diff options
author | kinitrupti | 2017-05-12 18:40:35 +0530 |
---|---|---|
committer | kinitrupti | 2017-05-12 18:40:35 +0530 |
commit | d36fc3b8f88cc3108ffff6151e376b619b9abb01 (patch) | |
tree | 9806b0d68a708d2cfc4efc8ae3751423c56b7721 /Optical_fiber_communication_by_gerd_keiser/chapter3.ipynb | |
parent | 1b1bb67e9ea912be5c8591523c8b328766e3680f (diff) | |
download | Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.gz Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.bz2 Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.zip |
Revised list of TBCs
Diffstat (limited to 'Optical_fiber_communication_by_gerd_keiser/chapter3.ipynb')
-rwxr-xr-x | Optical_fiber_communication_by_gerd_keiser/chapter3.ipynb | 358 |
1 files changed, 0 insertions, 358 deletions
diff --git a/Optical_fiber_communication_by_gerd_keiser/chapter3.ipynb b/Optical_fiber_communication_by_gerd_keiser/chapter3.ipynb deleted file mode 100755 index 83e3dde2..00000000 --- a/Optical_fiber_communication_by_gerd_keiser/chapter3.ipynb +++ /dev/null @@ -1,358 +0,0 @@ -{
- "metadata": {
- "name": "",
- "signature": "sha256:c31c7734af7a6179a63aac4a4be2acaa7976b91a58a8c77446fe6a6c4b3a076e"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter 3: Signal degradation in optical fibers"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 3.1, Page Number: 91"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#variable declaration\n",
- "Z1 = 1.0 #distance (km)\n",
- "Z2 = 2.0 #distance (km)\n",
- "alpha_in_dB_per_km = 3.0 #loss(dB/km)\n",
- "\n",
- "#calculation\n",
- "R1 = (alpha_in_dB_per_km *Z1)/10.0 \n",
- "R2 = (alpha_in_dB_per_km *Z2)/10.0\n",
- "P0_Pz1 = (10**R1) #power loss at 1 km\n",
- "P0_Pz2 = (10**R2) #power loss at 2 km\n",
- "Pz_P01 = 1-(1/P0_Pz1)\n",
- "Pz_P02 = 1-(1/P0_Pz2)\n",
- "\n",
- "#result\n",
- "print \"Optical signal power decresed for 1km = \" , round(Pz_P01*100,0) , \"%\"\n",
- "print \"Optical signal power decresed for 2km = \" , round(Pz_P02*100,0) , \"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Optical signal power decresed for 1km = 50.0 %\n",
- "Optical signal power decresed for 2km = 75.0 %\n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 3.2, Page Number: 91"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#variable declaration\n",
- "Pin = 200*10**-6 #power launched into the fiber(uW)\n",
- "alpha = 0.4 #attenuation (dB/KM)\n",
- "z = 30 #optical fiber length 30 KM\n",
- "\n",
- "#calculation\n",
- "Pin_dBm = 10*(math.log10(Pin/10**-3)) #input power (dBm)\n",
- "Pout_dBm = 10*(math.log10(Pin/10**-3))-alpha*z #output power(dBm)\n",
- "Pout = 10**(Pout_dBm/10)\n",
- "\n",
- "#result\n",
- "print \"Input power = \" , round(Pin_dBm,1),\"dBm\"\n",
- "print \"Output power = \" , round(Pout_dBm,1),\"dBm\"\n",
- "print \"Output power = \" , round(Pout*10**3,1),\"um\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Input power = -7.0 dBm\n",
- "Output power = -19.0 dBm\n",
- "Output power = 12.6 um\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 3.3, Page Number: 97"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#variable declaration\n",
- "alpha_0 = 1.64 #attenuation at Lam_bda_0 in dB/KM\n",
- "Lam_bda_0 = 850*10**-9 #wavelength 850 nm\n",
- "Lam_bda1 = 1310*10**-9 #wavelength 1350 nm\n",
- "Lam_bda2 = 1550*10**-9 #waavelength 1550 nm \n",
- "\n",
- "#calculation\n",
- "alpha_Lambda1 = alpha_0*((Lam_bda_0/Lam_bda1)**4) #rayleigh scattering loss1(dB/Km)\n",
- "alpha_Lambda2 = alpha_0*((Lam_bda_0/Lam_bda2)**4) #rayleigh scattering loss2(dB/Km)\n",
- "\n",
- "#result\n",
- "print \"Rayleigh scattering loss alpha at 1310 nm = \" , round(alpha_Lambda1,3),\"dB/Km\"\n",
- "print \"Rayleigh scattering loss alpha at 1550 nm = \" , round(alpha_Lambda2,3),\"dB/Km\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Rayleigh scattering loss alpha at 1310 nm = 0.291 dB/Km\n",
