #units in meters\n",
"I=0.5*m*b**2 #units in Kg meter**2\n",
"alpha=tou/I #units in rad/sec**2\n",
"wf=4*math.pi #units in rad/sec\n",
"w0=0 #units in rad/sec\n",
"t=(wf-w0)/alpha #units in sec\n",
"print \"The time taken is t=\",round(t,1),\" sec\\n\"\n",
"theta=0.5*(wf+w0)*t #units in radians\n",
"print \"The wheel goes a distance of theta=\",round(theta,1),\" rad\\n\"\n",
"KE=0.5*I*wf**2 #units in Joules\n",
"print \"The rotational kinetic energy is KE=\",round(KE),\" Joules\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex8.4:pg-243"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The angular acceleration is alpha= 1.37 rad/sec**2\n",
"\n",
"The objects goes a distance of y= 51.4 meters\n"
]
}
],
"source": [
" #Example 8_4\n",
" \n",
" \n",
" #To find out the angular acceleration and the distance the object falls\n",
"f1=29.4 #units in Newtons\n",
"r1=0.75 #units in meters\n",
"m1=40 #units in Kgs\n",
"r2=0.6 #units in meters\n",
"m2=3 #units in Kgs\n",
"alpha=(f1*r1)/((m1*r2**2)+(m2*r1**2)) #units in rad/sec**2\n",
"print \"The angular acceleration is alpha=\",round(alpha,2),\" rad/sec**2\\n\"\n",
"a=r1*alpha #units in meters/sec**2\n",
"t=10 #units in sec\n",
"y=0.5*a*t**2 #units in meters\n",
"print \"The objects goes a distance of y=\",round(y,1),\" meters\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex8.5:pg-244"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The object is moving at v= 1.28 meters/sec\n"
]
}
],
"source": [
" #Example 8_5\n",
" \n",
" \n",
" #To find the speed of the object\n",
"m=3 #units in Kg\n",
"g=9.8 #units in meters/sec**2\n",
"h=0.80 #units in meters\n",
"m1=3 #units in Kg\n",
"m2=14.4 #units in Kg\n",
"r=0.75 #units in meters\n",
"v=sqrt((m*g*h)/((0.5*m1)+((0.5*m2)/r**2)))\n",
"print \"The object is moving at v=\",round(v,2),\" meters/sec\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex8.8:pg-247"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The sun would take for one revolution in time=\n",
"0.000216 sec\n"
]
}
],
"source": [
" #Example 8_8\n",
" \n",
" \n",
" #To find out how long does the sun take to complete one revolution\n",
"ra_rb=10.0**5\n",
"noofrev=1.0/25 #units in rev/day\n",
"wafter=(ra_rb)**2*(noofrev)\n",
"t=86400 #units in sec\n",
"time=t/wafter #units in sec\n",
"print \"The sun would take for one revolution in time=\"\n",
"print time,\"sec\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex8.9:pg-248"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The rotational speed is Wf= 1.63 rev/sec\n"
]
}
],
"source": [
" #Example 8_9\n",
" \n",
" \n",
" #To find out the rotational speed \n",
"m=0.3 #units in Kg\n",
"r=0.035 #units in meters\n",
"Iw=0.5*m*r**2 #units in Kg meter**2\n",
"Ibt=8*10**-4 #units in Kg meter**2\n",
"w0=2 #units in rev/sec\n",
"wf=(Ibt*w0)/(Ibt+Iw) #units in rev/sec\n",
"print \"The rotational speed is Wf=\",round(wf,2),\" rev/sec\"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|