diff options
author | hardythe1 | 2014-07-25 12:29:42 +0530 |
---|---|---|
committer | hardythe1 | 2014-07-25 12:29:42 +0530 |
commit | 9dd9b5240afe729a557c6ae683da0b31555a3860 (patch) | |
tree | 8058968e04159f02f98d46dbc664fe12a963b16e | |
parent | cc0f90b966a13e6edc60165bc4d4d36844af4f2b (diff) | |
download | Python-Textbook-Companions-9dd9b5240afe729a557c6ae683da0b31555a3860.tar.gz Python-Textbook-Companions-9dd9b5240afe729a557c6ae683da0b31555a3860.tar.bz2 Python-Textbook-Companions-9dd9b5240afe729a557c6ae683da0b31555a3860.zip |
removing unwated
99 files changed, 0 insertions, 27899 deletions
diff --git a/Engineering_Physics/Chapter1.ipynb b/Engineering_Physics/Chapter1.ipynb deleted file mode 100755 index a3614569..00000000 --- a/Engineering_Physics/Chapter1.ipynb +++ /dev/null @@ -1,357 +0,0 @@ -{ - "metadata": { - "name": "Chapter1", - "signature": "sha256:e55f587b2da98ead68f73bb2b4d29bef91aa67eb577c460fb9dcaab92acc4339" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "1: Ultrasonics" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.1, Page number 20" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#Variable declaration\nv = 1440; #velocity of ultrasonic waves(m/s)\nt = 0.33; #time elapsed(s)\n\n#Calculation\nd = v*t; #distance travelled(m)\nd1 = d/2; #depth of submarine(m)\n\n#Result\nprint \"depth of the submerged submarine is\",d1, \"m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "depth of the submerged submarine is 237.6 m\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.2, Page number 21" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nl = 40; #length of iron rod(mm)\nE = 115*10**9; #Young's modulus(N/m**2)\nrho = 7.25*10**3; #density of pure iron(kg/m**3)\n\n#Calculation\nl = l*10**-3; #length of iron rod(m)\nnew = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\nnew = new*10**-3; #natural frequency of the rod(kHz)\nnew=math.ceil(new*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"depth of the submerged submarine is\",new, \"kHz\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "depth of the submerged submarine is 49.785 kHz\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.3, Page number 21" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nl = 1; #length of quartz crystal(mm)\nE = 7.9*10**10; #Young's modulus(N/m**2)\nrho = 2650; #density(kg/m**3)\n\n#Calculation\nl = l*10**-3; #length of iron rod(m)\nnew = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\nnew = new*10**-6; \nnew=math.ceil(new*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"fundamental frequency of crystal is\",new, \"*10**6 Hz\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "fundamental frequency of crystal is 2.73 *10**6 Hz\n" - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.4, Page number 22" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nd = 0.55; #distance between 2 constructive antinodes(mm)\nnew = 1.5; #frequency of crystal(MHz)\n \n#Calculation\nnew = new*10**6; #frequency of crystal(Hz)\nd = d*10**-3; #distance between 2 constructive antinodes(m)\n#distance between 2 antinodes is given by lamda/2\nlamda = 2*d; #wavelength of ultrasonic waves(m)\nv = new*lamda; #velocity of waves(m/s)\n\n#Result\nprint \"velocity of waves is\",int(v), \"m/s\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "velocity of waves is 1650 m/s\n" - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.5, Page number 22" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nl = 50; #length of rod(mm)\nE = 11.5*10**10; #Young's modulus(N/m**2)\nrho = 7250; #density(kg/m**3)\n\n#Calculation\nl = l*10**-3; #length of iron rod(m)\nnew = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\nnew = new*10**-3; #natural frequency of the rod(kHz)\nnew = math.ceil(new*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"natural frequency of rod is\",new, \"kHz\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "natural frequency of rod is 39.83 kHz\n" - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.6, Page number 22" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nl = 2; #length of crystal(mm)\nE = 7.9*10**10; #Young's modulus(N/m**2)\nrho = 2650; #density(kg/m**3)\n\n#Calculation\nl = l*10**-3; #length of iron rod(m)\nnew = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\nnew = new*10**-6; #natural frequency of the rod(MHz)\nnew=math.ceil(new*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"frequency of crystal is\",new, \"MHz\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "frequency of crystal is 1.365 MHz\n" - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.7, Page number 23" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nl = 3; #length of crystal(mm)\nE = 8*10**10; #Young's modulus(N/m**2)\nrho = 2500; #density(kg/m**3)\n\n#Calculation\nl = l*10**-3; #length of iron rod(m)\nnew = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\nnew = new*10**-3; #natural frequency of the rod(kHz) \nnew=math.ceil(new*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"frequency of crystal is\",new, \"kHz\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "frequency of crystal is 942.81 kHz\n" - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.8, Page number 23" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nl = 1.5; #length of crystal(mm)\nE = 7.9*10**10; #Young's modulus(N/m**2)\nrho = 2650; #density(kg/m**3)\n\n#Calculation\nl = l*10**-3; #length of iron rod(m)\nnew = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\nnew = new*10**-6; #natural frequency of the rod(MHz) \nnew=math.ceil(new*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"frequency of crystal is\",new, \"MHz\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "frequency of crystal is 1.82 MHz\n" - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.9, Page number 24" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#Variable declaration\nv = 1440; #velocity of ultrasonic waves(m/s)\nt = 0.95; #time elapsed(s)\n\n#Calculation\nd = v*t; #distance travelled(m)\nd1 = d/2; #depth of sea(m)\n\n#Result\nprint \"depth of the submerged submarine is\",int(d1), \"m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "depth of the submerged submarine is 684 m\n" - } - ], - "prompt_number": 11 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.10, Page number 24" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#Variable declaration\nv = 1440; #velocity of ultrasonic waves(m/s)\nt = 0.83; #time elapsed(s)\n\n#Calculation\nd = v*t; #distance travelled(m)\nd1 = d/2; #depth of submarine(m)\n\n#Result\nprint \"depth of the submerged submarine is\",d1, \"m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "depth of the submerged submarine is 597.6 m\n" - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.11, Page number 24" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\naS = 1050; #total absorption inside hall(Sabine)\nV = 9000; #volume of cinema hall(m**3)\n\n#Calculation\nT = 0.165*V/aS; #reverberation time of hall(s)\nT = math.ceil(T*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint \"reverberation time of the hall is\",T, \"s\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "reverberation time of the hall is 1.4143 s\n" - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.12, Page number 25" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\na = 0.65; #average absorption coefficient(Sabine/m**2)\nV = 13500; #volume of auditorium(m**3)\nT = 1.2; #reverberation time of hall(s)\n\n#Calculation\nS = 0.165*V/(a*T); #reverberation time of hall(s)\nS = math.ceil(S*10)/10; #rounding off to 1 decimal\n\n#Result\nprint \"total area of interior surface is\",S, \"m**2\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "total area of interior surface is 2855.8 m**2\n" - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.13, Page number 25" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nV = 15000; #volume of cinema hall(m**3)\nT1 = 1.3; #initial reverberation time of hall(s)\na1S1 = 300; #number of chairs placed\n\n#Calculation\naS = 0.165*V/T1; #total absorption of hall\nT2 = (0.165*V)/(aS+a1S1); #reverberation time of hall after adding chairs(s)\nT2 = math.ceil(T2*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint \"reverberation time of the hall after adding chairs is\",T2, \"s\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "reverberation time of the hall after adding chairs is 1.1231 s\n" - } - ], - "prompt_number": 15 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.14, Page number 26" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#Variable declaration\nv = 1440; #velocity of ultrasonic waves(m/s)\nt = 0.5; #time elapsed(s)\n\n#Calculation\nd = v*t; #distance travelled(m)\nd1 = d/2; #depth of submarine(m)\n\n#Result\nprint \"depth of the submerged submarine is\",int(d1), \"m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "depth of the submerged submarine is 360 m\n" - } - ], - "prompt_number": 16 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.15, Page number 26" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nd = 0.4; #distance between 2 constructive antinodes(mm)\nnew = 1.5; #frequency of crystal(MHz)\n \n#Calculation\nnew = new*10**6; #frequency of crystal(Hz)\nd = d*10**-3; #distance between 2 constructive antinodes(m)\n#distance between 2 antinodes is given by lamda/2\nlamda = 2*d; #wavelength of ultrasonic waves(m)\nv = new*lamda; #velocity of waves(m/s)\n\n#Result\nprint \"velocity of waves is\",int(v), \"m/s\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "velocity of waves is 1200 m/s\n" - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.16, Page number 26" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nl = 40; #length of iron rod(mm)\nE = 11.5*10**10; #Young's modulus(N/m**2)\nrho = 7250; #density of pure iron(kg/m**3)\n\n#Calculation\nl = l*10**-3; #length of iron rod(m)\nnew = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\nnew = new*10**-3; #natural frequency of the rod(kHz)\nnew=math.ceil(new*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"depth of the submerged submarine is\",new, \"kHz\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "depth of the submerged submarine is 49.785 kHz\n" - } - ], - "prompt_number": 18 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter10.ipynb b/Engineering_Physics/Chapter10.ipynb deleted file mode 100755 index 051ee9c1..00000000 --- a/Engineering_Physics/Chapter10.ipynb +++ /dev/null @@ -1,62 +0,0 @@ -{ - "metadata": { - "name": "Chapter10" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "10: Dielectric Materials" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 10.1, Page number 289" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nepsilon_r = 1.0000684; #dielectric constant\nN = 2.7*10**25; #number of atoms(per m**3)\nepsilon0 = 8.85*10**-12; #permittivity of free space\n\n#Calculation\nalpha_e = epsilon0*(epsilon_r-1)/N; #electronic polarizability(Fm**2)\n\n#Result\nprint \"electronic polarizability is\",alpha_e,\"Fm**2\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "electronic polarizability is 2.242e-41 Fm**2\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 10.2, Page number 290" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nepsilon_r = 1.0024; #relative permittivity\nN = 2.7*10**25; #number of atoms(per m**3)\nepsilon0 = 8.85*10**-12; #permittivity of free space\n\n#Calculation\nalpha_e = epsilon0*(epsilon_r-1)/N; #electronic polarizability(Fm**2)\n\n#Result\nprint \"electronic polarizability is\",alpha_e,\"Fm**2\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "electronic polarizability is 7.86666666667e-40 Fm**2\n" - } - ], - "prompt_number": 2 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter10_1.ipynb b/Engineering_Physics/Chapter10_1.ipynb deleted file mode 100755 index 051ee9c1..00000000 --- a/Engineering_Physics/Chapter10_1.ipynb +++ /dev/null @@ -1,62 +0,0 @@ -{ - "metadata": { - "name": "Chapter10" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "10: Dielectric Materials" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 10.1, Page number 289" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nepsilon_r = 1.0000684; #dielectric constant\nN = 2.7*10**25; #number of atoms(per m**3)\nepsilon0 = 8.85*10**-12; #permittivity of free space\n\n#Calculation\nalpha_e = epsilon0*(epsilon_r-1)/N; #electronic polarizability(Fm**2)\n\n#Result\nprint \"electronic polarizability is\",alpha_e,\"Fm**2\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "electronic polarizability is 2.242e-41 Fm**2\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 10.2, Page number 290" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nepsilon_r = 1.0024; #relative permittivity\nN = 2.7*10**25; #number of atoms(per m**3)\nepsilon0 = 8.85*10**-12; #permittivity of free space\n\n#Calculation\nalpha_e = epsilon0*(epsilon_r-1)/N; #electronic polarizability(Fm**2)\n\n#Result\nprint \"electronic polarizability is\",alpha_e,\"Fm**2\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "electronic polarizability is 7.86666666667e-40 Fm**2\n" - } - ], - "prompt_number": 2 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter11_1.ipynb b/Engineering_Physics/Chapter11_1.ipynb deleted file mode 100755 index d9dc8a6d..00000000 --- a/Engineering_Physics/Chapter11_1.ipynb +++ /dev/null @@ -1,322 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:9d08f8379ee15c99ce5ad85c8c37d7ad2a3a702f52e1db068a113b3963c85435" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "11: Lasers" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 11.1, Page number 249" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "h = 6.626*10**-34; #Planck's constant(Js)\n", - "c = 3*10**8; #Speed of light in free space(m/s)\n", - "k = 1.38*10**-23; #Boltzmann constant(J/K)\n", - "T = 300; #Temperature at absolute scale(K)\n", - "lamda1 = 5500; #Wavelength of visible light(A)\n", - "lamda2 = 10**-2; #Wavelength of microwave(m)\n", - "\n", - "#Calculation\n", - "lamda1 = lamda1*10**-10; #Wavelength of visible light(m)\n", - "rate_ratio = math.exp(h*c/(lamda1*k*T))-1; #Ratio of spontaneous emission to stimulated emission\n", - "rate_ratio1 = math.exp(h*c/(lamda2*k*T))-1; #Ratio of spontaneous emission to stimulated emission\n", - "rate_ratio1 = math.ceil(rate_ratio1*10**5)/10**5; #rounding off the value of rate_ratio1 to 5 decimals\n", - "\n", - "#Result\n", - "print \"The ratio of spontaneous emission to stimulated emission for visible region is\",rate_ratio\n", - "print \"The ratio of spontaneous emission to stimulated emission for microwave region is\", rate_ratio1" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The ratio of spontaneous emission to stimulated emission for visible region is 8.19422217477e+37\n", - "The ratio of spontaneous emission to stimulated emission for microwave region is 0.00482\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 11.2, Page number 250" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "e = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)\n", - "h = 6.626*10**-34; #Planck's constant(Js)\n", - "c = 3*10**8; #Speed of light in free space(m/s)\n", - "lamda = 690; #Wavelength of laser light(nm)\n", - "E_lower = 30.5; #Energy of lower state(eV)\n", - "\n", - "#Calculation\n", - "lamda = lamda*10**-9; #Wavelength of laser light(m)\n", - "E = h*c/lamda; #Energy of the laser light(J)\n", - "E = E/e; #Energy of the laser light(eV)\n", - "E_ex = E_lower + E; #Energy of excited state of laser system(eV)\n", - "E_ex = math.ceil(E_ex*10**2)/10**2; #rounding off the value of E_ex to 2 decimals\n", - "\n", - "#Result\n", - "print \"The energy of excited state of laser system is\",E_ex, \"eV\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The energy of excited state of laser system is 32.31 eV\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 11.3, Page number 250" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "import numpy as np\n", - "\n", - "#Variable declaration\n", - "h = 6.626*10**-34; #Planck's constant(Js)\n", - "k = 1.38*10**-23; #Boltzmann constant(J/K)\n", - "\n", - "#Calculation\n", - "#Stimulated Emission = Spontaneous Emission <=> exp(h*f/(k*T))-1 = 1 i.e.\n", - "#f/T = log(2)*k/h = A\n", - "A = np.log(2)*k/h; #Frequency per unit temperature(Hz/K)\n", - "A = A/10**10;\n", - "A = math.ceil(A*10**3)/10**3; #rounding off the value of A to 3 decimals\n", - "\n", - "#Result\n", - "print \"The stimulated emission equals spontaneous emission iff f/T =\",A,\"*10**10 Hz/k\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The stimulated emission equals spontaneous emission iff f/T = 1.444 *10**10 Hz/k\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 11.4, Page number 250" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "lamda = 500; #Wavelength of laser light(nm)\n", - "f = 15; #Focal length of the lens(cm)\n", - "d = 2; #Diameter of the aperture of source(cm)\n", - "P = 5; #Power of the laser(mW)\n", - "\n", - "#Calculation\n", - "P = P*10**-3; #Power of the laser(W)\n", - "lamda = lamda*10**-9; #Wavelength of laser light(m)\n", - "d = d*10**-2; #Diameter of the aperture of source(m)\n", - "f = f*10**-2; #Focal length of the lens(m)\n", - "a = d/2; #Radius of the aperture of source(m)\n", - "A = math.pi*lamda**2*f**2/a**2; #Area of the spot at the focal plane, metre square\n", - "I = P/A; #Intensity at the focus(W/m**2)\n", - "I = I/10**7;\n", - "I = math.ceil(I*10**4)/10**4; #rounding off the value of I to 1 decimal\n", - "\n", - "#Result\n", - "print \"The area of the spot at the focal plane is\",A, \"m**2\"\n", - "print \"The intensity at the focus is\",I,\"*10**7 W/m**2\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The area of the spot at the focal plane is 1.76714586764e-10 m**2\n", - "The intensity at the focus is 2.8295 *10**7 W/m**2\n" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 11.5, Page number 251" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "h = 6.626*10**-34; #Planck's constant(Js)\n", - "c = 3*10**8; #Speed of light in free space(m/s)\n", - "lamda = 1064; #Wavelength of laser light(nm)\n", - "P = 0.8; #Average power output per laser pulse(W)\n", - "dt = 25; #Pulse width of laser(ms)\n", - "\n", - "#Calculation\n", - "dt = dt*10**-3; #Pulse width of laser(s)\n", - "lamda = lamda*10**-9; #Wavelength of laser light(m)\n", - "E = P*dt; #Energy released per pulse(J)\n", - "E1 = E*10**3;\n", - "N = E/(h*c/lamda); #Number of photons in a pulse\n", - "\n", - "#Result\n", - "print \"The energy released per pulse is\",E1,\"*10**-3 J\"\n", - "print \"The number of photons in a pulse is\", N\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The energy released per pulse is 20.0 *10**-3 J\n", - "The number of photons in a pulse is 1.07053023443e+17\n" - ] - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 11.6, Page number 251" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "lamda = 693; #Wavelength of laser beam(nm)\n", - "D = 3; #Diameter of laser beam(mm)\n", - "d = 300; #Height of a satellite above the surface of earth(km)\n", - "\n", - "#Calculation\n", - "D = D*10**-3; #Diameter of laser beam(m)\n", - "lamda = lamda*10**-9; #Wavelength of laser beam(m)\n", - "d = d*10**3; #Height of a satellite above the surface of earth(m)\n", - "d_theta = 1.22*lamda/D; #Angular spread of laser beam(rad)\n", - "dtheta = d_theta*10**4;\n", - "dtheta = math.ceil(dtheta*10**2)/10**2; #rounding off the value of dtheta to 2 decimals\n", - "a = d_theta*d; #Diameter of the beam on the satellite(m)\n", - "a = math.ceil(a*10)/10; #rounding off the value of a to 1 decimal\n", - "\n", - "#Result\n", - "print \"The height of a satellite above the surface of earth is\",dtheta,\"*10**-4 rad\"\n", - "print \"The diameter of the beam on the satellite is\",a, \"m\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The height of a satellite above the surface of earth is 2.82 *10**-4 rad\n", - "The diameter of the beam on the satellite is 84.6 m\n" - ] - } - ], - "prompt_number": 25 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter12_1.ipynb b/Engineering_Physics/Chapter12_1.ipynb deleted file mode 100755 index c394fc3a..00000000 --- a/Engineering_Physics/Chapter12_1.ipynb +++ /dev/null @@ -1,234 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:435dc2503f7ab5f5c4bb167df36c6ef12f8211207bc52e60997787c4d2bd8d5c" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "12: Holography and Fibre Optics" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 12.1, Page number 271" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "n1 = 1.43; #Refractive index of fibre core\n", - "n2 = 1.4; #Refractive index of fibre cladding\n", - "\n", - "#Calculation\n", - "#As sin (alpha_c) = n2/n1, solving for alpha_c\n", - "alpha_c = math.asin(n2/n1); #Critical angle for optical fibre(rad)\n", - "alpha_c = alpha_c*57.2957795; #Critical angle for optical fibre(degrees)\n", - "alpha_c = math.ceil(alpha_c*10**3)/10**3; #rounding off the value of alpha_c to 3 decimals\n", - "#AS cos(theta_c) = n2/n1, solving for theta_c\n", - "theta_c = math.acos(n2/n1); #Critical propagation angle for optical fibre(rad)\n", - "theta_c = theta_c*57.2957795; #Critical propagation angle for optical fibre(degrees)\n", - "theta_c = math.ceil(theta_c*10**2)/10**2; #rounding off the value of theta_c to 2 decimals\n", - "NA = math.sqrt(n1**2 - n2**2); #Numerical aperture for optical fibre\n", - "NA = math.ceil(NA*10**3)/10**3; #rounding off the value of NA to 3 decimals\n", - "\n", - "#Result\n", - "print \"The critical angle for optical fibre is\",alpha_c, \"degrees\"\n", - "print \"The critical propagation angle for optical fibre is\",theta_c, \"degrees\"\n", - "print \"Numerical aperture for optical fibre is\",NA\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The critical angle for optical fibre is 78.244 degrees\n", - "The critical propagation angle for optical fibre is 11.76 degrees\n", - "Numerical aperture for optical fibre is 0.292\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 12.2, Page number 271" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "n1 = 1.45; #Refractive index of fibre core\n", - "n2 = 1.4; #Refractive index of fibre cladding\n", - "\n", - "#Calculation\n", - "NA = math.sqrt(n1**2 - n2**2); #Numerical aperture for optical fibre\n", - "NA = math.ceil(NA*10**4)/10**4; #rounding off the value of NA to 4 decimals\n", - "#As sin(theta_a) = sqrt(n1^2 - n2^2), solving for theta_a\n", - "theta_a = math.asin(math.sqrt(n1**2 - n2**2)); #Half of acceptance angle of optical fibre(rad)\n", - "theta_a = theta_a*57.2957795; #Half of acceptance angle of optical fibre(degrees)\n", - "theta_accp = 2*theta_a; #Acceptance angle of optical fibre(degrees)\n", - "theta_accp = math.ceil(theta_accp*10**2)/10**2; #rounding off the value of theta_accp to 2 decimals\n", - "Delta = (n1 - n2)/n1; #Relative refractive index difference\n", - "Delta = math.ceil(Delta*10**4)/10**4; #rounding off the value of Delta to 4 decimals\n", - "\n", - "#Result\n", - "print \"Numerical aperture for optical fibre is\", NA\n", - "print \"The acceptance angle of optical fibre is\",theta_accp, \"degrees\"\n", - "print \"Relative refractive index difference is\", Delta\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Numerical aperture for optical fibre is 0.3775\n", - "The acceptance angle of optical fibre is 44.36 degrees\n", - "Relative refractive index difference is 0.0345\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 12.3, Page number 271" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "n1 = 1.55; #Refractive index of fibre core\n", - "n2 = 1.53; #Refractive index of fibre cladding\n", - "n0 = 1.3; #Refractive index of medium\n", - "\n", - "#Calculation\n", - "NA = math.sqrt(n1**2 - n2**2); #Numerical aperture for optical fibre\n", - "NA = math.ceil(NA*10**4)/10**4; #rounding off the value of NA to 4 decimals\n", - "#n0*sin(theta_a) = sqrt(n1^2 - n2^2) = NA, solving for theta_a\n", - "theta_a = math.asin(math.sqrt(n1**2 - n2**2)/n0); #Half of acceptance angle of optical fibre(rad)\n", - "theta_a = theta_a*57.2957795; #Half of acceptance angle of optical fibre(degrees)\n", - "theta_accp = 2*theta_a; #Acceptance angle of optical fibre(degrees)\n", - "\n", - "#Result\n", - "print \"Numerical aperture for step index fibre is\",NA\n", - "print \"The acceptance angle of step index fibre is\",int(theta_accp), \"degrees\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Numerical aperture for step index fibre is 0.2482\n", - "The acceptance angle of step index fibre is 22 degrees\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 12.4, Page number 271 Theoritical proof" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 12.5, Page number 272" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "alpha = 2; #Power loss through optical fibre(dB/km)\n", - "P_in = 500; #Poer input of optical fibre(micro-watt)\n", - "z = 10; #Length of the optical fibre(km)\n", - "\n", - "#Calculation\n", - "#As alpha = 10/z*log10(P_in/P_out), solving for P_out\n", - "P_out = P_in/10**(alpha*z/10); #Output power in fibre optic communication(micro-Watt)\n", - "\n", - "#Result\n", - "print \"The output power in fibre optic communication is\",P_out, \"micro-Watt\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The output power in fibre optic communication is 5.0 micro-Watt\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter13_1.ipynb b/Engineering_Physics/Chapter13_1.ipynb deleted file mode 100755 index 75d0d1f7..00000000 --- a/Engineering_Physics/Chapter13_1.ipynb +++ /dev/null @@ -1,340 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:be254bf95838dd01a87a63582117a886c3167a80cf387f9901b2e2de7a990b8e" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "13: Dielectric Properties of Materials" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 13.1, Page number 287" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "epsilon_0 = 8.85*10**-12; #Absolute electrical permittivity of free space(F/m)\n", - "R = 0.52; #Radius of hydrogen atom(A)\n", - "n = 9.7*10**26; #Number density of hydrogen(per metre cube)\n", - "\n", - "#Calculation\n", - "R = R*10**-10; #Radius of hydrogen atom(m)\n", - "alpha_e = 4*math.pi*epsilon_0*R**3; #Electronic polarizability of hydrogen atom(Fm**2)\n", - "\n", - "#Result\n", - "print \"The electronic polarizability of hydrogen atom is\", alpha_e, \"Fm**2\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The electronic polarizability of hydrogen atom is 1.56373503182e-41 Fm**2\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 13.2, Page number 287" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "epsilon_0 = 8.854*10**-12; #Absolute electrical permittivity of free space(F/m)\n", - "A = 100; #Area of a plate of parallel plate capacitor(cm**2)\n", - "d = 1; #Distance between the plates of the capacitor(cm)\n", - "V = 100; #Potential applied to the plates of the capacitor(V)\n", - "\n", - "#Calculation\n", - "A= A*10**-4; #Area of a plate of parallel plate capacitor(m**2)\n", - "d = d*10**-2; #Distance between the plates of the capacitor(m)\n", - "C = epsilon_0*A/d; #Capacitance of parallel plate capacitor(F)\n", - "Q = C*V; #Charge on the plates of the capacitor(C)\n", - "\n", - "#Result\n", - "print \"The capacitance of parallel plate capacitor is\",C, \"F\"\n", - "print \"The charge on the plates of the capacitor is\",Q, \"C\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The capacitance of parallel plate capacitor is 8.854e-12 F\n", - "The charge on the plates of the capacitor is 8.854e-10 C\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 13.3, Page number 288" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "epsilon_0 = 8.854*10**-12; #Absolute electrical permittivity of free space(F/m)\n", - "epsilon_r = 5.0; #Dielectric constant of the material between the plates of capacitor\n", - "V = 15; #Potential difference applied between the plates of the capacitor(V)\n", - "d = 1.5; #Separation between the plates of the capacitor(mm)\n", - "\n", - "#Calculation\n", - "d = d*10**-3; #Separation between the plates of the capacitor(m)\n", - "#Electric displacement, D = epsilon_0*epsilon_r*E, as E = V/d, so \n", - "D = epsilon_0*epsilon_r*V/d; #Dielectric displacement(C/m**2)\n", - "\n", - "#Result\n", - "print \"The dielectric displacement is\",D, \"C/m**2\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The dielectric displacement is 4.427e-07 C/m**2\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 13.4, Page number 288" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "epsilon_0 = 8.854*10**-12; #Absolute electrical permittivity of free space(F/m)\n", - "N = 3*10**28; #Number density of solid elemental dielectric(atoms/metre cube)\n", - "alpha_e = 10**-40; #Electronic polarizability(Fm**2)\n", - "\n", - "#Calculation\n", - "epsilon_r = 1 + (N*alpha_e/epsilon_0); #Relative dielectric constant of the material\n", - "epsilon_r = math.ceil(epsilon_r*10**3)/10**3; #rounding off the value of epsilon_r to 3 decimals\n", - "\n", - "#Result\n", - "print \"The Relative dielectric constant of the material is\",epsilon_r\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Relative dielectric constant of the material is 1.339\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 13.5, Page number 288" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "N_A = 6.02*10**23; #Avogadro's number(per mole)\n", - "epsilon_0 = 8.854*10**-12; #Absolute electrical permittivity of free space(F/m)\n", - "epsilon_r = 3.75; #Relative dielectric constant\n", - "d = 2050; #Density of sulphur(kg/metre cube)\n", - "y = 1/3; #Internal field constant\n", - "M = 32; #Atomic weight of sulphur(g/mol)\n", - "\n", - "#Calculation\n", - "N = N_A*10**3*d/M; #Number density of atoms of sulphur(per metre cube)\n", - "#Lorentz relation for local fields give E_local = E + P/(3*epsilon_0) which gives\n", - "#(epsilon_r - 1)/(epsilon_r + 2) = N*alpha_e/(3*epsilon_0), solving for alpha_e\n", - "alpha_e = (epsilon_r - 1)/(epsilon_r + 2)*3*epsilon_0/N; #Electronic polarizability of sulphur(Fm**2)\n", - "\n", - "#Result\n", - "print \"The electronic polarizability of sulphur is\",alpha_e, \"Fm**2\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The electronic polarizability of sulphur is 3.2940125351e-40 Fm**2\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 13.6, Page number 289" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "N = 3*10**28; #Number density of atoms of dielectric material(per metre cube)\n", - "epsilon_0 = 8.854*10**-12; #Absolute electrical permittivity of free space(F/m)\n", - "n = 1.6; #Refractive index of dielectric material\n", - "\n", - "#Calculation\n", - "#As (n^2 - 1)/(n^2 + 2) = N*alpha_e/(3*epsilon_0), solving for alpha_e\n", - "alpha_e = (n**2 - 1)/(n**2 + 2)*3*epsilon_0/N; #Electronic polarizability of dielectric material(Fm**2)\n", - "\n", - "#Result\n", - "print \"The electronic polarizability of dielectric material is\",alpha_e, \"Fm**2\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The electronic polarizability of dielectric material is 3.029e-40 Fm**2\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 13.7, Page number 289" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "epsilon_r = 4.9; #Absolute relative dielectric constant of material(F/m)\n", - "n = 1.6; #Refractive index of dielectric material\n", - "\n", - "#Calculation\n", - "#As (n^2 - 1)/(n^2 + 2)*(alpha_e + alpha_i)/alpha_e = N*(alpha_e + alpha_i)/(3*epsilon_0) = (epsilon_r - 1)/(epsilon_r + 2)\n", - "#let alpha_ratio = alpha_i/alpha_e\n", - "alpha_ratio = ((epsilon_r - 1)/(epsilon_r + 2)*(n**2 + 2)/(n**2 - 1) - 1)**(-1); #Ratio of electronic polarizability to ionic polarizability\n", - "alpha_ratio = math.ceil(alpha_ratio*10**3)/10**3; #rounding off the value of alpha_ratio to 3 decimals\n", - "\n", - "#Result\n", - "print \"The ratio of electronic polarizability to ionic polarizability is\",alpha_ratio" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The ratio of electronic polarizability to ionic polarizability is 1.534\n" - ] - } - ], - "prompt_number": 9 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter14_1.ipynb b/Engineering_Physics/Chapter14_1.ipynb deleted file mode 100755 index 1191c56f..00000000 --- a/Engineering_Physics/Chapter14_1.ipynb +++ /dev/null @@ -1,359 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:03a15735237144f42a49956ccb15694e3ce619fee35260180caccfe8f848e036" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "14: Magnetic Properties of Materials" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 14.1, Page number 306" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "N = 6.02*10**23; #Avogadro's number(per mole)\n", - "A = 56; #Atomic weight of the substance(g/mole)\n", - "d = 7.9; #Density of the substance(g/cm**3)\n", - "m_B = 9.27*10**-24; #Bohr's Magneton(J/T)\n", - "\n", - "#Calculation\n", - "m = 2.2*m_B; #Magnetic moment of substance(J/T)\n", - "n = d*N/A ; #Number of atoms per unit volume of the substance(per cm**3)\n", - "n = n*10**6; #Number of atoms per unit volume of the substance(per m**3)\n", - "M = n*m; #Spontaneous magnetisation of the substance(A/m)\n", - "M = M/10**6;\n", - "M = math.ceil(M*10**3)/10**3; #rounding off the value of M to 3 decimals\n", - "\n", - "#Result\n", - "print \"The spontaneous magnetisation of the substance is\",M,\"*10**6 A/m\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The spontaneous magnetisation of the substance is 1.732 *10**6 A/m\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 14.2, Page number 307" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "H = 200; #Field strength to which the ferromagnetic material is subjected(A/m)\n", - "M = 3100; #Magnetisation of the ferromagnetic material(A/m)\n", - "\n", - "#Calculation\n", - "chi = M/H; #Magnetic susceptibility\n", - "mew_r = 1 + chi; #Relative permeability of ferromagnetic material\n", - "\n", - "#Result\n", - "print \"The relative permeability of ferromagnetic material is\",mew_r" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The relative permeability of ferromagnetic material is 16.5\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 14.3, Page number 307" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "H = 300; #Field strength to which the ferromagnetic material is subjected(A/m)\n", - "M = 4400; #Magnetisation of the ferromagnetic material(A/m)\n", - "\n", - "#Calculation\n", - "chi = M/H; #Magnetic susceptibility\n", - "mew_r = 1 + chi; #Relative permeability of ferromagnetic material\n", - "mew_r = math.ceil(mew_r*100)/100; #rounding off the value of mew_r to 2 decimals\n", - "\n", - "#Result\n", - "print \"The relative permeability of ferromagnetic material is\",mew_r\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The relative permeability of ferromagnetic material is 15.67\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 14.4, Page number 307" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "mew_0 = 4*math.pi*10**-7; #Magnetic permeability of free space(Tm/A)\n", - "H = 10000; #Field strength to which the diamagnetic material is subjected(A/m)\n", - "chi = -0.4*10**-5; #Magnetic susceptibility\n", - "\n", - "#Calculation\n", - "M = chi*H; #Magnetisation of the diamagnetic material(A/m)\n", - "B = mew_0*(H + M); #Magnetic flux density of diamagnetic material(T)\n", - "B = math.ceil(B*10**4)/10**4; #rounding off the value of B to 4 decimals\n", - "\n", - "#Result\n", - "print \"The magnetisation of diamagnetic material is\",M, \"A/m\"\n", - "print \"The magnetic flux density of diamagnetic material is\",B, \"T\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The magnetisation of diamagnetic material is -0.04 A/m\n", - "The magnetic flux density of diamagnetic material is 0.0126 T\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 14.5, Page number 307" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "mew_0 = 4*math.pi*10**-7; #Magnetic permeability of free space(Tm/A)\n", - "H = 1.2*10**5; #Field strength to which the diamagnetic material is subjected(A/m)\n", - "chi = -4.2*10**-6; #Magnetic susceptibility\n", - "\n", - "#Calculation\n", - "M = chi*H; #Magnetisation of the diamagnetic material(A/m)\n", - "B = mew_0*(H + M); #Magnetic flux density of diamagnetic material(T)\n", - "B = math.ceil(B*10**3)/10**3; #rounding off the value of B to 3 decimals\n", - "mew_r = M/H + 1; #The relative permeability of diamagnetic material\n", - "mew_r = math.ceil(mew_r*10**6)/10**6; #rounding off the value of mew_r to 6 decimals\n", - "\n", - "#Result\n", - "print \"The magnetisation of diamagnetic material is\",M, \"A/m\"\n", - "print \"The magnetic flux density of diamagnetic material is\",B, \"T\"\n", - "print \"The relative permeability of diamagnetic material is\",mew_r\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The magnetisation of diamagnetic material is -0.504 A/m\n", - "The magnetic flux density of diamagnetic material is 0.151 T\n", - "The relative permeability of diamagnetic material is 0.999996\n" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 14.6, Page number 308" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "chi = 5.6*10**-6; #Magnetic susceptibility of diamagnetic material\n", - "m = 9.1*10**-31; #Mass of an electron(kg)\n", - "mew_0 = 4*math.pi*10**-7; #Magnetic permeability of free space(Tm/A)\n", - "Z = 1; #Atomic number\n", - "e = 1.6*10**-19; #Electronic charge(C)\n", - "a = 2.53; #Lattice parameter of bcc structure(A)\n", - "\n", - "#Calculation\n", - "a = a*10**-10; #Lattice parameter of bcc structure(m)\n", - "N = 2/a**3; #The number of electrons per unit volume(per metre cube)\n", - "r = math.sqrt(chi*6*m/(mew_0*Z*e**2*N)); #Mean radius of body centered cubic structure(m)\n", - "r = r*10**10; #Mean radius of body centered cubic structure(A)\n", - "r = math.ceil(r*100)/100; #rounding off the value of r to 2 decimals\n", - "\n", - "#Result\n", - "print \"The mean radius of body centered cubic structure is\",r, \"A\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The mean radius of body centered cubic structure is 0.88 A\n" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 14.7, Page number 308" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "mew_0 = 4*math.pi*10**-7; #Magnetic permeability of free space(Tm/A)\n", - "N_A = 6.02*10**26; #Avogadro's number(per kmol)\n", - "rho = 4370; #Density of paramegnetic salt(kg/metre cube)\n", - "M = 168.5; #Molecular weight of paramagnetic salt(g/mol)\n", - "T = 27; #Temperature of paramagnetic salt(C)\n", - "H = 2*10**5; #Field strength to which the paramagnetic salt is subjected(A/m)\n", - "mew_B = 9.27*10**-24; #Bohr's magneton(Am**2)\n", - "p = 2; #Number of Bohr magnetons per molecule\n", - "k = 1.38*10**-23; #Boltzmann constant(J/K)\n", - "\n", - "#Calculation\n", - "T = T+273; #Temperature of paramagnetic salt(K)\n", - "N = rho*N_A/M; #Total density of atoms in the paramagnetic salt(per meter cube)\n", - "chi_para = mew_0*N*p**2*mew_B**2/(3*k*T); #Magnetic susceptibility of paramagnetic salt\n", - "chi_para = chi_para*10**4;\n", - "chi_para = math.ceil(chi_para*10**2)/10**2; #rounding off the value of chi_para to 2 decimals\n", - "M = chi*H; #Magnetisation of paramagnetic salt(A/m)\n", - "M = math.ceil(M*10)/10; #rounding off the value of M to 1 decimal\n", - "\n", - "#Result\n", - "print \"The magnetic susceptibility of paramagnetic salt is\",chi_para,\"*10**-4\"\n", - "print \"The magnetisation of paramagnetic salt is\",M, \"A/m\"\n", - "\n", - "#answer for magnetisation is not given in the textbook" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The magnetic susceptibility of paramagnetic salt is 5.43 *10**-4\n", - "The magnetisation of paramagnetic salt is 1.2 A/m\n" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter15_1.ipynb b/Engineering_Physics/Chapter15_1.ipynb deleted file mode 100755 index feff19f4..00000000 --- a/Engineering_Physics/Chapter15_1.ipynb +++ /dev/null @@ -1,303 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:16c7c597c3247782caaceb2ade68420e223aff8e960ccd80320d3e5521140cc3" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "15: Thermal Properties " - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 15.1, Page number 323" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "k = 1.38*10**-23; #Boltzmann constant(J/K)\n", - "h = 6.626*10**-34; #Planck's constant(Js)\n", - "f_D = 64*10**11; #Debye frequency for Al(Hz)\n", - "\n", - "#Calculation\n", - "theta_D = h*f_D/k; #Debye temperature(K)\n", - "theta_D = math.ceil(theta_D*10)/10; #rounding off the value of theta_D to 1 decimal\n", - "\n", - "#Result\n", - "print \"The Debye temperature of aluminium is\",theta_D, \"K\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Debye temperature of aluminium is 307.3 K\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 15.2, Page number 323" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "N = 6.02*10**26; #Avogadro's number(per kmol)\n", - "k = 1.38*10**-23; #Boltzmann constant(J/K)\n", - "h = 6.626*10**-34; #Planck's constant(Js)\n", - "f_D = 40.5*10**12; #Debye frequency for Al(Hz)\n", - "T = 30; #Temperature of carbon(Ks)\n", - "\n", - "#Calculation\n", - "theta_D = h*f_D/k; #Debye temperature(K)\n", - "C_l = 12/5*math.pi**4*N*k*(T/theta_D)**3; #Lattice specific heat of carbon(J/k-mol/K)\n", - "C_l = math.ceil(C_l*10**3)/10**3; #rounding off the value of C_l to 3 decimals\n", - "\n", - "#Result\n", - "print \"The lattice specific heat of carbon is\",C_l, \"J/k-mol/K\"\n", - "\n", - "#answer given in the book is wrong in the 2nd decimal" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The lattice specific heat of carbon is 7.132 J/k-mol/K\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 15.3, Page number 323" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "k = 1.38*10**-23; #Boltzmann constant(J/K)\n", - "h = 6.626*10**-34; #Planck's constant(Js)\n", - "theta_E = 1990; #Einstein temperature of Cu(K)\n", - "\n", - "#Calculation\n", - "f_E = k*theta_E/h; #Einstein frequency for Cu(K)\n", - "\n", - "#Result\n", - "print \"The Einstein frequency for Cu is\",f_E, \"Hz\"\n", - "print \"The frequency falls in the near infrared region\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Einstein frequency for Cu is 4.14458194989e+13 Hz\n", - "The frequency falls in the near infrared region\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 15.4, Page number 323" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "e = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)\n", - "N = 6.02*10**23; #Avogadro's number(per mol)\n", - "T = 0.05; #Temperature of Cu(K)\n", - "E_F = 7; #Fermi energy of Cu(eV)\n", - "k = 1.38*10**-23; #Boltzmann constant(J/K)\n", - "h = 6.626*10**-34; #Planck's constant(Js)\n", - "theta_D = 348; #Debye temperature of Cu(K)\n", - "\n", - "#Calculation\n", - "C_e = math.pi**2*N*k**2*T/(2*E_F*e); #Electronic heat capacity of Cu(J/mol/K)\n", - "C_V = (12/5)*math.pi**4*(N*k)*(T/theta_D)**3; #Lattice heat capacity of Cu(J/mol/K)\n", - "\n", - "#Result\n", - "print \"The electronic heat capacity of Cu is\",C_e, \"J/mol/K\"\n", - "print \"The lattice heat capacity of Cu is\",C_V, \"J/mol/K\"\n", - "\n", - "#answer for lattice heat capacity given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The electronic heat capacity of Cu is 2.52566877726e-05 J/mol/K\n", - "The lattice heat capacity of Cu is 5.76047891492e-09 J/mol/K\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 15.5, Page number 324" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "T = 1; #For simplicity assume temperature to be unity(K)\n", - "R = 1; #For simplicity assume molar gas constant to be unity(J/mol/K)\n", - "theta_E = T; #Einstein temperature(K)\n", - "\n", - "#Calculation\n", - "C_V = 3*R*(theta_E/T)**2*math.exp(theta_E/T)/(math.exp(theta_E/T)-1)**2; #Einstein lattice specific heat(J/mol/K)\n", - "C_V = C_V/3;\n", - "C_V = math.ceil(C_V*10**3)/10**3; #rounding off the value of C_V to 3 decimals\n", - "\n", - "#Result\n", - "print \"The Einstein lattice specific heat is\",C_V, \"X 3R\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Einstein lattice specific heat is 0.921 X 3R\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 15.6, Page number 324" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "e = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)\n", - "v = 2; #Valency of Zn atom\n", - "N = v*6.02*10**23; #Avogadro's number(per mol)\n", - "T = 300; #Temperature of Zn(K)\n", - "E_F = 9.38; #Fermi energy of Zn(eV)\n", - "k = 1.38*10**-23; #Boltzmann constant(J/K)\n", - "h = 6.626*10**-34; #Planck's constant(Js)\n", - "\n", - "#Calculation\n", - "N = v*6.02*10**23; #Avogadro's number(per mol)\n", - "C_e = math.pi**2*N*k**2*T/(2*E_F*e); #Electronic heat capacity of Zn(J/mol/K)\n", - "C_e = math.ceil(C_e*10**4)/10**4; #rounding off the value of C_e to 4 decimals\n", - "\n", - "#Result\n", - "print \"The molar electronic heat capacity of zinc is\",C_e, \"J/mol/K\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The molar electronic heat capacity of zinc is 0.2262 J/mol/K\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter17_1.ipynb b/Engineering_Physics/Chapter17_1.ipynb deleted file mode 100755 index 38e069ca..00000000 --- a/Engineering_Physics/Chapter17_1.ipynb +++ /dev/null @@ -1,75 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:8879a312d81dca096153a38216868ea90a0e18845d7af1e07069b08fc5353d2b" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "17: Ultrasonics" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 17.1, Page number 352" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "f = 3; #Fundamental vibrational frequency of quartz crystal(MHz)\n", - "Y = 7.9*10**10; #Young's modulus of quartz(N/m**2)\n", - "rho = 2650; #Density of quartz(kg/m**3)\n", - "\n", - "#Calculation\n", - "f = f*10**6; #Fundamental vibrational frequency of quartz crystal(Hz)\n", - "l = 1/(2*f)*math.sqrt(Y/rho); #Thickness of vibrating quartz at resonance(m)\n", - "l = l*10**3; #Thickness of vibrating quartz at resonance(mm)\n", - "l = math.ceil(l*100)/100; #rounding off the value of l to 2 decimals\n", - "\n", - "#Result\n", - "print \"The thickness of vibrating quartz at resonance is\",l, \"mm\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The thickness of vibrating quartz at resonance is 0.91 mm\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter18_1.ipynb b/Engineering_Physics/Chapter18_1.ipynb deleted file mode 100755 index 0a7b2021..00000000 --- a/Engineering_Physics/Chapter18_1.ipynb +++ /dev/null @@ -1,294 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:3bec68600cdf231538bf44a09963d76f89f72c71634091075e5c4136c75bb4a6" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "18: Acoustics of Buildings" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 18.1, Page number 361" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "r = 200; #Distance of the point of reduction from the source(m)\n", - "I_0 = 10**-12; #Final intensity of sound(W/m**2)\n", - "I_f = 60; #Intensity gain of sound at the point of reduction(dB)\n", - "\n", - "#Calculation\n", - "#As A_I = 10*log10(I/I_0), solving for I\n", - "I = I_0*10**(I_f/10); #Initial Intensity of sound(W/m**2)\n", - "P = 4*math.pi*r**2*I; #Output power of the sound source(W)\n", - "P = math.ceil(P*100)/100; #rounding off the value of P to 2 decimals\n", - "\n", - "#Result\n", - "print \"The output power of the sound source is\",P, \"W\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The output power of the sound source is 0.51 W\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 18.2, Page number 361" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "import numpy as np\n", - "\n", - "#Variable declaration\n", - "I1 = 1; #For simplicity assume first intensity level to be unity(W/m**2)\n", - "\n", - "#Calculation\n", - "I2 = 2*I1; #Intensity level after doubling(W/m**2)\n", - "dA_I = 10*np.log10(I2/I1); #Difference in gain level(dB)\n", - "\n", - "#Result\n", - "print \"The sound intensity level is increased by\",int(dA_I), \"dB\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The sound intensity level is increased by 3 dB\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 18.3, Page number 361" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "V = 8000; #Volume of the hall(m**3)\n", - "T = 1.5; #Reverbration time of the hall(s)\n", - "\n", - "#Calculation\n", - "alpha_s = 0.167*V/T; #Sabine Formula giving total