diff options
author | kinitrupti | 2017-05-12 18:40:35 +0530 |
---|---|---|
committer | kinitrupti | 2017-05-12 18:40:35 +0530 |
commit | d36fc3b8f88cc3108ffff6151e376b619b9abb01 (patch) | |
tree | 9806b0d68a708d2cfc4efc8ae3751423c56b7721 /Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney | |
parent | 1b1bb67e9ea912be5c8591523c8b328766e3680f (diff) | |
download | Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.gz Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.bz2 Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.zip |
Revised list of TBCs
Diffstat (limited to 'Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney')
15 files changed, 41 insertions, 8212 deletions
diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch1.ipynb b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch1.ipynb index ef180637..24c0193e 100644 --- a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch1.ipynb +++ b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch1.ipynb @@ -3,9 +3,7 @@ { "cell_type": "markdown", "metadata": { - "collapsed": true, - "deletable": true, - "editable": true + "collapsed": true }, "source": [ "# Chapter 1:Measurement of phase and frequency" @@ -13,10 +11,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "## Example 1.1, Page number 28" ] @@ -25,9 +20,7 @@ "cell_type": "code", "execution_count": 1, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": false }, "outputs": [ { @@ -77,7 +70,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", - "version": "2.7.12+" + "version": "2.7.12" } }, "nbformat": 4, diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch1_JEDKX6y.ipynb b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch1_JEDKX6y.ipynb deleted file mode 100644 index ef180637..00000000 --- a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch1_JEDKX6y.ipynb +++ /dev/null @@ -1,85 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "# Chapter 1:Measurement of phase and frequency" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Example 1.1, Page number 28" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "inductance of the circuit 1 = 7.04 H\n", - "inductance of circuit 2 L2=9.82 H\n", - "Resonant frequency of the circuit 1 = 41.47 Hz\n" - ] - } - ], - "source": [ - "import math\n", - "c1=10**-6;\n", - "f1=60;\n", - "L1=1/(4*math.pi*math.pi*(f1**2)*c1);\n", - "print (\"inductance of the circuit 1 = %.2f H\" % L1)\n", - "f2=50;\n", - "w=2*math.pi*f2;\n", - "R1=100;\n", - "Z1=complex(R1,((w*L1)-(1/w*c1)));\n", - "#Z2=complex(100+j*((2*math.pi*50*L2)-(1/(2*math.pi*50*1.5*10**-6)))));\n", - "#for equal currents in two circuits Z1=Z2\n", - "print ('inductance of circuit 2 L2=9.82 H')\n", - "L2=9.82;\n", - "C2=1.5*10**-6;\n", - "Rf2=(1/(2*math.pi))*(1/(L2*C2))**0.5;\n", - "print (\"Resonant frequency of the circuit 1 = %.2f Hz\" % Rf2)\n", - "\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.12+" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch1_voXCiZP.ipynb b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch1_voXCiZP.ipynb deleted file mode 100644 index 24c0193e..00000000 --- a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch1_voXCiZP.ipynb +++ /dev/null @@ -1,78 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "# Chapter 1:Measurement of phase and frequency" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 1.1, Page number 28" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "inductance of the circuit 1 = 7.04 H\n", - "inductance of circuit 2 L2=9.82 H\n", - "Resonant frequency of the circuit 1 = 41.47 Hz\n" - ] - } - ], - "source": [ - "import math\n", - "c1=10**-6;\n", - "f1=60;\n", - "L1=1/(4*math.pi*math.pi*(f1**2)*c1);\n", - "print (\"inductance of the circuit 1 = %.2f H\" % L1)\n", - "f2=50;\n", - "w=2*math.pi*f2;\n", - "R1=100;\n", - "Z1=complex(R1,((w*L1)-(1/w*c1)));\n", - "#Z2=complex(100+j*((2*math.pi*50*L2)-(1/(2*math.pi*50*1.5*10**-6)))));\n", - "#for equal currents in two circuits Z1=Z2\n", - "print ('inductance of circuit 2 L2=9.82 H')\n", - "L2=9.82;\n", - "C2=1.5*10**-6;\n", - "Rf2=(1/(2*math.pi))*(1/(L2*C2))**0.5;\n", - "print (\"Resonant frequency of the circuit 1 = %.2f Hz\" % Rf2)\n", - "\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.12" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch2.ipynb b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch2.ipynb index 62a6ed2c..48ce727a 100644 --- a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch2.ipynb +++ b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch2.ipynb @@ -2145,7 +2145,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 109, "metadata": { "collapsed": false, "deletable": true, @@ -2156,7 +2156,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Voltage just before t=2ms =1.80 mV\n", + "Voltage just before t=2ms =1.00 mV\n", "(-2.2026841435311137, 'voltage just after t=2ms (mV)')\n", "Voltage just after t=2ms =-2.20 mV\n", "when t=10ms\n", @@ -2173,7 +2173,7 @@ "t=2*10**-3;\n", "d=100*10**-12;\n", "F=0.1;\n", - "e1=10.0**3*(d*F*(math.exp(-t/tc))/C);\n", + "el=10.0**3*(d*F*(math.exp(-t/tc))/C);\n", "print (\"Voltage just before t=2ms =%.2f mV\" %e1)\n", "el_after=10**3*(d*F*(math.exp(-t/tc)-1)/C);\n", "print (el_after,'voltage just after t=2ms (mV)')\n", diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch2_839zjBr.ipynb b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch2_839zjBr.ipynb deleted file mode 100644 index 94c3a076..00000000 --- a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch2_839zjBr.ipynb +++ /dev/null @@ -1,2149 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Chapter 2:Primary sensing elements and transducers" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 2.1" - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Displacement of the free end = 0.02 m\n" - ] - } - ], - "source": [ - "# 2.1\n", - "import math;\n", - "t=0.35;\n", - "P=1500*10**3;\n", - "E=180*10**9;\n", - "r=36.5;\n", - "x=16;\n", - "y=3;\n", - "a=math.pi*36.5*10**-3;\n", - "da=(0.05*a*P/E)*((r/t)**0.2)*((x/y)**0.33)*((x/t)**3);\n", - "print (\"Displacement of the free end = %.2f m\" % da)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 2.2" - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Natural length of spring = 90.00 mm\n", - "Displacement of point C = 3.75 mm\n" - ] - } - ], - "source": [ - "# 2.2\n", - "import math;\n", - "P=100*10**3;\n", - "A=1500*10**-6;\n", - "F=P*A;\n", - "Cs=F/3;\n", - "Ls=Cs+40;\n", - "print (\"Natural length of spring = %.2f mm\" % Ls)\n", - "P1=10*10**3;\n", - "F1=P1*A;\n", - "Ss=3+2*.5;\n", - "D=F1/Ss;\n", - "print (\"Displacement of point C = %.2f mm\" % D)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.3" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Thickness = 0.21 mm\n", - "Deflection at center for Pressure of 150 kN/m2= 0.0000 mm\n", - "Natural frequency of the diaphragm =52051 rad/sec\n" - ] - } - ], - "source": [ - "# 2.3\n", - "import math;\n", - "D=15.0*10**-3;\n", - "P=300*10**3;\n", - "sm=300*10**6;\n", - "t=(3*D**2*P/(16*sm))**0.5*10**3;\n", - "print (\"Thickness = %.2f mm\" %t)\n", - "P=150*10**3;\n", - "v=0.28;\n", - "E=200.0*10**9;\n", - "dm=3.0*(1-v**2)*D**4*P/(256.0*E*t**3);\n", - "print (\"Deflection at center for Pressure of 150 kN/m2= %.4f mm\" %dm)\n", - "d=8900;\n", - "wn=(20*t*10**-3/D**2)*(E/(3*d*(1-v**2)))**0.5;\n", - "print (\"Natural frequency of the diaphragm =%.0f rad/sec\" %wn)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.4" - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Angle of twist= 0.000236 rad\n" - ] - } - ], - "source": [ - "# 2.4\n", - "import math;\n", - "T=100;\n", - "G=80*10**9;\n", - "d=2*15*10**-3;\n", - "th=16*T/(math.pi*G*d**3)\n", - "print (\"Angle of twist= %.6f rad\" %th)" - ] - }, - { - "cell_type": "code", - "execution_count": 63, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Reynoids number = 1697652.73 mm\n", - "Differential pressure = 261 kN/m2 \n", - "Deflection at the center of diaphragm = 0.02 micro m\n" - ] - } - ], - "source": [ - "# 2.5\n", - "import math;\n", - "d=60*10**-3;\n", - "Q=80*10**-3;\n", - "A=(math.pi/4)*d**2;\n", - "v=Q/A;\n", - "vi=10**-3;\n", - "de=10**3;\n", - "Re=v*de*d/vi;\n", - "print (\"Reynoids number = %.2f mm\" %Re)\n", - "d2=60*10**-3;\n", - "d1=100*10**-3;\n", - "A2=(math.pi/4)*d2**2;\n", - "M=1/((1-(d2/d1)**2)**0.5);\n", - "Cd=0.99;\n", - "w=1*10**3;\n", - "Qact=80*10**-3;\n", - "Pd=((Qact/(Cd*M*A2))**2)*w/(2)*10**-3;\n", - "print (\"Differential pressure = %.0f kN/m2 \" %Pd)\n", - "Po=0.28;\n", - "D=10*10**-3;\n", - "E=206*10**9;\n", - "t=0.2*10**-3;\n", - "dm=(3*(1-Po**2)*D**4*Pd)/(256*E*t**3);\n", - "deff=dm*10**6;\n", - "print (\"Deflection at the center of diaphragm = %.2f micro m\" %deff)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.6" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Mean velocity of water = 4.47 m/s\n", - "Velocity of air= 175.4 m/s\n" - ] - } - ], - "source": [ - "# 2.6\n", - "import math;\n", - "Pd=10*10**3;\n", - "d=1000;\n", - "VmeanW= (2*Pd/d)**0.5;\n", - "print (\"Mean velocity of water = %.2f m/s\" %VmeanW)\n", - "d=0.65;\n", - "Va= (2*Pd/d)**0.5;\n", - "print (\"Velocity of air= %.1f m/s\" %Va)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.7" - ] - }, - { - "cell_type": "code", - "execution_count": 65, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "let coefficient of discharge Cd=1\n", - "Depth of flow = 0.3 m\n" - ] - } - ], - "source": [ - "# 2.7\n", - "import math;\n", - "print ('let coefficient of discharge Cd=1')\n", - "H1=0.9;\n", - "L=1.2;\n", - "g=9.81;\n", - "Q=(2.0/3)*L*(2*g)**0.5*(H1)**(1.5);\n", - "th=45;\n", - "H2=Q*(15.0/8)/(2.0*g)\n", - "print (\"Depth of flow = %.1f m\" %H2)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.8" - ] - }, - { - "cell_type": "code", - "execution_count": 66, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Uncertinity in discharge = 0.0125 m3/s\n" - ] - } - ], - "source": [ - "# 2.8\n", - "Cd=0.6;\n", - "H=0.5;\n", - "dH=0.01;\n", - "g=9.81;\n", - "Q=(8.0/15)*Cd*(2*g)**0.5*(H)**(2.5);\n", - "dQ=(2.5*dH/H)*Q;\n", - "print (\"Uncertinity in discharge = %.4f m3/s\" %dQ)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.9" - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Displacement = 5.75 mm\n", - "Displacement = -12.80 mm\n", - "One print lacement is positive and other is negative so two print lacements are in the opposite direction\n", - "Resolution = 0.05 mm\n" - ] - } - ], - "source": [ - "# 2.9\n", - "import math;\n", - "Rnormal=10000.0/2;\n", - "Rpl=10000/50;\n", - "Rc1=Rnormal-3850;\n", - "Dnormal=Rc1/Rpl;\n", - "print (\"Displacement = %.2f mm\" %Dnormal)\n", - "Rc2=Rnormal-7560;\n", - "Dnormal=Rc2/Rpl;\n", - "print (\"Displacement = %.2f mm\" %Dnormal)\n", - "print ('One print lacement is positive and other is negative so two print lacements are in the opposite direction')\n", - "Re=10.0*1/200;\n", - "print (\"Resolution = %.2f mm\" %Re)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.11" - ] - }, - { - "cell_type": "code", - "execution_count": 68, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Output voltage = 3000.000000 V\n" - ] - } - ], - "source": [ - "#2.11\n", - "import math;\n", - "RAB=125;\n", - "Rtotal=5000;\n", - "R2=0.0\n", - "R2=(75.0/125.0)*Rtotal\n", - "R4=2500;\n", - "ei=5;\n", - "eo=((R2/Rtotal)-(R4/Rtotal))*ei;\n", - "print (\"Output voltage = %f V\" %R2)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.12" - ] - }, - { - "cell_type": "code", - "execution_count": 69, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Maximum excitation voltage = 54.8 V\n", - "Sensitivity = 0.152 V/degree\n" - ] - } - ], - "source": [ - "# 2.12\n", - "import math;\n", - "Rm=10000;\n", - "Rp=Rm/15;\n", - "R=600;\n", - "P=5;\n", - "ei= (P*R)**0.5;\n", - "print (\"Maximum excitation voltage = %.1f V\" %ei)\n", - "S=ei/360;\n", - "print (\"Sensitivity = %.3f V/degree\" %S)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.13" - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Resolution = 0.0005 mm\n" - ] - } - ], - "source": [ - "# 2.13\n", - "import math;\n", - "Rwga=1.0/400;\n", - "Re=Rwga/5;\n", - "print (\"Resolution = %.4f mm\" %Re)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.14" - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Resolution of 1mm movement = 0.3125 degree/mm\n", - "Required Resolution of 1mm movement = 0.300 degree/mm\n", - "Since the resolution of potentiometer is higher than the resolution required so it is suitable for the application\n" - ] - } - ], - "source": [ - "# 2.14\n", - "import math;\n", - "mo=0.8;\n", - "sr=250;\n", - "sm=sr/mo;\n", - "R=sm*1*10**-3;\n", - "print (\"Resolution of 1mm movement = %.4f degree/mm\" %R)\n", - "Rq=300.0/1000;\n", - "print (\"Required Resolution of 1mm movement = %.3f degree/mm\" %Rq)\n", - "print ('Since the resolution of potentiometer is higher than the resolution required so it is suitable for the application')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.15" - ] - }, - { - "cell_type": "code", - "execution_count": 72, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Power dissipation = 0.667 W\n", - "Power dissipation = 0.650 W\n", - "Since power dissipation is higher than the dissipation allowed so potentiometer is not suitable\n" - ] - } - ], - "source": [ - "# 2.15\n", - "import math;\n", - "Pd=(10.0**2)/150;\n", - "print (\"Power dissipation = %.3f W\" %Pd)\n", - "th_pot=80+Pd*30;\n", - "PDa=(10*10**-3)*(th_pot-35);\n", - "print (\"Power dissipation = %.3f W\" %PDa)\n", - "print ('Since power dissipation is higher than the dissipation allowed so potentiometer is not suitable')\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.16" - ] - }, - { - "cell_type": "code", - "execution_count": 73, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Possion s ratio=1.600000\n" - ] - } - ], - "source": [ - "# 2.16\n", - "import math;\n", - "Gf=4.2;\n", - "v=(Gf-1)/2;\n", - "print ('Possion s ratio=%f' %v)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.17" - ] - }, - { - "cell_type": "code", - "execution_count": 74, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Change in resistance of nickel = 0.007 ohm\n", - "Change in resistance of nicrome = -0.001 ohm\n" - ] - } - ], - "source": [ - "# 2.17\n", - "import math;\n", - "strain=-5*10**-6;\n", - "Gf=-12.1;\n", - "R=120;\n", - "dR_nickel=Gf*R*strain;\n", - "print (\"Change in resistance of nickel = %.3f ohm\" %dR_nickel)\n", - "Gf=2;\n", - "R=120;\n", - "dR_nicrome=Gf*R*strain;\n", - "print (\"Change in resistance of nicrome = %.3f ohm\" %dR_nicrome)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.18" - ] - }, - { - "cell_type": "code", - "execution_count": 75, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Percentage change in resistance = 0.1 \n" - ] - } - ], - "source": [ - "# 2.18\n", - "import math;\n", - "s=100.0*10**6;\n", - "E=200.0*10**9;\n", - "strain=s/E;\n", - "Gf=2.0;\n", - "r_per_unit=Gf*strain*100.0;\n", - "print (\"Percentage change in resistance = %.1f \" %r_per_unit)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.19" - ] - }, - { - "cell_type": "code", - "execution_count": 76, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Gauge factor = 2.31 \n" - ] - } - ], - "source": [ - "#2.19\n", - "import math;\n", - "b=0.02;\n", - "d=0.003;\n", - "I=(b*d**3)/12;\n", - "E=200*10**9;\n", - "x=12.7*10**-3;\n", - "l=0.25;\n", - "F=3*E*I*x/l**3;\n", - "x=0.15;\n", - "M=F*x;\n", - "t=0.003;\n", - "s=(M*t)/(I*2);\n", - "strain=s/E;\n", - "dR=0.152;\n", - "R=120;\n", - "Gf=(dR/R)/strain;\n", - "print (\"Gauge factor = %.2f \" %Gf)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.20" - ] - }, - { - "cell_type": "code", - "execution_count": 77, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Change in length= 2.5 um \n", - " Force= 2038.64 N \n" - ] - } - ], - "source": [ - "# 2.20\n", - "import math;\n", - "dR=0.013;\n", - "R=240;\n", - "l=0.1;\n", - "Gf=2.2;\n", - "dl=(dR/R)*l/Gf*10**6;\n", - "print (\" Change in length= %.1f um \" %dl)\n", - "\n", - "strain=dl*10**-6/l;\n", - "E=207*10**9;\n", - "s=E*strain;\n", - "A=4*10**-4;\n", - "F=s*A;\n", - "print (\" Force= %.2f N \" %F)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.21" - ] - }, - { - "cell_type": "code", - "execution_count": 78, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " alpha at o degree= 0.0085 /degree C \n", - "5.5(1+0.0085(th-45))\n" - ] - } - ], - "source": [ - "# 2.21\n", - "import math;\n", - "th1=30;\n", - "th2=60;\n", - "th0=th1+th2/2;\n", - "Rth1=4.8;\n", - "Rth2=6.2;\n", - "Rth0=5.5;\n", - "ath0=(1/Rth0)*(Rth2-Rth1)/(th2-th1);\n", - "print (\" alpha at o degree= %.4f /degree C \" %ath0)\n", - "print ('5.5(1+0.0085(th-45))')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.22" - ] - }, - { - "cell_type": "code", - "execution_count": 79, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "alpha at o degree= 0.00182 /degree C \n", - "Linear approximation is: Rth= 589.48(1+0.00182(th-115))\n" - ] - } - ], - "source": [ - "# 2.22\n", - "import math;\n", - "th1=100;\n", - "th2=130;\n", - "th0=th1+th2/2;\n", - "Rth1=573.40;\n", - "Rth2=605.52;\n", - "Rth0=589.48;\n", - "ath0=(1/Rth0)*(Rth2-Rth1)/(th2-th1);\n", - "print (\"alpha at o degree= %.5f /degree C \" %ath0)\n", - "print ('Linear approximation is: Rth= 589.48(1+0.00182(th-115))')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.23" - ] - }, - { - "cell_type": "code", - "execution_count": 80, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "resistance at 65 degree C= 115.68 ohm \n", - " Temperature = 25.00 degree C \n" - ] - } - ], - "source": [ - "# 2.23\n", - "import math;\n", - "Rth0=100;\n", - "ath0=0.00392;\n", - "dth=65-25;\n", - "R65=Rth0*(1+ath0*dth);\n", - "print (\"resistance at 65 degree C= %.2f ohm \" %R65)\n", - "th=(((150/100)-1)/ath0)+25;\n", - "print (\" Temperature = %.2f degree C \" %th)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.24" - ] - }, - { - "cell_type": "code", - "execution_count": 81, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Resistance at 150 degree C=15.11 ohm\n" - ] - } - ], - "source": [ - "# 2.24\n", - "import math;\n", - "Rth0=10;\n", - "ath0=0.00393;\n", - "dth=150-20;\n", - "R150=Rth0*(1+ath0*dth);\n", - "print (\"Resistance at 150 degree C=%.2f ohm\" %R150)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.25" - ] - }, - { - "cell_type": "code", - "execution_count": 82, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Time= 109.95 s \n" - ] - } - ], - "source": [ - "# Calculate the time\n", - "import math;\n", - "th=30.0;\n", - "th0=50;\n", - "tc=120;\n", - "t=-120*(math.log(1-(th/th0)));\n", - "print (\"Time= %.2f s \" %t)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.26" - ] - }, - { - "cell_type": "code", - "execution_count": 83, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Resistance at 35 degree C= 50.00 ohm \n" - ] - } - ], - "source": [ - "#2.26\n", - "import math;\n", - "R25=100;\n", - "ath=-0.05;\n", - "dth=35-25;\n", - "R35=R25*(1+ath*dth);\n", - "print (\"Resistance at 35 degree C= %.2f ohm \" %R35)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.27" - ] - }, - { - "cell_type": "code", - "execution_count": 84, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Resistance at 40 degree C= 967.51 ohm \n", - "Resistance at 100 degree C= 130.94 ohm \n" - ] - } - ], - "source": [ - "# 2.27\n", - "import math;\n", - "Ro=3980;\n", - "Ta=273;\n", - "#3980= a*3980*exp(b/273)\n", - "Rt50=794;\n", - "Ta50=273+50;\n", - "#794= a*3980*exp(b/323)\n", - "#on solving\n", - "#a=30*10**-6, b=2843\n", - "Ta40=273+40;\n", - "Rt40=(30*10**-6)*3980*math.exp(2843/313);\n", - "print (\"Resistance at 40 degree C= %.2f ohm \" %Rt40)\n", - "Rt100=(30*10**-6)*3980*math.exp(2843/373);\n", - "print (\"Resistance at 100 degree C= %.2f ohm \" %Rt100)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.28" - ] - }, - { - "cell_type": "code", - "execution_count": 85, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Change in temperature= 20.0 degree C \n" - ] - } - ], - "source": [ - "# 2.28\n", - "import math;\n", - "th=((1-1800/2000)/0.05)+70;\n", - "dth=th-70;\n", - "print (\"Change in temperature= %.1f degree C \" %dth)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.29" - ] - }, - { - "cell_type": "code", - "execution_count": 86, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Frequency of oscillation at 20 degree C = 25464.79 Hz \n", - "Frequency of oscillation at 25 degree C = 31830.99 Hz \n", - "Frequency of oscillation at 30 degree C = 42441.32 Hz \n" - ] - } - ], - "source": [ - "# 2.29\n", - "import math;\n", - "C=500*10**-12;\n", - "R20=10000*(1-0.05*(20-25));\n", - "f20=1/(2*math.pi*R20*C);\n", - "print (\"Frequency of oscillation at 20 degree C = %.2f Hz \" %f20)\n", - "R25=10000*(1-0.05*(25-25));\n", - "f25=1/(2*math.pi*R25*C);\n", - "print (\"Frequency of oscillation at 25 degree C = %.2f Hz \" %f25)\n", - "R30=10000*(1-0.05*(30-25));\n", - "f30=1/(2*math.pi*R30*C);\n", - "print (\"Frequency of oscillation at 30 degree C = %.2f Hz \" %f30)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.30" - ] - }, - { - "cell_type": "code", - "execution_count": 87, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Sensitivity of thermocouple= 572.0 micro V/degree C\n", - "Maximum output voltage= 0.06 V \n" - ] - } - ], - "source": [ - "# 2.30\n", - "import math;\n", - "Se_thermocouple=500-(-72);\n", - "print (\"Sensitivity of thermocouple= %.1f micro V/degree C\" %Se_thermocouple)\n", - "Vo=Se_thermocouple*100*10**-6;\n", - "print (\"Maximum output voltage= %.2f V \" %Vo)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.31" - ] - }, - { - "cell_type": "code", - "execution_count": 88, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Required e.m.f.= 27.87 mV \n", - "Temperature corresponding to 27.87 mV is 620 degree C\n" - ] - } - ], - "source": [ - "# 2.31\n", - "import math;\n", - "ET=27.07+0.8;\n", - "print (\"Required e.m.f.= %.2f mV \" %ET)\n", - "print ('Temperature corresponding to 27.87 mV is 620 degree C')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.32" - ] - }, - { - "cell_type": "code", - "execution_count": 89, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Series resistance=271.00 ohm\n", - "Approximate error due to rise in resistance of 1 ohm in Re=-2.40 degree C\n", - "Approximate error due to rise in Temp. of 10=-7.45 degree C\n" - ] - } - ], - "source": [ - "# 2.32\n", - "import math;\n", - "Rm=50;\n", - "Re=12;\n", - "E=33.3*10**-3;\n", - "i=0.1*10**-3;\n", - "Rs=(E/i)-Rm-Re;\n", - "print (\"Series resistance=%.2f ohm\" %Rs)\n", - "Re=13;\n", - "i1=E/(Rs+Re+Rm);\n", - "AE=((i1-i)/i)*800;\n", - "print (\"Approximate error due to rise in resistance of 1 ohm in Re=%.2f degree C\" %AE)\n", - "R_change=50*0.00426*10;\n", - "i1=E/(Rs+Re+Rm+R_change);\n", - "AE=((i1-i)/i)*800;\n", - "print (\"Approximate error due to rise in Temp. of 10=%.2f degree C\" %AE)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.3" - ] - }, - { - "cell_type": "code", - "execution_count": 90, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Value of resistance R1=5.95 ohm\n", - "Value of resistance R2=762.60 ohm\n" - ] - } - ], - "source": [ - "# 2.33\n", - "import math;\n", - "E_20=0.112*10**-3;# emf at 20degree C\n", - "E_900=8.446*10**-3;\n", - "E_1200=11.946*10**-3;\n", - "E1=E_900-E_20;\n", - "E2=E_1200-E_20;\n", - "#E1=1.08*R1/(R1+2.5+R2 (i)\n", - "#E2=1.08*(R1+2.5)/(R1+2.5+R2 (ii)\n", - "#on solving (i) and (ii)\n", - "R1=5.95;\n", - "R2=762.6;\n", - "print (\"Value of resistance R1=%.2f ohm\" %R1)\n", - "print (\"Value of resistance R2=%.2f ohm\" %R2)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.34" - ] - }, - { - "cell_type": "code", - "execution_count": 91, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Value of resistance R1=5.95 ohm\n", - "value of resistance RL>>Rl\n" - ] - } - ], - "source": [ - "# 2.34\n", - "import math;\n", - "th=20;\n", - "Vz=2.73+th*10*10**-3;\n", - "Voffset=-2.73;\n", - "Vout=Vz+Voffset;\n", - "Rbias=(5-0.2)/10**-3;\n", - "Rzero=500;\n", - "th=50;\n", - "Vz=2.73+th*10*10**-3;\n", - "VmaxT=Vz+Voffset;\n", - "Vsupply=5;\n", - "Rl=(VmaxT*Rbias)/(Vsupply-VmaxT);\n", - "print (\"Value of resistance R1=%.2f ohm\" %R1)\n", - "print ('value of resistance RL>>Rl')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.35" - ] - }, - { - "cell_type": "code", - "execution_count": 92, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Change in inductance=0.04 mH\n" - ] - } - ], - "source": [ - "# 2.35\n", - "import math;\n", - "L1=2;\n", - "La=1-0.02;\n", - "Lnew=2/La;\n", - "dl=Lnew-L1;\n", - "print (\"Change in inductance=%.2f mH\" %dl)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.36" - ] - }, - { - "cell_type": "code", - "execution_count": 93, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "percentage linearity=0.20 \n" - ] - } - ], - "source": [ - "# 2.36\n", - "import math;\n", - "linearity_percentage=(0.003/1.5)*100;\n", - "print (\"percentage linearity=%.2f \" %linearity_percentage)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.37" - ] - }, - { - "cell_type": "code", - "execution_count": 94, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "senstivity of the LVDT=0.004 V/mm\n", - "Senstivity of the instrument=1.0 V/mm\n", - "resolution of instrument=0.001 mm\n" - ] - } - ], - "source": [ - "# 2.37\n", - "import math;\n", - "displacement=0.5;\n", - "Vo=2*10**-3;\n", - "Se_LVDT=Vo/displacement;\n", - "print (\"senstivity of the LVDT=%.3f V/mm\" %Se_LVDT)\n", - "Af=250;\n", - "Se_instrument=Se_LVDT*Af;\n", - "print (\"Senstivity of the instrument=%.1f V/mm\" %Se_instrument)\n", - "sd=5/100;\n", - "Vo_min=50/5;\n", - "Re_instrument=1*1.0/1000;\n", - "print (\"resolution of instrument=%.3f mm\" %Re_instrument)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.38" - ] - }, - { - "cell_type": "code", - "execution_count": 95, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "deflection=0.01 m\n", - "minimum force=0.02 N\n", - "maximum force=81.92 N\n" - ] - } - ], - "source": [ - "# 2.38\n", - "import math;\n", - "b=0.02;\n", - "t=0.004;\n", - "I=(1.0/12)*b*t**3;\n", - "F=25;\n", - "l=0.25;\n", - "E=200.0*10**9;\n", - "x=(F*l**3)/(3.0*E*I);\n", - "print (\"deflection=%.2f m\" %x)\n", - "DpF=x/F;\n", - "Se=DpF*0.5*1000;\n", - "Re=(10.0/1000)*(2.0/10);\n", - "F_min=Re/Se;\n", - "F_max=10/Se;\n", - "print (\"minimum force=%.2f N\" %F_min)\n", - "print (\"maximum force=%.2f N\" %F_max)\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.39" - ] - }, - { - "cell_type": "code", - "execution_count": 96, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "permittivity of the air e0=8.85*10**-12\n", - "sensitivity of the transducer=-0.00 F/m\n" - ] - } - ], - "source": [ - "# 2.39\n", - "import math;\n", - "print ('permittivity of the air e0=8.85*10**-12')\n", - "e0=8.85*10**-12;\n", - "w=25.0*10**-3;\n", - "d=0.25*10**-3;\n", - "Se=-4.0*e0*w/d;\n", - "print (\"sensitivity of the transducer=%.2f F/m\" %Se)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.40" - ] - }, - { - "cell_type": "code", - "execution_count": 97, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "the value of the capacitance afte the application of pressure=446.55 pF\n" - ] - } - ], - "source": [ - "# 2.40\n", - "import math;\n", - "C1=370*10**-12;\n", - "d1=3.5*10**-3;\n", - "d2=2.9*10**-3;\n", - "C2=C1*d1*10**12/d2;\n", - "print (\"the value of the capacitance afte the application of pressure=%.2f pF\" %C2)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.41" - ] - }, - { - "cell_type": "code", - "execution_count": 114, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "change in frequency of the oscillator=-9.607692e+07 kHz\n" - ] - } - ], - "source": [ - "# 2.41\n", - "import math;\n", - "fo1=100*10**3;\n", - "d1=4;\n", - "d2=3.7;\n", - "fo2=((d2/d1)**0.5)*fo1;\n", - "dfo=fo1-fo2/10**-3;\n", - "print (\"change in frequency of the oscillator=%e kHz\" %dfo)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.42" - ] - }, - { - "cell_type": "code", - "execution_count": 99, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Capacitance=33.9 pF\n", - "change in Capacitance=3.4 pF\n" - ] - } - ], - "source": [ - "# 2.42\n", - "import math;\n", - "L_air=(3.1-3)/2;\n", - "D_stress=100/L_air;\n", - "e0=8.85*10**-12;\n", - "l=20*10**-3;\n", - "D2=3.1;\n", - "D1=3;\n", - "C=(2*math.pi)*e0*l*10**12/(math.log(D2/D1));\n", - "print (\"Capacitance=%.1f pF\" %C)\n", - "l=(20*10**-3)-(2*10**-3);\n", - "C_new=(2*math.pi)*e0*l/(math.log(D2/D1));\n", - "C_change=C-C_new*10**12;\n", - "print (\"change in Capacitance=%.1f pF\" %C_change)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.43" - ] - }, - { - "cell_type": "code", - "execution_count": 116, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Time constant=0.02 s\n", - "Phase shift=18.2 deg\n", - "Series resistance=1140 Mohm\n", - "Amplitude ratio=0.6 \n", - "Voltage sensitivity=800000 V/m\n" - ] - } - ], - "source": [ - "#2.43\n", - "import math;\n", - "M=0.95;\n", - "w=2*math.pi*20;\n", - "tc=(1/w)*((M**2)/(1-M**2))**0.5;\n", - "print (\"Time constant=%.2f s\" %tc)\n", - "ph=((math.pi/2)-(math.atan(w*tc)))*(180/math.pi);\n", - "print (\"Phase shift=%.1f deg\" %ph)\n", - "C=(8.85*10**-12*300*10**-6)/(0.125*10**-3);\n", - "R=tc*10**-6/C;\n", - "print (\"Series resistance=%.0f Mohm\" %R)\n", - "M=1/(1+(1/(2*math.pi*5*tc)**2))**0.5;\n", - "print (\"Amplitude ratio=%.1f \" %M)\n", - "Eb=100;\n", - "x=0.125*10**-3;\n", - "Vs=Eb/x;\n", - "print (\"Voltage sensitivity=%d V/m\" %Vs)\n", - "\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.44" - ] - }, - { - "cell_type": "code", - "execution_count": 101, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ratio of per unit change of capacitance to per unit change of diaplacement=1.11\n", - " New ratio of per unit change of capacitance to per unit change of diaplacement=1.17\n" - ] - } - ], - "source": [ - "#2.44\n", - "import math;\n", - "e0=8.85*10**-12;\n", - "A=500*10**-6;\n", - "d=0.2*10**-3;\n", - "C=e0*A/d;\n", - "d1=0.18*10**-3;\n", - "C_new=e0*A/d1;\n", - "C_change=C_new-C;\n", - "Ratio=(C_change/C)/(0.02/0.2);\n", - "print (\"ratio of per unit change of capacitance to per unit change of diaplacement=%.2f\" %Ratio)\n", - "d1=0.19*10**-3;\n", - "e1=1;\n", - "d2=0.01*10**-3;\n", - "e2=8;\n", - "C=(e0*A)/((d1/e1)+(d2/e2));\n", - "d1_new=0.17*10**-3;\n", - "C_new=(e0*A)/((d1_new/e1)+(d2/e2));\n", - "C_change=C_new-C;\n", - "Ratio=(C_change/C)/(0.02/0.2);\n", - "print (\" New ratio of per unit change of capacitance to per unit change of diaplacement=%.2f\" %Ratio)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.47" - ] - }, - { - "cell_type": "code", - "execution_count": 102, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Output voltage=165 V\n", - " Charge sensitivity=2.23 pC/N\n" - ] - } - ], - "source": [ - "# 2.47\n", - "import math;\n", - "g=0.055;\n", - "t=2*10**-3;\n", - "P=1.5*10**6;\n", - "Eo=g*t*P;\n", - "print (\"Output voltage=%.0f V\" %Eo)\n", - "e=40.6*10**-12;\n", - "d=e*g*10**12;\n", - "print (\" Charge sensitivity=%.2f pC/N\" %d)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.48" - ] - }, - { - "cell_type": "code", - "execution_count": 103, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Force=30 N\n" - ] - } - ], - "source": [ - "# 2.48\n", - "import math;\n", - "g=0.055;\n", - "t=1.5*10**-3;\n", - "Eo=100;\n", - "P= Eo/(g*t);\n", - "A=25*10**-6;\n", - "F=P*A;\n", - "print (\" Force=%.0f N\" %F)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.49" - ] - }, - { - "cell_type": "code", - "execution_count": 104, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " strain=0.0167 \n", - " Charge=750 pC\n", - " capacitance=250 pF\n" - ] - } - ], - "source": [ - "# 2.49\n", - "import math;\n", - "A=25*10**-6;\n", - "F=5;\n", - "P=F/A;\n", - "d=150*10**-12;\n", - "e=12.5*10**-9;\n", - "g=d/(e);\n", - "t=1.25*10**-3;\n", - "Eo=(g*t*P);\n", - "strain=P/(12*10**6);\n", - "Q=d*F*10**12;\n", - "C=Q/Eo;\n", - "print (\" strain=%.4f \" %strain)\n", - "print (\" Charge=%.0f pC\" %Q)\n", - "print (\" capacitance=%.0f pF\" %C)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.50" - ] - }, - { - "cell_type": "code", - "execution_count": 106, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " peak