- "Rayleigh scattering loss alpha at 1550 nm = 0.148 dB/Km\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 3.4, Page Number: 99"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#variable declaration\n",
- "alpha = 2 #graded index profile\n",
- "n2 = 1.5 #cladding\n",
- "Lam_bda = 1.3*10**-6 #wavelength\n",
- "R = 0.01 #bend radius of curvature\n",
- "a = 25*10**-6 #core radius\n",
- "delta = 0.01 #core cladding index profile\n",
- "k = 4.83*10**6 #propagation constant\n",
- "\n",
- "#calculation\n",
- "no_of_modes= -10000.0 #number of modes decreased by 50% in greded index fibre\n",
- "part1 = (alpha+2)/(2*alpha*delta)\n",
- "part2 = (1-no_of_modes)/part1 #Right side of equation\n",
- "part3 = (2*a/R)+math.floor((3/(2*n2*k*R))**(2/3))*100 #left side of equation\n",
- "\n",
- "#result\n",
- "print \"From equation part2 =\",round(part2,1),\"= part3 =\",round(part3,1)\n",
- "print \"Radius of curvature = \", round(R*100,1),\"cm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "From equation part2 = 100.0 = part3 = 100.0\n",
- "Radius of curvature = 1.0 cm\n"
- ]
- }
- ],
- "prompt_number": 27
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 3.5, Page Number: 103"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#variable declaration\n",
- "C = 3*10**8 #free space velocity(m/s) \n",
- "n1 = 1.48 #core refractive index\n",
- "n2 = 1.465 #cladding refractive index\n",
- "delta = 0.01 #index difference\n",
- "L = 10**3 #fiber length (Km)\n",
- "\n",
- "#calculation\n",
- "deltaT = (L*(n1**2)/(C*n2))*delta #pulse broadening(ns/Km)\n",
- "\n",
- "#result\n",
- "print \"Pulse broadening = \" , round((deltaT/L)*10**12,0),\"ns/Km\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Pulse broadening = 50.0 ns/Km\n"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 3.6, Page Number: 104"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#variable declaration\n",
- "n1 = 1.48 #core refractive index\n",
- "n2 = 1.465 #cladding refractive index\n",
- "delta = 0.01 #index difference\n",
- "C =3*(10**8) #free space velcotiy(m/s)\n",
- "\n",
- "#calculation\n",
- "BL = (n2/(n1**2))*(C/delta) #bit rate distance product(Mb/s-km)\n",
- "\n",
- "#result\n",
- "print \"Bandwidth distance at pulse spreding of 50ns/km = \" , round(BL*10**-9),\"Mb/s-km\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Bandwidth distance at pulse spreding of 50ns/km = 20.0 Mb/s-km\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 3.7, Page Number: 107"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#variable declaration\n",
- "Lamda = 800*10**-9 #Wavelength (m)\n",
- "sigma_Lamda_LED = 40*10**-9 #spectral width (m)\n",
- "mat_dispersion = 0.00011 #material dispersion \n",
- "\n",
- "#calculation\n",
- "pulse_spread = sigma_Lamda_LED*mat_dispersion #pulse spread(ns/km)\n",
- "\n",
- "#result\n",
- "print \"Material dispersion =\" ,round(pulse_spread*10**12,1),\"ns/km\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Material dispersion = 4.4 ns/km\n"
- ]
- }
- ],
- "prompt_number": 10
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 3.8, Page Number: 110"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#variable declaration\n",
- "n2 = 1.48 #index of cladding\n",
- "delta = 0.002 #index difference\n",
- "Lam_bda = 1320*10**-9 #Wavelength (nm)\n",
- "V_dVb_dV = 0.26 #The value in square brackets for v = 2.4\n",
- "C =3*10**8 #velocity of light in free space\n",
- "\n",
- "#calculation\n",
- "Dwg_Lamda = -(((n2*delta)/C)*(1/Lam_bda))*V_dVb_dV #waveguide dispersion(ps/nm*km)\n",
- "\n",
- "#result\n",
- "print \"Waveguide dispersion = \" ,round(Dwg_Lamda*10**6,1),\"ps/(nm*km)\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Waveguide dispersion = -1.9 ps/(nm*km)\n"
- ]
- }
- ],
- "prompt_number": 11
- }
- ],
- "metadata": {}
- }
- ]
-}
\ No newline at end of file |