1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
|
{
"metadata": {
"name": "",
"signature": "sha256:c31c7734af7a6179a63aac4a4be2acaa7976b91a58a8c77446fe6a6c4b3a076e"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 3: Signal degradation in optical fibers"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.1, Page Number: 91"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#variable declaration\n",
"Z1 = 1.0 #distance (km)\n",
"Z2 = 2.0 #distance (km)\n",
"alpha_in_dB_per_km = 3.0 #loss(dB/km)\n",
"\n",
"#calculation\n",
"R1 = (alpha_in_dB_per_km *Z1)/10.0 \n",
"R2 = (alpha_in_dB_per_km *Z2)/10.0\n",
"P0_Pz1 = (10**R1) #power loss at 1 km\n",
"P0_Pz2 = (10**R2) #power loss at 2 km\n",
"Pz_P01 = 1-(1/P0_Pz1)\n",
"Pz_P02 = 1-(1/P0_Pz2)\n",
"\n",
"#result\n",
"print \"Optical signal power decresed for 1km = \" , round(Pz_P01*100,0) , \"%\"\n",
"print \"Optical signal power decresed for 2km = \" , round(Pz_P02*100,0) , \"%\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Optical signal power decresed for 1km = 50.0 %\n",
"Optical signal power decresed for 2km = 75.0 %\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.2, Page Number: 91"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#variable declaration\n",
"Pin = 200*10**-6 #power launched into the fiber(uW)\n",
"alpha = 0.4 #attenuation (dB/KM)\n",
"z = 30 #optical fiber length 30 KM\n",
"\n",
"#calculation\n",
"Pin_dBm = 10*(math.log10(Pin/10**-3)) #input power (dBm)\n",
"Pout_dBm = 10*(math.log10(Pin/10**-3))-alpha*z #output power(dBm)\n",
"Pout = 10**(Pout_dBm/10)\n",
"\n",
"#result\n",
"print \"Input power = \" , round(Pin_dBm,1),\"dBm\"\n",
"print \"Output power = \" , round(Pout_dBm,1),\"dBm\"\n",
"print \"Output power = \" , round(Pout*10**3,1),\"um\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Input power = -7.0 dBm\n",
"Output power = -19.0 dBm\n",
"Output power = 12.6 um\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.3, Page Number: 97"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#variable declaration\n",
"alpha_0 = 1.64 #attenuation at Lam_bda_0 in dB/KM\n",
"Lam_bda_0 = 850*10**-9 #wavelength 850 nm\n",
"Lam_bda1 = 1310*10**-9 #wavelength 1350 nm\n",
"Lam_bda2 = 1550*10**-9 #waavelength 1550 nm \n",
"\n",
"#calculation\n",
"alpha_Lambda1 = alpha_0*((Lam_bda_0/Lam_bda1)**4) #rayleigh scattering loss1(dB/Km)\n",
"alpha_Lambda2 = alpha_0*((Lam_bda_0/Lam_bda2)**4) #rayleigh scattering loss2(dB/Km)\n",
"\n",
"#result\n",
"print \"Rayleigh scattering loss alpha at 1310 nm = \" , round(alpha_Lambda1,3),\"dB/Km\"\n",
"print \"Rayleigh scattering loss alpha at 1550 nm = \" , round(alpha_Lambda2,3),\"dB/Km\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Rayleigh scattering loss alpha at 1310 nm = 0.291 dB/Km\n",
"Rayleigh scattering loss alpha at 1550 nm = 0.148 dB/Km\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.4, Page Number: 99"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#variable declaration\n",
"alpha = 2 #graded index profile\n",
"n2 = 1.5 #cladding\n",
"Lam_bda = 1.3*10**-6 #wavelength\n",
"R = 0.01 #bend radius of curvature\n",
"a = 25*10**-6 #core radius\n",
"delta = 0.01 #core cladding index profile\n",
"k = 4.83*10**6 #propagation constant\n",
"\n",
"#calculation\n",
"no_of_modes= -10000.0 #number of modes decreased by 50% in greded index fibre\n",
"part1 = (alpha+2)/(2*alpha*delta)\n",
"part2 = (1-no_of_modes)/part1 #Right side of equation\n",
"part3 = (2*a/R)+math.floor((3/(2*n2*k*R))**(2/3))*100 #left side of equation\n",
"\n",
"#result\n",
"print \"From equation part2 =\",round(part2,1),\"= part3 =\",round(part3,1)\n",
"print \"Radius of curvature = \", round(R*100,1),\"cm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"From equation part2 = 100.0 = part3 = 100.0\n",
"Radius of curvature = 1.0 cm\n"
]
}
],
"prompt_number": 27
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.5, Page Number: 103"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#variable declaration\n",
"C = 3*10**8 #free space velocity(m/s) \n",
"n1 = 1.48 #core refractive index\n",
"n2 = 1.465 #cladding refractive index\n",
"delta = 0.01 #index difference\n",
"L = 10**3 #fiber length (Km)\n",
"\n",
"#calculation\n",
"deltaT = (L*(n1**2)/(C*n2))*delta #pulse broadening(ns/Km)\n",
"\n",
"#result\n",
"print \"Pulse broadening = \" , round((deltaT/L)*10**12,0),\"ns/Km\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Pulse broadening = 50.0 ns/Km\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.6, Page Number: 104"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#variable declaration\n",
"n1 = 1.48 #core refractive index\n",
"n2 = 1.465 #cladding refractive index\n",
"delta = 0.01 #index difference\n",
"C =3*(10**8) #free space velcotiy(m/s)\n",
"\n",
"#calculation\n",
"BL = (n2/(n1**2))*(C/delta) #bit rate distance product(Mb/s-km)\n",
"\n",
"#result\n",
"print \"Bandwidth distance at pulse spreding of 50ns/km = \" , round(BL*10**-9),\"Mb/s-km\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Bandwidth distance at pulse spreding of 50ns/km = 20.0 Mb/s-km\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.7, Page Number: 107"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#variable declaration\n",
"Lamda = 800*10**-9 #Wavelength (m)\n",
"sigma_Lamda_LED = 40*10**-9 #spectral width (m)\n",
"mat_dispersion = 0.00011 #material dispersion \n",
"\n",
"#calculation\n",
"pulse_spread = sigma_Lamda_LED*mat_dispersion #pulse spread(ns/km)\n",
"\n",
"#result\n",
"print \"Material dispersion =\" ,round(pulse_spread*10**12,1),\"ns/km\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Material dispersion = 4.4 ns/km\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.8, Page Number: 110"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#variable declaration\n",
"n2 = 1.48 #index of cladding\n",
"delta = 0.002 #index difference\n",
"Lam_bda = 1320*10**-9 #Wavelength (nm)\n",
"V_dVb_dV = 0.26 #The value in square brackets for v = 2.4\n",
"C =3*10**8 #velocity of light in free space\n",
"\n",
"#calculation\n",
"Dwg_Lamda = -(((n2*delta)/C)*(1/Lam_bda))*V_dVb_dV #waveguide dispersion(ps/nm*km)\n",
"\n",
"#result\n",
"print \"Waveguide dispersion = \" ,round(Dwg_Lamda*10**6,1),\"ps/(nm*km)\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Waveguide dispersion = -1.9 ps/(nm*km)\n"
]
}
],
"prompt_number": 11
}
],
"metadata": {}
}
]
}
|