absorption of sound in the hall(OWU)\n", - "alpha_s = math.ceil(alpha_s*10)/10; #rounding off the value of alpha_s to 1 decimal\n", - "\n", - "#Result\n", - "print \"The total absorption of sound in the hall is\",alpha_s, \"OWU\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The total absorption of sound in the hall is 890.7 OWU\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 18.4, Page number 362" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "V = 25*20*8; #Volume of the hall(m**3)\n", - "T = 4; #Reverbration time of the hall(s)\n", - "\n", - "#Calculation\n", - "S = 2*(25*20+25*8+20*8); #Total surface area of the hall(m**2)\n", - "alpha = 0.167*V/(T*S); #Sabine Formule giving total absorption in the hall(OWU)\n", - "alpha = math.ceil(alpha*10**4)/10**4; #rounding off the value of alpha to 4 decimals\n", - "\n", - "#Result\n", - "print \"The average absorption coefficient of the surfaces is\",alpha, \"OWU/m**2\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The average absorption coefficient of the surfaces is 0.0971 OWU/m**2\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 18.5, Page number 362" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "V = 475; #Volume of the hall(m**3)\n", - "A_f = 100; #Area of the floor(m**2)\n", - "A_c = 100; #Area of the ceiling(m**2)\n", - "A_w = 200; #Area of the wall(m**2)\n", - "alpha_w = 0.025; #Absorption coefficients of the wall(OWU/m**2)\n", - "alpha_c = 0.02; #Absorption coefficients of the ceiling(OWU/m**2)\n", - "alpha_f = 0.55; #Absorption coefficients of the floor(OWU/m**2)\n", - "\n", - "#Calculation\n", - "alpha_s = (A_w*alpha_w)+(A_c*alpha_c)+(A_f*alpha_f); \n", - "T = 0.167*V/alpha_s; #Sabine Formula for reverbration time(s)\n", - "T = math.ceil(T*100)/100; #rounding off the value of T to 2 decimals\n", - "\n", - "#Result\n", - "print \"The reverbration time for the hall is\",T, \"s\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The reverbration time for the hall is 1.28 s\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 18.6, Page number 362" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "I0 = 1; #For simplicity assume initial sound intensity to be unity(W/m**2)\n", - "A_I1 = 80; #First intensity gain of sound(dB)\n", - "A_I2 = 70; #Second intensity gain of sound(dB)\n", - "\n", - "#Calculation\n", - "#As A_I = 10*log10(I/I_0), solving for I1 and I2\n", - "I1 = 10**(A_I1/10)*I0; #First intensity of sound(W/m**2)\n", - "I2 = 10**(A_I2/10)*I0; #Second intensity of sound(W/m**2)\n", - "I = I1 + I2; #Resultant intensity level of sound(W/m**2)\n", - "A_I = 10*np.log10(I/I0); #Intensity gain of resultant sound(dB)\n", - "A_I = math.ceil(A_I*10**3)/10**3; #rounding off the value of A_I to 3 decimals\n", - "\n", - "#Result\n", - "print \"The intensity gain of resultant sound is\",A_I, \"dB\"\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The intensity gain of resultant sound is 80.414 dB\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter1_1.ipynb b/Engineering_Physics/Chapter1_1.ipynb deleted file mode 100755 index a3614569..00000000 --- a/Engineering_Physics/Chapter1_1.ipynb +++ /dev/null @@ -1,357 +0,0 @@ -{ - "metadata": { - "name": "Chapter1", - "signature": "sha256:e55f587b2da98ead68f73bb2b4d29bef91aa67eb577c460fb9dcaab92acc4339" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "1: Ultrasonics" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.1, Page number 20" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#Variable declaration\nv = 1440; #velocity of ultrasonic waves(m/s)\nt = 0.33; #time elapsed(s)\n\n#Calculation\nd = v*t; #distance travelled(m)\nd1 = d/2; #depth of submarine(m)\n\n#Result\nprint \"depth of the submerged submarine is\",d1, \"m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "depth of the submerged submarine is 237.6 m\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.2, Page number 21" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nl = 40; #length of iron rod(mm)\nE = 115*10**9; #Young's modulus(N/m**2)\nrho = 7.25*10**3; #density of pure iron(kg/m**3)\n\n#Calculation\nl = l*10**-3; #length of iron rod(m)\nnew = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\nnew = new*10**-3; #natural frequency of the rod(kHz)\nnew=math.ceil(new*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"depth of the submerged submarine is\",new, \"kHz\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "depth of the submerged submarine is 49.785 kHz\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.3, Page number 21" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nl = 1; #length of quartz crystal(mm)\nE = 7.9*10**10; #Young's modulus(N/m**2)\nrho = 2650; #density(kg/m**3)\n\n#Calculation\nl = l*10**-3; #length of iron rod(m)\nnew = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\nnew = new*10**-6; \nnew=math.ceil(new*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"fundamental frequency of crystal is\",new, \"*10**6 Hz\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "fundamental frequency of crystal is 2.73 *10**6 Hz\n" - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.4, Page number 22" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nd = 0.55; #distance between 2 constructive antinodes(mm)\nnew = 1.5; #frequency of crystal(MHz)\n \n#Calculation\nnew = new*10**6; #frequency of crystal(Hz)\nd = d*10**-3; #distance between 2 constructive antinodes(m)\n#distance between 2 antinodes is given by lamda/2\nlamda = 2*d; #wavelength of ultrasonic waves(m)\nv = new*lamda; #velocity of waves(m/s)\n\n#Result\nprint \"velocity of waves is\",int(v), \"m/s\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "velocity of waves is 1650 m/s\n" - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.5, Page number 22" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nl = 50; #length of rod(mm)\nE = 11.5*10**10; #Young's modulus(N/m**2)\nrho = 7250; #density(kg/m**3)\n\n#Calculation\nl = l*10**-3; #length of iron rod(m)\nnew = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\nnew = new*10**-3; #natural frequency of the rod(kHz)\nnew = math.ceil(new*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"natural frequency of rod is\",new, \"kHz\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "natural frequency of rod is 39.83 kHz\n" - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.6, Page number 22" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nl = 2; #length of crystal(mm)\nE = 7.9*10**10; #Young's modulus(N/m**2)\nrho = 2650; #density(kg/m**3)\n\n#Calculation\nl = l*10**-3; #length of iron rod(m)\nnew = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\nnew = new*10**-6; #natural frequency of the rod(MHz)\nnew=math.ceil(new*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"frequency of crystal is\",new, \"MHz\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "frequency of crystal is 1.365 MHz\n" - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.7, Page number 23" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nl = 3; #length of crystal(mm)\nE = 8*10**10; #Young's modulus(N/m**2)\nrho = 2500; #density(kg/m**3)\n\n#Calculation\nl = l*10**-3; #length of iron rod(m)\nnew = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\nnew = new*10**-3; #natural frequency of the rod(kHz) \nnew=math.ceil(new*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"frequency of crystal is\",new, \"kHz\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "frequency of crystal is 942.81 kHz\n" - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.8, Page number 23" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nl = 1.5; #length of crystal(mm)\nE = 7.9*10**10; #Young's modulus(N/m**2)\nrho = 2650; #density(kg/m**3)\n\n#Calculation\nl = l*10**-3; #length of iron rod(m)\nnew = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\nnew = new*10**-6; #natural frequency of the rod(MHz) \nnew=math.ceil(new*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"frequency of crystal is\",new, \"MHz\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "frequency of crystal is 1.82 MHz\n" - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.9, Page number 24" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#Variable declaration\nv = 1440; #velocity of ultrasonic waves(m/s)\nt = 0.95; #time elapsed(s)\n\n#Calculation\nd = v*t; #distance travelled(m)\nd1 = d/2; #depth of sea(m)\n\n#Result\nprint \"depth of the submerged submarine is\",int(d1), \"m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "depth of the submerged submarine is 684 m\n" - } - ], - "prompt_number": 11 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.10, Page number 24" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#Variable declaration\nv = 1440; #velocity of ultrasonic waves(m/s)\nt = 0.83; #time elapsed(s)\n\n#Calculation\nd = v*t; #distance travelled(m)\nd1 = d/2; #depth of submarine(m)\n\n#Result\nprint \"depth of the submerged submarine is\",d1, \"m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "depth of the submerged submarine is 597.6 m\n" - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.11, Page number 24" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\naS = 1050; #total absorption inside hall(Sabine)\nV = 9000; #volume of cinema hall(m**3)\n\n#Calculation\nT = 0.165*V/aS; #reverberation time of hall(s)\nT = math.ceil(T*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint \"reverberation time of the hall is\",T, \"s\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "reverberation time of the hall is 1.4143 s\n" - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.12, Page number 25" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\na = 0.65; #average absorption coefficient(Sabine/m**2)\nV = 13500; #volume of auditorium(m**3)\nT = 1.2; #reverberation time of hall(s)\n\n#Calculation\nS = 0.165*V/(a*T); #reverberation time of hall(s)\nS = math.ceil(S*10)/10; #rounding off to 1 decimal\n\n#Result\nprint \"total area of interior surface is\",S, \"m**2\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "total area of interior surface is 2855.8 m**2\n" - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.13, Page number 25" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nV = 15000; #volume of cinema hall(m**3)\nT1 = 1.3; #initial reverberation time of hall(s)\na1S1 = 300; #number of chairs placed\n\n#Calculation\naS = 0.165*V/T1; #total absorption of hall\nT2 = (0.165*V)/(aS+a1S1); #reverberation time of hall after adding chairs(s)\nT2 = math.ceil(T2*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint \"reverberation time of the hall after adding chairs is\",T2, \"s\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "reverberation time of the hall after adding chairs is 1.1231 s\n" - } - ], - "prompt_number": 15 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.14, Page number 26" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#Variable declaration\nv = 1440; #velocity of ultrasonic waves(m/s)\nt = 0.5; #time elapsed(s)\n\n#Calculation\nd = v*t; #distance travelled(m)\nd1 = d/2; #depth of submarine(m)\n\n#Result\nprint \"depth of the submerged submarine is\",int(d1), \"m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "depth of the submerged submarine is 360 m\n" - } - ], - "prompt_number": 16 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.15, Page number 26" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nd = 0.4; #distance between 2 constructive antinodes(mm)\nnew = 1.5; #frequency of crystal(MHz)\n \n#Calculation\nnew = new*10**6; #frequency of crystal(Hz)\nd = d*10**-3; #distance between 2 constructive antinodes(m)\n#distance between 2 antinodes is given by lamda/2\nlamda = 2*d; #wavelength of ultrasonic waves(m)\nv = new*lamda; #velocity of waves(m/s)\n\n#Result\nprint \"velocity of waves is\",int(v), \"m/s\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "velocity of waves is 1200 m/s\n" - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 1.16, Page number 26" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nl = 40; #length of iron rod(mm)\nE = 11.5*10**10; #Young's modulus(N/m**2)\nrho = 7250; #density of pure iron(kg/m**3)\n\n#Calculation\nl = l*10**-3; #length of iron rod(m)\nnew = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\nnew = new*10**-3; #natural frequency of the rod(kHz)\nnew=math.ceil(new*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"depth of the submerged submarine is\",new, \"kHz\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "depth of the submerged submarine is 49.785 kHz\n" - } - ], - "prompt_number": 18 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter2.ipynb b/Engineering_Physics/Chapter2.ipynb deleted file mode 100755 index fff10b22..00000000 --- a/Engineering_Physics/Chapter2.ipynb +++ /dev/null @@ -1,84 +0,0 @@ -{ - "metadata": { - "name": "Chapter2", - "signature": "sha256:ac80f9dfe1725f11a5d4ce0fbda5ffed825d99c680f116629e5e3fcb8b69c198" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "2: Lasers" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 2.1, Page number 52" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nlamda = 590; #wavelength(nm)\nh = 6.625*10**-34; #planck's constant\nc = 3*10**8; #velocity of light(m/s)\nk = 1.38*10**-23; #boltzmann's constant\nT = 523; #temperature(Kelvin)\n\n#Calculation\nlamda = lamda*10**-9; #wavelength(m) \n#n1byn2 = math.exp(-(E2-E1)/(k*T))\n#but E2-E1 = h*new and new = c/lamda\n#therefore n1byn2 = math.exp(-h*c/(lamda*k*T))\nn1byn2 = math.exp(-h*c/(lamda*k*T));\n\n#Result\nprint \"relative population of Na atoms is\",n1byn2", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "relative population of Na atoms is 5.36748316686e-21\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 2.2, Page number 53" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nlamda = 590; #wavelength(nm)\nh = 6.625*10**-34; #planck's constant\nc = 3*10**8; #velocity of light(m/s)\nk = 1.38*10**-23; #boltzmann's constant\nT = 523; #temperature(Kelvin)\n\n#Calculation\nlamda = lamda*10**-9; #wavelength(m) \n#n21dashbyn21 = 1/(math.exp(h*new/(k*T))-1)\n#but new = c/lamda\n#therefore n21dashbyn21 = 1/(math.exp(h*c/(lamda*k*T))-1)\nA = math.exp(h*c/(lamda*k*T))-1;\nn21dashbyn21 = 1/A; \n\n#Result\nprint \"ratio of stimulated to spontaneous emission is\",n21dashbyn21\nprint \"answer given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "ratio of stimulated to spontaneous emission is 5.36748316686e-21\nanswer given in the book is wrong\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 2.3, Page number 53" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nlamda = 632.8; #wavelength of laser(nm)\nh = 6.625*10**-34; #planck's constant\nc = 3*10**8; #velocity of light(m/s)\np = 3.147; #output power(mW)\n\n#Calculation\np = p*10**-3; #output power(W)\nlamda = lamda*10**-9; #wavelength(m) \nnew = c/lamda; #frequency(Hz)\nE = h*new; #energy of each photon(J)\nEm = p*60; #energy emitted per minute(J/min)\nN = Em/E; #number of photons emitted per second\n\n#Result\nprint \"number of photons emitted per second is\",N", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "number of photons emitted per second is 6.01183879245e+17\n" - } - ], - "prompt_number": 3 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter2_1.ipynb b/Engineering_Physics/Chapter2_1.ipynb deleted file mode 100755 index fff10b22..00000000 --- a/Engineering_Physics/Chapter2_1.ipynb +++ /dev/null @@ -1,84 +0,0 @@ -{ - "metadata": { - "name": "Chapter2", - "signature": "sha256:ac80f9dfe1725f11a5d4ce0fbda5ffed825d99c680f116629e5e3fcb8b69c198" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "2: Lasers" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 2.1, Page number 52" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nlamda = 590; #wavelength(nm)\nh = 6.625*10**-34; #planck's constant\nc = 3*10**8; #velocity of light(m/s)\nk = 1.38*10**-23; #boltzmann's constant\nT = 523; #temperature(Kelvin)\n\n#Calculation\nlamda = lamda*10**-9; #wavelength(m) \n#n1byn2 = math.exp(-(E2-E1)/(k*T))\n#but E2-E1 = h*new and new = c/lamda\n#therefore n1byn2 = math.exp(-h*c/(lamda*k*T))\nn1byn2 = math.exp(-h*c/(lamda*k*T));\n\n#Result\nprint \"relative population of Na atoms is\",n1byn2", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "relative population of Na atoms is 5.36748316686e-21\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 2.2, Page number 53" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nlamda = 590; #wavelength(nm)\nh = 6.625*10**-34; #planck's constant\nc = 3*10**8; #velocity of light(m/s)\nk = 1.38*10**-23; #boltzmann's constant\nT = 523; #temperature(Kelvin)\n\n#Calculation\nlamda = lamda*10**-9; #wavelength(m) \n#n21dashbyn21 = 1/(math.exp(h*new/(k*T))-1)\n#but new = c/lamda\n#therefore n21dashbyn21 = 1/(math.exp(h*c/(lamda*k*T))-1)\nA = math.exp(h*c/(lamda*k*T))-1;\nn21dashbyn21 = 1/A; \n\n#Result\nprint \"ratio of stimulated to spontaneous emission is\",n21dashbyn21\nprint \"answer given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "ratio of stimulated to spontaneous emission is 5.36748316686e-21\nanswer given in the book is wrong\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 2.3, Page number 53" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nlamda = 632.8; #wavelength of laser(nm)\nh = 6.625*10**-34; #planck's constant\nc = 3*10**8; #velocity of light(m/s)\np = 3.147; #output power(mW)\n\n#Calculation\np = p*10**-3; #output power(W)\nlamda = lamda*10**-9; #wavelength(m) \nnew = c/lamda; #frequency(Hz)\nE = h*new; #energy of each photon(J)\nEm = p*60; #energy emitted per minute(J/min)\nN = Em/E; #number of photons emitted per second\n\n#Result\nprint \"number of photons emitted per second is\",N", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "number of photons emitted per second is 6.01183879245e+17\n" - } - ], - "prompt_number": 3 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter3.ipynb b/Engineering_Physics/Chapter3.ipynb deleted file mode 100755 index 9e2d3109..00000000 --- a/Engineering_Physics/Chapter3.ipynb +++ /dev/null @@ -1,83 +0,0 @@ -{ - "metadata": { - "name": "Chapter3" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "3: Fibre Optics and Applications" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 3.1, Page number 84" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nn1 = 1.5; #refractive index of core\nn2 = 1.47; #refractive index of cladding\nn0 = 1; #refractive index of air\na = 180/math.pi; #conversion factor of radian to degree\n\n#Calculation\nNA = math.sqrt((n1**2)-(n2**2)); #numerical aperture\nNA=math.ceil(NA*10)/10; #rounding off to 1 decimal\nalpha_m = math.asin(NA/n0); #acceptance angle(radian)\nalpha_m = alpha_m*a; #acceptance angle(degrees)\nalpha_m=math.ceil(alpha_m*10**2)/10**2; #rounding off to 2 decimals\nphi_m = math.asin(NA/n1); #phase angle(radian)\nphi_m = phi_m*a; #phase angle(degrees)\nphi_m=math.ceil(phi_m*10**2)/10**2; #rounding off to 2 decimals\ntheta_c = math.asin(n2/n1); #critical angle(radian)\ntheta_c = theta_c*a; #critical angle(degrees)\ntheta_c=math.ceil(theta_c*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"numerical aperture is\",NA\nprint \"acceptance angle is\",alpha_m,\"degrees\"\nprint \"phase angle is\",phi_m,\"degrees\"\nprint \"critical angle is\",theta_c,\"degrees\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "numerical aperture is 0.3\nacceptance angle is 17.46 degrees\nphase angle is 11.54 degrees\ncritical angle is 78.522 degrees\n" - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 3.2, Page number 85" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nn1 = 1.5; #refractive index of core\nn2 = 1.47; #refractive index of cladding\nc = 3*10**8; #velocity of light(m/sec)\n\n#Calculation\ndeltatbyL = (n1/n2)*((n1-n2)/c);\n\n#Result\nprint \"pulse broadening per unit length is\",deltatbyL,\"s/m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "pulse broadening per unit length is 1.02040816327e-10 s/m\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 3.3, Page number 85" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nphi_m = 11.54; #phase angle(degrees)\na = 0.5*10**-4;\nx = math.pi/180; #conversion factor from degrees to radians\n\n#Calculation\nphi_m = phi_m*x; #phase angle(radian)\nL = a/math.tan(phi_m); #length(m)\nn = 1/(2*L); #total number of internal reflections(m-1)\n\n#Result\nprint \"alpha = 0 rays have no reflection. hence there are zero reflections for 1 metre.\"\nprint \"alpha = alpha_m rays have\",int(n),\"m-1 internal reflections\"\nprint \"answer given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "alpha = 0 rays have no reflection. hence there are zero reflections for 1 metre.\nalpha = alpha_m rays have 2041 m-1 internal reflections\nanswer given in the book is wrong\n" - } - ], - "prompt_number": 7 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter3_1.ipynb b/Engineering_Physics/Chapter3_1.ipynb deleted file mode 100755 index 9e2d3109..00000000 --- a/Engineering_Physics/Chapter3_1.ipynb +++ /dev/null @@ -1,83 +0,0 @@ -{ - "metadata": { - "name": "Chapter3" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "3: Fibre Optics and Applications" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 3.1, Page number 84" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nn1 = 1.5; #refractive index of core\nn2 = 1.47; #refractive index of cladding\nn0 = 1; #refractive index of air\na = 180/math.pi; #conversion factor of radian to degree\n\n#Calculation\nNA = math.sqrt((n1**2)-(n2**2)); #numerical aperture\nNA=math.ceil(NA*10)/10; #rounding off to 1 decimal\nalpha_m = math.asin(NA/n0); #acceptance angle(radian)\nalpha_m = alpha_m*a; #acceptance angle(degrees)\nalpha_m=math.ceil(alpha_m*10**2)/10**2; #rounding off to 2 decimals\nphi_m = math.asin(NA/n1); #phase angle(radian)\nphi_m = phi_m*a; #phase angle(degrees)\nphi_m=math.ceil(phi_m*10**2)/10**2; #rounding off to 2 decimals\ntheta_c = math.asin(n2/n1); #critical angle(radian)\ntheta_c = theta_c*a; #critical angle(degrees)\ntheta_c=math.ceil(theta_c*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"numerical aperture is\",NA\nprint \"acceptance angle is\",alpha_m,\"degrees\"\nprint \"phase angle is\",phi_m,\"degrees\"\nprint \"critical angle is\",theta_c,\"degrees\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "numerical aperture is 0.3\nacceptance angle is 17.46 degrees\nphase angle is 11.54 degrees\ncritical angle is 78.522 degrees\n" - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 3.2, Page number 85" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nn1 = 1.5; #refractive index of core\nn2 = 1.47; #refractive index of cladding\nc = 3*10**8; #velocity of light(m/sec)\n\n#Calculation\ndeltatbyL = (n1/n2)*((n1-n2)/c);\n\n#Result\nprint \"pulse broadening per unit length is\",deltatbyL,\"s/m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "pulse broadening per unit length is 1.02040816327e-10 s/m\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 3.3, Page number 85" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nphi_m = 11.54; #phase angle(degrees)\na = 0.5*10**-4;\nx = math.pi/180; #conversion factor from degrees to radians\n\n#Calculation\nphi_m = phi_m*x; #phase angle(radian)\nL = a/math.tan(phi_m); #length(m)\nn = 1/(2*L); #total number of internal reflections(m-1)\n\n#Result\nprint \"alpha = 0 rays have no reflection. hence there are zero reflections for 1 metre.\"\nprint \"alpha = alpha_m rays have\",int(n),\"m-1 internal reflections\"\nprint \"answer given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "alpha = 0 rays have no reflection. hence there are zero reflections for 1 metre.