voltage swing under open conditions=9.04 mV\n", - " peak voltage swing under loaded conditions=1.52 mV\n", - " Maximum change in crystal thickness=2.22 pm\n" - ] - } - ], - "source": [ - "# 2.50\n", - "import math;\n", - "d=2*10**-12;\n", - "t=1*10**-3;\n", - "Fmax=0.01;\n", - "e0=8.85*10**-12;\n", - "er=5;\n", - "A=100*10**-6;\n", - "Eo_peak_to_peak=2*d*t*Fmax*10**3/(e0*er*A);\n", - "print (\" peak voltage swing under open conditions=%.2f mV\" %Eo_peak_to_peak)\n", - "Rl=100*10**6;\n", - "Cl=20*10**-12;\n", - "d1=1*10**-3;\n", - "Cp=e0*er*A/d1;\n", - "C=Cp+Cl;\n", - "w=1000;\n", - "m=(w*Cp*Rl/(1+(w*C*Rl)**2)**0.5);\n", - "El_peak_to_peak=(2*d*t*Fmax*10**3/(e0*er*A))*m;\n", - "print (\" peak voltage swing under loaded conditions=%.2f mV\" %El_peak_to_peak)\n", - "E=90*10**9;\n", - "dt=2*Fmax*t*10**12/(A*E);\n", - "print (\" Maximum change in crystal thickness=%.2f pm\" %dt)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.51" - ] - }, - { - "cell_type": "code", - "execution_count": 107, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Minimum frequency=2028.29 rad/sec\n", - " Phase shift=18.19 deg\n" - ] - } - ], - "source": [ - "# 2.51\n", - "import math;\n", - "M=0.95;\n", - "tc=1.5*10**-3;\n", - "w=(1/tc)*((M**2)/(1-M**2))**0.5;\n", - "print (\" Minimum frequency=%.2f rad/sec\" %w)\n", - "ph=((math.pi/2)-(math.atan(w*tc)))*(180/math.pi);\n", - "print (\" Phase shift=%.2f deg\" %ph)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.52" - ] - }, - { - "cell_type": "code", - "execution_count": 108, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Sensitivity of the transducer=40000000.00 V/m\n", - " High frequency sensitivity =29629629.63 V/m\n", - " Minimum frequency=358.68 sec\n", - "now f=10Hz\n", - " External shunt capacitance=0.05 pF\n", - " new value of high frequency sensitivity=826073.26 V/m\n" - ] - } - ], - "source": [ - "#2.52\n", - "import math;\n", - "Kq=40*10**-3;\n", - "Cp=1000*10**-12;\n", - "K=Kq/Cp;\n", - "print (\" Sensitivity of the transducer=%.2f V/m\" %K)\n", - "Cc=300*10**-12;\n", - "Ca=50*10**-12;\n", - "C=Cp+Cc+Ca;\n", - "Hf=Kq/C;\n", - "print (\" High frequency sensitivity =%.2f V/m\" %Hf)\n", - "R=1*10**6;\n", - "tc=R*C;\n", - "M=0.95;\n", - "w=(1/tc)*((M**2)/(1-M**2))**0.5;\n", - "f=w/(2*math.pi);\n", - "print (\" Minimum frequency=%.2f sec\" %f)\n", - "print ('now f=10Hz')\n", - "f=10;\n", - "w=2*math.pi*f;\n", - "tc=(1/w)*((M**2)/(1-M**2))**0.5;\n", - "C_new=tc/R;\n", - "Ce=(C_new-C)*10**6;\n", - "print (\" External shunt capacitance=%.2f pF\" %Ce)\n", - "Hf_new=Kq/C_new;\n", - "print (\" new value of high frequency sensitivity=%.2f V/m\" %Hf_new)\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.53" - ] - }, - { - "cell_type": "code", - "execution_count": 109, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Voltage just before t=2ms =1.00 mV\n", - "(-2.2026841435311137, 'voltage just after t=2ms (mV)')\n", - "Voltage just after t=2ms =-2.20 mV\n", - "when t=10ms\n", - "output voltage 10 ms after the application of impulse =0 mV\n" - ] - } - ], - "source": [ - "# 2.53\n", - "import math;\n", - "R=10**6;\n", - "C=2500*10**-12;\n", - "tc=R*C;\n", - "t=2*10**-3;\n", - "d=100*10**-12;\n", - "F=0.1;\n", - "el=10.0**3*(d*F*(math.exp(-t/tc))/C);\n", - "print (\"Voltage just before t=2ms =%.2f mV\" %e1)\n", - "el_after=10**3*(d*F*(math.exp(-t/tc)-1)/C);\n", - "print (el_after,'voltage just after t=2ms (mV)')\n", - "print (\"Voltage just after t=2ms =%.2f mV\" %el_after)\n", - "print ('when t=10ms')\n", - "t=10.0*10**-3;\n", - "T=2.0*10\n", - "e_10=10.0**3*(d*F*(math.exp((-T/tc)-1))*(math.exp(-(t-T))/tc)/C)\n", - "print (\"output voltage 10 ms after the application of impulse =%.0f mV\" %e_10)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.54" - ] - }, - { - "cell_type": "code", - "execution_count": 110, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Let T=1\n", - "Time constant =19.50 s\n", - "as T=1 so time constant should be approximately equal to 20T\n" - ] - } - ], - "source": [ - "# 2.54\n", - "import math;\n", - "print ('Let T=1');\n", - "T=1;\n", - "el=0.95;\n", - "tc=-T/math.log(el);\n", - "print (\"Time constant =%.2f s\" %tc)\n", - "print ('as T=1 so time constant should be approximately equal to 20T')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.55" - ] - }, - { - "cell_type": "code", - "execution_count": 111, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "output voltage =-0.75 mV\n" - ] - } - ], - "source": [ - "#2.55\n", - "import math;\n", - "Kh=-1*10**-6;\n", - "I=3;\n", - "B=0.5;\n", - "t=2*10**-3;\n", - "Eh=Kh*I*B*10**3/t;\n", - "print (\"output voltage =%.2f mV\" %Eh)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.56" - ] - }, - { - "cell_type": "code", - "execution_count": 112, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "External resistance required =-999.997 ohm\n", - "Dark current =0.29 mA\n" - ] - } - ], - "source": [ - "#2.56\n", - "import math;\n", - "R1=(30/10*10**-3)-1000;\n", - "print (\"External resistance required =%.3f ohm\" %R1)\n", - "Id=30.0*10**3/((2*10**3)+(100*10**3))\n", - "print (\"Dark current =%.2f mA\" %Id)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exa 2.57" - ] - }, - { - "cell_type": "code", - "execution_count": 113, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Potential of point b, Vb= 5.000000\n", - "Potential of point d, Vd= 10.000000\n", - "Outout voltage of bridge =-5.00 V\n" - ] - } - ], - "source": [ - "#2.57\n", - "import math;\n", - "Vb=10-(10.0/((2*10**3))*10**3);\n", - "print ('Potential of point b, Vb= %f'%Vb)\n", - "Vd=10-(10/((3*10**3))*2*10**3);\n", - "print ('Potential of point d, Vd= %f' %Vd)\n", - "Ebd=Vb-Vd;\n", - "print (\"Outout voltage of bridge =%.2f V\" %Ebd)\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.12" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch2_h5C3e6Y.ipynb b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch2_h5C3e6Y.ipynb deleted file mode 100644 index 48ce727a..00000000 --- a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch2_h5C3e6Y.ipynb +++ /dev/null @@ -1,2369 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "# Chapter 2:Primary sensing elements and transducers" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.1" - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Displacement of the free end = 0.02 m\n" - ] - } - ], - "source": [ - "# 2.1\n", - "import math;\n", - "t=0.35;\n", - "P=1500*10**3;\n", - "E=180*10**9;\n", - "r=36.5;\n", - "x=16;\n", - "y=3;\n", - "a=math.pi*36.5*10**-3;\n", - "da=(0.05*a*P/E)*((r/t)**0.2)*((x/y)**0.33)*((x/t)**3);\n", - "print (\"Displacement of the free end = %.2f m\" % da)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.2" - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Natural length of spring = 90.00 mm\n", - "Displacement of point C = 3.75 mm\n" - ] - } - ], - "source": [ - "# 2.2\n", - "import math;\n", - "P=100*10**3;\n", - "A=1500*10**-6;\n", - "F=P*A;\n", - "Cs=F/3;\n", - "Ls=Cs+40;\n", - "print (\"Natural length of spring = %.2f mm\" % Ls)\n", - "P1=10*10**3;\n", - "F1=P1*A;\n", - "Ss=3+2*.5;\n", - "D=F1/Ss;\n", - "print (\"Displacement of point C = %.2f mm\" % D)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.3" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Thickness = 0.21 mm\n", - "Deflection at center for Pressure of 150 kN/m2= 0.0000 mm\n", - "Natural frequency of the diaphragm =52051 rad/sec\n" - ] - } - ], - "source": [ - "# 2.3\n", - "import math;\n", - "D=15.0*10**-3;\n", - "P=300*10**3;\n", - "sm=300*10**6;\n", - "t=(3*D**2*P/(16*sm))**0.5*10**3;\n", - "print (\"Thickness = %.2f mm\" %t)\n", - "P=150*10**3;\n", - "v=0.28;\n", - "E=200.0*10**9;\n", - "dm=3.0*(1-v**2)*D**4*P/(256.0*E*t**3);\n", - "print (\"Deflection at center for Pressure of 150 kN/m2= %.4f mm\" %dm)\n", - "d=8900;\n", - "wn=(20*t*10**-3/D**2)*(E/(3*d*(1-v**2)))**0.5;\n", - "print (\"Natural frequency of the diaphragm =%.0f rad/sec\" %wn)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.4" - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Angle of twist= 0.000236 rad\n" - ] - } - ], - "source": [ - "# 2.4\n", - "import math;\n", - "T=100;\n", - "G=80*10**9;\n", - "d=2*15*10**-3;\n", - "th=16*T/(math.pi*G*d**3)\n", - "print (\"Angle of twist= %.6f rad\" %th)" - ] - }, - { - "cell_type": "code", - "execution_count": 63, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Reynoids number = 1697652.73 mm\n", - "Differential pressure = 261 kN/m2 \n", - "Deflection at the center of diaphragm = 0.02 micro m\n" - ] - } - ], - "source": [ - "# 2.5\n", - "import math;\n", - "d=60*10**-3;\n", - "Q=80*10**-3;\n", - "A=(math.pi/4)*d**2;\n", - "v=Q/A;\n", - "vi=10**-3;\n", - "de=10**3;\n", - "Re=v*de*d/vi;\n", - "print (\"Reynoids number = %.2f mm\" %Re)\n", - "d2=60*10**-3;\n", - "d1=100*10**-3;\n", - "A2=(math.pi/4)*d2**2;\n", - "M=1/((1-(d2/d1)**2)**0.5);\n", - "Cd=0.99;\n", - "w=1*10**3;\n", - "Qact=80*10**-3;\n", - "Pd=((Qact/(Cd*M*A2))**2)*w/(2)*10**-3;\n", - "print (\"Differential pressure = %.0f kN/m2 \" %Pd)\n", - "Po=0.28;\n", - "D=10*10**-3;\n", - "E=206*10**9;\n", - "t=0.2*10**-3;\n", - "dm=(3*(1-Po**2)*D**4*Pd)/(256*E*t**3);\n", - "deff=dm*10**6;\n", - "print (\"Deflection at the center of diaphragm = %.2f micro m\" %deff)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.6" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Mean velocity of water = 4.47 m/s\n", - "Velocity of air= 175.4 m/s\n" - ] - } - ], - "source": [ - "# 2.6\n", - "import math;\n", - "Pd=10*10**3;\n", - "d=1000;\n", - "VmeanW= (2*Pd/d)**0.5;\n", - "print (\"Mean velocity of water = %.2f m/s\" %VmeanW)\n", - "d=0.65;\n", - "Va= (2*Pd/d)**0.5;\n", - "print (\"Velocity of air= %.1f m/s\" %Va)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.7" - ] - }, - { - "cell_type": "code", - "execution_count": 65, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "let coefficient of discharge Cd=1\n", - "Depth of flow = 0.3 m\n" - ] - } - ], - "source": [ - "# 2.7\n", - "import math;\n", - "print ('let coefficient of discharge Cd=1')\n", - "H1=0.9;\n", - "L=1.2;\n", - "g=9.81;\n", - "Q=(2.0/3)*L*(2*g)**0.5*(H1)**(1.5);\n", - "th=45;\n", - "H2=Q*(15.0/8)/(2.0*g)\n", - "print (\"Depth of flow = %.1f m\" %H2)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.8" - ] - }, - { - "cell_type": "code", - "execution_count": 66, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Uncertinity in discharge = 0.0125 m3/s\n" - ] - } - ], - "source": [ - "# 2.8\n", - "import math\n", - "Cd=0.6;\n", - "H=0.5;\n", - "dH=0.01;\n", - "g=9.81;\n", - "Q=(8.0/15)*Cd*(2*g)**0.5*(H)**(2.5);\n", - "dQ=(2.5*dH/H)*Q;\n", - "print (\"Uncertinity in discharge = %.4f m3/s\" %dQ)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.9" - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Displacement = 5.75 mm\n", - "Displacement = -12.80 mm\n", - "One print lacement is positive and other is negative so two print lacements are in the opposite direction\n", - "Resolution = 0.05 mm\n" - ] - } - ], - "source": [ - "# 2.9\n", - "import math;\n", - "Rnormal=10000.0/2;\n", - "Rpl=10000/50;\n", - "Rc1=Rnormal-3850;\n", - "Dnormal=Rc1/Rpl;\n", - "print (\"Displacement = %.2f mm\" %Dnormal)\n", - "Rc2=Rnormal-7560;\n", - "Dnormal=Rc2/Rpl;\n", - "print (\"Displacement = %.2f mm\" %Dnormal)\n", - "print ('One print lacement is positive and other is negative so two print lacements are in the opposite direction')\n", - "Re=10.0*1/200;\n", - "print (\"Resolution = %.2f mm\" %Re)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.11" - ] - }, - { - "cell_type": "code", - "execution_count": 68, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Output voltage = 3000.000000 V\n" - ] - } - ], - "source": [ - "#2.11\n", - "import math;\n", - "RAB=125;\n", - "Rtotal=5000;\n", - "R2=0.0\n", - "R2=(75.0/125.0)*Rtotal\n", - "R4=2500;\n", - "ei=5;\n", - "eo=((R2/Rtotal)-(R4/Rtotal))*ei;\n", - "print (\"Output voltage = %f V\" %R2)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.12" - ] - }, - { - "cell_type": "code", - "execution_count": 69, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Maximum excitation voltage = 54.8 V\n", - "Sensitivity = 0.152 V/degree\n" - ] - } - ], - "source": [ - "# 2.12\n", - "import math;\n", - "Rm=10000;\n", - "Rp=Rm/15;\n", - "R=600;\n", - "P=5;\n", - "ei= (P*R)**0.5;\n", - "print (\"Maximum excitation voltage = %.1f V\" %ei)\n", - "S=ei/360;\n", - "print (\"Sensitivity = %.3f V/degree\" %S)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.13" - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Resolution = 0.0005 mm\n" - ] - } - ], - "source": [ - "# 2.13\n", - "import math;\n", - "Rwga=1.0/400;\n", - "Re=Rwga/5;\n", - "print (\"Resolution = %.4f mm\" %Re)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.14" - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Resolution of 1mm movement = 0.3125 degree/mm\n", - "Required Resolution of 1mm movement = 0.300 degree/mm\n", - "Since the resolution of potentiometer is higher than the resolution required so it is suitable for the application\n" - ] - } - ], - "source": [ - "# 2.14\n", - "import math;\n", - "mo=0.8;\n", - "sr=250;\n", - "sm=sr/mo;\n", - "R=sm*1*10**-3;\n", - "print (\"Resolution of 1mm movement = %.4f degree/mm\" %R)\n", - "Rq=300.0/1000;\n", - "print (\"Required Resolution of 1mm movement = %.3f degree/mm\" %Rq)\n", - "print ('Since the resolution of potentiometer is higher than the resolution required so it is suitable for the application')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.15" - ] - }, - { - "cell_type": "code", - "execution_count": 72, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Power dissipation = 0.667 W\n", - "Power dissipation = 0.650 W\n", - "Since power dissipation is higher than the dissipation allowed so potentiometer is not suitable\n" - ] - } - ], - "source": [ - "# 2.15\n", - "import math;\n", - "Pd=(10.0**2)/150;\n", - "print (\"Power dissipation = %.3f W\" %Pd)\n", - "th_pot=80+Pd*30;\n", - "PDa=(10*10**-3)*(th_pot-35);\n", - "print (\"Power dissipation = %.3f W\" %PDa)\n", - "print ('Since power dissipation is higher than the dissipation allowed so potentiometer is not suitable')\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.16" - ] - }, - { - "cell_type": "code", - "execution_count": 73, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Possion s ratio=1.600000\n" - ] - } - ], - "source": [ - "# 2.16\n", - "import math;\n", - "Gf=4.2;\n", - "v=(Gf-1)/2;\n", - "print ('Possion s ratio=%f' %v)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.17" - ] - }, - { - "cell_type": "code", - "execution_count": 74, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Change in resistance of nickel = 0.007 ohm\n", - "Change in resistance of nicrome = -0.001 ohm\n" - ] - } - ], - "source": [ - "# 2.17\n", - "import math;\n", - "strain=-5*10**-6;\n", - "Gf=-12.1;\n", - "R=120;\n", - "dR_nickel=Gf*R*strain;\n", - "print (\"Change in resistance of nickel = %.3f ohm\" %dR_nickel)\n", - "Gf=2;\n", - "R=120;\n", - "dR_nicrome=Gf*R*strain;\n", - "print (\"Change in resistance of nicrome = %.3f ohm\" %dR_nicrome)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.18" - ] - }, - { - "cell_type": "code", - "execution_count": 75, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Percentage change in resistance = 0.1 \n" - ] - } - ], - "source": [ - "# 2.18\n", - "import math;\n", - "s=100.0*10**6;\n", - "E=200.0*10**9;\n", - "strain=s/E;\n", - "Gf=2.0;\n", - "r_per_unit=Gf*strain*100.0;\n", - "print (\"Percentage change in resistance = %.1f \" %r_per_unit)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.19" - ] - }, - { - "cell_type": "code", - "execution_count": 76, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Gauge factor = 2.31 \n" - ] - } - ], - "source": [ - "#2.19\n", - "import math;\n", - "b=0.02;\n", - "d=0.003;\n", - "I=(b*d**3)/12;\n", - "E=200*10**9;\n", - "x=12.7*10**-3;\n", - "l=0.25;\n", - "F=3*E*I*x/l**3;\n", - "x=0.15;\n", - "M=F*x;\n", - "t=0.003;\n", - "s=(M*t)/(I*2);\n", - "strain=s/E;\n", - "dR=0.152;\n", - "R=120;\n", - "Gf=(dR/R)/strain;\n", - "print (\"Gauge factor = %.2f \" %Gf)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.20" - ] - }, - { - "cell_type": "code", - "execution_count": 77, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Change in length= 2.5 um \n", - " Force= 2038.64 N \n" - ] - } - ], - "source": [ - "# 2.20\n", - "import math;\n", - "dR=0.013;\n", - "R=240;\n", - "l=0.1;\n", - "Gf=2.2;\n", - "dl=(dR/R)*l/Gf*10**6;\n", - "print (\" Change in length= %.1f um \" %dl)\n", - "\n", - "strain=dl*10**-6/l;\n", - "E=207*10**9;\n", - "s=E*strain;\n", - "A=4*10**-4;\n", - "F=s*A;\n", - "print (\" Force= %.2f N \" %F)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.21" - ] - }, - { - "cell_type": "code", - "execution_count": 78, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " alpha at o degree= 0.0085 /degree C \n", - "5.5(1+0.0085(th-45))\n" - ] - } - ], - "source": [ - "# 2.21\n", - "import math;\n", - "th1=30;\n", - "th2=60;\n", - "th0=th1+th2/2;\n", - "Rth1=4.8;\n", - "Rth2=6.2;\n", - "Rth0=5.5;\n", - "ath0=(1/Rth0)*(Rth2-Rth1)/(th2-th1);\n", - "print (\" alpha at o degree= %.4f /degree C \" %ath0)\n", - "print ('5.5(1+0.0085(th-45))')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.22" - ] - }, - { - "cell_type": "code", - "execution_count": 79, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "alpha at o degree= 0.00182 /degree C \n", - "Linear approximation is: Rth= 589.48(1+0.00182(th-115))\n" - ] - } - ], - "source": [ - "# 2.22\n", - "import math;\n", - "th1=100;\n", - "th2=130;\n", - "th0=th1+th2/2;\n", - "Rth1=573.40;\n", - "Rth2=605.52;\n", - "Rth0=589.48;\n", - "ath0=(1/Rth0)*(Rth2-Rth1)/(th2-th1);\n", - "print (\"alpha at o degree= %.5f /degree C \" %ath0)\n", - "print ('Linear approximation is: Rth= 589.48(1+0.00182(th-115))')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.23" - ] - }, - { - "cell_type": "code", - "execution_count": 80, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "resistance at 65 degree C= 115.68 ohm \n", - " Temperature = 25.00 degree C \n" - ] - } - ], - "source": [ - "# 2.23\n", - "import math;\n", - "Rth0=100;\n", - "ath0=0.00392;\n", - "dth=65-25;\n", - "R65=Rth0*(1+ath0*dth);\n", - "print (\"resistance at 65 degree C= %.2f ohm \" %R65)\n", - "th=(((150/100)-1)/ath0)+25;\n", - "print (\" Temperature = %.2f degree C \" %th)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.24" - ] - }, - { - "cell_type": "code", - "execution_count": 81, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Resistance at 150 degree C=15.11 ohm\n" - ] - } - ], - "source": [ - "# 2.24\n", - "import math;\n", - "Rth0=10;\n", - "ath0=0.00393;\n", - "dth=150-20;\n", - "R150=Rth0*(1+ath0*dth);\n", - "print (\"Resistance at 150 degree C=%.2f ohm\" %R150)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.25" - ] - }, - { - "cell_type": "code", - "execution_count": 82, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Time= 109.95 s \n" - ] - } - ], - "source": [ - "# Calculate the time\n", - "import math;\n", - "th=30.0;\n", - "th0=50;\n", - "tc=120;\n", - "t=-120*(math.log(1-(th/th0)));\n", - "print (\"Time= %.2f s \" %t)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.26" - ] - }, - { - "cell_type": "code", - "execution_count": 83, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Resistance at 35 degree C= 50.00 ohm \n" - ] - } - ], - "source": [ - "#2.26\n", - "import math;\n", - "R25=100;\n", - "ath=-0.05;\n", - "dth=35-25;\n", - "R35=R25*(1+ath*dth);\n", - "print (\"Resistance at 35 degree C= %.2f ohm \" %R35)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.27" - ] - }, - { - "cell_type": "code", - "execution_count": 84, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Resistance at 40 degree C= 967.51 ohm \n", - "Resistance at 100 degree C= 130.94 ohm \n" - ] - } - ], - "source": [ - "# 2.27\n", - "import math;\n", - "Ro=3980;\n", - "Ta=273;\n", - "#3980= a*3980*exp(b/273)\n", - "Rt50=794;\n", - "Ta50=273+50;\n", - "#794= a*3980*exp(b/323)\n", - "#on solving\n", - "#a=30*10**-6, b=2843\n", - "Ta40=273+40;\n", - "Rt40=(30*10**-6)*3980*math.exp(2843/313);\n", - "print (\"Resistance at 40 degree C= %.2f ohm \" %Rt40)\n", - "Rt100=(30*10**-6)*3980*math.exp(2843/373);\n", - "print (\"Resistance at 100 degree C= %.2f ohm \" %Rt100)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.28" - ] - }, - { - "cell_type": "code", - "execution_count": 85, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Change in temperature= 20.0 degree C \n" - ] - } - ], - "source": [ - "# 2.28\n", - "import math;\n", - "th=((1-1800/2000)/0.05)+70;\n", - "dth=th-70;\n", - "print (\"Change in temperature= %.1f degree C \" %dth)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.29" - ] - }, - { - "cell_type": "code", - "execution_count": 86, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Frequency of oscillation at 20 degree C = 25464.79 Hz \n", - "Frequency of oscillation at 25 degree C = 31830.99 Hz \n", - "Frequency of oscillation at 30 degree C = 42441.32 Hz \n" - ] - } - ], - "source": [ - "# 2.29\n", - "import math;\n", - "C=500*10**-12;\n", - "R20=10000*(1-0.05*(20-25));\n", - "f20=1/(2*math.pi*R20*C);\n", - "print (\"Frequency of oscillation at 20 degree C = %.2f Hz \" %f20)\n", - "R25=10000*(1-0.05*(25-25));\n", - "f25=1/(2*math.pi*R25*C);\n", - "print (\"Frequency of oscillation at 25 degree C = %.2f Hz \" %f25)\n", - "R30=10000*(1-0.05*(30-25));\n", - "f30=1/(2*math.pi*R30*C);\n", - "print (\"Frequency of oscillation at 30 degree C = %.2f Hz \" %f30)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.30" - ] - }, - { - "cell_type": "code", - "execution_count": 87, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Sensitivity of thermocouple= 572.0 micro V/degree C\n", - "Maximum output voltage= 0.06 V \n" - ] - } - ], - "source": [ - "# 2.30\n", - "import math;\n", - "Se_thermocouple=500-(-72);\n", - "print (\"Sensitivity of thermocouple= %.1f micro V/degree C\" %Se_thermocouple)\n", - "Vo=Se_thermocouple*100*10**-6;\n", - "print (\"Maximum output voltage= %.2f V \" %Vo)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.31" - ] - }, - { - "cell_type": "code", - "execution_count": 88, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Required e.m.f.= 27.87 mV \n", - "Temperature corresponding to 27.87 mV is 620 degree C\n" - ] - } - ], - "source": [ - "# 2.31\n", - "import math;\n", - "ET=27.07+0.8;\n", - "print (\"Required e.m.f.= %.2f mV \" %ET)\n", - "print ('Temperature corresponding to 27.87 mV is 620 degree C')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.32" - ] - }, - { - "cell_type": "code", - "execution_count": 89, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Series resistance=271.00 ohm\n", - "Approximate error due to rise in resistance of 1 ohm in Re=-2.40 degree C\n", - "Approximate error due to rise in Temp. of 10=-7.45 degree C\n" - ] - } - ], - "source": [ - "# 2.32\n", - "import math;\n", - "Rm=50;\n", - "Re=12;\n", - "E=33.3*10**-3;\n", - "i=0.1*10**-3;\n", - "Rs=(E/i)-Rm-Re;\n", - "print (\"Series resistance=%.2f ohm\" %Rs)\n", - "Re=13;\n", - "i1=E/(Rs+Re+Rm);\n", - "AE=((i1-i)/i)*800;\n", - "print (\"Approximate error due to rise in resistance of 1 ohm in Re=%.2f degree C\" %AE)\n", - "R_change=50*0.00426*10;\n", - "i1=E/(Rs+Re+Rm+R_change);\n", - "AE=((i1-i)/i)*800;\n", - "print (\"Approximate error due to rise in Temp. of 10=%.2f degree C\" %AE)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.3" - ] - }, - { - "cell_type": "code", - "execution_count": 90, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Value of resistance R1=5.95 ohm\n", - "Value of resistance R2=762.60 ohm\n" - ] - } - ], - "source": [ - "# 2.33\n", - "import math;\n", - "E_20=0.112*10**-3;# emf at 20degree C\n", - "E_900=8.446*10**-3;\n", - "E_1200=11.946*10**-3;\n", - "E1=E_900-E_20;\n", - "E2=E_1200-E_20;\n", - "#E1=1.08*R1/(R1+2.5+R2 (i)\n", - "#E2=1.08*(R1+2.5)/(R1+2.5+R2 (ii)\n", - "#on solving (i) and (ii)\n", - "R1=5.95;\n", - "R2=762.6;\n", - "print (\"Value of resistance R1=%.2f ohm\" %R1)\n", - "print (\"Value of resistance R2=%.2f ohm\" %R2)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.34" - ] - }, - { - "cell_type": "code", - "execution_count": 91, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Value of resistance R1=5.95 ohm\n", - "value of resistance RL>>Rl\n" - ] - } - ], - "source": [ - "# 2.34\n", - "import math;\n", - "th=20;\n", - "Vz=2.73+th*10*10**-3;\n", - "Voffset=-2.73;\n", - "Vout=Vz+Voffset;\n", - "Rbias=(5-0.2)/10**-3;\n", - "Rzero=500;\n", - "th=50;\n", - "Vz=2.73+th*10*10**-3;\n", - "VmaxT=Vz+Voffset;\n", - "Vsupply=5;\n", - "Rl=(VmaxT*Rbias)/(Vsupply-VmaxT);\n", - "print (\"Value of resistance R1=%.2f ohm\" %R1)\n", - "print ('value of resistance RL>>Rl')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.35" - ] - }, - { - "cell_type": "code", - "execution_count": 92, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Change in inductance=0.04 mH\n" - ] - } - ], - "source": [ - "# 2.35\n", - "import math;\n", - "L1=2;\n", - "La=1-0.02;\n", - "Lnew=2/La;\n", - "dl=Lnew-L1;\n", - "print (\"Change in inductance=%.2f mH\" %dl)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.36" - ] - }, - { - "cell_type": "code", - "execution_count": 93, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "percentage linearity=0.20 \n" - ] - } - ], - "source": [ - "# 2.36\n", - "import math;\n", - "linearity_percentage=(0.003/1.5)*100;\n", - "print (\"percentage linearity=%.2f \" %linearity_percentage)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.37" - ] - }, - { - "cell_type": "code", - "execution_count": 94, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "senstivity of the LVDT=0.004 V/mm\n", - "Senstivity of the instrument=1.0 V/mm\n", - "resolution of instrument=0.001 mm\n" - ] - } - ], - "source": [ - "# 2.37\n", - "import math;\n", - "displacement=0.5;\n", - "Vo=2*10**-3;\n", - "Se_LVDT=Vo/displacement;\n", - "print (\"senstivity of the LVDT=%.3f V/mm\" %Se_LVDT)\n", - "Af=250;\n", - "Se_instrument=Se_LVDT*Af;\n", - "print (\"Senstivity of the instrument=%.1f V/mm\" %Se_instrument)\n", - "sd=5/100;\n", - "Vo_min=50/5;\n", - "Re_instrument=1*1.0/1000;\n", - "print (\"resolution of instrument=%.3f mm\" %Re_instrument)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.38" - ] - }, - { - "cell_type": "code", - "execution_count": 95, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "deflection=0.01 m\n", - "minimum force=0.02 N\n", - "maximum force=81.92 N\n" - ] - } - ], - "source": [ - "# 2.38\n", - "import math;\n", - "b=0.02;\n", - "t=0.004;\n", - "I=(1.0/12)*b*t**3;\n", - "F=25;\n", - "l=0.25;\n", - "E=200.0*10**9;\n", - "x=(F*l**3)/(3.0*E*I);\n", - "print (\"deflection=%.2f m\" %x)\n", - "DpF=x/F;\n", - "Se=DpF*0.5*1000;\n", - "Re=(10.0/1000)*(2.0/10);\n", - "F_min=Re/Se;\n", - "F_max=10/Se;\n", - "print (\"minimum force=%.2f N\" %F_min)\n", - "print (\"maximum force=%.2f N\" %F_max)\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.39" - ] - }, - { - "cell_type": "code", - "execution_count": 96, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "permittivity of the air e0=8.85*10**-12\n", - "sensitivity of the transducer=-0.00 F/m\n" - ] - } - ], - "source": [ - "# 2.39\n", - "import math;\n", - "print ('permittivity of the air e0=8.85*10**-12')\n", - "e0=8.85*10**-12;\n", - "w=25.0*10**-3;\n", - "d=0.25*10**-3;\n", - "Se=-4.0*e0*w/d;\n", - "print (\"sensitivity of the transducer=%.2f F/m\" %Se)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.40" - ] - }, - { - "cell_type": "code", - "execution_count": 97, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "the value of the capacitance afte the application of pressure=446.55 pF\n" - ] - } - ], - "source": [ - "# 2.40\n", - "import math;\n", - "C1=370*10**-12;\n", - "d1=3.5*10**-3;\n", - "d2=2.9*10**-3;\n", - "C2=C1*d1*10**12/d2;\n", - "print (\"the value of the capacitance afte the application of pressure=%.2f pF\" %C2)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.41" - ] - }, - { - "cell_type": "code", - "execution_count": 114, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "change in frequency of the oscillator=-9.607692e+07 kHz\n" - ] - } - ], - "source": [ - "# 2.41\n", - "import math;\n", - "fo1=100*10**3;\n", - "d1=4;\n", - "d2=3.7;\n", - "fo2=((d2/d1)**0.5)*fo1;\n", - "dfo=fo1-fo2/10**-3;\n", - "print (\"change in frequency of the oscillator=%e kHz\" %dfo)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.42" - ] - }, - { - "cell_type": "code", - "execution_count": 99, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Capacitance=33.9 pF\n", - "change in Capacitance=3.4 pF\n" - ] - } - ], - "source": [ - "# 2.42\n", - "import math;\n", - "L_air=(3.1-3)/2;\n", - "D_stress=100/L_air;\n", - "e0=8.85*10**-12;\n", - "l=20*10**-3;\n", - "D2=3.1;\n", - "D1=3;\n", - "C=(2*math.pi)*e0*l*10**12/(math.log(D2/D1));\n", - "print (\"Capacitance=%.1f pF\" %C)\n", - "l=(20*10**-3)-(2*10**-3);\n", - "C_new=(2*math.pi)*e0*l/(math.log(D2/D1));\n", - "C_change=C-C_new*10**12;\n", - "print (\"change in Capacitance=%.1f pF\" %C_change)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.43" - ] - }, - { - "cell_type": "code", - "execution_count": 116, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Time constant=0.02 s\n", - "Phase shift=18.2 deg\n", - "Series resistance=1140 Mohm\n", - "Amplitude ratio=0.6 \n", - "Voltage sensitivity=800000 V/m\n" - ] - } - ], - "source": [ - "#2.43\n", - "import math;\n", - "M=0.95;\n", - "w=2*math.pi*20;\n", - "tc=(1/w)*((M**2)/(1-M**2))**0.5;\n", - "print (\"Time constant=%.2f s\" %tc)\n", - "ph=((math.pi/2)-(math.atan(w*tc)))*(180/math.pi);\n", - "print (\"Phase shift=%.1f deg\" %ph)\n", - "C=(8.85*10**-12*300*10**-6)/(0.125*10**-3);\n", - "R=tc*10**-6/C;\n", - "print (\"Series resistance=%.0f Mohm\" %R)\n", - "M=1/(1+(1/(2*math.pi*5*tc)**2))**0.5;\n", - "print (\"Amplitude ratio=%.1f \" %M)\n", - "Eb=100;\n", - "x=0.125*10**-3;\n", - "Vs=Eb/x;\n", - "print (\"Voltage sensitivity=%d V/m\" %Vs)\n", - "\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.44" - ] - }, - { - "cell_type": "code", - "execution_count": 101, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ratio of per unit change of capacitance to per unit change of diaplacement=1.11\n", - " New ratio of per unit change of capacitance to per unit change of diaplacement=1.17\n" - ] - } - ], - "source": [ - "#2.44\n", - "import math;\n", - "e0=8.85*10**-12;\n", - "A=500*10**-6;\n", - "d=0.2*10**-3;\n", - "C=e0*A/d;\n", - "d1=0.18*10**-3;\n", - "C_new=e0*A/d1;\n", - "C_change=C_new-C;\n", - "Ratio=(C_change/C)/(0.02/0.2);\n", - "print (\"ratio of per unit change of capacitance to per unit change of diaplacement=%.2f\" %Ratio)\n", - "d1=0.19*10**-3;\n", - "e1=1;\n", - "d2=0.01*10**-3;\n", - "e2=8;\n", - "C=(e0*A)/((d1/e1)+(d2/e2));\n", - "d1_new=0.17*10**-3;\n", - "C_new=(e0*A)/((d1_new/e1)+(d2/e2));\n", - "C_change=C_new-C;\n", - "Ratio=(C_change/C)/(0.02/0.2);\n", - "print (\" New ratio of per unit change of capacitance to per unit change of diaplacement=%.2f\" %Ratio)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.47" - ] - }, - { - "cell_type": "code", - "execution_count": 102, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Output voltage=165 V\n", - " Charge sensitivity=2.23 pC/N\n" - ] - } - ], - "source": [ - "# 2.47\n", - "import math;\n", - "g=0.055;\n", - "t=2*10**-3;\n", - "P=1.5*10**6;\n", - "Eo=g*t*P;\n", - "print (\"Output voltage=%.0f V\" %Eo)\n", - "e=40.6*10**-12;\n", - "d=e*g*10**12;\n", - "print (\" Charge sensitivity=%.2f pC/N\" %d)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.48" - ] - }, - { - "cell_type": "code", - "execution_count": 103, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Force=30 N\n" - ] - } - ], - "source": [ - "# 2.48\n", - "import math;\n", - "g=0.055;\n", - "t=1.5*10**-3;\n", - "Eo=100;\n", - "P= Eo/(g*t);\n", - "A=25*10**-6;\n", - "F=P*A;\n", - "print (\" Force=%.0f N\" %F)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.49" - ] - }, - { - "cell_type": "code", - "execution_count": 104, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " strain=0.0167 \n", - " Charge=750 