summaryrefslogtreecommitdiff
path: root/Modern_Physics_By_G.Aruldas/Chapter7_2.ipynb
diff options
context:
space:
mode:
authorkinitrupti2017-05-12 18:40:35 +0530
committerkinitrupti2017-05-12 18:40:35 +0530
commitd36fc3b8f88cc3108ffff6151e376b619b9abb01 (patch)
tree9806b0d68a708d2cfc4efc8ae3751423c56b7721 /Modern_Physics_By_G.Aruldas/Chapter7_2.ipynb
parent1b1bb67e9ea912be5c8591523c8b328766e3680f (diff)
downloadPython-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.gz
Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.bz2
Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.zip
Revised list of TBCs
Diffstat (limited to 'Modern_Physics_By_G.Aruldas/Chapter7_2.ipynb')
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter7_2.ipynb258
1 files changed, 0 insertions, 258 deletions
diff --git a/Modern_Physics_By_G.Aruldas/Chapter7_2.ipynb b/Modern_Physics_By_G.Aruldas/Chapter7_2.ipynb
deleted file mode 100755
index 45ed5766..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter7_2.ipynb
+++ /dev/null
@@ -1,258 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:1e02050388cdd15ca19e058c38c307c0fd0b145ef71769674c045940ea70b08b"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "7: Atomic physics"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 7.1, Page number 113"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "mewB=9.27*10**-24;\n",
- "B=3; #magnetic field(T)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "\n",
- "#Calculation\n",
- "E=2*mewB*B/e; #energy difference(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy difference is\",round(E*10**4,2),\"*10**-4 eV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "energy difference is 3.48 *10**-4 eV\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 7.3, Page number 118"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "l=2;\n",
- "s=1/2;\n",
- "j1=2+(1/2);\n",
- "j2=2-(1/2);\n",
- "\n",
- "#Calculation\n",
- "L=math.sqrt(l*(l+1)); #value of L(hbar)\n",
- "S=math.sqrt(s*(s+1)); #value of S(hbar)\n",
- "J1=math.sqrt(j1*(j1+1)); #value of J for D5/2 state(hbar)\n",
- "J2=math.sqrt(j2*(j2+1)); #value of J for D3/2 state(hbar)\n",
- "costheta1=((j1*(j1+1))-(l*(l+1))-(s*(s+1)))/(2*L*S);\n",
- "theta1=math.acos(costheta1); #angle between L and S for D5/2(radian)\n",
- "theta1=theta1*180/math.pi; #angle between L and S for D5/2(degrees)\n",
- "costheta2=((j2*(j2+1))-(l*(l+1))-(s*(s+1)))/(2*L*S);\n",
- "theta2=math.acos(costheta2); #angle between L and S for D3/2(radian)\n",
- "theta2=theta2*180/math.pi; #angle between L and S for D3/2(degrees)\n",
- "\n",
- "#Result\n",
- "print \"value of L is\",round(L,3),\"hbar\"\n",
- "print \"value of S is\",round(S,3),\"hbar\"\n",
- "print \"value of J for D5/2 state is\",round(J1,3),\"hbar\"\n",
- "print \"value of J for D3/2 state is\",round(J2,3),\"hbar\"\n",
- "print \"angle between L and S for D5/2 is\",round(theta1,2),\"degrees\"\n",
- "print \"angle between L and S for D3/2 is\",int(theta2),\"degrees\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "value of L is 2.449 hbar\n",
- "value of S is 0.866 hbar\n",
- "value of J for D5/2 state is 2.958 hbar\n",
- "value of J for D3/2 state is 1.936 hbar\n",
- "angle between L and S for D5/2 is 61.87 degrees\n",
- "angle between L and S for D3/2 is 135 degrees\n"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 7.10, Page number 136"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "S=1;\n",
- "L=1; \n",
- "J=1;\n",
- "\n",
- "#Calculation\n",
- "a=L*(L+1)-(L*(L+1));\n",
- "g1=1+(a/(2*L*(L+1))); #lande's g-factor for pure orbital angular momentum\n",
- "b=(S*(S+1)+(S*(S+1)))/(2*S*(S+1)); #lande's g-factor for pure spin angular momentum\n",
- "g2=1+b; #lande's g-factor for pure spin angular momentum\n",
- "c=J*(J+1)+(S*(S+1))-(L*(L+1));\n",
- "g3=1+(c/(2*J*(J+1))); #lande's g-factor for state 3P1\n",
- "\n",
- "#Result\n",
- "print \"lande's g-factor for pure orbital angular momentum is\",g1\n",
- "print \"ande's g-factor for pure spin angular momentum is\",g2\n",
- "print \"lande's g-factor for state 3P1 is\",g3"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "lande's g-factor for pure orbital angular momentum is 1.0\n",
- "ande's g-factor for pure spin angular momentum is 2.0\n",
- "lande's g-factor for state 3P1 is 1.5\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 7.12, Page number 141"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "EKalpha=21.99; #energy in silver(keV)\n",
- "EKbita=25.145; #energy in silver(keV)\n",
- "E=-25.514; #energy of n=1 state(keV)\n",
- " \n",
- "#Calculation\n",
- "ELalpha=EKbita-EKalpha; #energy of L alpha X ray(keV)\n",
- "E2=-E-EKalpha; #binding energy of L electron(keV)\n",
- "\n",
- "#Result\n",
- "print \"energy of L alpha X ray is\",ELalpha,\"keV\"\n",
- "print \"binding energy of L electron is\",E2,\"keV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "energy of L alpha X ray is 3.155 keV\n",
- "binding energy of L electron is 3.524 keV\n"
- ]
- }
- ],
- "prompt_number": 8
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 7.13, Page number 141"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "Z=11; #atomic number\n",
- "R=1.097*10**7; #value of R(per m)\n",
- "\n",
- "#Calculation\n",
- "E=(3*h*c*R*(Z-1)**2)/4; #energy of k aplha X-ray(keV)\n",
- "\n",
- "#Result\n",
- "print \"energy of k aplha X-ray is\",round(E*10**16,2),\"*10**-16 keV\"\n",
- "print \"answer given in the book is wrong\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "energy of k aplha X-ray is 1.64 *10**-16 keV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "prompt_number": 12
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file