\nalpha = alpha_m rays have 2041 m-1 internal reflections\nanswer given in the book is wrong\n" - } - ], - "prompt_number": 7 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter4.ipynb b/Engineering_Physics/Chapter4.ipynb deleted file mode 100755 index 5651b165..00000000 --- a/Engineering_Physics/Chapter4.ipynb +++ /dev/null @@ -1,209 +0,0 @@ -{ - "metadata": { - "name": "Chapter4" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "4: Quantum Physics" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 4.1, Page number 117" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nc = 3*10**8; #velocity of light(m/sec)\nh = 6.62*10**-34; #planck's constant\nlamda = 1.2; #wavelength of photon(Angstrom)\ne = 1.6*10**-19; #conversion factor from J to eV\n\n#Calculation\nlamda = lamda*10**-10; #wavelength of photon(m)\nE = (h*c)/(lamda*e); #energy of photon(eV)\nE=math.ceil(E*10)/10; #rounding off to 1 decimal\np = h/lamda; #momentum of photon(kg m/s)\n\n#Result\nprint \"energy of the photon is\",E,\"eV\"\nprint \"momentum of the photon is\",p,\"kg m/s\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "energy of the photon is 10343.8 eV\nmomentum of the photon is 5.51666666667e-24 kg m/s\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 4.2, Page number 117" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nh = 6.625*10**-34; #planck's constant\nnew = 900; #frequency(kHz)\nE1 = 10; #power radiated(kW)\n\n#Calculation\nE1 = E1*10**3; #power radiated(W)\nnew = new*10**3; #frequency(Hz)\nE = h*new; #energy of photon(J)\nN = E1/E; #number of photons emitted \n\n#Result\nprint \"number of photons emitted per second is\",N", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "number of photons emitted per second is 1.67714884696e+31\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 4.3, Page number 118" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nc = 3*10**8; #velocity of light(m/sec)\nh = 6.63*10**-34; #planck's constant\nlamda = 5893; #wavelength of photon(Angstrom)\nE1 = 100; #power of lamp(W) \n\n#Calculation\nlamda = lamda*10**-10; #wavelength of photon(m)\nE = h*c/lamda; #energy of photon(J)\nN = E1/E; #number of photons emitted \n\n#Result\nprint \"number of photons emitted per second is\",N\nprint \"answer given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "number of photons emitted per second is 2.96279537456e+20\nanswer given in the book is wrong\n" - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 4.4, Page number 118" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nc = 3*10**8; #velocity of light(m/sec)\nh = 6.6*10**-34; #planck's constant\nm0 = 9.1*10**-31; #mass of photon(kg)\ntheta = 30; #viewing angle(degrees)\nlamda = 2.8*10**-10; #wavelength of photon(m)\n\n#Calculation\nx = math.pi/180; #conversion factor from degrees to radians\ntheta = theta*x; #viewing angle(radian) \nlamda_dash = (2*h*(math.sin(theta/2))**2/(m0*c))+lamda; #wavelength of scattered radiation(m)\nlamda_dash = lamda_dash*10**10; #wavelength of scattered radiation(Angstrom)\nlamda_dash=math.ceil(lamda_dash*10**5)/10**5; #rounding off to 5 decimals\n\n#Result\nprint \"wavelength of scattered radiation is\",lamda_dash,\"Angstrom\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "wavelength of scattered radiation is 2.80324 Angstrom\n" - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 4.5, Page number 119" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nh = 6.6*10**-34; #planck's constant\nm = 0.040; #mass of bullet(kg)\nv = 1; #speed of bullet(km/s)\n\n#Calculation\nv = v*10**3; #speed of bullet(m/s)\np = m*v; #momemtun of bullet(kg m/s)\nlamda = h/p; #deBroglie wavelength(m)\nlamda = lamda*10**10; #deBroglie wavelength(Angstrom)\n\n#Result\nprint \"deBroglie wavelength is\",lamda,\"Angstrom\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "deBroglie wavelength is 1.65e-25 Angstrom\n" - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 4.6, Page number 119" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nn = 1; #lowest energy state\na = 0.1; #width of box(nm)\nh = 6.625*10**-34; #planck's constant\ne = 1.602*10**-19; #conversion factor from J to eV\nm = 9.11*10**-31; #mass of particle(kg)\n\n#Calculation\na = a*10**-9; #width of box(m)\nE = (n**2)*(h**2)/(8*m*(a**2)); #energy of particle(J)\nE_eV = E/e; #energy of particle(eV)\nE_eV=math.ceil(E_eV*10)/10; #rounding off to 1 decimal\n\n#Result\nprint \"energy of particle is\",E,\"J or\",E_eV,\"eV\" ", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "energy of particle is 6.02231407794e-18 J or 37.6 eV\n" - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 4.7, Page number 120" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nn = 1; #lowest energy state\na = 4; #width of well(nm)\nh = 6.625*10**-34; #planck's constant\ne = 1.6025*10**-19; #conversion factor from J to eV\nm = 9.11*10**-31; #mass of electron(kg)\n\n#Calculation\na = a*10**-9; #width of box(m)\nE = (n**2)*(h**2)/(8*m*(a**2)); #energy of particle(J)\nE_eV = E/e; #energy of particle(eV)\nE_eV=math.ceil(E_eV*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint \"minimum energy of electron is\",E,\"J or\",E_eV,\"eV\" ", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "minimum energy of electron is 3.76394629871e-21 J or 0.0235 eV\n" - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 4.8, Page number 120" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nn1 = 1; #lowest energy state\nn2 = 6; #for 6th excited state\na = 0.1; #width of box(nm)\nh = 6.625*10**-34; #planck's constant\ne = 1.602*10**-19; #conversion factor from J to eV\nm = 9.11*10**-31; #mass of electron(kg)\n\n#Calculation\na = a*10**-9; #width of box(m)\nE1 = (n1**2)*(h**2)/(8*m*(a**2)); #energy of electron in ground state(J)\nE6 = (n2**2)*(h**2)/(8*m*(a**2)); #energy of electron in excited state(J)\nE = E6-E1; #energy required to excite the electron(J)\nE_eV = E/e; #energy required to excite the electron(eV)\nE_eV=math.ceil(E_eV*10)/10; #rounding off to 1 decimal\n\n#Result\nprint \"energy required to excite the electron is\",E,\"J or\",E_eV,\"eV\" \nprint \"answer for energy in eV given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "energy required to excite the electron is 2.10780992728e-16 J or 1315.8 eV\nanswer for energy in eV given in the book is wrong\n" - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 4.9, Page number 121" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nh = 6.625*10**-34; #planck's constant\nc = 3*10**8; #velocity of light(m/sec)\nm0 = 9.11*10**-31; #rest mass of electron(kg)\nphi = 90; #angle of scattering(degrees)\nx = math.pi/180; #conversion factor from degrees to radians\n\n#Calculation\nphi = phi*x; ##angle of scattering(radian)\ndelta_lamda = h*(1-math.cos(phi))/(m0*c); #change in wavelength(m)\n\n#Result\nprint \"change in wavelength of X-ray photon is\",delta_lamda,\"m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "change in wavelength of X-ray photon is 2.42407610684e-12 m\n" - } - ], - "prompt_number": 9 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter4_1.ipynb b/Engineering_Physics/Chapter4_1.ipynb deleted file mode 100755 index 5651b165..00000000 --- a/Engineering_Physics/Chapter4_1.ipynb +++ /dev/null @@ -1,209 +0,0 @@ -{ - "metadata": { - "name": "Chapter4" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "4: Quantum Physics" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 4.1, Page number 117" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nc = 3*10**8; #velocity of light(m/sec)\nh = 6.62*10**-34; #planck's constant\nlamda = 1.2; #wavelength of photon(Angstrom)\ne = 1.6*10**-19; #conversion factor from J to eV\n\n#Calculation\nlamda = lamda*10**-10; #wavelength of photon(m)\nE = (h*c)/(lamda*e); #energy of photon(eV)\nE=math.ceil(E*10)/10; #rounding off to 1 decimal\np = h/lamda; #momentum of photon(kg m/s)\n\n#Result\nprint \"energy of the photon is\",E,\"eV\"\nprint \"momentum of the photon is\",p,\"kg m/s\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "energy of the photon is 10343.8 eV\nmomentum of the photon is 5.51666666667e-24 kg m/s\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 4.2, Page number 117" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nh = 6.625*10**-34; #planck's constant\nnew = 900; #frequency(kHz)\nE1 = 10; #power radiated(kW)\n\n#Calculation\nE1 = E1*10**3; #power radiated(W)\nnew = new*10**3; #frequency(Hz)\nE = h*new; #energy of photon(J)\nN = E1/E; #number of photons emitted \n\n#Result\nprint \"number of photons emitted per second is\",N", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "number of photons emitted per second is 1.67714884696e+31\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 4.3, Page number 118" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nc = 3*10**8; #velocity of light(m/sec)\nh = 6.63*10**-34; #planck's constant\nlamda = 5893; #wavelength of photon(Angstrom)\nE1 = 100; #power of lamp(W) \n\n#Calculation\nlamda = lamda*10**-10; #wavelength of photon(m)\nE = h*c/lamda; #energy of photon(J)\nN = E1/E; #number of photons emitted \n\n#Result\nprint \"number of photons emitted per second is\",N\nprint \"answer given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "number of photons emitted per second is 2.96279537456e+20\nanswer given in the book is wrong\n" - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 4.4, Page number 118" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nc = 3*10**8; #velocity of light(m/sec)\nh = 6.6*10**-34; #planck's constant\nm0 = 9.1*10**-31; #mass of photon(kg)\ntheta = 30; #viewing angle(degrees)\nlamda = 2.8*10**-10; #wavelength of photon(m)\n\n#Calculation\nx = math.pi/180; #conversion factor from degrees to radians\ntheta = theta*x; #viewing angle(radian) \nlamda_dash = (2*h*(math.sin(theta/2))**2/(m0*c))+lamda; #wavelength of scattered radiation(m)\nlamda_dash = lamda_dash*10**10; #wavelength of scattered radiation(Angstrom)\nlamda_dash=math.ceil(lamda_dash*10**5)/10**5; #rounding off to 5 decimals\n\n#Result\nprint \"wavelength of scattered radiation is\",lamda_dash,\"Angstrom\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "wavelength of scattered radiation is 2.80324 Angstrom\n" - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 4.5, Page number 119" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nh = 6.6*10**-34; #planck's constant\nm = 0.040; #mass of bullet(kg)\nv = 1; #speed of bullet(km/s)\n\n#Calculation\nv = v*10**3; #speed of bullet(m/s)\np = m*v; #momemtun of bullet(kg m/s)\nlamda = h/p; #deBroglie wavelength(m)\nlamda = lamda*10**10; #deBroglie wavelength(Angstrom)\n\n#Result\nprint \"deBroglie wavelength is\",lamda,\"Angstrom\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "deBroglie wavelength is 1.65e-25 Angstrom\n" - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 4.6, Page number 119" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nn = 1; #lowest energy state\na = 0.1; #width of box(nm)\nh = 6.625*10**-34; #planck's constant\ne = 1.602*10**-19; #conversion factor from J to eV\nm = 9.11*10**-31; #mass of particle(kg)\n\n#Calculation\na = a*10**-9; #width of box(m)\nE = (n**2)*(h**2)/(8*m*(a**2)); #energy of particle(J)\nE_eV = E/e; #energy of particle(eV)\nE_eV=math.ceil(E_eV*10)/10; #rounding off to 1 decimal\n\n#Result\nprint \"energy of particle is\",E,\"J or\",E_eV,\"eV\" ", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "energy of particle is 6.02231407794e-18 J or 37.6 eV\n" - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 4.7, Page number 120" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nn = 1; #lowest energy state\na = 4; #width of well(nm)\nh = 6.625*10**-34; #planck's constant\ne = 1.6025*10**-19; #conversion factor from J to eV\nm = 9.11*10**-31; #mass of electron(kg)\n\n#Calculation\na = a*10**-9; #width of box(m)\nE = (n**2)*(h**2)/(8*m*(a**2)); #energy of particle(J)\nE_eV = E/e; #energy of particle(eV)\nE_eV=math.ceil(E_eV*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint \"minimum energy of electron is\",E,\"J or\",E_eV,\"eV\" ", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "minimum energy of electron is 3.76394629871e-21 J or 0.0235 eV\n" - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 4.8, Page number 120" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nn1 = 1; #lowest energy state\nn2 = 6; #for 6th excited state\na = 0.1; #width of box(nm)\nh = 6.625*10**-34; #planck's constant\ne = 1.602*10**-19; #conversion factor from J to eV\nm = 9.11*10**-31; #mass of electron(kg)\n\n#Calculation\na = a*10**-9; #width of box(m)\nE1 = (n1**2)*(h**2)/(8*m*(a**2)); #energy of electron in ground state(J)\nE6 = (n2**2)*(h**2)/(8*m*(a**2)); #energy of electron in excited state(J)\nE = E6-E1; #energy required to excite the electron(J)\nE_eV = E/e; #energy required to excite the electron(eV)\nE_eV=math.ceil(E_eV*10)/10; #rounding off to 1 decimal\n\n#Result\nprint \"energy required to excite the electron is\",E,\"J or\",E_eV,\"eV\" \nprint \"answer for energy in eV given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "energy required to excite the electron is 2.10780992728e-16 J or 1315.8 eV\nanswer for energy in eV given in the book is wrong\n" - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 4.9, Page number 121" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nh = 6.625*10**-34; #planck's constant\nc = 3*10**8; #velocity of light(m/sec)\nm0 = 9.11*10**-31; #rest mass of electron(kg)\nphi = 90; #angle of scattering(degrees)\nx = math.pi/180; #conversion factor from degrees to radians\n\n#Calculation\nphi = phi*x; ##angle of scattering(radian)\ndelta_lamda = h*(1-math.cos(phi))/(m0*c); #change in wavelength(m)\n\n#Result\nprint \"change in wavelength of X-ray photon is\",delta_lamda,\"m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "change in wavelength of X-ray photon is 2.42407610684e-12 m\n" - } - ], - "prompt_number": 9 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter5.ipynb b/Engineering_Physics/Chapter5.ipynb deleted file mode 100755 index ba6e0e69..00000000 --- a/Engineering_Physics/Chapter5.ipynb +++ /dev/null @@ -1,152 +0,0 @@ -{ - "metadata": { - "name": "Chapter5" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "5: Crystal Physics" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 5.1, Page number 149, theoretical" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 5.2, Page number 150" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nn = 8; #number of atoms per cell\na = 5.43*10**-8; #lattice constant(cm)\nw = 28.1; #atomic weight(gm)\nN = 6.02*10**23; #avagadro number\n\n#Calculation\nac = n/(a**3); #atomic concentration(atoms/cm**3)\nd = ac*w/N; #density of Si(g/cm**3)\nd=math.ceil(d*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"density of Si is\",d,\"g/cm**3\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "density of Si is 2.333 g/cm**3\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 5.3, Page number 151" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\na = 5; #lattice constant(Angstrom)\n\n#Calculation\na = a*10**-10; #lattice constant(m)\n#to calculate the planar concentration, only equilateral triangular region is considered of length a*math.sqrt(2) and height a*math.sqrt(3/2)\nl = a*math.sqrt(2); #length of face diagonal(m)\nh = a*math.sqrt(3/2); #height of triangle(m)\nA = l*h/2; #area of shaded portion(m**2)\n#every atom at the corner contributes 1/6 to this area.\nn111 = (3/6)*(1/A); #planar concentration(atoms/m**2)\n\n#Result\nprint \"surface density of atoms is\",n111,\"atoms/m**2\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "surface density of atoms is 2.30940107676e+18 atoms/m**2\n" - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 5.4, Page number 152" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\na = 4.049; #lattice constant(Angstrom)\nh = 2;\nk = 2;\nl = 0; #miller indices of(2 2 0)\n\n#Calculation\nd = a/math.sqrt(h**2+k**2+l**2); #spacing of planes(Angstrom)\nd=math.ceil(d*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"spacing of planes is\",d,\"Angstrom\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "spacing of planes is 1.432 Angstrom\n" - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 5.5, Page number 152" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nd110 = 2.03; #distance between planes(Angstrom)\nh = 1;\nk = 1;\nl = 0; #miller indices of(1 1 0)\n\n#Calculation\na = d110*math.sqrt(h**2+k**2+l**2); #size of unit cell(Angstrom)\na=math.ceil(a*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"size of unit cell is\",a,\"Angstrom\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "size of unit cell is 2.871 Angstrom\n" - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 5.6, Page number 152" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\na = 5.64; #lattice constant(Angstrom)\nh1 = 1;\nk1 = 0;\nl1 = 0; #miller indices of(1 0 0)\nh2 = 1;\nk2 = 1;\nl2 = 0; #miller indices of(1 1 0)\nh3 = 1;\nk3 = 1;\nl3 = 1; #miller indices of(1 1 1)\n\n#Calculation\nd100 = a/math.sqrt(h1**2+k1**2+l1**2); #spacing of planes[100](Angstrom)\nd110 = a/math.sqrt(h2**2+k2**2+l2**2); #spacing of planes[110](Angstrom)\nd111 = a/math.sqrt(h3**2+k3**2+l3**2); #spacing of planes[111](Angstrom)\nd111=math.ceil(d111*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"spacing of plane [100] is\",d100,\"Angstrom\"\nprint \"spacing of plane [110] is\",round(d110),\"Angstrom\"\nprint \"spacing of plane [111] is\",d111,\"Angstrom\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "spacing of plane [100] is 5.64 Angstrom\nspacing of plane [110] is 4.0 Angstrom\nspacing of plane [111] is 3.26 Angstrom\n" - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 5.7, Page number 153" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nr = 1.605; #radius of atom(Angstrom)\n\n\n#Calculation\nr = r*10**-10; #radius of atom(m)\na = 2*r; #size of unit cell(m)\nc = a*math.sqrt(8/3);\nV = 3*math.sqrt(3)*a**2*c/2; #volume of unit cell(m**3)\n\n#Result\nprint \"volume of unit cell is\",V,\"m**3\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "volume of unit cell is 1.40330266432e-28 m**3\n" - } - ], - "prompt_number": 7 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter5_1.ipynb b/Engineering_Physics/Chapter5_1.ipynb deleted file mode 100755 index ba6e0e69..00000000 --- a/Engineering_Physics/Chapter5_1.ipynb +++ /dev/null @@ -1,152 +0,0 @@ -{ - "metadata": { - "name": "Chapter5" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "5: Crystal Physics" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 5.1, Page number 149, theoretical" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 5.2, Page number 150" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nn = 8; #number of atoms per cell\na = 5.43*10**-8; #lattice constant(cm)\nw = 28.1; #atomic weight(gm)\nN = 6.02*10**23; #avagadro number\n\n#Calculation\nac = n/(a**3); #atomic concentration(atoms/cm**3)\nd = ac*w/N; #density of Si(g/cm**3)\nd=math.ceil(d*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"density of Si is\",d,\"g/cm**3\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "density of Si is 2.333 g/cm**3\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 5.3, Page number 151" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\na = 5; #lattice constant(Angstrom)\n\n#Calculation\na = a*10**-10; #lattice constant(m)\n#to calculate the planar concentration, only equilateral triangular region is considered of length a*math.sqrt(2) and height a*math.sqrt(3/2)\nl = a*math.sqrt(2); #length of face diagonal(m)\nh = a*math.sqrt(3/2); #height of triangle(m)\nA = l*h/2; #area of shaded portion(m**2)\n#every atom at the corner contributes 1/6 to this area.\nn111 = (3/6)*(1/A); #planar concentration(atoms/m**2)\n\n#Result\nprint \"surface density of atoms is\",n111,\"atoms/m**2\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "surface density of atoms is 2.30940107676e+18 atoms/m**2\n" - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 5.4, Page number 152" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\na = 4.049; #lattice constant(Angstrom)\nh = 2;\nk = 2;\nl = 0; #miller indices of(2 2 0)\n\n#Calculation\nd = a/math.sqrt(h**2+k**2+l**2); #spacing of planes(Angstrom)\nd=math.ceil(d*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"spacing of planes is\",d,\"Angstrom\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "spacing of planes is 1.432 Angstrom\n" - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 5.5, Page number 152" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nd110 = 2.03; #distance between planes(Angstrom)\nh = 1;\nk = 1;\nl = 0; #miller indices of(1 1 0)\n\n#Calculation\na = d110*math.sqrt(h**2+k**2+l**2); #size of unit cell(Angstrom)\na=math.ceil(a*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"size of unit cell is\",a,\"Angstrom\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "size of unit cell is 2.871 Angstrom\n" - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 5.6, Page number 152" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\na = 5.64; #lattice constant(Angstrom)\nh1 = 1;\nk1 = 0;\nl1 = 0; #miller indices of(1 0 0)\nh2 = 1;\nk2 = 1;\nl2 = 0; #miller indices of(1 1 0)\nh3 = 1;\nk3 = 1;\nl3 = 1; #miller indices of(1 1 1)\n\n#Calculation\nd100 = a/math.sqrt(h1**2+k1**2+l1**2); #spacing of planes[100](Angstrom)\nd110 = a/math.sqrt(h2**2+k2**2+l2**2); #spacing of planes[110](Angstrom)\nd111 = a/math.sqrt(h3**2+k3**2+l3**2); #spacing of planes[111](Angstrom)\nd111=math.ceil(d111*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"spacing of plane [100] is\",d100,\"Angstrom\"\nprint \"spacing of plane [110] is\",round(d110),\"Angstrom\"\nprint \"spacing of plane [111] is\",d111,\"Angstrom\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "spacing of plane [100] is 5.64 Angstrom\nspacing of plane [110] is 4.0 Angstrom\nspacing of plane [111] is 3.26 Angstrom\n" - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 5.7, Page number 153" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nr = 1.605; #radius of atom(Angstrom)\n\n\n#Calculation\nr = r*10**-10; #radius of atom(m)\na = 2*r; #size of unit cell(m)\nc = a*math.sqrt(8/3);\nV = 3*math.sqrt(3)*a**2*c/2; #volume of unit cell(m**3)\n\n#Result\nprint \"volume of unit cell is\",V,\"m**3\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "volume of unit cell is 1.40330266432e-28 m**3\n" - } - ], - "prompt_number": 7 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter6.ipynb b/Engineering_Physics/Chapter6.ipynb deleted file mode 100755 index 768ed817..00000000 --- a/Engineering_Physics/Chapter6.ipynb +++ /dev/null @@ -1,356 +0,0 @@ -{ - "metadata": { - "name": "Chapter6" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "6: Conducting Materials" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.1, Page number 170" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nm = 9.1*10**-31; #mass of electron\nvf = 1*10**6; #Fermi velocity(m/s)\ne = 1.6*10**-19; #conversion factor from J to eV\n\n#Calculation\nEF = m*(vf**2)/(2*e); #Fermi energy(eV)\nEF=math.ceil(EF*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"Fermi energy is\",EF,\"eV\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "Fermi energy is 2.85 eV\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.2, Page number 170" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nEF0 = 7.04; #Fermi energy at 0K(eV)\nT = 300; #temperature(K)\nk = 1.38*10**-23; #boltzmann constant\ne = 1.6*10**-19; #conversion factor from J to eV\n\n#Calculation\nEF = EF0*(1-(((math.pi**2)/12)*(k*T/(EF0*e))**2)); #Fermi energy(eV)\nEF=math.ceil(EF*10**5)/10**5; #rounding off to 5 decimals\n\n#Result\nprint \"Fermi energy is\",EF,\"eV\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "Fermi energy is 7.03993 eV\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.3, Page number 171" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nd = 2.7*10**3; #density of Al(kg/m**3)\nMat = 27; #atomic weight of Al\ntow = 10**-14; #relaxation time(sec)\nNa = 6.022*10**23; #avagadro constant\na = 3*10**3; #number of free electrons per atom\ne = 1.6*10**-19; #charge of electron\nme = 9.1*10**-31; #mass of electron\n\n#Calculation\nn = d*Na*a/Mat; #concentration of atoms(per m**3)\nsigma = n*e**2*tow/me; #conductivity(ohm m)\nsigma = sigma*10**-7;\nsigma=math.ceil(sigma*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint \"conductivity of Al is\",sigma,\"*10**7 ohm m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "conductivity of Al is 5.0824 *10**7 ohm m\n" - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.4, Page number 171" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nsigma = 5.87*10**7; #electrical conductivity(per ohm m)\nK = 390; #thermal conductivity(W/mK)\nT = 20; #temperature(C)\n\n#Calculation\nT = T+273; #temperature(K)\nL = K/(sigma*T); #Lorentz number(W ohm/K**2)\n\n#Result\nprint \"Lorentz number is\",L,\"W ohm/K**2\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "Lorentz number is 2.26756051189e-08 W ohm/K**2\n" - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.5, Page number 172" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nd = 8900; #density of Cu(kg/m**3)\nMat = 63.5; #atomic weight of Cu\ntow = 10**-14; #relaxation time(sec)\nNa = 6.022*10**23; #avagadro constant\na = 1*10**3; #number of free electrons per atom\ne = 1.6*10**-19; #charge of electron\nme = 9.1*10**-31; #mass of electron\n\n#Calculation\nn = d*Na*a/Mat; #concentration of atoms(per m**3)\nsigma = n*e**2*tow/me; #electrical conductivity(ohm m)\nsigma = sigma*10**-7;\nsigma=math.ceil(sigma*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint \"electrical conductivity is\",sigma,\"*10**7 ohm m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "electrical conductivity is 2.3745 *10**7 ohm m\n" - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.6, Page number 172" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nrho = 1.54*10**-8; #resistivity(ohm m)\nEF = 5.5; #fermi energy(eV)\nme = 9.1*10**-31; #mass of electron\nepsilon = 100;\ne = 1.6*10**-19; #charge of electron\nn = 5.8*10**28; #concentration of electrons(per m**3)\n\n#Calculation\ntow = me/(rho*n*e**2); #relaxation time(sec)\nmew = e*tow/me; #mobility of electrons(m**2/Vs)\nmew = mew*10**3;\nvd = e*tow*epsilon/me; #drift velocity(m/s)\nvd=math.ceil(vd*10)/10; #rounding off to 1 decimal\nEF = EF*e; #fermi energy((J)\nvF = math.sqrt(2*EF/me); #fermi velocity(m/s)\nvf = vF*10**-6;\nvf=math.ceil(vf*10**3)/10**3; #rounding off to 3 decimals\nlamda_m = vF*tow; #mean free path(m)\n\n#Result\nprint \"relaxation time of electrons is\",tow,\"sec\"\nprint \"mobility of electrons is\",mew,\"*10**-3 m**2/Vs\"\nprint \"drift velocity of electrons is\",vd,\"m/s\"\nprint \"drift velocity given in the book is wrong\"\nprint \"fermi velocity of electrons is\",vf,\"*10**6 m/s\"\nprint \"mean free path is\",lamda_m,\"m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "relaxation time of electrons is 3.97972178683e-14 sec\nmobility of electrons is 6.9973130318 *10**-3 m**2/Vs\ndrift velocity of electrons is 0.7 m/s\ndrift velocity given in the book is wrong\nfermi velocity of electrons is 1.391 *10**6 m/s\nmean free path is 5.53462691011e-08 m\n" - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.7, Page number 174" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nrho = 1.72*10**-8; #electrical resistivity(ohm m)\nL = 2.26*10**-8; #Lorentz number(ohm W/K**2)\nT = 27; #temperature(C)\n\n#Calculation\nT = T+273; #temperature(K)\nK = L*T/rho; #thermal conductivity(W/mK)\n\n#Result\nprint \"thermal conductivity is\",int(K),\"W/mK\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "thermal conductivity is 394 W/mK\n" - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.8, Page number 174" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nsigma = 5.87*10**7; #electrical conductivity(per ohm m)\nK = 390; #thermal conductivity(W/mK)\nT = 20; #temperature(C)\n\n#Calculation\nT = T+273; #temperature(K)\nL = K/(sigma*T); #Lorentz number(W ohm/K**2)\n\n#Result\nprint \"Lorentz number is\",L,\"W ohm/K**2\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "Lorentz number is 2.26756051189e-08 W ohm/K**2\n" - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.9, Page number 174" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nE_EF = 0.01; #energy(eV)\ne = 1.6*10**-19; #conversion factor from eV to J\nT = 200; #temperature(K)\nk = 1.38*10**-23; #boltzmann constant(J/K)\n\n#Calculation\nE_EF = E_EF*e; #energy(J)\nA = E_EF/(k*T);\nFofE = 1/(1+(math.exp(A))); #value of F(E)\nFofE=math.ceil(FofE*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"value of F(E) is\",FofE", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "value of F(E) is 0.36\n" - } - ], - "prompt_number": 9 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.10, Page number 175" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nlamda = 4*10**-8; #mean free path(m)\nn = 8.4*10**28; #density(per m**3)\nvthbar = 1.6*10**6; #average thermal velocity(m/s)\ne = 1.6*10**-19; #charge of electron(c)\nm = 9.11*10**-31; #mass of electron\n\n#Calculation\nsigma = n*e**2*lamda/(m*vthbar); #electrical conductivity(ohm-1 m-1)\nsigma = sigma*10**-7;\nsigma=math.ceil(sigma*100)/100; #rounding off to 2 decimals\n\n#Result\nprint \"electrical conductivity is\",sigma,\"*10**7 ohm-1 m-1\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "electrical conductivity is 5.91 *10**7 ohm-1 m-1\n" - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.11, Page number 176" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\ntow = 10**-14; #relaxation time(sec)\nT = 300; #temperature(K)\nn = 6*10**28; #electron concentration(per m**3)\ne = 1.6*10**-19; #charge of electron(c)\nme = 9.1*10**-31; #mass of electron\nk = 1.38*10**-23; #boltzmann constant(J/K)\n\n#Calculation\nsigma = n*e**2*tow/me; #electrical conductivity(ohm-1 m-1)\nsigmaa = sigma*10**-7;\nsigmaa=math.ceil(sigmaa*100)/100; #rounding off to 2 decimals\nK = 3*n*(k**2)*tow*T/(2*me); #thermal conductivity(W/mK)\nK=math.ceil(K*10)/10; #rounding off to 1 decimal\nL = K/(sigma*T); #Lorentz number(W ohm/K**2)\n\n#Result\nprint \"electrical conductivity is\",sigmaa,\"*10**7 ohm-1 m-1\"\nprint \"thermal conductivity is\",K,\"W/mK\"\nprint \"Lorentz number is\",L,\"W ohm/K**2\"\nprint \"answer for thermal conductivity and Lorentz number given in the book are wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "electrical conductivity is 1.69 *10**7 ohm-1 m-1\nthermal conductivity is 56.6 W/mK\nLorentz number is 1.11775173611e-08 W ohm/K**2\nanswer for thermal conductivity and Lorentz number given in the book are wrong\n" - } - ], - "prompt_number": 11 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.12, Page number 177" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nn = 5.8*10**28; #electron concentration(per m**3)\ne = 1.6*10**-19; #charge of electron(c)\nm = 9.1*10**-31; #mass of electron\nrho = 1.54*10**-8; #resistivity of metal(ohm m)\n\n#Calculation\ntow = m/(n*rho*e**2); #relaxation time(sec)\n\n#Result\nprint \"relaxation time is\",tow,\"sec\"\nprint \"answer given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "relaxation time is 3.97972178683e-14 sec\nanswer given in the book is wrong\n" - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.13, Page number 177" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nrho = 1.54*10**-8; #resistivity(ohm m)\nE = 1; #electric field(V/cm)\nme = 9.1*10**-31; #mass of electron\ne = 1.6*10**-19; #charge of electron\nn = 5.8*10**28; #concentration of electrons(per m**3)\n\n#Calculation\nE = E*10**2; #electric field(V/m)\ntow = me/(rho*n*e**2); #relaxation time(sec)\nvd = e*E*tow/me; #drift velocity(m/s)\nvd=math.ceil(vd*10)/10; #rounding off to 1 decimal\nmew = vd/E; #mobility of electrons(m**2/Vs)\nmew = mew*10**2;\n\n#Result\nprint \"relaxation time of electrons is\",tow,\"sec\"\nprint \"drift velocity of electrons is\",vd,\"m/s\"\nprint \"mobility of electrons is\",mew,\"*10**-2 m**2/Vs\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "relaxation time of electrons is 3.97972178683e-14 sec\ndrift velocity of electrons is 0.7 m/s\nmobility of electrons is 0.7 *10**-2 m**2/Vs\n" - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.14, Page number 178" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nT = 300; #temperature(K)\nl = 2; #length of wire(m)\nR = 0.02; #resistance(ohm)\nI = 15; #current(amp)\nmew = 4.3*10**-3; #mobility(m**2/Vs)\n\n#Calculation\nV = I*R; #voltage drop(V)\nE = V/l; #electric field(V/m)\nvd = mew*E; #drift velocity(m/s)\nvd = vd*10**3;\nvd=math.ceil(vd*100)/100; #rounding off to 2 decimals\n\n#Result\nprint \"drift velocity of electrons is\",vd,\"*10**-3 m/s\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "drift velocity of electrons is 0.65 *10**-3 m/s\n" - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.15, Page number 179" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nvf = 0.86*10**6; #fermi velocity(m/s)\nm = 9.1*10**-31; #mass of electron(kg)\ne = 1.6*10**-19; #charge of electron(C)\nk = 1.38*10**-23; #boltzmann constant\n\n#Calculation\nEF = m*vf**2/(2*e); #fermi energy(eV)\nEF=math.ceil(EF*100)/100; #rounding off to 2 decimals\nTF = EF*e/k; #fermi temperature(K)\n\n#Result\nprint \"Fermi energy is\",EF,\"eV\"\nprint \"Fermi temperature is\",int(TF),\"K\"\nprint \"answer for fermi temperature given in the book is wrong due to rounding off the value of EF\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "Fermi energy is 2.11 eV\nFermi temperature is 24463 K\nanswer for fermi temperature given in the book is wrong due to rounding off the value of EF\n" - } - ], - "prompt_number": 15 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.16, Page number 179" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nTF = 2460; #fermi temperature(K)\nm = 9.11*10**-31; #mass of electron(kg)\nk = 1.38*10**-23; #boltzmann constant\n\n#Calculation\nvF = math.sqrt(2*k*TF/m); #fermi velocity(m/s)\nvF = vF*10**-5;\nvF=math.ceil(vF*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"Fermi velocity is\",vF,\"*10**5 m/s\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "Fermi velocity is 2.731 *10**5 m/s\n" - } - ], - "prompt_number": 16 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter6_1.ipynb b/Engineering_Physics/Chapter6_1.ipynb deleted file mode 100755 index 768ed817..00000000 --- a/Engineering_Physics/Chapter6_1.ipynb +++ /dev/null @@ -1,356 +0,0 @@ -{ - "metadata": { - "name": "Chapter6" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "6: Conducting Materials" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.1, Page number 170" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nm = 9.1*10**-31; #mass of electron\nvf = 1*10**6; #Fermi velocity(m/s)\ne = 1.6*10**-19; #conversion factor from J to eV\n\n#Calculation\nEF = m*(vf**2)/(2*e); #Fermi energy(eV)\nEF=math.ceil(EF*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"Fermi energy is\",EF,\"eV\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "Fermi energy is 2.85 eV\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.2, Page number 170" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nEF0 = 7.04; #Fermi energy at 0K(eV)\nT = 300; #temperature(K)\nk = 1.38*10**-23; #boltzmann constant\ne = 1.6*10**-19; #conversion factor from J to eV\n\n#Calculation\nEF = EF0*(1-(((math.pi**2)/12)*(k*T/(EF0*e))**2)); #Fermi energy(eV)\nEF=math.ceil(EF*10**5)/10**5; #rounding off to 5 decimals\n\n#Result\nprint \"Fermi energy is\",EF,\"eV\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "Fermi energy is 7.03993 eV\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.3, Page number 171" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nd = 2.7*10**3; #density of Al(kg/m**3)\nMat = 27; #atomic weight of Al\ntow = 10**-14; #relaxation time(sec)\nNa = 6.022*10**23; #avagadro constant\na = 3*10**3; #number of free electrons per atom\ne = 1.6*10**-19; #charge of electron\nme = 9.1*10**-31; #mass of electron\n\n#Calculation\nn = d*Na*a/Mat; #concentration of atoms(per m**3)\nsigma = n*e**2*tow/me; #conductivity(ohm m)\nsigma = sigma*10**-7;\nsigma=math.ceil(sigma*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint \"conductivity of Al is\",sigma,\"*10**7 ohm m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "conductivity of Al is 5.0824 *10**7 ohm m\n" - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.4, Page number 171" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nsigma = 5.87*10**7; #electrical conductivity(per ohm m)\nK = 390; #thermal conductivity(W/mK)\nT = 20; #temperature(C)\n\n#Calculation\nT = T+273; #temperature(K)\nL = K/(sigma*T); #Lorentz number(W ohm/K**2)\n\n#Result\nprint \"Lorentz number is\",L,\"W ohm/K**2\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "Lorentz number is 2.26756051189e-08 W ohm/K**2\n" - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.5, Page number 172" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nd = 8900; #density of Cu(kg/m**3)\nMat = 63.5; #atomic weight of Cu\ntow = 10**-14; #relaxation time(sec)\nNa = 6.022*10**23; #avagadro constant\na = 1*10**3; #number of free electrons per atom\ne = 1.6*10**-19; #charge of electron\nme = 9.1*10**-31; #mass of electron\n\n#Calculation\nn = d*Na*a/Mat; #concentration of atoms(per m**3)\nsigma = n*e**2*tow/me; #electrical conductivity(ohm m)\nsigma = sigma*10**-7;\nsigma=math.ceil(sigma*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint \"electrical conductivity is\",sigma,\"*10**7 ohm m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "electrical conductivity is 2.3745 *10**7 ohm m\n" - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.6, Page number 172" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nrho = 1.54*10**-8; #resistivity(ohm m)\nEF = 5.5; #fermi energy(eV)\nme = 9.1*10**-31; #mass of electron\nepsilon = 100;\ne = 1.6*10**-19; #charge of electron\nn = 5.8*10**28; #concentration of electrons(per m**3)\n\n#Calculation\ntow = me/(rho*n*e**2); #relaxation time(sec)\nmew = e*tow/me; #mobility of electrons(m**2/Vs)\nmew = mew*10**3;\nvd = e*tow*epsilon/me; #drift velocity(m/s)\nvd=math.ceil(vd*10)/10; #rounding off to 1 decimal\nEF = EF*e; #fermi energy((J)\nvF = math.sqrt(2*EF/me); #fermi velocity(m/s)\nvf = vF*10**-6;\nvf=math.ceil(vf*10**3)/10**3; #rounding off to 3 decimals\nlamda_m = vF*tow; #mean free path(m)\n\n#Result\nprint \"relaxation time of electrons is\",tow,\"sec\"\nprint \"mobility of electrons is\",mew,\"*10**-3 m**2/Vs\"\nprint \"drift velocity of electrons is\",vd,\"m/s\"\nprint \"drift velocity given in the book is wrong\"\nprint \"fermi velocity of electrons is\",vf,\"*10**6 m/s\"\nprint \"mean free path is\",lamda_m,\"m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "relaxation time of electrons is 3.97972178683e-14 sec\nmobility of electrons is 6.9973130318 *10**-3 m**2/Vs\ndrift velocity of electrons is 0.7 m/s\ndrift velocity given in the book is wrong\nfermi velocity of electrons is 1.391 *10**6 m/s\nmean free path is 5.53462691011e-08 m\n" - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.7, Page number 174" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nrho = 1.72*10**-8; #electrical resistivity(ohm m)\nL = 2.26*10**-8; #Lorentz number(ohm W/K**2)\nT = 27; #temperature(C)\n\n#Calculation\nT = T+273; #temperature(K)\nK = L*T/rho; #thermal conductivity(W/mK)\n\n#Result\nprint \"thermal conductivity is\",int(K),\"W/mK\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "thermal conductivity is 394 W/mK\n" - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.8, Page number 174" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nsigma = 5.87*10**7; #electrical conductivity(per ohm m)\nK = 390; #thermal conductivity(W/mK)\nT = 20; #temperature(C)\n\n#Calculation\nT = T+273; #temperature(K)\nL = K/(sigma*T); #Lorentz number(W ohm/K**2)\n\n#Result\nprint \"Lorentz number is\",L,\"W ohm/K**2\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "Lorentz number is 2.26756051189e-08 W ohm/K**2\n" - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.9, Page number 174" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nE_EF = 0.01; #energy(eV)\ne = 1.6*10**-19; #conversion factor from eV to J\nT = 200; #temperature(K)\nk = 1.38*10**-23; #boltzmann constant(J/K)\n\n#Calculation\nE_EF = E_EF*e; #energy(J)\nA = E_EF/(k*T);\nFofE = 1/(1+(math.exp(A))); #value of F(E)\nFofE=math.ceil(FofE*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"value of F(E) is\",FofE", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "value of F(E) is 0.36\n" - } - ], - "prompt_number": 9 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.10, Page number 175" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nlamda = 4*10**-8; #mean free path(m)\nn = 8.4*10**28; #density(per m**3)\nvthbar = 1.6*10**6; #average thermal velocity(m/s)\ne = 1.6*10**-19; #charge of electron(c)\nm = 9.11*10**-31; #mass of electron\n\n#Calculation\nsigma = n*e**2*lamda/(m*vthbar); #electrical conductivity(ohm-1 m-1)\nsigma = sigma*10**-7;\nsigma=math.ceil(sigma*100)/100; #rounding off to 2 decimals\n\n#Result\nprint \"electrical conductivity is\",sigma,\"*10**7 ohm-1 m-1\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "electrical conductivity is 5.91 *10**7 ohm-1 m-1\n" - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.11, Page number 176" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\ntow = 10**-14; #relaxation time(sec)\nT = 300; #temperature(K)\nn = 6*10**28; #electron concentration(per m**3)\ne = 1.6*10**-19; #charge of electron(c)\nme = 9.1*10**-31; #mass of electron\nk = 1.38*10**-23; #boltzmann constant(J/K)\n\n#Calculation\nsigma = n*e**2*tow/me; #electrical conductivity(ohm-1 m-1)\nsigmaa = sigma*10**-7;\nsigmaa=math.ceil(sigmaa*100)/100; #rounding off to 2 decimals\nK = 3*n*(k**2)*tow*T/(2*me); #thermal conductivity(W/mK)\nK=math.ceil(K*10)/10; #rounding off to 1 decimal\nL = K/(sigma*T); #Lorentz number(W ohm/K**2)\n\n#Result\nprint \"electrical conductivity is\",sigmaa,\"*10**7 ohm-1 m-1\"\nprint \"thermal conductivity is\",K,\"W/mK\"\nprint \"Lorentz number is\",L,\"W ohm/K**2\"\nprint \"answer for thermal conductivity and Lorentz number given in the book are wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "electrical conductivity is 1.69 *10**7 ohm-1 m-1\nthermal conductivity is 56.6 W/mK\nLorentz number is 1.11775173611e-08 W ohm/K**2\nanswer for thermal conductivity and Lorentz number given in the book are wrong\n" - } - ], - "prompt_number": 11 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.12, Page number 177" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nn = 5.8*10**28; #electron concentration(per m**3)\ne = 1.6*10**-19; #charge of electron(c)\nm = 9.1*10**-31; #mass of electron\nrho = 1.54*10**-8; #resistivity of metal(ohm m)\n\n#Calculation\ntow = m/(n*rho*e**2); #relaxation time(sec)\n\n#Result\nprint \"relaxation time is\",tow,\"sec\"\nprint \"answer given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "relaxation time is 3.97972178683e-14 sec\nanswer given in the book is wrong\n" - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.13, Page number 177" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nrho = 1.54*10**-8; #resistivity(ohm m)\nE = 1; #electric field(V/cm)\nme = 9.1*10**-31; #mass of electron\ne = 1.6*10**-19; #charge of electron\nn = 5.8*10**28; #concentration of electrons(per m**3)\n\n#Calculation\nE = E*10**2; #electric field(V/m)\ntow = me/(rho*n*e**2); #relaxation time(sec)\nvd = e*E*tow/me; #drift velocity(m/s)\nvd=math.ceil(vd*10)/10; #rounding off to 1 decimal\nmew = vd/E; #mobility of electrons(m**2/Vs)\nmew = mew*10**2;\n\n#Result\nprint \"relaxation time of electrons is\",tow,\"sec\"\nprint \"drift velocity of electrons is\",vd,\"m/s\"\nprint \"mobility of electrons is\",mew,\"*10**-2 m**2/Vs\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "relaxation time of electrons is 3.97972178683e-14 sec\ndrift velocity of electrons is 0.7 m/s\nmobility of electrons is 0.7 *10**-2 m**2/Vs\n" - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.14, Page number 178" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nT = 300; #temperature(K)\nl = 2; #length of wire(m)\nR = 0.02; #resistance(ohm)\nI = 15; #current(amp)\nmew = 4.3*10**-3; #mobility(m**2/Vs)\n\n#Calculation\nV = I*R; #voltage drop(V)\nE = V/l; #electric field(V/m)\nvd = mew*E; #drift velocity(m/s)\nvd = vd*10**3;\nvd=math.ceil(vd*100)/100; #rounding off to 2 decimals\n\n#Result\nprint \"drift velocity of electrons is\",vd,\"*10**-3 m/s\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "drift velocity of electrons is 0.65 *10**-3 m/s\n" - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.15, Page number 179" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nvf = 0.86*10**6; #fermi velocity(m/s)\nm = 9.1*10**-31; #mass of electron(kg)\ne = 1.6*10**-19; #charge of electron(C)\nk = 1.38*10**-23; #boltzmann constant\n\n#Calculation\nEF = m*vf**2/(2*e); #fermi energy(eV)\nEF=math.ceil(EF*100)/100; #rounding off to 2 decimals\nTF = EF*e/k; #fermi temperature(K)\n\n#Result\nprint \"Fermi energy is\",EF,\"eV\"\nprint \"Fermi temperature is\",int(TF),\"K\"\nprint \"answer for fermi temperature given in the book is wrong due to rounding off the value of EF\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "Fermi energy is 2.11 eV\nFermi temperature is 24463 K\nanswer for fermi temperature given in the book is wrong due to rounding off the value of EF\n" - } - ], - "prompt_number": 15 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.16, Page number 179" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nTF = 2460; #fermi temperature(K)\nm = 9.11*10**-31; #mass of electron(kg)\nk = 1.38*10**-23; #boltzmann constant\n\n#Calculation\nvF = math.sqrt(2*k*TF/m); #fermi velocity(m/s)\nvF = vF*10**-5;\nvF=math.ceil(vF*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"Fermi velocity is\",vF,\"*10**5 m/s\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "Fermi velocity is 2.731 *10**5 m/s\n" - } - ], - "prompt_number": 16 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter7.ipynb b/Engineering_Physics/Chapter7.ipynb deleted file mode 100755 index d6a7ab3d..00000000 --- a/Engineering_Physics/Chapter7.ipynb +++ /dev/null @@ -1,468 +0,0 @@ -{ - "metadata": { - "name": "Chapter7", - "signature": "sha256:043709ddd748250fcd3232cc251c6d71d665f281189e172a4c8d9b59233bdcee" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "7: Semiconducting Materials" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.1, Page number 208" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nme = 9.11*10**-31; #mass of electron(kg)\nepsilon_r = 13.2; \nepsilon0 = 8.85*10**-12;\nh = 6.63*10**-34;\ne = 1.6*10**-19; #charge of electron(C)\n\n#Calculation\nm_nc = 0.067*me;\nE = m_nc*e**4/(8*(epsilon0*epsilon_r*h)**2); #energy(J)\nE = E/e; #energy(eV)\nE = math.ceil(E*10**5)/10**5; #rounding off to 5 decimals\nE_meV = E*10**3; #energy(meV)\n\n#Result\nprint \"donor binding energy is\",E,\"eV or\",E_meV,\"meV\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "donor binding energy is 0.00521 eV or 5.21 meV\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.2, Page number 208" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nimport numpy as np\n\n#Variable declaration\nNd = 10**16; #donor concentration(atoms/cm**3)\nni = 1.5*10**10; #concentration(per cm**3)\nT = 300; #temperature(K)\nkT = 0.0259;\n\n#Calculation\nn0 = Nd; #for Nd>>ni, assume n0=Nd\np0 = ni**2/n0; #equilibrium hole concentration(per cm**3)\np0 = p0*10**-4;\nEF_Ei = kT*np.log(n0/ni);\nEF_Ei = math.ceil(EF_Ei*10**4)/10**4; #rounding off to 4 decimals\n\n\n#Result\nprint \"equilibrium hole concentration is\",p0,\"*10**4 per cm**3\"\nprint \"value of EF-Ei is\",EF_Ei,\"eV\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "equilibrium hole concentration is 2.25 *10**4 per cm**3\nvalue of EF-Ei is 0.3474 eV\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.3, Page number 209" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\ne = 1.6*10**-19; #charge of electron(C)\nNd = 10**14; #donor density(atoms/cm**3)\nmew_n = 3900;\n\n#Calculation\nn = Nd;\nsigma = n*e*mew_n; #conductivity(ohm-1 cm-1)\nrho = 1/sigma; #resistivity(ohm cm)\nrho = math.ceil(rho*100)/100; #rounding off to 2 decimals\n\n\n#Result\nprint \"resistivity of sample is\",rho,\"ohm cm\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "resistivity of sample is 16.03 ohm cm\n" - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.4, Page number 209" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\ne = 1.6*10**-19; #charge of electron(C)\nn0 = 5*10**16; #donor density(atoms/cm**3)\nmew_0 = 800;\nIx = 2; #current(mA)\nBz = 5*10**-5;\nd = 200; #thickness(micrometre)\n\n#Calculation\nIx = Ix*10**-3; #current(A)\nd = d*10**-4; #thickness(m)\nsigma = e*n0*mew_0; #conductivity(ohm-1 cm-1)\nrho = 1/sigma; #resistivity(ohm cm)\nrho = math.ceil(rho*10**4)/10**4; #rounding off to 4 decimals\nRH = -1/(e*n0); #Hall coefficient(cm**3/C)\nVH = Ix*Bz*RH/d; #Hall voltage(V)\nVH = VH*10**5;\n\n\n#Result\nprint \"resistivity of sample is\",rho,\"ohm cm\"\nprint \"Hall coefficient is\",RH,\"cm**3/C\"\nprint \"Hall voltage is\",VH,\"*10**-5 V\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "resistivity of sample is 0.1563 ohm cm\nHall coefficient is -125.0 cm**3/C\nHall voltage is -62.5 *10**-5 V\n" - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.5, Page number 210" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nT = 300; #temperature(K)\nmew_n = 0.4; #electron mobility(m**2/Vs)\nmew_p = 0.2; #hole mobility(m**2/Vs)\nEg = 0.7; #band gap(eV)\nme = 9.11*10**-31; #mass of electron(kg)\nk = 1.38*10**-23; #boltzmann constant\nT = 300; #temperature(K)\nh = 6.625*10**-34;\nkT = 0.0259;\ne = 1.6*10**-19; #charge of electron(C)\n\n#Calculation\nmn_star = 0.55*me; #electron effective mass(kg)\nmp_star = 0.37*me; #hole effective mass(kg)\na = (2*math.pi*k*T/(h**2))**(3/2);\nb = (mn_star*mp_star)**(3/4);\nc = math.exp(-Eg/(2*kT));\nni = 2*a*b*c; #intrinsic concentration(per m**3)\nsigma = ni*e*(mew_n+mew_p); #intrinsic conductivity(per ohm m)\nsigma = math.ceil(sigma*10**4)/10**4; #rounding off to 4 decimals\nrho = 1/sigma; #intrinsic resistivity(ohm m)\nrho = math.ceil(rho*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint \"intrinsic concentration is\",ni,\"per m**3\"\nprint \"intrinsic conductivity is\",sigma,\"per ohm m\"\nprint \"intrinsic resistivity is\",rho,\"ohm m\"\nprint \"answers given in the book are wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "intrinsic concentration is 1.02825111151e+19 per m**3\nintrinsic conductivity is 0.9872 per ohm m\nintrinsic resistivity is 1.013 ohm m\nanswers given in the book are wrong\n" - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.6, Page number 211" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nimport numpy as np\nfrom __future__ import division\n\n#Variable declaration\nNd = 10**16; #donor concentration(per cm**3)\nni = 1.45*10**10; #concentration(per cm**3)\nkT = 0.0259;\n\n#Calculation\n#ni = Nc*math.exp(-(Ec-Ei)/kT)\n#Nd = Nc*(math.exp(-(Ec-Efd)/kT)\n#dividing Nd/ni we get \nEFd_Ei = kT*np.log(Nd/ni);\nEFd_Ei = math.ceil(EFd_Ei*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint \"Fermi energy is\",EFd_Ei,\"eV\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "Fermi energy is 0.3482 eV\n" - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.7, Page number 211, theoretical" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.8, Page number 212" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nimport numpy as np\nfrom __future__ import division\n\n#Variable declaration\nT = 300; #temperature(K)\nmew_n = 0.36; #electron mobility(m**2/Vs)\nmew_p = 0.17; #hole mobility(m**2/Vs)\nrho = 2.12; #resistivity(ohm m)\nme = 9.11*10**-31; #mass of electron(kg)\nkT = 0.0259;\nh = 6.625*10**-34;\nk = 1.38*10**-23; #boltzmann constant\ne = 1.6*10**-19; #charge of electron(C)\n\n#Calculation\nmn_star = 0.55*me; #electron effective mass(kg)\nmp_star = 0.37*me; #hole effective mass(kg)\nsigma = 1/rho; #conductivity(per ohm m)\nsigma = math.ceil(sigma*10**3)/10**3; #rounding off to 3 decimals\nni = sigma/(e*(mew_n+mew_p)); #concentration of electrons(per m**3)\na = (2*math.pi*kT/(h**2))**(3/2);\nNc = 2*a*(mn_star**(3/2)); \nNv = 2*a*(mp_star**(3/2)); \nb = (Nc*Nv)**(1/2);\nEg = 2*kT*np.log(b/ni);\n\n#Result\nprint \"forbidden energy gap is\",Eg,\"eV\"\nprint \"answer given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "forbidden energy gap is 4.09465494989 eV\nanswer given in the book is wrong\n" - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.9, Page number 213" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nni = 2.4*10**19; #concentration(per m**3)\nmew_n = 0.39; #electron mobility(m**2/Vs)\nmew_p = 0.19; #hole mobility(m**2/Vs)\ne = 1.6*10**-19; #charge of electron(C)\n\n#Calculation\nsigma = ni*e*(mew_n+mew_p); #conductivity(per ohm m)\nsigma = math.ceil(sigma*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"conductivity of sample is\",sigma,\"ohm-1 m-1\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "conductivity of sample is 2.228 ohm-1 m-1\n" - } - ], - "prompt_number": 9 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.10, Page number 214" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nEc = 0.3; #initial position(eV)\nT1 = 300; #initial temperature(K)\nT2 = 330; #increased temperature\n\n#Calculation\n#Ec/T1 = Ec_EF330/T2\nEc_EF330 = Ec*T2/T1; #new position of Fermi level(eV)\n\n#Result\nprint \"new position of Fermi level is\",Ec_EF330,\"eV\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "new position of Fermi level is 0.33 eV\n" - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.11, Page number 214" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nk = 1.38*10**-23; #boltzmann constant\nT = 300; #temperature(K)\nme = 9.1*10**-31; #mass of electron(kg)\nh = 6.63*10**-34; #planck's constant\nEc_Ev = 1.1; #energy gap(eV)\ne = 1.6*10**-19; #charge of electron(C)\n\n#Calculation\nme_star = 0.31*me;\nA = (2*math.pi*k*T*me_star/(h**2))**(3/2);\nB = math.exp(-(Ec_Ev*e)/(2*k*T));\nni = A*B; #concentration in conduction band(per m**3)\n\n#Result\nprint \"intrinsic electron concentration is\",ni,\"per m**3\"\nprint \"answer given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "intrinsic electron concentration is 1.26605935487e+15 per m**3\nanswer given in the book is wrong\n" - } - ], - "prompt_number": 11 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.12, Page number 214" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nRH = 0.55*10**-10; #Hall coefficient(m**3/As)\nsigma = 5.9*10**7; #conductivity(ohm-1 m-1)\n\n#Calculation\nmew = RH*sigma; #drift mobility(m**2/Vs)\nmew = mew*10**3;\nmew = math.ceil(mew*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"drift mobility of electrons is\",mew,\"*10**-3 m**2/Vs\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "drift mobility of electrons is 3.25 *10**-3 m**2/Vs\n" - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.13, Page number 215" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nA = 6.022*10**23; #avagadro constant\nd = 8.96*10**-9; #density(kg/m**3)\nn = 9.932*10**14; #no. of free electrons per atom\nsigma = 5.9*10**7; #conductivity(ohm-1 m-1)\ne = 1.6*10**-19; #electron charge(C)\nmew = 3.2*10**-3; #drift mobility(m**2/Vs)\nw = 63.5; #atomic weight of Cu(kg)\n\n#Calculation\nni = sigma/(mew*e); #conductivity(per m**3)\nN = A*d*n/w; #concentration of free electrons in pure Cu\nAN = ni/N; #average number of electrons contributed per Cu atom\n\n#Result\nprint \"concentration of free electrons in pure Cu is\",N,\"per m**3\"\nprint \"average number of electrons contributed per Cu atom is\",int(AN)", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "concentration of free electrons in pure Cu is 8.43940339906e+28 per m**3\naverage number of electrons contributed per Cu atom is 1\n" - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.14, Page number 215" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nRH = 3.66*10**-11; #hall coefficient(m**3/As)\ne = 1.6*10**-19; #electron charge(C)\nsigma = 112*10**7; #conductivity(ohm-1 m-1)\n\n#Calculation\nn = 1/(e*RH); #charge carrier density(per m**3)\nmew_n = sigma/(n*e); #electron mobility(m**2/As)\nmew_n = math.ceil(mew_n*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"charge carrier density is\",n,\"per m**3\"\nprint \"electron mobility is\",mew_n,\"m**2/As\"\nprint \"answers given in the book are wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "charge carrier density is 1.70765027322e+29 per m**3\nelectron mobility is 0.041 m**2/As\nanswers given in the book are wrong\n" - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.15, Page number 216" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nB = 1.5; #magnetic field(T)\nI = 50; #current(Amp)\nn = 8.4*10**28; #free electron concentration(per m**3)\nd = 0.2; #thickness of slab(cm)\n\n#Calculation\nd = d*10**-2; #thickness of slab(m)\nVH = B*I/(n*e*d); #hall voltage(V)\n\n#Result\nprint \"magnitude of Hall voltage is\",VH,\"V\"\nprint \"answer given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "magnitude of Hall voltage is 2.79017857143e-06 V\nanswer given in the book is wrong\n" - } - ], - "prompt_number": 15 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.16, Page number 216" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nn = 2.5*10**19; #free electron concentration(per m**3)\nmew_n = 0.39; #electron mobility(m**2/Vs)\nmew_p = 0.19; #hole mobility(m**2/Vs)\nL = 1; #length(cm)\nw = 1; #width(mm)\nt = 1; #thickness(mm)\n\n#Calculation\nL = L*10**-2; #length(m)\nw = w*10**-3; #width(m)\nt = t*10**-3; #thickness(m)\nA = w*t; #area(m**2)\nsigma = n*e*(mew_n+mew_p); #conductivity(ohm-1 m-1)\nR = L/(sigma*A); #resistance(ohm)\n\n#Result\nprint \"resistance of intrinsic Ge rod is\",int(R),\"ohm\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "resistance of intrinsic Ge rod is 4310 ohm\n" - } - ], - "prompt_number": 16 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.17, Page number 216" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nimport numpy as np\nfrom __future__ import division\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nEg = 1.12; #band gap(eV)\nme = 1;\nmn_star = 0.12*me; #electron mobility(m**2/Vs)\nmp_star = 0.28*me; #hole mobility(m**2/Vs)\nk = 1.38*10**-23; #boltzmann constant\nT = 300; #temperature\n\n#Calculation\na = mp_star/mn_star;\nEF = (Eg/2)+((3*k*T/(4*e))*np.log(a));\nEF = math.ceil(EF*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"position of Fermi level is\",EF,\"eV\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "position of Fermi level is 0.577 eV\n" - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.18, Page number 217" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nni = 1.5*10**16; #intrinsic carrier density(per m**3)\nmew_n = 0.13; #electron mobility(m**2/Vs)\nmew_p = 0.05; #hole mobility(m**2/Vs)\n\n#Calculation\nsigma = ni*e*(mew_n+mew_p); #electrical conductivity\nsigma = sigma*10**4;\n\n#Result\nprint \"electrical conductivity is\",sigma,\"*10**-4 ohm-1 m-1\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "electrical conductivity is 4.32 *10**-4 ohm-1 m-1\n" - } - ], - "prompt_number": 18 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.19, Page number 217" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nni = 2.15*10**-13; #intrinsic carrier density(per cm**3)\nmew_n = 3900; #electron mobility(cm**2/Vs)\nmew_p = 1900; #hole mobility(cm**2/Vs)\n\n#Calculation\nsigmai = ni*e*(mew_n+mew_p); #electrical conductivity(ohm-1 cm-1)\nrhoi = 1/sigmai; #intrinsic resistivity(ohm cm)\n\n#Result\nprint \"intrinsic resistivity is\",rhoi,\"ohm cm\"\nprint \"answer given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "intrinsic resistivity is 5.01202886929e+27 ohm cm\nanswer given in the book is wrong\n" - } - ], - "prompt_number": 19 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.20, Page number 217" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nni = 2.1*10**19; #intrinsic carrier density(per m**3)\nmew_n = 0.4; #electron mobility(m**2/Vs)\nmew_p = 0.2; #hole mobility(m**2/Vs)\n\n#Calculation\nsigma = ni*e*(mew_n+mew_p); #electrical conductivity\n\n#Result\nprint \"intrinsic resistivity is\",sigma,\"ohm-1 m-1\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "intrinsic resistivity is 2.016 ohm-1 m-1\n" - } - ], - "prompt_number": 20 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.21, Page number 218" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nV = 1.35; #voltage supply(V)\nI = 5; #current(mA)\nb = 5; #breadth(mm)\nd = 1; #thickness(mm)\nL = 1; #length(cm)\nH = 0.45; #magnetic field(Wb/m**2)\nVy =20; #Hall voltage(mV)\n\n#Calculation\nVy = Vy*10**-3; #Hall voltage(V)\nL = L*10**-2; #length(m)\nd = d*10**-3; #thickness(m)\nb = b*10**-3; #breadth(m)\nI = I*10**-3; #current(A)\nR = V/I; #resistance(ohm)\nA = b*d; #area(m**2)\nrho = R*A/L; #resistivity(ohm m)\nEy = Vy/d; #Hall field(V/m)\nJx = I/A; \na = Ey/(H*Jx); #current density(m**3/C).Here a is 1/ne \nRH = a; #Hall coefficient(m**3/C)\nRH = math.ceil(RH*10**4)/10**4; #rounding off to 4 decimals\nmew_n = RH/rho; #electron mobility(m**2/Vs)\nmew_n = math.ceil(mew_n*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"Hall coefficient is\",RH,\"m**3/C\"\nprint \"electron mobility is\",mew_n,\"m**2/Vs\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "Hall coefficient is 0.0445 m**3/C\nelectron mobility is 0.33 m**2/Vs\n" - } - ], - "prompt_number": 21 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.22, Page number 219" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nIx = 200; #current(A)\nBz = 1.5; #magnetic field(Wb/m**2)\np = 8.4*10**28; #electron concentration(per m**3)\nd = 1; #thickness(mm)\n\n#Calculation\nd = d*10**-3; #thickness(m)\nVH = Ix*Bz/(e*p*d); #Hall potential(V)\nVH = VH*10**6; #Hall potential(micro V)\n\n#Result\nprint \"Hall potential is\",int(VH),\"micro V\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "Hall potential is 22 micro V\n" - } - ], - "prompt_number": 22 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter7_1.ipynb b/Engineering_Physics/Chapter7_1.ipynb deleted file mode 100755 index d6a7ab3d..00000000 --- a/Engineering_Physics/Chapter7_1.ipynb +++ /dev/null @@ -1,468 +0,0 @@ -{ - "metadata": { - "name": "Chapter7", - "signature": "sha256:043709ddd748250fcd3232cc251c6d71d665f281189e172a4c8d9b59233bdcee" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "7: Semiconducting Materials" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.1, Page number 208" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nme = 9.11*10**-31; #mass of electron(kg)\nepsilon_r = 13.2; \nepsilon0 = 8.85*10**-12;\nh = 6.63*10**-34;\ne = 1.6*10**-19; #charge of electron(C)\n\n#Calculation\nm_nc = 0.067*me;\nE = m_nc*e**4/(8*(epsilon0*epsilon_r*h)**2); #energy(J)\nE = E/e; #energy(eV)\nE = math.ceil(E*10**5)/10**5; #rounding off to 5 decimals\nE_meV = E*10**3; #energy(meV)\n\n#Result\nprint \"donor binding energy is\",E,\"eV or\",E_meV,\"meV\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "donor binding energy is 0.00521 eV or 5.21 meV\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.2, Page number 208" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nimport numpy as np\n\n#Variable declaration\nNd = 10**16; #donor concentration(atoms/cm**3)\nni = 1.5*10**10; #concentration(per cm**3)\nT = 300; #temperature(K)\nkT = 0.0259;\n\n#Calculation\nn0 = Nd; #for Nd>>ni, assume n0=Nd\np0 = ni**2/n0; #equilibrium hole concentration(per cm**3)\np0 = p0*10**-4;\nEF_Ei = kT*np.log(n0/ni);\nEF_Ei = math.ceil(EF_Ei*10**4)/10**4; #rounding off to 4 decimals\n\n\n#Result\nprint \"equilibrium hole concentration is\",p0,\"*10**4 per cm**3\"\nprint \"value of EF-Ei is\",EF_Ei,\"eV\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "equilibrium hole concentration is 2.25 *10**4 per cm**3\nvalue of EF-Ei is 0.3474 eV\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.3, Page number 209" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\ne = 1.6*10**-19; #charge of electron(C)\nNd = 10**14; #donor density(atoms/cm**3)\nmew_n = 3900;\n\n#Calculation\nn = Nd;\nsigma = n*e*mew_n; #conductivity(ohm-1 cm-1)\nrho = 1/sigma; #resistivity(ohm cm)\nrho = math.ceil(rho*100)/100; #rounding off to 2 decimals\n\n\n#Result\nprint \"resistivity of sample is\",rho,\"ohm cm\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "resistivity of sample is 16.03 ohm cm\n" - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.4, Page number 209" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\ne = 1.6*10**-19; #charge of electron(C)\nn0 = 5*10**16; #donor density(atoms/cm**3)\nmew_0 = 800;\nIx = 2; #current(mA)\nBz = 5*10**-5;\nd = 200; #thickness(micrometre)\n\n#Calculation\nIx = Ix*10**-3; #current(A)\nd = d*10**-4; #thickness(m)\nsigma = e*n0*mew_0; #conductivity(ohm-1 cm-1)\nrho = 1/sigma; #resistivity(ohm cm)\nrho = math.ceil(rho*10**4)/10**4; #rounding off to 4 decimals\nRH = -1/(e*n0); #Hall coefficient(cm**3/C)\nVH = Ix*Bz*RH/d; #Hall voltage(V)\nVH = VH*10**5;\n\n\n#Result\nprint \"resistivity of sample is\",rho,\"ohm cm\"\nprint \"Hall coefficient is\",RH,\"cm**3/C\"\nprint \"Hall voltage is\",VH,\"*10**-5 V\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "resistivity of sample is 0.1563 ohm cm\nHall coefficient is -125.0 cm**3/C\nHall voltage is -62.5 *10**-5 V\n" - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.5, Page number 210" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nT = 300; #temperature(K)\nmew_n = 0.4; #electron mobility(m**2/Vs)\nmew_p = 0.2; #hole mobility(m**2/Vs)\nEg = 0.7; #band gap(eV)\nme = 9.11*10**-31; #mass of electron(kg)\nk = 1.38*10**-23; #boltzmann constant\nT = 300; #temperature(K)\nh = 6.625*10**-34;\nkT = 0.0259;\ne = 1.6*10**-19; #charge of electron(C)\n\n#Calculation\nmn_star = 0.55*me; #electron effective mass(kg)\nmp_star = 0.37*me; #hole effective mass(kg)\na = (2*math.pi*k*T/(h**2))**(3/2);\nb = (mn_star*mp_star)**(3/4);\nc = math.exp(-Eg/(2*kT));\nni = 2*a*b*c; #intrinsic concentration(per m**3)\nsigma = ni*e*(mew_n+mew_p); #intrinsic conductivity(per ohm m)\nsigma = math.ceil(sigma*10**4)/10**4; #rounding off to 4 decimals\nrho = 1/sigma; #intrinsic resistivity(ohm m)\nrho = math.ceil(rho*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint \"intrinsic concentration is\",ni,\"per m**3\"\nprint \"intrinsic conductivity is\",sigma,\"per ohm m\"\nprint \"intrinsic resistivity is\",rho,\"ohm m\"\nprint \"answers given in the book are wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "intrinsic concentration is 1.02825111151e+19 per m**3\nintrinsic conductivity is 0.9872 per ohm m\nintrinsic resistivity is 1.013 ohm m\nanswers given in the book are wrong\n" - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.6, Page number 211" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nimport numpy as np\nfrom __future__ import division\n\n#Variable declaration\nNd = 10**16; #donor concentration(per cm**3)\nni = 1.45*10**10; #concentration(per cm**3)\nkT = 0.0259;\n\n#Calculation\n#ni = Nc*math.exp(-(Ec-Ei)/kT)\n#Nd = Nc*(math.exp(-(Ec-Efd)/kT)\n#dividing Nd/ni we get \nEFd_Ei = kT*np.log(Nd/ni);\nEFd_Ei = math.ceil(EFd_Ei*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint \"Fermi energy is\",EFd_Ei,\"eV\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "Fermi energy is 0.3482 eV\n" - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.7, Page number 211, theoretical" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.8, Page number 212" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nimport numpy as np\nfrom __future__ import division\n\n#Variable declaration\nT = 300; #temperature(K)\nmew_n = 0.36; #electron mobility(m**2/Vs)\nmew_p = 0.17; #hole mobility(m**2/Vs)\nrho = 2.12; #resistivity(ohm m)\nme = 9.11*10**-31; #mass of electron(kg)\nkT = 0.0259;\nh = 6.625*10**-34;\nk = 1.38*10**-23; #boltzmann constant\ne = 1.6*10**-19; #charge of electron(C)\n\n#Calculation\nmn_star = 0.55*me; #electron effective mass(kg)\nmp_star = 0.37*me; #hole effective mass(kg)\nsigma = 1/rho; #conductivity(per ohm m)\nsigma = math.ceil(sigma*10**3)/10**3; #rounding off to 3 decimals\nni = sigma/(e*(mew_n+mew_p)); #concentration of electrons(per m**3)\na = (2*math.pi*kT/(h**2))**(3/2);\nNc = 2*a*(mn_star**(3/2)); \nNv = 2*a*(mp_star**(3/2)); \nb = (Nc*Nv)**(1/2);\nEg = 2*kT*np.log(b/ni);\n\n#Result\nprint \"forbidden energy gap is\",Eg,\"eV\"\nprint \"answer given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "forbidden energy gap is 4.09465494989 eV\nanswer given in the book is wrong\n" - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.9, Page number 213" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nni = 2.4*10**19; #concentration(per m**3)\nmew_n = 0.39; #electron mobility(m**2/Vs)\nmew_p = 0.19; #hole mobility(m**2/Vs)\ne = 1.6*10**-19; #charge of electron(C)\n\n#Calculation\nsigma = ni*e*(mew_n+mew_p); #conductivity(per ohm m)\nsigma = math.ceil(sigma*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"conductivity of sample is\",sigma,\"ohm-1 m-1\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "conductivity of sample is 2.228 ohm-1 m-1\n" - } - ], - "prompt_number": 9 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.10, Page number 214" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nEc = 0.3; #initial position(eV)\nT1 = 300; #initial temperature(K)\nT2 = 330; #increased temperature\n\n#Calculation\n#Ec/T1 = Ec_EF330/T2\nEc_EF330 = Ec*T2/T1; #new position of Fermi level(eV)\n\n#Result\nprint \"new position of Fermi level is\",Ec_EF330,\"eV\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "new position of Fermi level is 0.33 eV\n" - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.11, Page number 214" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nk = 1.38*10**-23; #boltzmann constant\nT = 300; #temperature(K)\nme = 9.1*10**-31; #mass of electron(kg)\nh = 6.63*10**-34; #planck's constant\nEc_Ev = 1.1; #energy gap(eV)\ne = 1.6*10**-19; #charge of electron(C)\n\n#Calculation\nme_star = 0.31*me;\nA = (2*math.pi*k*T*me_star/(h**2))**(3/2);\nB = math.exp(-(Ec_Ev*e)/(2*k*T));\nni = A*B; #concentration in conduction band(per m**3)\n\n#Result\nprint \"intrinsic electron concentration is\",ni,\"per m**3\"\nprint \"answer given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "intrinsic electron concentration is 1.26605935487e+15 per m**3\nanswer given in the book is wrong\n" - } - ], - "prompt_number": 11 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.12, Page number 214" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nRH = 0.55*10**-10; #Hall coefficient(m**3/As)\nsigma = 5.9*10**7; #conductivity(ohm-1 m-1)\n\n#Calculation\nmew = RH*sigma; #drift mobility(m**2/Vs)\nmew = mew*10**3;\nmew = math.ceil(mew*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"drift mobility of electrons is\",mew,\"*10**-3 m**2/Vs\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "drift mobility of electrons is 3.25 *10**-3 m**2/Vs\n" - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.13, Page number 215" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nA = 6.022*10**23; #avagadro constant\nd = 8.96*10**-9; #density(kg/m**3)\nn = 9.932*10**14; #no. of free electrons per atom\nsigma = 5.9*10**7; #conductivity(ohm-1 m-1)\ne = 1.6*10**-19; #electron charge(C)\nmew = 3.2*10**-3; #drift mobility(m**2/Vs)\nw = 63.5; #atomic weight of Cu(kg)\n\n#Calculation\nni = sigma/(mew*e); #conductivity(per m**3)\nN = A*d*n/w; #concentration of free electrons in pure Cu\nAN = ni/N; #average number of electrons contributed per Cu atom\n\n#Result\nprint \"concentration of free electrons in pure Cu is\",N,\"per m**3\"\nprint \"average number of electrons contributed per Cu atom is\",int(AN)", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "concentration of free electrons in pure Cu is 8.43940339906e+28 per m**3\naverage number of electrons contributed per Cu atom is 1\n" - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.14, Page number 215" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nRH = 3.66*10**-11; #hall coefficient(m**3/As)\ne = 1.6*10**-19; #electron charge(C)\nsigma = 112*10**7; #conductivity(ohm-1 m-1)\n\n#Calculation\nn = 1/(e*RH); #charge carrier density(per m**3)\nmew_n = sigma/(n*e); #electron mobility(m**2/As)\nmew_n = math.ceil(mew_n*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"charge carrier density is\",n,\"per m**3\"\nprint \"electron mobility is\",mew_n,\"m**2/As\"\nprint \"answers given in the book are wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "charge carrier density is 1.70765027322e+29 per m**3\nelectron mobility is 0.041 m**2/As\nanswers given in the book are wrong\n" - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.15, Page number 216" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nB = 1.5; #magnetic field(T)\nI = 50; #current(Amp)\nn = 8.4*10**28; #free electron