pC\n", - " capacitance=250 pF\n" - ] - } - ], - "source": [ - "# 2.49\n", - "import math;\n", - "A=25*10**-6;\n", - "F=5;\n", - "P=F/A;\n", - "d=150*10**-12;\n", - "e=12.5*10**-9;\n", - "g=d/(e);\n", - "t=1.25*10**-3;\n", - "Eo=(g*t*P);\n", - "strain=P/(12*10**6);\n", - "Q=d*F*10**12;\n", - "C=Q/Eo;\n", - "print (\" strain=%.4f \" %strain)\n", - "print (\" Charge=%.0f pC\" %Q)\n", - "print (\" capacitance=%.0f pF\" %C)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.50" - ] - }, - { - "cell_type": "code", - "execution_count": 106, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " peak voltage swing under open conditions=9.04 mV\n", - " peak voltage swing under loaded conditions=1.52 mV\n", - " Maximum change in crystal thickness=2.22 pm\n" - ] - } - ], - "source": [ - "# 2.50\n", - "import math;\n", - "d=2*10**-12;\n", - "t=1*10**-3;\n", - "Fmax=0.01;\n", - "e0=8.85*10**-12;\n", - "er=5;\n", - "A=100*10**-6;\n", - "Eo_peak_to_peak=2*d*t*Fmax*10**3/(e0*er*A);\n", - "print (\" peak voltage swing under open conditions=%.2f mV\" %Eo_peak_to_peak)\n", - "Rl=100*10**6;\n", - "Cl=20*10**-12;\n", - "d1=1*10**-3;\n", - "Cp=e0*er*A/d1;\n", - "C=Cp+Cl;\n", - "w=1000;\n", - "m=(w*Cp*Rl/(1+(w*C*Rl)**2)**0.5);\n", - "El_peak_to_peak=(2*d*t*Fmax*10**3/(e0*er*A))*m;\n", - "print (\" peak voltage swing under loaded conditions=%.2f mV\" %El_peak_to_peak)\n", - "E=90*10**9;\n", - "dt=2*Fmax*t*10**12/(A*E);\n", - "print (\" Maximum change in crystal thickness=%.2f pm\" %dt)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.51" - ] - }, - { - "cell_type": "code", - "execution_count": 107, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Minimum frequency=2028.29 rad/sec\n", - " Phase shift=18.19 deg\n" - ] - } - ], - "source": [ - "# 2.51\n", - "import math;\n", - "M=0.95;\n", - "tc=1.5*10**-3;\n", - "w=(1/tc)*((M**2)/(1-M**2))**0.5;\n", - "print (\" Minimum frequency=%.2f rad/sec\" %w)\n", - "ph=((math.pi/2)-(math.atan(w*tc)))*(180/math.pi);\n", - "print (\" Phase shift=%.2f deg\" %ph)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.52" - ] - }, - { - "cell_type": "code", - "execution_count": 108, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Sensitivity of the transducer=40000000.00 V/m\n", - " High frequency sensitivity =29629629.63 V/m\n", - " Minimum frequency=358.68 sec\n", - "now f=10Hz\n", - " External shunt capacitance=0.05 pF\n", - " new value of high frequency sensitivity=826073.26 V/m\n" - ] - } - ], - "source": [ - "#2.52\n", - "import math;\n", - "Kq=40*10**-3;\n", - "Cp=1000*10**-12;\n", - "K=Kq/Cp;\n", - "print (\" Sensitivity of the transducer=%.2f V/m\" %K)\n", - "Cc=300*10**-12;\n", - "Ca=50*10**-12;\n", - "C=Cp+Cc+Ca;\n", - "Hf=Kq/C;\n", - "print (\" High frequency sensitivity =%.2f V/m\" %Hf)\n", - "R=1*10**6;\n", - "tc=R*C;\n", - "M=0.95;\n", - "w=(1/tc)*((M**2)/(1-M**2))**0.5;\n", - "f=w/(2*math.pi);\n", - "print (\" Minimum frequency=%.2f sec\" %f)\n", - "print ('now f=10Hz')\n", - "f=10;\n", - "w=2*math.pi*f;\n", - "tc=(1/w)*((M**2)/(1-M**2))**0.5;\n", - "C_new=tc/R;\n", - "Ce=(C_new-C)*10**6;\n", - "print (\" External shunt capacitance=%.2f pF\" %Ce)\n", - "Hf_new=Kq/C_new;\n", - "print (\" new value of high frequency sensitivity=%.2f V/m\" %Hf_new)\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.53" - ] - }, - { - "cell_type": "code", - "execution_count": 109, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Voltage just before t=2ms =1.00 mV\n", - "(-2.2026841435311137, 'voltage just after t=2ms (mV)')\n", - "Voltage just after t=2ms =-2.20 mV\n", - "when t=10ms\n", - "output voltage 10 ms after the application of impulse =0 mV\n" - ] - } - ], - "source": [ - "# 2.53\n", - "import math;\n", - "R=10**6;\n", - "C=2500*10**-12;\n", - "tc=R*C;\n", - "t=2*10**-3;\n", - "d=100*10**-12;\n", - "F=0.1;\n", - "el=10.0**3*(d*F*(math.exp(-t/tc))/C);\n", - "print (\"Voltage just before t=2ms =%.2f mV\" %e1)\n", - "el_after=10**3*(d*F*(math.exp(-t/tc)-1)/C);\n", - "print (el_after,'voltage just after t=2ms (mV)')\n", - "print (\"Voltage just after t=2ms =%.2f mV\" %el_after)\n", - "print ('when t=10ms')\n", - "t=10.0*10**-3;\n", - "T=2.0*10\n", - "e_10=10.0**3*(d*F*(math.exp((-T/tc)-1))*(math.exp(-(t-T))/tc)/C)\n", - "print (\"output voltage 10 ms after the application of impulse =%.0f mV\" %e_10)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.54" - ] - }, - { - "cell_type": "code", - "execution_count": 110, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Let T=1\n", - "Time constant =19.50 s\n", - "as T=1 so time constant should be approximately equal to 20T\n" - ] - } - ], - "source": [ - "# 2.54\n", - "import math;\n", - "print ('Let T=1');\n", - "T=1;\n", - "el=0.95;\n", - "tc=-T/math.log(el);\n", - "print (\"Time constant =%.2f s\" %tc)\n", - "print ('as T=1 so time constant should be approximately equal to 20T')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.55" - ] - }, - { - "cell_type": "code", - "execution_count": 111, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "output voltage =-0.75 mV\n" - ] - } - ], - "source": [ - "#2.55\n", - "import math;\n", - "Kh=-1*10**-6;\n", - "I=3;\n", - "B=0.5;\n", - "t=2*10**-3;\n", - "Eh=Kh*I*B*10**3/t;\n", - "print (\"output voltage =%.2f mV\" %Eh)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.56" - ] - }, - { - "cell_type": "code", - "execution_count": 112, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "External resistance required =-999.997 ohm\n", - "Dark current =0.29 mA\n" - ] - } - ], - "source": [ - "#2.56\n", - "import math;\n", - "R1=(30/10*10**-3)-1000;\n", - "print (\"External resistance required =%.3f ohm\" %R1)\n", - "Id=30.0*10**3/((2*10**3)+(100*10**3))\n", - "print (\"Dark current =%.2f mA\" %Id)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 2.57" - ] - }, - { - "cell_type": "code", - "execution_count": 113, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Potential of point b, Vb= 5.000000\n", - "Potential of point d, Vd= 10.000000\n", - "Outout voltage of bridge =-5.00 V\n" - ] - } - ], - "source": [ - "#2.57\n", - "import math;\n", - "Vb=10-(10.0/((2*10**3))*10**3);\n", - "print ('Potential of point b, Vb= %f'%Vb)\n", - "Vd=10-(10/((3*10**3))*2*10**3);\n", - "print ('Potential of point d, Vd= %f' %Vd)\n", - "Ebd=Vb-Vd;\n", - "print (\"Outout voltage of bridge =%.2f V\" %Ebd)\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.12+" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch3_JtKdjpi.ipynb b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch3_JtKdjpi.ipynb deleted file mode 100644 index 1d8c5ae8..00000000 --- a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch3_JtKdjpi.ipynb +++ /dev/null @@ -1,287 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Chapter 3:Measurement of non electrical quantities" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 3.1" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "deflection of screen corresponding to maximum pressure for sensitivity of 1mV/mm =350.0 mm\n", - "sinch the length of the screen is 100mm so waveform is out of range and hence sensitivity setting of 1mV/mm should not be used\n", - "deflection of screen corresponding to maximum pressure for sensitivity of 5mV/mm =70.0 mm\n", - "delection is within the range\n", - "deflection of screen corresponding to maximum pressure for sensitivity of 20mV/mm =17.0 mm\n", - "delection is within the range\n", - "deflection of screen corresponding to maximum pressure for sensitivity of 10mV/mm =3.0 mm\n", - "delection is within the range\n", - "deflection of screen corresponding to maximum pressure for sensitivity of 500mV/mm =0.0 mm\n", - "delection is within the range\n", - "since the sensitivity of 5mV/mm gives higher deflection so it is the optimum sensitivity\n" - ] - } - ], - "source": [ - "# 3.1\n", - "import math\n", - "Aou=700*25*1/100;\n", - "Aol=100*25*1/100;\n", - "AouPtP= 2*Aou;\n", - "AolPtP= 2*Aol;\n", - "Se1=1;\n", - "D1=AouPtP/Se1;\n", - "print (\"deflection of screen corresponding to maximum pressure for sensitivity of 1mV/mm =%.1f mm\" %D1)\n", - "print ('sinch the length of the screen is 100mm so waveform is out of range and hence sensitivity setting of 1mV/mm should not be used')\n", - "Se2=5;\n", - "D2=AouPtP/Se2;\n", - "print (\"deflection of screen corresponding to maximum pressure for sensitivity of 5mV/mm =%.1f mm\" %D2)\n", - "print ('delection is within the range')\n", - "Se3=20;\n", - "D3=AouPtP/Se3;\n", - "print (\"deflection of screen corresponding to maximum pressure for sensitivity of 20mV/mm =%.1f mm\" %D3)\n", - "print ('delection is within the range')\n", - "Se4=100;\n", - "D4=AouPtP/Se4;\n", - "print (\"deflection of screen corresponding to maximum pressure for sensitivity of 10mV/mm =%.1f mm\" %D4)\n", - "print ('delection is within the range')\n", - "Se5=500;\n", - "D5=AouPtP/Se5;\n", - "print (\"deflection of screen corresponding to maximum pressure for sensitivity of 500mV/mm =%.1f mm\" %D5)\n", - "print ('delection is within the range')\n", - "print ('since the sensitivity of 5mV/mm gives higher deflection so it is the optimum sensitivity')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 3.2" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Radius of curvature =356.04 mm\n" - ] - } - ], - "source": [ - "#3.2\n", - "import math\n", - "tA=1;\n", - "tB=1;\n", - "m=tA/tB;\n", - "EB=147.0;\n", - "EA=216;\n", - "T2=200.0;\n", - "T1=25;\n", - "n=EB/EA;\n", - "T=T2-T1;\n", - "A=12.5*10**-6;\n", - "B=1.7*10**-6;\n", - "a=3*(1+m)**2;\n", - "b=(1+m*n)*((m**2)+1/(m*n));\n", - "c= (6*(A-B)*T*(1+m)**2);\n", - "r=(a+b)/c;\n", - "print (\"Radius of curvature =%.2f mm\" %r)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 3.3" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Radius of curvature =500 mm\n", - "vertical displacement =2 mm\n" - ] - } - ], - "source": [ - "#3.3\n", - "t=2;\n", - "T2=180;\n", - "T1=20;\n", - "T=T2-T1;\n", - "A=12.5*10**-6;\n", - "r=t/(2*T*A);\n", - "print (\"Radius of curvature =%.0f mm\" %r)\n", - "Th=40.0/500;\n", - "y=r*(1.0-math.cos(Th));\n", - "print (\"vertical displacement =%.0f mm\" %y)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 3.4" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "True temperature =1853.57 degree K\n", - "True temperature =1580.57 degree C\n" - ] - } - ], - "source": [ - "#3.4\n", - "import math\n", - "Ta=1480+273;\n", - "Tf=0.8;\n", - "T=Tf**-0.25*Ta;\n", - "print (\"True temperature =%.2f degree K\" %T)\n", - "Tc=T-273;\n", - "print (\"True temperature =%.2f degree C\" %Tc)\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 3.5" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Error in temperature measurement=-172.91 degree C\n" - ] - } - ], - "source": [ - "# 3.5\n", - "import math\n", - "ATC1=1065;\n", - "AT=ATC1+273;\n", - "Em1=0.82;\n", - "Ta=(Em1**(-0.25))*AT;\n", - "Em2=0.75;\n", - "Taa=(Em2**-0.25)*Ta;\n", - "ATC2=Taa-273;\n", - "E=ATC1-ATC2;\n", - "print (\"Error in temperature measurement=%.2f degree C\" %E)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 3.6" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Average flow rate=0.02 degree m/s\n", - "Percentage decrease in voltage=1.79 degree m/s\n" - ] - } - ], - "source": [ - "# 3.6\n", - "import math\n", - "EL=0.1;\n", - "Zo=250*10**3;\n", - "ZL=2.5*10**6;\n", - "Eo=EL*(1+(Zo/ZL));\n", - "B=0.1;\n", - "l=50*10**-3;\n", - "G=1000;\n", - "v=Eo/(B*l*G);\n", - "print (\"Average flow rate=%.2f degree m/s\" %v)\n", - "Zon=1.2*250*10**3;\n", - "ELn=2*Eo/(1+(Zon/ZL));\n", - "PDV=((0.2-ELn)/0.2)*100;\n", - "print (\"Percentage decrease in voltage=%.2f degree m/s\" %PDV)\n", - "\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python [Root]", - "language": "python", - "name": "Python [Root]" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.12" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch3_qFSzPBo.ipynb b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch3_qFSzPBo.ipynb deleted file mode 100644 index 1a32897b..00000000 --- a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch3_qFSzPBo.ipynb +++ /dev/null @@ -1,321 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "# Chapter 3:Measurement of non electrical quantities" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 3.1" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "deflection of screen corresponding to maximum pressure for sensitivity of 1mV/mm =350.0 mm\n", - "sinch the length of the screen is 100mm so waveform is out of range and hence sensitivity setting of 1mV/mm should not be used\n", - "deflection of screen corresponding to maximum pressure for sensitivity of 5mV/mm =70.0 mm\n", - "delection is within the range\n", - "deflection of screen corresponding to maximum pressure for sensitivity of 20mV/mm =17.0 mm\n", - "delection is within the range\n", - "deflection of screen corresponding to maximum pressure for sensitivity of 10mV/mm =3.0 mm\n", - "delection is within the range\n", - "deflection of screen corresponding to maximum pressure for sensitivity of 500mV/mm =0.0 mm\n", - "delection is within the range\n", - "since the sensitivity of 5mV/mm gives higher deflection so it is the optimum sensitivity\n" - ] - } - ], - "source": [ - "# 3.1\n", - "import math\n", - "Aou=700*25*1/100;\n", - "Aol=100*25*1/100;\n", - "AouPtP= 2*Aou;\n", - "AolPtP= 2*Aol;\n", - "Se1=1;\n", - "D1=AouPtP/Se1;\n", - "print (\"deflection of screen corresponding to maximum pressure for sensitivity of 1mV/mm =%.1f mm\" %D1)\n", - "print ('sinch the length of the screen is 100mm so waveform is out of range and hence sensitivity setting of 1mV/mm should not be used')\n", - "Se2=5;\n", - "D2=AouPtP/Se2;\n", - "print (\"deflection of screen corresponding to maximum pressure for sensitivity of 5mV/mm =%.1f mm\" %D2)\n", - "print ('delection is within the range')\n", - "Se3=20;\n", - "D3=AouPtP/Se3;\n", - "print (\"deflection of screen corresponding to maximum pressure for sensitivity of 20mV/mm =%.1f mm\" %D3)\n", - "print ('delection is within the range')\n", - "Se4=100;\n", - "D4=AouPtP/Se4;\n", - "print (\"deflection of screen corresponding to maximum pressure for sensitivity of 10mV/mm =%.1f mm\" %D4)\n", - "print ('delection is within the range')\n", - "Se5=500;\n", - "D5=AouPtP/Se5;\n", - "print (\"deflection of screen corresponding to maximum pressure for sensitivity of 500mV/mm =%.1f mm\" %D5)\n", - "print ('delection is within the range')\n", - "print ('since the sensitivity of 5mV/mm gives higher deflection so it is the optimum sensitivity')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 3.2" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Radius of curvature =356.04 mm\n" - ] - } - ], - "source": [ - "#3.2\n", - "import math\n", - "tA=1;\n", - "tB=1;\n", - "m=tA/tB;\n", - "EB=147.0;\n", - "EA=216;\n", - "T2=200.0;\n", - "T1=25;\n", - "n=EB/EA;\n", - "T=T2-T1;\n", - "A=12.5*10**-6;\n", - "B=1.7*10**-6;\n", - "a=3*(1+m)**2;\n", - "b=(1+m*n)*((m**2)+1/(m*n));\n", - "c= (6*(A-B)*T*(1+m)**2);\n", - "r=(a+b)/c;\n", - "print (\"Radius of curvature =%.2f mm\" %r)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 3.3" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Radius of curvature =500 mm\n", - "vertical displacement =2 mm\n" - ] - } - ], - "source": [ - "#3.3\n", - "import math\n", - "t=2;\n", - "T2=180;\n", - "T1=20;\n", - "T=T2-T1;\n", - "A=12.5*10**-6;\n", - "r=t/(2*T*A);\n", - "print (\"Radius of curvature =%.0f mm\" %r)\n", - "Th=40.0/500;\n", - "y=r*(1.0-math.cos(Th));\n", - "print (\"vertical displacement =%.0f mm\" %y)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 3.4" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "True temperature =1853.57 degree K\n", - "True temperature =1580.57 degree C\n" - ] - } - ], - "source": [ - "#3.4\n", - "import math\n", - "Ta=1480+273;\n", - "Tf=0.8;\n", - "T=Tf**-0.25*Ta;\n", - "print (\"True temperature =%.2f degree K\" %T)\n", - "Tc=T-273;\n", - "print (\"True temperature =%.2f degree C\" %Tc)\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 3.5" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Error in temperature measurement=-172.91 degree C\n" - ] - } - ], - "source": [ - "# 3.5\n", - "import math\n", - "ATC1=1065;\n", - "AT=ATC1+273;\n", - "Em1=0.82;\n", - "Ta=(Em1**(-0.25))*AT;\n", - "Em2=0.75;\n", - "Taa=(Em2**-0.25)*Ta;\n", - "ATC2=Taa-273;\n", - "E=ATC1-ATC2;\n", - "print (\"Error in temperature measurement=%.2f degree C\" %E)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 3.6" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Average flow rate=0.02 degree m/s\n", - "Percentage decrease in voltage=1.79 degree m/s\n" - ] - } - ], - "source": [ - "# 3.6\n", - "import math\n", - "EL=0.1;\n", - "Zo=250*10**3;\n", - "ZL=2.5*10**6;\n", - "Eo=EL*(1+(Zo/ZL));\n", - "B=0.1;\n", - "l=50*10**-3;\n", - "G=1000;\n", - "v=Eo/(B*l*G);\n", - "print (\"Average flow rate=%.2f degree m/s\" %v)\n", - "Zon=1.2*250*10**3;\n", - "ELn=2*Eo/(1+(Zon/ZL));\n", - "PDV=((0.2-ELn)/0.2)*100;\n", - "print (\"Percentage decrease in voltage=%.2f degree m/s\" %PDV)\n", - "\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.12+" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch4.ipynb b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch4.ipynb index c802d84b..af78fda8 100644 --- a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch4.ipynb +++ b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch4.ipynb @@ -2,20 +2,14 @@ "cells": [ { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "# Chapter 4:Telemetry and data acquisition system" ] }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "## Exa 4.1" ] @@ -24,9 +18,7 @@ "cell_type": "code", "execution_count": 2, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": false }, "outputs": [ { @@ -67,10 +59,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "## Exa 4.2" ] @@ -79,9 +68,7 @@ "cell_type": "code", "execution_count": 3, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": false }, "outputs": [ { @@ -108,10 +95,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "## Exa 4.3" ] @@ -120,9 +104,7 @@ "cell_type": "code", "execution_count": 4, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": false }, "outputs": [ { @@ -144,10 +126,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "## Exa 4.4" ] @@ -156,9 +135,7 @@ "cell_type": "code", "execution_count": 5, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": false }, "outputs": [ { @@ -193,10 +170,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "## Exa 4.5" ] @@ -205,9 +179,7 @@ "cell_type": "code", "execution_count": 6, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": false }, "outputs": [ { @@ -241,10 +213,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "## Exa 4.6" ] @@ -253,9 +222,7 @@ "cell_type": "code", "execution_count": 7, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": false }, "outputs": [ { @@ -278,10 +245,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "## Exa 4.7" ] @@ -290,9 +254,7 @@ "cell_type": "code", "execution_count": 8, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": false }, "outputs": [ { @@ -327,10 +289,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "## Exa 4.8" ] @@ -339,9 +298,7 @@ "cell_type": "code", "execution_count": 9, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": false }, "outputs": [ { @@ -366,10 +323,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "## Exa 4.9" ] @@ -378,9 +332,7 @@ "cell_type": "code", "execution_count": 10, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": false }, "outputs": [ { @@ -412,10 +364,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "## Exa 4.10" ] @@ -424,9 +373,7 @@ "cell_type": "code", "execution_count": 11, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": false }, "outputs": [ { @@ -450,10 +397,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "## Exa 4.11" ] @@ -462,9 +406,7 @@ "cell_type": "code", "execution_count": 12, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": false }, "outputs": [ { @@ -488,10 +430,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "## Exa 4.12" ] @@ -500,9 +439,7 @@ "cell_type": "code", "execution_count": 13, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": false }, "outputs": [ { @@ -531,10 +468,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "## Exa 4.13" ] @@ -543,9 +477,7 @@ "cell_type": "code", "execution_count": 14, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": false }, "outputs": [ { @@ -566,10 +498,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "## Exa 4.14" ] @@ -578,9 +507,7 @@ "cell_type": "code", "execution_count": 15, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": false }, "outputs": [ { @@ -601,10 +528,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "## Exa 4.15" ] @@ -613,9 +537,7 @@ "cell_type": "code", "execution_count": 16, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": false }, "outputs": [ { @@ -641,9 +563,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 2", + "display_name": "Python [Root]", "language": "python", - "name": "python2" + "name": "Python [Root]" }, "language_info": { "codemirror_mode": { @@ -655,7 +577,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", - "version": "2.7.12+" + "version": "2.7.12" } }, "nbformat": 4, diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch4_SPNEqxW.ipynb b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch4_SPNEqxW.ipynb deleted file mode 100644 index c802d84b..00000000 --- a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch4_SPNEqxW.ipynb +++ /dev/null @@ -1,663 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "# Chapter 4:Telemetry and data acquisition system" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 4.1" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "In addition to carrier frequency of 1000kHz the other upeer and lower frequencies are\n", - "Upper side band frequency for modulating frequency of 300 Hz =1000.3 kHz\n", - "Lower side band frequency for modulating frequency of 300 Hz =999.7 kHz\n", - "Upper side band frequency for modulating frequency of 800 Hz =1000.8 kHz\n", - "Lower side band frequency for modulating frequency of 800 Hz =999.2 kHz\n", - "Upper side band frequency for modulating frequency of 2kHz =1002.0 kHz\n", - "Lower side band frequency for modulating frequency of 2kHz =998.0 kHz\n" - ] - } - ], - "source": [ - "# 4.1\n", - "import math\n", - "fc=1000;\n", - "print ('In addition to carrier frequency of 1000kHz the other upeer and lower frequencies are')\n", - "fs1=0.3;\n", - "fu1=fc+fs1;\n", - "print (\"Upper side band frequency for modulating frequency of 300 Hz =%.1f kHz\" %fu1)\n", - "fl1=fc-fs1;\n", - "print (\"Lower side band frequency for modulating frequency of 300 Hz =%.1f kHz\" %fl1)\n", - "fs2=0.8;\n", - "fu2=fc+fs2;\n", - "print (\"Upper side band frequency for modulating frequency of 800 Hz =%.1f kHz\" %fu2)\n", - "fl2=fc-fs2;\n", - "print (\"Lower side band frequency for modulating frequency of 800 Hz =%.1f kHz\" %fl2)\n", - "fs3=2;\n", - "fu3=fc+fs3;\n", - "print (\"Upper side band frequency for modulating frequency of 2kHz =%.1f kHz\" %fu3)\n", - "fl3=fc-fs3;\n", - "print (\"Lower side band frequency for modulating frequency of 2kHz =%.1f kHz\" %fl3)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 4.2" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Upper side band frequency =721.76 kHz\n", - "Lower side band frequency =701.76 kHz\n" - ] - } - ], - "source": [ - "# 4.2\n", - "import math\n", - "L=50*10**-6;\n", - "C=1*10**-9;\n", - "fc=1/(2*math.pi*(L*C)**0.5);\n", - "fs1=10000;\n", - "fu1=(fc+fs1)*10**-3;\n", - "print (\"Upper side band frequency =%.2f kHz\" %fu1)\n", - "fl1=(fc-fs1)*10**-3;\n", - "print (\"Lower side band frequency =%.2f kHz\" %fl1)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 4.3" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Radiation Power =68.06 kW\n" - ] - } - ], - "source": [ - "# 4.3\n", - "import math\n", - "Pc=50;\n", - "m=0.85;\n", - "Pt=Pc*(1+(m**2/2))\n", - "print (\"Radiation Power =%.2f kW\" %Pt)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 4.4" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "modulation index for Es (2.4) =9.6\n", - "modulation index for Es(7.2)=28.8\n", - "modulation indexfor Es(10) =40.0\n" - ] - } - ], - "source": [ - "# 4.4\n", - "import math\n", - "delta=4.8;\n", - "Es=2.4;\n", - "K=delta/Es;\n", - "Es1=7.2;\n", - "delta1=K*Es1;\n", - "Es2=10;\n", - "delta2=K*Es2;\n", - "fs1=500*10**-3;\n", - "mf1=delta/fs1;\n", - "print (\"modulation index for Es (2.4) =%.1f\" %mf1)\n", - "mf2=delta1/fs1;\n", - "print (\"modulation index for Es(7.2)=%.1f\" %mf2)\n", - "mf3=delta2/fs1;\n", - "print (\"modulation indexfor Es(10) =%.1f\" %mf3)\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 4.5" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "carrier frequency =95493.0 kHz\n", - "modulating frequency =198.9 Hz\n", - "maximum deviation =994.7 Hz\n", - "Power dissipated =7.2 W\n" - ] - } - ], - "source": [ - "# 4.5\n", - "import math\n", - "wc=6*10**8;\n", - "fc=(wc)/(2*math.pi)*10**-3;\n", - "print (\"carrier frequency =%.1f kHz\" %fc)\n", - "ws=1250;\n", - "fs=(ws)/(2*math.pi);\n", - "print (\"modulating frequency =%.1f Hz\" %fs)\n", - "mf=5;\n", - "delta=mf*fs;\n", - "print (\"maximum deviation =%.1f Hz\" %delta)\n", - "Rms=12/(2**0.5);\n", - "P=Rms**2/10;\n", - "print (\"Power dissipated =%.1f W\" %P)\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 4.6" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Band width =80 kHz\n" - ] - } - ], - "source": [ - "# 4.6\n", - "import math\n", - "delta=10;\n", - "fs=2;\n", - "mf=delta/fs;\n", - "BW=16*mf;\n", - "print (\"Band width =%.0f kHz\" %BW)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 4.7" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "epm=8sin(0.6283*10**9t+10 sin 37.7*10**3t)V\n", - "for a signal voltage of 4 V\n", - "epm=8sin(0.6283*10**9t+13.33 sin 37.7*10**3t)V\n", - "for a fs of 8 kHz\n", - "epm=8sin(0.6283*10**9t+13.33 sin 50.27*10**3t)V\n" - ] - } - ], - "source": [ - "# 4.7\n", - "import math\n", - "fc=100*10**6;\n", - "wc=2*math.pi*fc;\n", - "fs=6*10**3;\n", - "ws=2*math.pi*fs;\n", - "delta=60*10**3;\n", - "mf=delta/fs;\n", - "mp=mf;\n", - "print ('epm=8sin(0.6283*10**9t+10 sin 37.7*10**3t)V')\n", - "print ('for a signal voltage of 4 V')\n", - "mp=4*10/3;\n", - "print ('epm=8sin(0.6283*10**9t+13.33 sin 37.7*10**3t)V')\n", - "print ('for a fs of 8 kHz')\n", - "print ('epm=8sin(0.6283*10**9t+13.33 sin 50.27*10**3t)V')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 4.8" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "range is 0-31 V with each step representing 1V\n", - "quattization error =0.4 V\n" - ] - } - ], - "source": [ - "# 4.8\n", - "import math\n", - "n=5;\n", - "Ql=2**n;\n", - "Range=(Ql-1)*1;\n", - "print ('range is 0-31 V with each step representing 1V')\n", - "Qe=27.39-27;\n", - "print (\"quattization error =%.1f V\" %Qe)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 4.9" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "For amplitude modulation\n", - "Minimum width of carrier channel =2.0 kHz\n", - "For frequency modulation\n", - "Minimum width of carrier channel =5.0 kHz\n", - "For pulse code modulation\n", - "Minimum width of carrier channel =8.0 kHz\n" - ] - } - ], - "source": [ - "# 4.9\n", - "import math\n", - "print ('For amplitude modulation')\n", - "MCCW=2*1;\n", - "print (\"Minimum width of carrier channel =%.1f kHz\" %MCCW)\n", - "print ('For frequency modulation')\n", - "MCCW=2*(1.5+1);\n", - "print (\"Minimum width of carrier channel =%.1f kHz\" %MCCW)\n", - "print ('For pulse code modulation')\n", - "MCCW=8*1;\n", - "print (\"Minimum width of carrier channel =%.1f kHz\" %MCCW)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 4.10" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "At 403 change in frequency\n", - "Fuel level =1650.0 L\n" - ] - } - ], - "source": [ - "# 4.10\n", - "import math\n", - "Fc=430-370;\n", - "print ('At 403 change in frequency')\n", - "Fc1=403-370;\n", - "Fuel_level=Fc1*3000/Fc;\n", - "print (\"Fuel level =%.1f L\" %Fuel_level)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 4.11" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "for good quality data the sampling rate should be at least 5 times the data frequency for one channel\n", - "sampling rate =1250.0 samples per second\n" - ] - } - ], - "source": [ - "# 4.11\n", - "import math\n", - "print ('for good quality data the sampling rate should be at least 5 times the data frequency for one channel')\n", - "channel=5;\n", - "f=50;\n", - "sampling_rate=5*channel*f;\n", - "print (\"sampling rate =%.1f samples per second\" %sampling_rate)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 4.12" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Maximum possible data transmission rate =6000.0 bits per second\n", - "minimum sampling rate per channel =2000.0 samples per second\n", - "maximum number of channels =42 \n" - ] - } - ], - "source": [ - "#4.12\n", - "import math\n", - "Vs=7;\n", - "Vn=1;\n", - "fh=10**3;\n", - "H=2*fh*math.log(1+(Vs/Vn),2);\n", - "print (\"Maximum possible data transmission rate =%.1f bits per second\" %H)\n", - "Sampling_rate=2*fh;\n", - "print (\"minimum sampling rate per channel =%.1f samples per second\" %Sampling_rate)\n", - "C_max=85714/2000;\n", - "print (\"maximum number of channels =%.0f \" %C_max)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 4.13" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "cutt off frquency =50.0 kHz \n" - ] - } - ], - "source": [ - "#4.13\n", - "import math\n", - "d_rate=100;\n", - "fc= 0.5*d_rate;\n", - "print (\"cutt off frquency =%.1f kHz \" %fc)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 4.14" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The modulated carrier will have a bandwidth of 100MHz+/- 1kHz.\n", - "therefore we can have 5 channels each transmitting a 1KHz data for 5kHz bandwidth\n" - ] - } - ], - "source": [ - "#4.14\n", - "import math\n", - "print ('The modulated carrier will have a bandwidth of 100MHz+/- 1kHz.')