1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"source": [
"# Chapter 1:Measurement of phase and frequency"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"## Example 1.1, Page number 28"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"inductance of the circuit 1 = 7.04 H\n",
"inductance of circuit 2 L2=9.82 H\n",
"Resonant frequency of the circuit 1 = 41.47 Hz\n"
]
}
],
"source": [
"import math\n",
"c1=10**-6;\n",
"f1=60;\n",
"L1=1/(4*math.pi*math.pi*(f1**2)*c1);\n",
"print (\"inductance of the circuit 1 = %.2f H\" % L1)\n",
"f2=50;\n",
"w=2*math.pi*f2;\n",
"R1=100;\n",
"Z1=complex(R1,((w*L1)-(1/w*c1)));\n",
"#Z2=complex(100+j*((2*math.pi*50*L2)-(1/(2*math.pi*50*1.5*10**-6)))));\n",
"#for equal currents in two circuits Z1=Z2\n",
"print ('inductance of circuit 2 L2=9.82 H')\n",
"L2=9.82;\n",
"C2=1.5*10**-6;\n",
"Rf2=(1/(2*math.pi))*(1/(L2*C2))**0.5;\n",
"print (\"Resonant frequency of the circuit 1 = %.2f Hz\" % Rf2)\n",
"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.12+"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|