concentration(per m**3)\nd = 0.2; #thickness of slab(cm)\n\n#Calculation\nd = d*10**-2; #thickness of slab(m)\nVH = B*I/(n*e*d); #hall voltage(V)\n\n#Result\nprint \"magnitude of Hall voltage is\",VH,\"V\"\nprint \"answer given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "magnitude of Hall voltage is 2.79017857143e-06 V\nanswer given in the book is wrong\n" - } - ], - "prompt_number": 15 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.16, Page number 216" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nn = 2.5*10**19; #free electron concentration(per m**3)\nmew_n = 0.39; #electron mobility(m**2/Vs)\nmew_p = 0.19; #hole mobility(m**2/Vs)\nL = 1; #length(cm)\nw = 1; #width(mm)\nt = 1; #thickness(mm)\n\n#Calculation\nL = L*10**-2; #length(m)\nw = w*10**-3; #width(m)\nt = t*10**-3; #thickness(m)\nA = w*t; #area(m**2)\nsigma = n*e*(mew_n+mew_p); #conductivity(ohm-1 m-1)\nR = L/(sigma*A); #resistance(ohm)\n\n#Result\nprint \"resistance of intrinsic Ge rod is\",int(R),\"ohm\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "resistance of intrinsic Ge rod is 4310 ohm\n" - } - ], - "prompt_number": 16 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.17, Page number 216" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nimport numpy as np\nfrom __future__ import division\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nEg = 1.12; #band gap(eV)\nme = 1;\nmn_star = 0.12*me; #electron mobility(m**2/Vs)\nmp_star = 0.28*me; #hole mobility(m**2/Vs)\nk = 1.38*10**-23; #boltzmann constant\nT = 300; #temperature\n\n#Calculation\na = mp_star/mn_star;\nEF = (Eg/2)+((3*k*T/(4*e))*np.log(a));\nEF = math.ceil(EF*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"position of Fermi level is\",EF,\"eV\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "position of Fermi level is 0.577 eV\n" - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.18, Page number 217" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nni = 1.5*10**16; #intrinsic carrier density(per m**3)\nmew_n = 0.13; #electron mobility(m**2/Vs)\nmew_p = 0.05; #hole mobility(m**2/Vs)\n\n#Calculation\nsigma = ni*e*(mew_n+mew_p); #electrical conductivity\nsigma = sigma*10**4;\n\n#Result\nprint \"electrical conductivity is\",sigma,\"*10**-4 ohm-1 m-1\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "electrical conductivity is 4.32 *10**-4 ohm-1 m-1\n" - } - ], - "prompt_number": 18 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.19, Page number 217" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nni = 2.15*10**-13; #intrinsic carrier density(per cm**3)\nmew_n = 3900; #electron mobility(cm**2/Vs)\nmew_p = 1900; #hole mobility(cm**2/Vs)\n\n#Calculation\nsigmai = ni*e*(mew_n+mew_p); #electrical conductivity(ohm-1 cm-1)\nrhoi = 1/sigmai; #intrinsic resistivity(ohm cm)\n\n#Result\nprint \"intrinsic resistivity is\",rhoi,\"ohm cm\"\nprint \"answer given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "intrinsic resistivity is 5.01202886929e+27 ohm cm\nanswer given in the book is wrong\n" - } - ], - "prompt_number": 19 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.20, Page number 217" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nni = 2.1*10**19; #intrinsic carrier density(per m**3)\nmew_n = 0.4; #electron mobility(m**2/Vs)\nmew_p = 0.2; #hole mobility(m**2/Vs)\n\n#Calculation\nsigma = ni*e*(mew_n+mew_p); #electrical conductivity\n\n#Result\nprint \"intrinsic resistivity is\",sigma,\"ohm-1 m-1\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "intrinsic resistivity is 2.016 ohm-1 m-1\n" - } - ], - "prompt_number": 20 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.21, Page number 218" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nV = 1.35; #voltage supply(V)\nI = 5; #current(mA)\nb = 5; #breadth(mm)\nd = 1; #thickness(mm)\nL = 1; #length(cm)\nH = 0.45; #magnetic field(Wb/m**2)\nVy =20; #Hall voltage(mV)\n\n#Calculation\nVy = Vy*10**-3; #Hall voltage(V)\nL = L*10**-2; #length(m)\nd = d*10**-3; #thickness(m)\nb = b*10**-3; #breadth(m)\nI = I*10**-3; #current(A)\nR = V/I; #resistance(ohm)\nA = b*d; #area(m**2)\nrho = R*A/L; #resistivity(ohm m)\nEy = Vy/d; #Hall field(V/m)\nJx = I/A; \na = Ey/(H*Jx); #current density(m**3/C).Here a is 1/ne \nRH = a; #Hall coefficient(m**3/C)\nRH = math.ceil(RH*10**4)/10**4; #rounding off to 4 decimals\nmew_n = RH/rho; #electron mobility(m**2/Vs)\nmew_n = math.ceil(mew_n*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"Hall coefficient is\",RH,\"m**3/C\"\nprint \"electron mobility is\",mew_n,\"m**2/Vs\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "Hall coefficient is 0.0445 m**3/C\nelectron mobility is 0.33 m**2/Vs\n" - } - ], - "prompt_number": 21 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 7.22, Page number 219" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\ne = 1.6*10**-19; #electron charge(C)\nIx = 200; #current(A)\nBz = 1.5; #magnetic field(Wb/m**2)\np = 8.4*10**28; #electron concentration(per m**3)\nd = 1; #thickness(mm)\n\n#Calculation\nd = d*10**-3; #thickness(m)\nVH = Ix*Bz/(e*p*d); #Hall potential(V)\nVH = VH*10**6; #Hall potential(micro V)\n\n#Result\nprint \"Hall potential is\",int(VH),\"micro V\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "Hall potential is 22 micro V\n" - } - ], - "prompt_number": 22 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter8.ipynb b/Engineering_Physics/Chapter8.ipynb deleted file mode 100755 index 54d83b1d..00000000 --- a/Engineering_Physics/Chapter8.ipynb +++ /dev/null @@ -1,125 +0,0 @@ -{ - "metadata": { - "name": "Chapter8" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "8: Magnetic Materials" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 8.1, Page number 238" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nI = 12; #current(Ampere)\nA = 7.5*10**-4 #area of loop(m**2)\n\n#Calculation\nM = I*A; #magnetic moment(Am**2)\nM = M*10**3;\n\n#Result\nprint \"magnetic moment is\",M,\"*10**-3 Am**2\"\nprint \"magnetic moment is in opposite direction from the observer\"\nprint \"M is perpendicular to the plane\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "magnetic moment is 9.0 *10**-3 Am**2\nmagnetic moment is in opposite direction from the observer\nM is perpendicular to the plane\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 8.2, Page number 238" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nr = 0.5; #radius of orbit(Angstrom)\ne = 1.6*10**-19; #charge of electron(C)\nnew = 10**16; #frequency(rps)\n\n#Calculation\nr = r*10**-10; #radius of orbit(m)\nI = e*new; #current(Ampere)\nA = math.pi*r**2; #area enclosed(m**2)\nM = I*A; #magnetic moment(Am**2)\n\n#Result\nprint \"magnetic moment is\",M,\"Am**2\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "magnetic moment is 1.25663706144e-23 Am**2\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 8.3, Page number 239" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nmew_r = 5000; #relative permeability\n\n#Calculation\nchi_m = mew_r-1; #magnetic susceptibility\n\n#Result\nprint \"magnetic susceptibility is\",chi_m", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "magnetic susceptibility is 4999\n" - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 8.4, Page number 239" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nH = 1800; #magnetic field(A/m)\nphi = 3*10**-5; #magnetic flux(Wb)\nA = 0.2; #cross sectional area(cm**2)\n\n#Calculation\nA = A*10**-4; #cross sectional area(m**2)\nB = phi/A; #magnetic flux density(Wb/m**2)\nmew = B/H; #permeability(H/m)\nmew = mew*10**4;\nmew=math.ceil(mew*100)/100; #rounding off to 2 decimals\n\n#Result\nprint \"permeability is\",mew,\"*10**-4 H/m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "permeability is 8.34 *10**-4 H/m\n" - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 8.5, Page number 239" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nB = 0.65; #magnetic induction(Wb/m**2)\nrho = 8906; #density(kg/m**3)\nM = 58.7; #atomic weight\nmew0 = 4*math.pi*10**-7;\nmb = 9.27*10**-24;\nNa = 6.023*10**26; #avagadro constant\n\n#Calculation\nN = rho*Na/M; #number of atoms per unit volume(atoms/m**3)\nmew_r = B/(N*mew0); #relative permeability(A/m**2)\nM = mew_r/mb; #magnetic moment in mew_B \nM=math.ceil(M*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"magnetic moment is\",M,\"mew_B\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "magnetic moment is 0.611 mew_B\n" - } - ], - "prompt_number": 5 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter8_1.ipynb b/Engineering_Physics/Chapter8_1.ipynb deleted file mode 100755 index 54d83b1d..00000000 --- a/Engineering_Physics/Chapter8_1.ipynb +++ /dev/null @@ -1,125 +0,0 @@ -{ - "metadata": { - "name": "Chapter8" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "8: Magnetic Materials" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 8.1, Page number 238" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nI = 12; #current(Ampere)\nA = 7.5*10**-4 #area of loop(m**2)\n\n#Calculation\nM = I*A; #magnetic moment(Am**2)\nM = M*10**3;\n\n#Result\nprint \"magnetic moment is\",M,\"*10**-3 Am**2\"\nprint \"magnetic moment is in opposite direction from the observer\"\nprint \"M is perpendicular to the plane\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "magnetic moment is 9.0 *10**-3 Am**2\nmagnetic moment is in opposite direction from the observer\nM is perpendicular to the plane\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 8.2, Page number 238" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nr = 0.5; #radius of orbit(Angstrom)\ne = 1.6*10**-19; #charge of electron(C)\nnew = 10**16; #frequency(rps)\n\n#Calculation\nr = r*10**-10; #radius of orbit(m)\nI = e*new; #current(Ampere)\nA = math.pi*r**2; #area enclosed(m**2)\nM = I*A; #magnetic moment(Am**2)\n\n#Result\nprint \"magnetic moment is\",M,\"Am**2\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "magnetic moment is 1.25663706144e-23 Am**2\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 8.3, Page number 239" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nmew_r = 5000; #relative permeability\n\n#Calculation\nchi_m = mew_r-1; #magnetic susceptibility\n\n#Result\nprint \"magnetic susceptibility is\",chi_m", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "magnetic susceptibility is 4999\n" - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 8.4, Page number 239" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nH = 1800; #magnetic field(A/m)\nphi = 3*10**-5; #magnetic flux(Wb)\nA = 0.2; #cross sectional area(cm**2)\n\n#Calculation\nA = A*10**-4; #cross sectional area(m**2)\nB = phi/A; #magnetic flux density(Wb/m**2)\nmew = B/H; #permeability(H/m)\nmew = mew*10**4;\nmew=math.ceil(mew*100)/100; #rounding off to 2 decimals\n\n#Result\nprint \"permeability is\",mew,\"*10**-4 H/m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "permeability is 8.34 *10**-4 H/m\n" - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 8.5, Page number 239" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nB = 0.65; #magnetic induction(Wb/m**2)\nrho = 8906; #density(kg/m**3)\nM = 58.7; #atomic weight\nmew0 = 4*math.pi*10**-7;\nmb = 9.27*10**-24;\nNa = 6.023*10**26; #avagadro constant\n\n#Calculation\nN = rho*Na/M; #number of atoms per unit volume(atoms/m**3)\nmew_r = B/(N*mew0); #relative permeability(A/m**2)\nM = mew_r/mb; #magnetic moment in mew_B \nM=math.ceil(M*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"magnetic moment is\",M,\"mew_B\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "magnetic moment is 0.611 mew_B\n" - } - ], - "prompt_number": 5 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter9.ipynb b/Engineering_Physics/Chapter9.ipynb deleted file mode 100755 index ff53dd34..00000000 --- a/Engineering_Physics/Chapter9.ipynb +++ /dev/null @@ -1,62 +0,0 @@ -{ - "metadata": { - "name": "Chapter9" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "9: Superconducting Materials" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 9.1, Page number 255" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nH0 = 6.5*10**4; #magnetic field intensity(A/m)\nT = 4.2; #temperature(K)\nTc = 7.18; #critical temperature(K)\n\n#Calculation\nHc = H0*(1-((T**2)/(Tc**2))); #critical magnetic field intensity(A/m)\nHc = Hc*10**-4;\nHc=math.ceil(Hc*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"critical magnetic field intensity is\",Hc,\"*10**4 A/m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "critical magnetic field intensity is 4.276 *10**4 A/m\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 9.2, Page number 255" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nTc1 = 4.185; #critical temperature for M1(K)\nTc2 = 4.133; #critical temperature for M2(K)\nM1 = 199.5; #isotopic mass\nalpha = 0.5;\n\n#Calculation\nA = math.pow(M1,alpha)*Tc1/Tc2;\nM2 = math.pow(A,1/alpha); #isotopic mass\nM2=math.ceil(M2*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"isotopic mass is\",M2\nprint \"answer given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "isotopic mass is 204.552\nanswer given in the book is wrong\n" - } - ], - "prompt_number": 2 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter9_1.ipynb b/Engineering_Physics/Chapter9_1.ipynb deleted file mode 100755 index ff53dd34..00000000 --- a/Engineering_Physics/Chapter9_1.ipynb +++ /dev/null @@ -1,62 +0,0 @@ -{ - "metadata": { - "name": "Chapter9" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "9: Superconducting Materials" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 9.1, Page number 255" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nH0 = 6.5*10**4; #magnetic field intensity(A/m)\nT = 4.2; #temperature(K)\nTc = 7.18; #critical temperature(K)\n\n#Calculation\nHc = H0*(1-((T**2)/(Tc**2))); #critical magnetic field intensity(A/m)\nHc = Hc*10**-4;\nHc=math.ceil(Hc*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"critical magnetic field intensity is\",Hc,\"*10**4 A/m\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "critical magnetic field intensity is 4.276 *10**4 A/m\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 9.2, Page number 255" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#importing modules\nimport math\n\n#Variable declaration\nTc1 = 4.185; #critical temperature for M1(K)\nTc2 = 4.133; #critical temperature for M2(K)\nM1 = 199.5; #isotopic mass\nalpha = 0.5;\n\n#Calculation\nA = math.pow(M1,alpha)*Tc1/Tc2;\nM2 = math.pow(A,1/alpha); #isotopic mass\nM2=math.ceil(M2*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"isotopic mass is\",M2\nprint \"answer given in the book is wrong\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "isotopic mass is 204.552\nanswer given in the book is wrong\n" - } - ], - "prompt_number": 2 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter_1.ipynb b/Engineering_Physics/Chapter_1.ipynb deleted file mode 100755 index 080a49e2..00000000 --- a/Engineering_Physics/Chapter_1.ipynb +++ /dev/null @@ -1,263 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:f155f4255421e223741f26abb6caa1287b63505ee5f432c40968d5b5ff6fb505" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Ultrasonics" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.1, Page number 28 " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "t=0.15*10**-2; #thickness of the quartz crystal in m\n", - "Y=7.9*10**10; #young's modulus of quartz in N/m^2\n", - "rho=2650; #density of quartz in kg/m^3\n", - "\n", - "#Calculation\n", - "x=math.sqrt(Y/rho);\n", - "f=x/(2*t);\n", - "f=f*10**-6; #converting f from Hz to MHz\n", - "f=math.ceil(f*10**6)/10**6; #rounding off to 6 decimals\n", - "\n", - "#Result\n", - "print(\"fundamental frequency of vibration in MHz is\",f);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('fundamental frequency of vibration in MHz is', 1.819992)\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.2, Page number 28 " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "t=1e-03; #thickness of the quartz crystal in m\n", - "Y=7.9*10**10; #young's modulus of quartz in N/m^2\n", - "rho=2650; #density of quartz in kg/m^3\n", - "\n", - "#Calculation\n", - "x=math.sqrt(Y/rho);\n", - "p1=1; #for fundamental frequency p=1\n", - "f1=(p1*x)/(2*t);\n", - "F1=f1/10**6;\n", - "F1=math.ceil(F1*10**5)/10**5; #rounding off to 5 decimals\n", - "f_1=f1*10**-6; #converting f1 from Hz to MHz\n", - "f_1=math.ceil(f_1*10**5)/10**5; #rounding off to 5 decimals\n", - "p2=2; #for first overtone p=2\n", - "f2=(p2*x)/(2*t);\n", - "F2=f2/10**6;\n", - "F2=math.ceil(F2*10**5)/10**5; #rounding off to 5 decimals\n", - "f_2=f2*10**-6; #converting f2 from Hz to MHz\n", - "f_2=math.ceil(f_2*10**5)/10**5; #rounding off to 5 decimals\n", - "\n", - "#Result\n", - "print(\"fundamental frequency in Hz is\",F1,\"*10**6\");\n", - "print(\"fundamental frequency in MHz is\",f_1);\n", - "print(\"frequency of the first overtone in Hz is\",F2,\"*10**6\");\n", - "print(\"frequency of the first overtone in MHz is\",f_2);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('fundamental frequency in Hz is', 2.72999, '*10**6')\n", - "('fundamental frequency in MHz is', 2.72999)\n", - "('frequency of the first overtone in Hz is', 5.45998, '*10**6')\n", - "('frequency of the first overtone in MHz is', 5.45998)\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.3, Page number 29 " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "lamda=589.3*10**-9; #wavelength of light in m\n", - "f=100*10**6; #frequency of ultrasonic transducer in Hz\n", - "n=1; #order of diffraction\n", - "theta=2.25; #angle of diffraction in degrees\n", - "theta=theta*0.0174532925; #converting degrees to radians\n", - "\n", - "#Calculation\n", - "d=(n*lamda)/(2*math.sin(theta));\n", - "d1=d*10**6; #converting d from m to micro m\n", - "lamda1=2*d;\n", - "v=f*lamda1;\n", - "v=math.ceil(v*100)/100; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"wavelength of ultrasonic wave in m is\",lamda1);\n", - "print(\"velocity of ultrasonic wave in m/sec\",int(v));" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('wavelength of ultrasonic wave in m is', 1.5010258944908707e-05)\n", - "('velocity of ultrasonic wave in m/sec', 1501)\n" - ] - } - ], - "prompt_number": 19 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.4, Page number 29 " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "f=2*10**6; #frequency of transducer in MHz\n", - "v=3; #speed of blood in m/s\n", - "c=800; #velocity of ultrasonic wave in m/s\n", - "theta=30; #angle of inclination in degrees\n", - "theta=theta*0.0174532925; #converting degrees to radians\n", - "\n", - "#Calculation\n", - "deltaf=(2*f*v*math.cos(theta))/c;\n", - "deltaf=deltaf*10**-6; #converting deltaf from Hz to MHz\n", - "deltaf=math.ceil(deltaf*10**6)/10**6; #rounding off to 6 decimals\n", - "\n", - "#Result\n", - "print(\"doppler shifted frequency in MHz is\",deltaf);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('doppler shifted frequency in MHz is', 0.012991)\n" - ] - } - ], - "prompt_number": 20 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.5, Page number 30 " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "\n", - "#Variable declaration\n", - "Y=7.9*10**10; #young's modulus of quartz in N/m^2\n", - "rho=2650; #density of quartz in kg/m^3\n", - "\n", - "#Calculation\n", - "v=math.sqrt(Y/rho);\n", - "v=math.ceil(v*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"velocity of ultrasonic waves in m/s is\",v);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('velocity of ultrasonic waves in m/s is', 5459.975)\n" - ] - } - ], - "prompt_number": 21 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter_10.ipynb b/Engineering_Physics/Chapter_10.ipynb deleted file mode 100755 index 22ab6eae..00000000 --- a/Engineering_Physics/Chapter_10.ipynb +++ /dev/null @@ -1,301 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:d58d66ad9738120c070e76177ecbb4c809f35b6cd83a911351fcdee8be9798f2" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Magnetic materials" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 10.1, Page number 305" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "H=10**6; #magnetic field strength in A/m\n", - "chi=0.5*10**-5; #magnetic susceptibility\n", - "\n", - "#Calculation\n", - "mew0=4*math.pi*10**-7;\n", - "M=chi*H;\n", - "B=mew0*(M+H);\n", - "B=math.ceil(B*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"intensity of magnetisation in A/m is\",M);\n", - "print(\"flux density in Wb/m^2 is\",B);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('intensity of magnetisation in A/m is', 5.0)\n", - "('flux density in Wb/m^2 is', 1.257)\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 10.2, Page number 306" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "A=6.022*10**23; #avagadro number\n", - "mew0=4*math.pi*10**-7;\n", - "w=58.7; #atomic weight of Ni\n", - "B=0.65; #saturation magnetic induction in Wb/m^2\n", - "rho=8906; #density in kg/m^3\n", - "\n", - "#Calculation\n", - "rho=rho*10**3; #converting into gm/m^3\n", - "N=(rho*A)/w;\n", - "mew_m=B/(N*mew0);\n", - "#mew_m/(9.27*10^-24) gives mew_m in mewB\n", - "mew_m=mew_m/(9.27*10**-24);\n", - "mew_m=math.ceil(mew_m*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"magnetic moment of Ni is\",mew_m,\"mew_b\");\n", - "#that is mew_m=0.61 mew_b" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('magnetic moment of Ni is', 0.611, 'mew_b')\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 10.3, Page number 306" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "mew_0=4*math.pi*10**-7;\n", - "H=1800; #magnetic field in A/m\n", - "phi=3*10**-5; #magnetic flux in Wb\n", - "A=0.2; #area of cross section in cm^2\n", - "\n", - "#Calculation\n", - "A=A*10**-4; #area in m^2\n", - "B=phi/A;\n", - "mew_r=B/(mew_0*H);\n", - "mew_r=math.ceil(mew_r*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"permeability of material is\",mew_r);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('permeability of material is', 663.146)\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 10.4, Page number 307" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "mew=18.4; #magnetic moment in mew_b\n", - "a=0.835; #lattice parameter in nm\n", - "\n", - "#Calculation\n", - "mew=mew*9.27*10**-24;\n", - "a=a*10**-9; #converting nm to m\n", - "V=a**3;\n", - "M=mew/V;\n", - "M=M/10**5;\n", - "M=math.ceil(M*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"saturation magnetisation in A/m is\",M,\"*10**5\");" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('saturation magnetisation in A/m is', 2.9299, '*10**5')\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 10.5, Page number 307" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "mew_0=4*math.pi*10**-7;\n", - "H=2*10**5; #magnetic field strength in A/m\n", - "mew_r=1.01; #relative permeability\n", - "\n", - "#Calculation\n", - "B=mew_0*mew_r*H;\n", - "B=math.ceil(B*10**5)/10**5; #rounding off to 3 decimals\n", - "M=(B/mew_0)-H;\n", - "M=math.ceil(M*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"magnetic flux density in Wb/m^2 is\",B);\n", - "print(\"magnetisation in A/m is\",M);\n", - "\n", - "#answer for magnetisation given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('magnetic flux density in Wb/m^2 is', 0.25385)\n", - "('magnetisation in A/m is', 2007.42)\n" - ] - } - ], - "prompt_number": 9 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 10.6, Page number 307" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "mew_0=4*math.pi*10**-7;\n", - "H=500; #magnetic field strength in A/m\n", - "chi=1.2; #susceptibility\n", - "\n", - "#Calculation\n", - "M=chi*H;\n", - "B=mew_0*(M+H);\n", - "B=B*10**3;\n", - "B=math.ceil(B*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"magnetic flux density in Wb/m^2 is\",B,\"*10**-3\");" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('magnetic flux density in Wb/m^2 is', 1.3824, '*10**-3')\n" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter_11.ipynb b/Engineering_Physics/Chapter_11.ipynb deleted file mode 100755 index d8455a9b..00000000 --- a/Engineering_Physics/Chapter_11.ipynb +++ /dev/null @@ -1,319 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:3ff449f1ffe03bd2c9931a55b263d24ea75427a65a897e285709531b99dfed25" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Dielectric