\n", - "print ('therefore we can have 5 channels each transmitting a 1KHz data for 5kHz bandwidth')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 4.15" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Bandwidth of intelligence =2475.0 Hz \n", - "Rise time=141.4 us \n" - ] - } - ], - "source": [ - "# 4.15\n", - "import math\n", - "Fd=7.5*165*10**3/100;\n", - "mf=5;\n", - "Bandwidth=Fd/mf;\n", - "print (\"Bandwidth of intelligence =%.1f Hz \" %Bandwidth)\n", - "Tr=0.35/Bandwidth*10**6;\n", - "print (\"Rise time=%.1f us \" %Tr)\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.12+" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch4_h6Jwto8.ipynb b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch4_h6Jwto8.ipynb deleted file mode 100644 index af78fda8..00000000 --- a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch4_h6Jwto8.ipynb +++ /dev/null @@ -1,585 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Chapter 4:Telemetry and data acquisition system" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 4.1" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "In addition to carrier frequency of 1000kHz the other upeer and lower frequencies are\n", - "Upper side band frequency for modulating frequency of 300 Hz =1000.3 kHz\n", - "Lower side band frequency for modulating frequency of 300 Hz =999.7 kHz\n", - "Upper side band frequency for modulating frequency of 800 Hz =1000.8 kHz\n", - "Lower side band frequency for modulating frequency of 800 Hz =999.2 kHz\n", - "Upper side band frequency for modulating frequency of 2kHz =1002.0 kHz\n", - "Lower side band frequency for modulating frequency of 2kHz =998.0 kHz\n" - ] - } - ], - "source": [ - "# 4.1\n", - "import math\n", - "fc=1000;\n", - "print ('In addition to carrier frequency of 1000kHz the other upeer and lower frequencies are')\n", - "fs1=0.3;\n", - "fu1=fc+fs1;\n", - "print (\"Upper side band frequency for modulating frequency of 300 Hz =%.1f kHz\" %fu1)\n", - "fl1=fc-fs1;\n", - "print (\"Lower side band frequency for modulating frequency of 300 Hz =%.1f kHz\" %fl1)\n", - "fs2=0.8;\n", - "fu2=fc+fs2;\n", - "print (\"Upper side band frequency for modulating frequency of 800 Hz =%.1f kHz\" %fu2)\n", - "fl2=fc-fs2;\n", - "print (\"Lower side band frequency for modulating frequency of 800 Hz =%.1f kHz\" %fl2)\n", - "fs3=2;\n", - "fu3=fc+fs3;\n", - "print (\"Upper side band frequency for modulating frequency of 2kHz =%.1f kHz\" %fu3)\n", - "fl3=fc-fs3;\n", - "print (\"Lower side band frequency for modulating frequency of 2kHz =%.1f kHz\" %fl3)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 4.2" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Upper side band frequency =721.76 kHz\n", - "Lower side band frequency =701.76 kHz\n" - ] - } - ], - "source": [ - "# 4.2\n", - "import math\n", - "L=50*10**-6;\n", - "C=1*10**-9;\n", - "fc=1/(2*math.pi*(L*C)**0.5);\n", - "fs1=10000;\n", - "fu1=(fc+fs1)*10**-3;\n", - "print (\"Upper side band frequency =%.2f kHz\" %fu1)\n", - "fl1=(fc-fs1)*10**-3;\n", - "print (\"Lower side band frequency =%.2f kHz\" %fl1)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 4.3" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Radiation Power =68.06 kW\n" - ] - } - ], - "source": [ - "# 4.3\n", - "import math\n", - "Pc=50;\n", - "m=0.85;\n", - "Pt=Pc*(1+(m**2/2))\n", - "print (\"Radiation Power =%.2f kW\" %Pt)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 4.4" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "modulation index for Es (2.4) =9.6\n", - "modulation index for Es(7.2)=28.8\n", - "modulation indexfor Es(10) =40.0\n" - ] - } - ], - "source": [ - "# 4.4\n", - "import math\n", - "delta=4.8;\n", - "Es=2.4;\n", - "K=delta/Es;\n", - "Es1=7.2;\n", - "delta1=K*Es1;\n", - "Es2=10;\n", - "delta2=K*Es2;\n", - "fs1=500*10**-3;\n", - "mf1=delta/fs1;\n", - "print (\"modulation index for Es (2.4) =%.1f\" %mf1)\n", - "mf2=delta1/fs1;\n", - "print (\"modulation index for Es(7.2)=%.1f\" %mf2)\n", - "mf3=delta2/fs1;\n", - "print (\"modulation indexfor Es(10) =%.1f\" %mf3)\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 4.5" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "carrier frequency =95493.0 kHz\n", - "modulating frequency =198.9 Hz\n", - "maximum deviation =994.7 Hz\n", - "Power dissipated =7.2 W\n" - ] - } - ], - "source": [ - "# 4.5\n", - "import math\n", - "wc=6*10**8;\n", - "fc=(wc)/(2*math.pi)*10**-3;\n", - "print (\"carrier frequency =%.1f kHz\" %fc)\n", - "ws=1250;\n", - "fs=(ws)/(2*math.pi);\n", - "print (\"modulating frequency =%.1f Hz\" %fs)\n", - "mf=5;\n", - "delta=mf*fs;\n", - "print (\"maximum deviation =%.1f Hz\" %delta)\n", - "Rms=12/(2**0.5);\n", - "P=Rms**2/10;\n", - "print (\"Power dissipated =%.1f W\" %P)\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 4.6" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Band width =80 kHz\n" - ] - } - ], - "source": [ - "# 4.6\n", - "import math\n", - "delta=10;\n", - "fs=2;\n", - "mf=delta/fs;\n", - "BW=16*mf;\n", - "print (\"Band width =%.0f kHz\" %BW)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 4.7" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "epm=8sin(0.6283*10**9t+10 sin 37.7*10**3t)V\n", - "for a signal voltage of 4 V\n", - "epm=8sin(0.6283*10**9t+13.33 sin 37.7*10**3t)V\n", - "for a fs of 8 kHz\n", - "epm=8sin(0.6283*10**9t+13.33 sin 50.27*10**3t)V\n" - ] - } - ], - "source": [ - "# 4.7\n", - "import math\n", - "fc=100*10**6;\n", - "wc=2*math.pi*fc;\n", - "fs=6*10**3;\n", - "ws=2*math.pi*fs;\n", - "delta=60*10**3;\n", - "mf=delta/fs;\n", - "mp=mf;\n", - "print ('epm=8sin(0.6283*10**9t+10 sin 37.7*10**3t)V')\n", - "print ('for a signal voltage of 4 V')\n", - "mp=4*10/3;\n", - "print ('epm=8sin(0.6283*10**9t+13.33 sin 37.7*10**3t)V')\n", - "print ('for a fs of 8 kHz')\n", - "print ('epm=8sin(0.6283*10**9t+13.33 sin 50.27*10**3t)V')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 4.8" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "range is 0-31 V with each step representing 1V\n", - "quattization error =0.4 V\n" - ] - } - ], - "source": [ - "# 4.8\n", - "import math\n", - "n=5;\n", - "Ql=2**n;\n", - "Range=(Ql-1)*1;\n", - "print ('range is 0-31 V with each step representing 1V')\n", - "Qe=27.39-27;\n", - "print (\"quattization error =%.1f V\" %Qe)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 4.9" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "For amplitude modulation\n", - "Minimum width of carrier channel =2.0 kHz\n", - "For frequency modulation\n", - "Minimum width of carrier channel =5.0 kHz\n", - "For pulse code modulation\n", - "Minimum width of carrier channel =8.0 kHz\n" - ] - } - ], - "source": [ - "# 4.9\n", - "import math\n", - "print ('For amplitude modulation')\n", - "MCCW=2*1;\n", - "print (\"Minimum width of carrier channel =%.1f kHz\" %MCCW)\n", - "print ('For frequency modulation')\n", - "MCCW=2*(1.5+1);\n", - "print (\"Minimum width of carrier channel =%.1f kHz\" %MCCW)\n", - "print ('For pulse code modulation')\n", - "MCCW=8*1;\n", - "print (\"Minimum width of carrier channel =%.1f kHz\" %MCCW)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 4.10" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "At 403 change in frequency\n", - "Fuel level =1650.0 L\n" - ] - } - ], - "source": [ - "# 4.10\n", - "import math\n", - "Fc=430-370;\n", - "print ('At 403 change in frequency')\n", - "Fc1=403-370;\n", - "Fuel_level=Fc1*3000/Fc;\n", - "print (\"Fuel level =%.1f L\" %Fuel_level)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 4.11" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "for good quality data the sampling rate should be at least 5 times the data frequency for one channel\n", - "sampling rate =1250.0 samples per second\n" - ] - } - ], - "source": [ - "# 4.11\n", - "import math\n", - "print ('for good quality data the sampling rate should be at least 5 times the data frequency for one channel')\n", - "channel=5;\n", - "f=50;\n", - "sampling_rate=5*channel*f;\n", - "print (\"sampling rate =%.1f samples per second\" %sampling_rate)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 4.12" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Maximum possible data transmission rate =6000.0 bits per second\n", - "minimum sampling rate per channel =2000.0 samples per second\n", - "maximum number of channels =42 \n" - ] - } - ], - "source": [ - "#4.12\n", - "import math\n", - "Vs=7;\n", - "Vn=1;\n", - "fh=10**3;\n", - "H=2*fh*math.log(1+(Vs/Vn),2);\n", - "print (\"Maximum possible data transmission rate =%.1f bits per second\" %H)\n", - "Sampling_rate=2*fh;\n", - "print (\"minimum sampling rate per channel =%.1f samples per second\" %Sampling_rate)\n", - "C_max=85714/2000;\n", - "print (\"maximum number of channels =%.0f \" %C_max)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 4.13" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "cutt off frquency =50.0 kHz \n" - ] - } - ], - "source": [ - "#4.13\n", - "import math\n", - "d_rate=100;\n", - "fc= 0.5*d_rate;\n", - "print (\"cutt off frquency =%.1f kHz \" %fc)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 4.14" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The modulated carrier will have a bandwidth of 100MHz+/- 1kHz.\n", - "therefore we can have 5 channels each transmitting a 1KHz data for 5kHz bandwidth\n" - ] - } - ], - "source": [ - "#4.14\n", - "import math\n", - "print ('The modulated carrier will have a bandwidth of 100MHz+/- 1kHz.')\n", - "print ('therefore we can have 5 channels each transmitting a 1KHz data for 5kHz bandwidth')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 4.15" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Bandwidth of intelligence =2475.0 Hz \n", - "Rise time=141.4 us \n" - ] - } - ], - "source": [ - "# 4.15\n", - "import math\n", - "Fd=7.5*165*10**3/100;\n", - "mf=5;\n", - "Bandwidth=Fd/mf;\n", - "print (\"Bandwidth of intelligence =%.1f Hz \" %Bandwidth)\n", - "Tr=0.35/Bandwidth*10**6;\n", - "print (\"Rise time=%.1f us \" %Tr)\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python [Root]", - "language": "python", - "name": "Python [Root]" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.12" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch5_2XUAsbf.ipynb b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch5_2XUAsbf.ipynb deleted file mode 100644 index 18a94379..00000000 --- a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch5_2XUAsbf.ipynb +++ /dev/null @@ -1,281 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Chapter 5:Advanced measuring instruments" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 5.1" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "A=0.000064\n", - "B=0.000512\n", - "since A<B so the instrument is underdamped\n", - "Number of turns=3356426 \n", - "current required to overcome friction=0.1 uA \n" - ] - } - ], - "source": [ - "# 5.1\n", - "import math\n", - "D=8*10**-3;\n", - "A=D**2;\n", - "print ('A=%f'%A)\n", - "J=8*10**-3;\n", - "K=16*10**-3;\n", - "B=4*J*K;\n", - "print ('B=%f'%B)\n", - "print ('since A<B so the instrument is underdamped')\n", - "th=(100*math.pi)/180;\n", - "i=10*10**-3;\n", - "F=0.2*10**-6;\n", - "G=(K*th+F)/i;\n", - "l=65*10**-3;\n", - "d=25*10**-3;\n", - "N=G/(B*l*d);\n", - "print (\"Number of turns=%.0f \" %N)\n", - "i=F/G*10**6;\n", - "print (\"current required to overcome friction=%.1f uA \" %i)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 5.2" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "upper value of range=1896 Hz\n", - "lower value of range=696 Hz\n", - "So, the range of the frequency is from 696 to 1896 Hz\n" - ] - } - ], - "source": [ - "# 5.2\n", - "import math\n", - "eta=0.6;\n", - "fn=2400;\n", - "M=0.98;\n", - "#M=1/(((1-u**2)**2)+(2*u*eta)**2)**0.5; ..........(i)\n", - "# On solving the above equation we get u=0.79\n", - "u=0.79;\n", - "fu=u*fn;\n", - "print (\"upper value of range=%.0f Hz\" %fu)\n", - "\n", - "#Now let M=1.02, on solving equation (i) we have u=0.29\n", - "u=0.29;\n", - "fl=u*fn;\n", - "print (\"lower value of range=%.0f Hz\" %fl)\n", - "print ('So, the range of the frequency is from 696 to 1896 Hz')\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 5.3" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "phase displacement for the fundamental=7.37 degree\n", - "phase displacement for the 5th harmonic=40.48 degree\n" - ] - } - ], - "source": [ - "# 5.3\n", - "import math\n", - "eta=0.64;\n", - "u=0.1;\n", - "alpha_1=math.degrees(math.atan(2*eta*u/(1-u**2)))\n", - "print (\"phase displacement for the fundamental=%.2f degree\" %alpha_1)\n", - "u=0.5;\n", - "alpha_5=math.degrees(math.atan((2*eta*u/(1-u**2))))\n", - "print (\"phase displacement for the 5th harmonic=%.2f degree\" %alpha_5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 5.4" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Percentage error for the production of 3rd harmonics=-0.56\n", - "Percentage error for the production of 5th harmonics=-1.54\n", - "Percentage error for the production of 7th harmonics=-2.97\n", - "Percentage error for the production of 11th harmonics=-7.03\n", - "Percentage error for the production of 13th harmonics=-9.55\n", - " Displacement of 13th harmonic=-1.23 degree\n" - ] - } - ], - "source": [ - "#5.4\n", - "import math\n", - "To=1.0/2000;\n", - "T=1.0/50;\n", - "#Rn=1/(1+n**2*(To/T)**2)\n", - "R1=1.0/(1+1.0**2*(To/T)**2);\n", - "R3=1.0/(1+3**2*(To/T)**2);\n", - "R5=1.0/(1+5**2*(To/T)**2);\n", - "R7=1.0/(1+7**2*(To/T)**2);\n", - "R11=1.0/(1+11**2*(To/T)**2);\n", - "R13=1.0/(1+13**2*(To/T)**2);\n", - "PE3=(R3-1/1)*100;\n", - "print (\"Percentage error for the production of 3rd harmonics=%.2f\" %PE3)\n", - "PE5=(R5-1/1)*100;\n", - "print (\"Percentage error for the production of 5th harmonics=%.2f\" %PE5)\n", - "PE7=(R7-1/1)*100;\n", - "print (\"Percentage error for the production of 7th harmonics=%.2f\" %PE7)\n", - "PE11=(R11-1/1)*100;\n", - "print (\"Percentage error for the production of 11th harmonics=%.2f\" %PE11)\n", - "PE13=(R13-1/1)*100;\n", - "print (\"Percentage error for the production of 13th harmonics=%.2f\" %PE13)\n", - "#displacement of nth harmonic alpha=atan2*n/((T/To)-n**2*(To/T))\n", - "alpha_1=math.degrees(math.atan(2*1/((T/To)-(1**2*(To/T)))));\n", - "alpha_13=(math.degrees(math.atan(2*13/((T/To)-(13**2*(To/T))))));\n", - "alpha_1_equivalent_13=13*alpha_1;\n", - "phase_displacement_13=alpha_13-alpha_1_equivalent_13;\n", - "print (\" Displacement of 13th harmonic=%.2f degree\" %phase_displacement_13)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 5.5" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "minimum tape speed=7.81 m/s\n" - ] - } - ], - "source": [ - "# 5.5\n", - "import math\n", - "W_min=2.5*6.25*10**-6;\n", - "f=500000;\n", - "S_min=W_min*f;\n", - "print (\"minimum tape speed=%.2f m/s\" %S_min)\n", - "\n", - "\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 5.6" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Number density of the tape=8 numbers/mm\n" - ] - } - ], - "source": [ - "# 5.6\n", - "import math\n", - "Num_per_sec=12000;\n", - "S=1.5*10**3;\n", - "Number_density=Num_per_sec/S;\n", - "print (\"Number density of the tape=%.0f numbers/mm\" %Number_density)\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python [Root]", - "language": "python", - "name": "Python [Root]" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.12" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch5_Z3v5KUy.ipynb b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch5_Z3v5KUy.ipynb deleted file mode 100644 index c6229c34..00000000 --- a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch5_Z3v5KUy.ipynb +++ /dev/null @@ -1,314 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "# Chapter 5:Advanced measuring instruments" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 5.1" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "A=0.000064\n", - "B=0.000512\n", - "since A<B so the instrument is underdamped\n", - "Number of turns=3356426 \n", - "current required to overcome friction=0.1 uA \n" - ] - } - ], - "source": [ - "# 5.1\n", - "import math\n", - "D=8*10**-3;\n", - "A=D**2;\n", - "print ('A=%f'%A)\n", - "J=8*10**-3;\n", - "K=16*10**-3;\n", - "B=4*J*K;\n", - "print ('B=%f'%B)\n", - "print ('since A<B so the instrument is underdamped')\n", - "th=(100*math.pi)/180;\n", - "i=10*10**-3;\n", - "F=0.2*10**-6;\n", - "G=(K*th+F)/i;\n", - "l=65*10**-3;\n", - "d=25*10**-3;\n", - "N=G/(B*l*d);\n", - "print (\"Number of turns=%.0f \" %N)\n", - "i=F/G*10**6;\n", - "print (\"current required to overcome friction=%.1f uA \" %i)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 5.2" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "upper value of range=1896 Hz\n", - "lower value of range=696 Hz\n", - "So, the range of the frequency is from 696 to 1896 Hz\n" - ] - } - ], - "source": [ - "# 5.2\n", - "import math\n", - "eta=0.6;\n", - "fn=2400;\n", - "M=0.98;\n", - "#M=1/(((1-u**2)**2)+(2*u*eta)**2)**0.5; ..........(i)\n", - "# On solving the above equation we get u=0.79\n", - "u=0.79;\n", - "fu=u*fn;\n", - "print (\"upper value of range=%.0f Hz\" %fu)\n", - "\n", - "#Now let M=1.02, on solving equation (i) we have u=0.29\n", - "u=0.29;\n", - "fl=u*fn;\n", - "print (\"lower value of range=%.0f Hz\" %fl)\n", - "print ('So, the range of the frequency is from 696 to 1896 Hz')\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 5.3" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "phase displacement for the fundamental=7.37 degree\n", - "phase displacement for the 5th harmonic=40.48 degree\n" - ] - } - ], - "source": [ - "# 5.3\n", - "import math\n", - "eta=0.64;\n", - "u=0.1;\n", - "alpha_1=math.degrees(math.atan(2*eta*u/(1-u**2)))\n", - "print (\"phase displacement for the fundamental=%.2f degree\" %alpha_1)\n", - "u=0.5;\n", - "alpha_5=math.degrees(math.atan((2*eta*u/(1-u**2))))\n", - "print (\"phase displacement for the 5th harmonic=%.2f degree\" %alpha_5)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 5.4" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Percentage error for the production of 3rd harmonics=-0.56\n", - "Percentage error for the production of 5th harmonics=-1.54\n", - "Percentage error for the production of 7th harmonics=-2.97\n", - "Percentage error for the production of 11th harmonics=-7.03\n", - "Percentage error for the production of 13th harmonics=-9.55\n", - " Displacement of 13th harmonic=-1.23 degree\n" - ] - } - ], - "source": [ - "#5.4\n", - "import math\n", - "To=1.0/2000;\n", - "T=1.0/50;\n", - "#Rn=1/(1+n**2*(To/T)**2)\n", - "R1=1.0/(1+1.0**2*(To/T)**2);\n", - "R3=1.0/(1+3**2*(To/T)**2);\n", - "R5=1.0/(1+5**2*(To/T)**2);\n", - "R7=1.0/(1+7**2*(To/T)**2);\n", - "R11=1.0/(1+11**2*(To/T)**2);\n", - "R13=1.0/(1+13**2*(To/T)**2);\n", - "PE3=(R3-1/1)*100;\n", - "print (\"Percentage error for the production of 3rd harmonics=%.2f\" %PE3)\n", - "PE5=(R5-1/1)*100;\n", - "print (\"Percentage error for the production of 5th harmonics=%.2f\" %PE5)\n", - "PE7=(R7-1/1)*100;\n", - "print (\"Percentage error for the production of 7th harmonics=%.2f\" %PE7)\n", - "PE11=(R11-1/1)*100;\n", - "print (\"Percentage error for the production of 11th harmonics=%.2f\" %PE11)\n", - "PE13=(R13-1/1)*100;\n", - "print (\"Percentage error for the production of 13th harmonics=%.2f\" %PE13)\n", - "#displacement of nth harmonic alpha=atan2*n/((T/To)-n**2*(To/T))\n", - "alpha_1=math.degrees(math.atan(2*1/((T/To)-(1**2*(To/T)))));\n", - "alpha_13=(math.degrees(math.atan(2*13/((T/To)-(13**2*(To/T))))));\n", - "alpha_1_equivalent_13=13*alpha_1;\n", - "phase_displacement_13=alpha_13-alpha_1_equivalent_13;\n", - "print (\" Displacement of 13th harmonic=%.2f degree\" %phase_displacement_13)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 5.5" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "minimum tape speed=7.81 m/s\n" - ] - } - ], - "source": [ - "# 5.5\n", - "import math\n", - "W_min=2.5*6.25*10**-6;\n", - "f=500000;\n", - "S_min=W_min*f;\n", - "print (\"minimum tape speed=%.2f m/s\" %S_min)\n", - "\n", - "\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 5.6" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Number density of the tape=8 numbers/mm\n" - ] - } - ], - "source": [ - "# 5.6\n", - "import math\n", - "Num_per_sec=12000;\n", - "S=1.5*10**3;\n", - "Number_density=Num_per_sec/S;\n", - "print (\"Number density of the tape=%.0f numbers/mm\" %Number_density)\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.12+" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch6_8Xtm119.ipynb b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch6_8Xtm119.ipynb deleted file mode 100644 index f247911b..00000000 --- a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch6_8Xtm119.ipynb +++ /dev/null @@ -1,448 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Chapter 6:Cathode ray oscilloscope" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 6.1" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "amplitude of voltage after 10 ms=4.76 V\n" - ] - } - ], - "source": [ - "# 6.1\n", - "import math\n", - "Vcc=50;\n", - "t=10*10**-3;\n", - "R=500*10**3;\n", - "C=0.2*10**-6;\n", - "tc=R*C;\n", - "Vo=Vcc*(1-math.exp(-t/tc));\n", - "print (\"amplitude of voltage after 10 ms=%.2f V\" %Vo)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 6.2" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "voltage across the capacitor after 50 microsecond=1.36 V\n" - ] - } - ], - "source": [ - "# 6.2\n", - "import math\n", - "Vcc=4.76;\n", - "t=50*10**-6;\n", - "R=0.2*10**3;\n", - "C=0.2*10**-6;\n", - "tc=R*C;\n", - "Vo=Vcc*(math.exp(-t/tc));\n", - "print (\"voltage across the capacitor after 50 microsecond=%.2f V\" %Vo)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 6.3" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Rise time=0.03 us\n" - ] - } - ], - "source": [ - "# 6.3\n", - "import math\n", - "BW=10*10**6;\n", - "tr=0.35/BW*10**6;\n", - "print (\"Rise time=%.2f us\" %tr)\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 6.4" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Attenuation factor=10.0 \n" - ] - } - ], - "source": [ - "# 6.4\n", - "import math\n", - "R=(9.0*10**3)+(900+90+10);\n", - "Rt=100*10**3;\n", - "Attenuation=R/Rt;\n", - "Attenuation_factor=1/Attenuation;\n", - "print (\"Attenuation factor=%.1f \" %Attenuation_factor)\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 6.5" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Attenuation factor=11.0 \n" - ] - } - ], - "source": [ - "# 6.5\n", - "import math\n", - "R=10.0*10**3;\n", - "Ri=100*10**3;\n", - "Rt=100*10**3;\n", - "Rp=(Ri*R)/(Ri+R);\n", - "Attenuation=Rp/Rt;\n", - "Attenuation_factor=1/Attenuation;\n", - "print (\"Attenuation factor=%.1f \" %Attenuation_factor)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 6.6" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "For point A Attenuation_factor=400\n", - "voltage per division value at point A=20.00\n", - "For point B Attenuation_factor=100\n", - "voltage per division value at point B=5.00\n", - "For point C Attenuation_factor=40\n", - "voltage per division value at point C=2.00\n", - "For point D Attenuation_factor=10\n", - "voltage per division value at point D=0.50\n", - "For point E Attenuation_factor=4\n", - "voltage per division value at point E=0.20\n", - "For point F Attenuation_factor=1\n", - "voltage per division value at point F=0.05\n" - ] - } - ], - "source": [ - "# 6.6\n", - "import math\n", - "Vo=50*10**-3;\n", - "print ('For point A Attenuation_factor=400')\n", - "Attenuation_factor=400;\n", - "Vi=Attenuation_factor*Vo;\n", - "print (\"voltage per division value at point A=%.2f\" %Vi)\n", - "print ('For point B Attenuation_factor=100')\n", - "Attenuation_factor=100;\n", - "Vi=Attenuation_factor*Vo;\n", - "print (\"voltage per division value at point B=%.2f\" %Vi)\n", - "print ('For point C Attenuation_factor=40')\n", - "Attenuation_factor=40;\n", - "Vi=Attenuation_factor*Vo;\n", - "print (\"voltage per division value at point C=%.2f\" %Vi)\n", - "print ('For point D Attenuation_factor=10')\n", - "Attenuation_factor=10;\n", - "Vi=Attenuation_factor*Vo;\n", - "print (\"voltage per division value at point D=%.2f\" %Vi)\n", - "print ('For point E Attenuation_factor=4')\n", - "Attenuation_factor=4;\n", - "Vi=Attenuation_factor*Vo;\n", - "print (\"voltage per division value at point E=%.2f\" %Vi)\n", - "print ('For point F Attenuation_factor=1')\n", - "Attenuation_factor=1;\n", - "Vi=Attenuation_factor*Vo;\n", - "print (\"voltage per division value at point F=%.2f\" %Vi)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 6.7" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Attenuationn for dc=10.0\n", - "Attenuationn for ac=3.0\n", - "Therefore the attenuation with ac is different from that of dc\n" - ] - } - ], - "source": [ - "#6.7\n", - "import math\n", - "R2=100*10**3;\n", - "Vi=1.0;\n", - "R1=900*10**3;\n", - "Vo_dc=Vi*R2/(R1+R2);\n", - "k_dc=1/Vo_dc;\n", - "print (\"Attenuationn for dc=%.1f\" % k_dc)\n", - "XC2=1592.0;\n", - "Vi=1;\n", - "XC1=3183;\n", - "Vo_ac=Vi*XC2/(XC1+XC2);\n", - "k_ac=1/Vo_ac;\n", - "print (\"Attenuationn for ac=%.1f\" % k_ac)\n", - "print ('Therefore the attenuation with ac is different from that of dc')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 6.8" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "maximum velocity of the beam of electrons=16772557.39 m/s\n" - ] - } - ], - "source": [ - "# 6.8\n", - "import math\n", - "e=1.6*10**-19;\n", - "Ea=800;\n", - "m=9.1*10**-31;\n", - "Vox=(2*e*Ea/m)**0.5;\n", - "print (\"maximum velocity of the beam of electrons=%.2f m/s\" %Vox)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 6.9" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "maximum velocity of the beam of electrons=26519741.77 m/s\n", - "deflection sensitivity=0.38 mm/V\n", - "Deflection Factor=2.67 V/mm\n" - ] - } - ], - "source": [ - "# 6.9\n", - "import math\n", - "e=1.6*10**-19;\n", - "Ea=2000;\n", - "m=9.1*10**-31;\n", - "Vox=(2*e*Ea/m)**0.5;\n", - "print (\"maximum velocity of the beam of electrons=%.2f m/s\" %Vox)\n", - "L=5;\n", - "ld=1.5*10**-2;\n", - "d=5*10**-3;\n", - "S=(L*ld/2*d*Ea);\n", - "print (\"deflection sensitivity=%.2f mm/V\" %S)\n", - "G=1/S;\n", - "print (\"Deflection Factor=%.2f V/mm\" %G)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 6.10" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Input voltage required for deflection of 3mm =1.0 V\n" - ] - } - ], - "source": [ - "# 6.10\n", - "import math\n", - "Ea=2000;\n", - "L=0.3;\n", - "ld=2*10**-2;\n", - "d=5*10**-3;\n", - "D=3*10**-2;\n", - "Ed=(2*d*Ea*D)/(L*ld);\n", - "gain=100;\n", - "V_require=Ed/gain;\n", - "print (\"Input voltage required for deflection of 3mm =%.1f V\" %V_require)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exa 6.11" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "maximum velocity of the beam of electrons=26519741.77 m/s\n", - "Cutt off frequency=132.60 MHz\n" - ] - } - ], - "source": [ - "# 6.11\n", - "import math\n", - "e=1.6*10**-19;\n", - "Ea=2000;\n", - "m=9.1*10**-31;\n", - "Vox=(2*e*Ea/m)**0.5;\n", - "print (\"maximum velocity of the beam of electrons=%.2f m/s\" %Vox)\n", - "l=50*10**-3;\n", - "fc=Vox/(4*l)*10**-6;\n", - "print (\"Cutt off frequency=%.2f MHz\" %fc)\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python [Root]", - "language": "python", - "name": "Python [Root]" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.12" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch6_PAvun9L.ipynb b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch6_PAvun9L.ipynb deleted file mode 100644 index e745546c..00000000 --- a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch6_PAvun9L.ipynb +++ /dev/null @@ -1,506 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "# Chapter 6:Cathode ray oscilloscope" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 6.1" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "amplitude of voltage after 10 ms=4.76 V\n" - ] - } - ], - "source": [ - "# 6.1\n", - "import math\n", - "Vcc=50;\n", - "t=10*10**-3;\n", - "R=500*10**3;\n", - "C=0.2*10**-6;\n", - "tc=R*C;\n", - "Vo=Vcc*(1-math.exp(-t/tc));\n", - "print (\"amplitude of voltage after 10 ms=%.2f V\" %Vo)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 6.2" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "voltage across the capacitor after 50 microsecond=1.36 V\n" - ] - } - ], - "source": [ - "# 6.2\n", - "import math\n", - "Vcc=4.76;\n", - "t=50*10**-6;\n", - "R=0.2*10**3;\n", - "C=0.2*10**-6;\n", - "tc=R*C;\n", - "Vo=Vcc*(math.exp(-t/tc));\n", - "print (\"voltage across the capacitor after 50 microsecond=%.2f V\" %Vo)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 6.3" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Rise time=0.03 us\n" - ] - } - ], - "source": [ - "# 6.3\n", - "import math\n", - "BW=10*10**6;\n", - "tr=0.35/BW*10**6;\n", - "print (\"Rise time=%.2f us\" %tr)\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 6.4" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Attenuation factor=10.0 \n" - ] - } - ], - "source": [ - "# 6.4\n", - "import math\n", - "R=(9.0*10**3)+(900+90+10);\n", - "Rt=100*10**3;\n", - "Attenuation=R/Rt;\n", - "Attenuation_factor=1/Attenuation;\n", - "print (\"Attenuation factor=%.1f \" %Attenuation_factor)\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 6.5" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Attenuation factor=11.0 \n" - ] - } - ], - "source": [ - "# 6.5\n", - "import math\n", - "R=10.0*10**3;\n", - "Ri=100*10**3;\n", - "Rt=100*10**3;\n", - "Rp=(Ri*R)/(Ri+R);\n", - "Attenuation=Rp/Rt;\n", - "Attenuation_factor=1/Attenuation;\n", - "print (\"Attenuation factor=%.1f \" %Attenuation_factor)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 6.6" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "For point A Attenuation_factor=400\n", - "voltage per division value at point A=20.00\n", - "For point B Attenuation_factor=100\n", - "voltage per division value at point B=5.00\n", - "For point C Attenuation_factor=40\n", - "voltage per division value at point C=2.00\n", - "For point D Attenuation_factor=10\n", - "voltage per division value at point D=0.50\n", - "For point E Attenuation_factor=4\n", - "voltage per division value at point E=0.20\n", - "For point F Attenuation_factor=1\n", - "voltage per division value at point F=0.05\n" - ] - } - ], - "source": [ - "# 6.6\n", - "import math\n", - "Vo=50*10**-3;\n", - "print ('For point A Attenuation_factor=400')\n", - "Attenuation_factor=400;\n", - "Vi=Attenuation_factor*Vo;\n", - "print (\"voltage per division value at point A=%.2f\" %Vi)\n", - "print ('For point B Attenuation_factor=100')\n", - "Attenuation_factor=100;\n", - "Vi=Attenuation_factor*Vo;\n", - "print (\"voltage per division value at point B=%.2f\" %Vi)\n", - "print ('For point C Attenuation_factor=40')\n", - "Attenuation_factor=40;\n", - "Vi=Attenuation_factor*Vo;\n", - "print (\"voltage per division value at point C=%.2f\" %Vi)\n", - "print ('For point D Attenuation_factor=10')\n", - "Attenuation_factor=10;\n", - "Vi=Attenuation_factor*Vo;\n", - "print (\"voltage per division value at point D=%.2f\" %Vi)\n", - "print ('For point E Attenuation_factor=4')\n", - "Attenuation_factor=4;\n", - "Vi=Attenuation_factor*Vo;\n", - "print (\"voltage per division value at point E=%.2f\" %Vi)\n", - "print ('For point F Attenuation_factor=1')\n", - "Attenuation_factor=1;\n", - "Vi=Attenuation_factor*Vo;\n", - "print (\"voltage per division value at point F=%.2f\" %Vi)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 6.7" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Attenuationn for dc=10.0\n", - "Attenuationn for ac=3.0\n", - "Therefore the attenuation with ac is different from that of dc\n" - ] - } - ], - "source": [ - "#6.7\n", - "import math\n", - "R2=100*10**3;\n", - "Vi=1.0;\n", - "R1=900*10**3;\n", - "Vo_dc=Vi*R2/(R1+R2);\n", - "k_dc=1/Vo_dc;\n", - "print (\"Attenuationn for dc=%.1f\" % k_dc)\n", - "XC2=1592.0;\n", - "Vi=1;\n", - "XC1=3183;\n", - "Vo_ac=Vi*XC2/(XC1+XC2);\n", - "k_ac=1/Vo_ac;\n", - "print (\"Attenuationn for ac=%.1f\" % k_ac)\n", - "print ('Therefore the attenuation with ac is different from that of dc')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 6.8" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "maximum velocity of the beam of electrons=16772557.39 m/s\n" - ] - } - ], - "source": [ - "# 6.8\n", - "import math\n", - "e=1.6*10**-19;\n", - "Ea=800;\n", - "m=9.1*10**-31;\n", - "Vox=(2*e*Ea/m)**0.5;\n", - "print (\"maximum velocity of the beam of electrons=%.2f m/s\" %Vox)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 6.9" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "maximum velocity of the beam of electrons=26519741.77 m/s\n", - "deflection sensitivity=0.38 mm/V\n", - "Deflection Factor=2.67 V/mm\n" - ] - } - ], - "source": [ - "# 6.9\n", - "import math\n", - "e=1.6*10**-19;\n", - "Ea=2000;\n", - "m=9.1*10**-31;\n", - "Vox=(2*e*Ea/m)**0.5;\n", - "print (\"maximum velocity of the beam of electrons=%.2f m/s\" %Vox)\n", - "L=5;\n", - "ld=1.5*10**-2;\n", - "d=5*10**-3;\n", - "S=(L*ld/2*d*Ea);\n", - "print (\"deflection sensitivity=%.2f mm/V\" %S)\n", - "G=1/S;\n", - "print (\"Deflection Factor=%.2f V/mm\" %G)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 6.10" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Input voltage required for deflection of 3mm =1.0 V\n" - ] - } - ], - "source": [ - "# 6.10\n", - "import math\n", - "Ea=2000;\n", - "L=0.3;\n", - "ld=2*10**-2;\n", - "d=5*10**-3;\n", - "D=3*10**-2;\n", - "Ed=(2*d*Ea*D)/(L*ld);\n", - "gain=100;\n", - "V_require=Ed/gain;\n", - "print (\"Input voltage required for deflection of 3mm =%.1f V\" %V_require)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, - "source": [ - "## Exa 6.11" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "maximum velocity of the beam of electrons=26519741.77 m/s\n", - "Cutt off frequency=132.60 MHz\n" - ] - } - ], - "source": [ - "# 6.11\n", - "import math\n", - "e=1.6*10**-19;\n", - "Ea=2000;\n", - "m=9.1*10**-31;\n", - "Vox=(2*e*Ea/m)**0.5;\n", - "print (\"maximum velocity of the beam of electrons=%.2f m/s\" %Vox)\n", - "l=50*10**-3;\n", - "fc=Vox/(4*l)*10**-6;\n", - "print (\"Cutt off frequency=%.2f MHz\" %fc)\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.12+" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} |