materials" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 11.1, Page number 335" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "epsilon_0=8.854*10**-12;\n", - "A=10*10*10**-6; #area of capacitor in m^2\n", - "d=2*10**-3; #distance of seperation in m\n", - "C=10**-9; #capacitance in F\n", - "\n", - "#Calculation\n", - "epsilon_r=(C*d)/(epsilon_0*A);\n", - "epsilon_r=math.ceil(epsilon_r*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"dielectric constant of material is\",epsilon_r);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('dielectric constant of material is', 2258.87)\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 11.2, Page number 335" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#Variable declaration\n", - "epsilon_0=8.854*10**-12;\n", - "epsilon_r=1.0000684; #dielectric constant of He gas\n", - "N=2.7*10**25; #concentration of dipoles per m^3\n", - "\n", - "#Calculation\n", - "#alpha_e=P/(N*E) and P=epsilon_0(epsilon_r-1)*E\n", - "#therefore alpha_e=epsilon_0(epsilon_r-1)/N\n", - "alpha_e=(epsilon_0*(epsilon_r-1))/N;\n", - "\n", - "#Result\n", - "print(\"electronic polarizability of He gas in Fm^2 is\",alpha_e);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('electronic polarizability of He gas in Fm^2 is', 2.2430133333322991e-41)\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 11.3, Page number 336" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#Variable declaration\n", - "epsilon_0=8.854*10**-12;\n", - "epsilon_r=6; #dielectric constant\n", - "E=100; #electric field intensity in V/m\n", - "\n", - "#Calculation\n", - "P=epsilon_0*(epsilon_r-1)*E;\n", - "\n", - "#Result\n", - "print(\"polarization in C/m^2 is\",P);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('polarization in C/m^2 is', 4.426999999999999e-09)\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 11.4, Page number 336" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "epsilon_0=8.854*10**-12;\n", - "R=0.158; #radius of Ne in nm\n", - "\n", - "#Calculation\n", - "R=R*10**-9; #converting nm to m\n", - "alpha_e=4*math.pi*epsilon_0*R**3;\n", - "\n", - "#Result\n", - "print(\"electronic polarizability in Fm^2 is\",alpha_e);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('electronic polarizability in Fm^2 is', 4.3885458748002144e-40)\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 11.5, Page number 336" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "epsilon_0=8.854*10**-12;\n", - "C=0.02; #capacitance in micro farad\n", - "epsilon_r=6; #dielectric constant\n", - "t=0.002; #thickness of mica in cm\n", - "d=0.002; #thickness of metal sheet in cm\n", - "\n", - "#Calculation\n", - "C=C*10**-6; #converting micro farad to farad\n", - "d=d*10**-2; #converting cm to m\n", - "A=(C*d)/(epsilon_0*epsilon_r);\n", - "A=A*10**3;\n", - "A=math.ceil(A*10**4)/10**4; #rounding off to 4 decimals\n", - "A1=A*10; #converting m**2 to cm**2\n", - "A1=math.ceil(A1*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"area of metal sheet in m^2 is\",A,\"*10**-3\");\n", - "print(\"area of metal sheet in cm^2 is\",A1);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('area of metal sheet in m^2 is', 7.5296, '*10**-3')\n", - "('area of metal sheet in cm^2 is', 75.296)\n" - ] - } - ], - "prompt_number": 9 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 11.6, Page number 336" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "epsilon_0=8.854*10**-12;\n", - "E=1000; #electric field in V/m\n", - "P=4.3*10**-8; #polarization in C/m^2\n", - "\n", - "#Calculation\n", - "epsilon_r=(P/(E*epsilon_0)+1);\n", - "epsilon_r=math.ceil(epsilon_r*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"dielectric constant is\",epsilon_r);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('dielectric constant is', 5.8566)\n" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 11.7, Page number 337" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#Variable declaration\n", - "epsilon_0=8.854*10**-12;\n", - "chi=4.94; #relative susceptibility\n", - "N=10**28; #number of dipoles per m^3\n", - "\n", - "#Calculation\n", - "#polarisation P=N*alpha*E and P=epsilon_0*chi*E. equate the two equations\n", - "#epsilon_0*chi*E=N*alpha*E\n", - "alpha=(epsilon_0*chi)/N;\n", - "\n", - "#Result\n", - "print(\"polarisability of material in F/m^2 is\",alpha);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('polarisability of material in F/m^2 is', 4.373876e-39)\n" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter_12.ipynb b/Engineering_Physics/Chapter_12.ipynb deleted file mode 100755 index 4fdbd6c5..00000000 --- a/Engineering_Physics/Chapter_12.ipynb +++ /dev/null @@ -1,294 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:50b83ee4e84906dcabb2d002b372255d1153b0b8a78afbf0a4be018e0c342780" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Superconducting Materials" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 12.1, Page number 356" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "Tc=3.7; #critical temperature in K\n", - "H0=0.0306; #magnetic field in T\n", - "T=2; #temperature in K\n", - "\n", - "#Calculation\n", - "Hc=H0*(1-(T**2/Tc**2));\n", - "Hc=math.ceil(Hc*10**5)/10**5; #rounding off to 5 decimals\n", - "\n", - "#Result\n", - "print(\"critical field in T is\",Hc);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('critical field in T is', 0.02166)\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 12.2, Page number 356" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "Tc=7.26; #critical temperature in K\n", - "H0=6.4*10**3; #magnetic field in T\n", - "T=5; #temperature in K\n", - "\n", - "#Calculation\n", - "Hc=H0*(1-(T**2/Tc**2));\n", - "Hc=math.ceil(Hc*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"critical field in T is\",Hc);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('critical field in T is', 3364.385)\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 12.3, Page number 357" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "Tc1=4.185; #critical temperature in K\n", - "M1=199.5; #atomic mass\n", - "M2=203.4; #atomic mass after changing\n", - "\n", - "#Calculation\n", - "#according to maxwell equation Tc*M^0.5=constant\n", - "#Tc1*M1^0.5=Tc2*M2^0.5\n", - "Tc2=(Tc1*M1**0.5)/M2**0.5;\n", - "Tc2=math.ceil(Tc2*10**6)/10**6; #rounding off to 6 decimals\n", - "\n", - "#Result\n", - "print(\"critical temperature of Hg in K is\",Tc2);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('critical temperature of Hg in K is', 4.144685)\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 12.4, Page number 357" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "d=1; #diameter of wire in mm\n", - "T=4.2; #temperature in K\n", - "Tc=7.18; #critical temperature in K\n", - "H0=6.5*10**4; #magnetic field\n", - "\n", - "#Calculation\n", - "d=d*10**-3; #diameter in m\n", - "R=d/2;\n", - "Hc=H0*(1-(T**2/Tc**2));\n", - "HC=Hc/10**4;\n", - "HC=math.ceil(HC*10**3)/10**3; #rounding off to 2 decimals\n", - "Ic=2*math.pi*R*Hc;\n", - "Ic=math.ceil(Ic*10**2)/10**2; #rounding off to 2 decimals\n", - "A=math.pi*R**2;\n", - "J=Ic/A;\n", - "J=J/10**8;\n", - "J=math.ceil(J*10**5)/10**5; #rounding off to 5 decimals\n", - "\n", - "#Result\n", - "print(\"critical magnetic field at 4.2K in A/m is\",HC,\"*10**4\");\n", - "print(\"critical current in A is\",Ic);\n", - "print(\"critical current density in A/m^2 is\",J,\"*10**8\");" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('critical magnetic field at 4.2K in A/m is', 4.276, '*10**4')\n", - "('critical current in A is', 134.33)\n", - "('critical current density in A/m^2 is', 1.71035, '*10**8')\n" - ] - } - ], - "prompt_number": 15 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 12.5, Page number 358" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "\n", - "#Variable declaration\n", - "e=1.6*10**-19;\n", - "h=6.626*10**-34;\n", - "V=6; #voltage applied in micro volts\n", - "\n", - "#Calculation\n", - "V=V*10**-6; #converting micro volts to volts\n", - "new=(2*e*V)/h;\n", - "new=new/10**9;\n", - "new=math.ceil(new*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"frequency of ac signal in Hz is\",new,\"*10**9\");" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('frequency of ac signal in Hz is', 2.8977, '*10**9')\n" - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 12.6, Page number 358" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "\n", - "#Variable declaration\n", - "Kb=1.38*10**-23;\n", - "Tc=7.19; #critical temperature in K\n", - "\n", - "#Calculation\n", - "Eg=3.5*Kb*Tc;\n", - "Eg=Eg/(1.6*10**-19); #converting J to eV\n", - "Eg=Eg*10**3; #converting eV into milli eV\n", - "Eg=math.ceil(Eg*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"band gap of superconducting lead in meV is\",Eg);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('band gap of superconducting lead in meV is', 2.171)\n" - ] - } - ], - "prompt_number": 17 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter_2.ipynb b/Engineering_Physics/Chapter_2.ipynb deleted file mode 100755 index 82d0d7af..00000000 --- a/Engineering_Physics/Chapter_2.ipynb +++ /dev/null @@ -1,467 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:3d73f6bba1b33a0bbd48c706ad53709f1f38f4b901966e1c9494931ace163899" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Laser" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.1, Page number 59 " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "h=6.626*10**-34;\n", - "c=3*10**8;\n", - "lamda=632.8*10**-9; #wavelength in m\n", - "P=5*10**-3; #output power in W\n", - "\n", - "#Calculation\n", - "E=(h*c)/lamda; #energy of one photon\n", - "E_eV=E/(1.6*10**-19); #converting J to eV\n", - "E_eV=math.ceil(E_eV*1000)/1000; #rounding off to 3 decimals\n", - "N=P/E; #number of photons emitted\n", - "\n", - "\n", - "#Result\n", - "print(\"energy of one photon in eV is\",E_eV);\n", - "print(\"number of photons emitted per second is\",N);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('energy of one photon in eV is', 1.964)\n", - "('number of photons emitted per second is', 1.5917094275077976e+16)\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.2, Page number 60" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "h=6.626*10**-34;\n", - "c=3*10**8;\n", - "lamda=632.8*10**-9; #wavelength in m\n", - "\n", - "#Calculation\n", - "E=(h*c)/lamda; #energy of one photon\n", - "E_eV=E/(1.6*10**-19); #converting J to eV\n", - "E_eV=math.ceil(E_eV*1000)/1000; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"energy of one photon in eV is\",E_eV);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('energy of one photon in eV is', 1.964)\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.3, Page number 60" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "E1=0; #value of 1st energy level in eV\n", - "E2=1.4; #value of 2nd energy level in eV\n", - "lamda=1.15*10**-6;\n", - "h=6.626*10**-34;\n", - "c=3*10**8;\n", - "\n", - "#Calculation\n", - "E=(h*c)/lamda; #energy of one photon\n", - "E_eV=E/(1.6*10**-19); #converting J to eV\n", - "E3=E2+E_eV;\n", - "E3=math.ceil(E3*100)/100; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"value of E3 in eV is\",E3);\n", - "\n", - "#answer given in the book for E3 is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('value of E3 in eV is', 2.49)\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.4, Page number 60" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#Variable declaration\n", - "h=6.626*10**-34;\n", - "c=3*10**8;\n", - "E2=3.2; #value of higher energy level in eV\n", - "E1=1.6; #value of lower energy level in eV\n", - "\n", - "#Calculation\n", - "E=E2-E1; #energy difference in eV\n", - "E_J=E*1.6*10**-19; #converting E from eV to J\n", - "lamda=(h*c)/E_J; #wavelength of photon\n", - "\n", - "#Result\n", - "print(\"energy difference in eV\",E);\n", - "print(\"wavelength of photon in m\",lamda);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('energy difference in eV', 1.6)\n", - "('wavelength of photon in m', 7.76484375e-07)\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.5, Page number 60" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#Variable declaration\n", - "h=6.626*10**-34;\n", - "c=3*10**8;\n", - "E=1.42*1.6*10**-19; #band gap of GaAs in J\n", - "\n", - "#Calculation\n", - "lamda=(h*c)/E; #wavelength of laser\n", - "\n", - "#Result\n", - "print(\"wavelength of laser emitted by GaAs in m\",lamda);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('wavelength of laser emitted by GaAs in m', 8.74911971830986e-07)\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.6, Page number 61" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "T=300; #temperature in K\n", - "lamda=500*10**-9; #wavelength in m\n", - "h=6.626*10**-34;\n", - "c=3*10**8;\n", - "k=1.38*10**-23;\n", - "\n", - "#Calculation\n", - "#from maxwell and boltzmann law, relative population is given by\n", - "#N1/N2=exp(-E1/kT)/exp(-E2/kT)\n", - "#hence N1/N2=exp(-(E1-E2)/kT)=exp((h*new)/(k*T));\n", - "#new=c/lambda\n", - "R=(h*c)/(lamda*k*T);\n", - "RP=math.exp(R);\n", - "\n", - "#Result\n", - "print(\"relative population between N1 and N2 is\",RP);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('relative population between N1 and N2 is', 5.068255595981255e+41)\n" - ] - } - ], - "prompt_number": 9 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.7, Page number 61" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "T=300; #temperature in K\n", - "h=6.626*10**-34;\n", - "c=3*10**8;\n", - "k=1.38*10**-23;\n", - "lamda=600*10**-9; #wavelength in m\n", - "\n", - "#Calculation\n", - "R=(h*c)/(lamda*k*T);\n", - "Rs=1/(math.exp(R)-1);\n", - "\n", - "#Result\n", - "print(\"the ratio between stimulated emission to spontaneous emission is\",Rs);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the ratio between stimulated emission to spontaneous emission is', 1.7617782449453023e-35)\n" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.8, Page number 62" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "P=5*10**-3; #output power in W\n", - "I=10*10**-3; #current in A\n", - "V=3*10**3; #voltage in V\n", - "\n", - "#Calculation\n", - "e=(P*100)/(I*V);\n", - "e=math.ceil(e*10**6)/10**6; #rounding off to 6 decimals\n", - "\n", - "#Result\n", - "print(\"efficiency of laser in % is\",e);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('efficiency of laser in % is', 0.016667)\n" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.9, Page number 62" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "P=1e-03; #output power in W\n", - "d=1e-06; #diameter in m\n", - "\n", - "#Calculation\n", - "r=d/2; #radius in m\n", - "I=P/(math.pi*r**2); #intensity\n", - "I=I/10**9;\n", - "I=math.ceil(I*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"intensity of laser in W/m^2 is\",I,\"*10**9\");" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('intensity of laser in W/m^2 is', 1.2733, '*10**9')\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.10, Page number 62" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "lamda=632.8*10**-9; #wavelength in m\n", - "D=5; #distance in m\n", - "d=1*10**-3; #diameter in m\n", - "\n", - "#Calculation\n", - "deltatheta=lamda/d; #angular speed\n", - "delta_theta=deltatheta*10**4;\n", - "r=D*deltatheta;\n", - "r1=r*10**3; #converting r from m to mm\n", - "A=math.pi*r**2; #area of the spread\n", - "\n", - "#Result \n", - "print(\"angular speed in radian is\",delta_theta,\"*10**-4\");\n", - "print(\"radius of the spread in mm is\",r1);\n", - "print(\"area of the spread in m^2 is\",A);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('angular speed in radian is', 6.328, '*10**-4')\n", - "('radius of the spread in mm is', 3.164)\n", - "('area of the spread in m^2 is', 3.1450157329451454e-05)\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter_3.ipynb b/Engineering_Physics/Chapter_3.ipynb deleted file mode 100755 index eaf6dcb1..00000000 --- a/Engineering_Physics/Chapter_3.ipynb +++ /dev/null @@ -1,325 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:638145e2db582b1570b31e3d891635b15bb11943d1ff2ba0aa0dc17ebaf02200" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Fibre Optics" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 3.1, Page number 98 " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "n1=1.6; #refractive index of core\n", - "n2=1.5; #refractive index of cladding\n", - "\n", - "#Calculation\n", - "NA=math.sqrt((n1**2)-(n2**2));\n", - "NA=math.ceil(NA*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"the numerical aperture of the fibre is\",NA);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the numerical aperture of the fibre is', 0.5568)\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 3.2, Page number 98 " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "n1=1.54; #refractive index of core\n", - "n2=1.5; #refractive index of cladding\n", - "n0=1;\n", - "\n", - "#Calculation\n", - "NA=math.sqrt((n1**2)-(n2**2)); #numerical aperture of fibre\n", - "NA=math.ceil(NA*10**5)/10**5; #rounding off to 5 decimals\n", - "alpha=math.asin(NA/n0); #acceptance angle in radians\n", - "alpha=alpha*57.2957795; #converting radians to degrees\n", - "alpha=math.ceil(alpha*10**5)/10**5; #rounding off to 5 decimals\n", - "deg=int(alpha); #converting to degrees\n", - "t=60*(alpha-deg); \n", - "mi=int(t); #converting to minutes\n", - "sec=60*(t-mi); #converting to seconds\n", - "sec=math.ceil(sec*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"the numerical aperture of the fibre is\",NA);\n", - "print(\"the acceptance angle of the fibre in degrees is\",alpha);\n", - "print(\"acceptance angle of the fibre is\",deg,\"degrees\",mi,\"minutes\",sec,\"seconds\");\n", - "\n", - "#answer for the angle given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the numerical aperture of the fibre is', 0.34872)\n", - "('the acceptance angle of the fibre in degrees is', 20.40905)\n", - "('acceptance angle of the fibre is', 20, 'degrees', 24, 'minutes', 32.581, 'seconds')\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 3.3, Page number 99" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "n1=1.6; #refractive index of core\n", - "n2=1.49; #refractive index of cladding\n", - "\n", - "#Calculation\n", - "thetac=math.asin(n2/n1); #critical angle in radians\n", - "thetac=thetac*57.2957795; #converting radians to degrees\n", - "theta_c=math.ceil(thetac*10**3)/10**3; #rounding off to 3 decimals\n", - "deg=int(thetac); #converting to degrees\n", - "t=60*(thetac-deg); \n", - "mi=int(t); #converting to minutes\n", - "sec=60*(t-mi); #converting to seconds\n", - "sec=math.ceil(sec*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"the critical angle of the fibre in degrees is\",theta_c);\n", - "print(\"critical angle of the fibre is\",deg,\"degrees\",mi,\"minutes\",sec,\"seconds\");" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the critical angle of the fibre in degrees is', 68.631)\n", - "('critical angle of the fibre is', 68, 'degrees', 37, 'minutes', 49.85, 'seconds')\n" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 3.4, Page number 99" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "NA=0.15; #numerical aperture\n", - "n2=1.55; #refractive index of cladding\n", - "n0=1.33; #refractive index of water\n", - "\n", - "#Calculation\n", - "n1=math.sqrt((NA**2)+(n2**2)); #refractive index\n", - "n_1=math.ceil(n1*10**5)/10**5; #rounding off to 5 decimals\n", - "alpha=math.asin(math.sqrt(n1**2-n2**2)/n0); #acceptance angle in radians\n", - "alpha=alpha*57.2957795; #converting radians to degrees\n", - "alphaa=math.ceil(alpha*10**3)/10**3; #rounding off to 3 decimals\n", - "deg=int(alpha); #converting to degrees\n", - "t=60*(alpha-deg); \n", - "mi=int(t); #converting to minutes\n", - "sec=60*(t-mi); #converting to seconds\n", - "sec=math.ceil(sec*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"refractive index of the core is\",n_1);\n", - "print(\"the acceptance angle of the fibre in degrees is\",alphaa);\n", - "print(\"acceptance angle of the fibre is\",deg,\"degrees\",mi,\"minutes\",sec,\"seconds\");\n", - "\n", - "#answer for acceptance angle given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('refractive index of the core is', 1.55725)\n", - "('the acceptance angle of the fibre in degrees is', 6.476)\n", - "('acceptance angle of the fibre is', 6, 'degrees', 28, 'minutes', 32.55, 'seconds')\n" - ] - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 3.5, Page number 100" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "NA=0.26; #numerical aperture\n", - "n1=1.5; #refractive index of core\n", - "d=100; #core diameter in micro meter\n", - "\n", - "#Calculation\n", - "d=100*(10**-6); #core diameter in metre\n", - "n2=math.sqrt((n1**2)-(NA**2));\n", - "n2=math.ceil(n2*10**5)/10**5; #rounding off to 5 decimals\n", - "\n", - "#Result\n", - "print(\"refractive index of the cladding is\",n2);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('refractive index of the cladding is', 1.4773)\n" - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 3.6, Page number 100" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "NA=0.26; #numerical aperture\n", - "delta=0.015; #refractive index difference\n", - "\n", - "#Calculation\n", - "#NA=math.sqrt(n1**2-n2**2)\n", - "#let A=n1**2-n2**2\n", - "#therefore A=NA**2\n", - "A=NA**2;\n", - "#delta=(n1**2-n2**2)/2*(n1**2)\n", - "#let 2*(n1**2) be B\n", - "#therefore B=A/delta\n", - "B=A/delta;\n", - "n1=math.sqrt(B/2);\n", - "n1=math.ceil(n1*100)/100; #rounding off to 2 decimals\n", - "n2=math.sqrt(n1**2-NA**2);\n", - "n2=math.ceil(n2*10**3)/10**3; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"refractive index of the core is\",n1);\n", - "print(\"refractive index of the cladding is\",n2);\n", - "\n", - "#answer for refractive index of cladding given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('refractive index of the core is', 1.51)\n", - "('refractive index of the cladding is', 1.488)\n" - ] - } - ], - "prompt_number": 19 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter_4.ipynb b/Engineering_Physics/Chapter_4.ipynb deleted file mode 100755 index d93ccbff..00000000 --- a/Engineering_Physics/Chapter_4.ipynb +++ /dev/null @@ -1,743 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:2a55c0c681215b0dc959ddeda0187458e8ed07320f22e00a7385acd5044d2ee9" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Quantum Physics" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.1, Page number 133 " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "h=6.63*10**-34; #plancks constant in Js\n", - "m0=9.1*10**-31; #mass of the electron in kg\n", - "c=3*10**8; #velocity of light in m/s\n", - "phi=135; #angle of scattering in degrees\n", - "phi=phi*0.0174532925 #converting degrees to radians \n", - "\n", - "#Calculation\n", - "delta_lamda=(h*(1-math.cos(phi)))/(m0*c);\n", - "\n", - "#Result\n", - "print(\"change in wavelength in metres is\",delta_lamda);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('change in wavelength in metres is', 4.1458307496867315e-12)\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.2, Page number 134 " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "\n", - "#Variable declaration\n", - "h=6.63*10**-34; #plancks constant in Js\n", - "m0=9.1*10**-31; #mass of the electron in kg\n", - "c=3*10**8; #velocity of light in m/s\n", - "lamda=2; #wavelength in angstrom\n", - "lamdaA=lamda*10**-10; #converting lamda from Angstrom to m\n", - "phi=90; #angle of scattering in degrees\n", - "phi=phi*0.0174532925 #converting degrees to radians \n", - "\n", - "#Calculation\n", - "delta_lamda=(h*(1-math.cos(phi)))/(m0*c);\n", - "delta_lamda=delta_lamda*10**10; #converting delta_lamda from m to Angstrom\n", - "delta_lamda=math.ceil(delta_lamda*10**5)/10**5; #rounding off to 5 decimals\n", - "lamda_dash=delta_lamda+lamda;\n", - "lamdaA_dash=lamda_dash*10**-10; #converting lamda_dash from Angstrom to m\n", - "#energy E=h*new-h*new_dash\n", - "E=h*c*((1/lamdaA)-(1/lamdaA_dash));\n", - "EeV=E/(1.602176565*10**-19); #converting J to eV\n", - "EeV=math.ceil(EeV*10**3)/10**3; #rounding off to 3 decimals\n", - "new=c/lamda;\n", - "new_dash=c/lamda_dash;\n", - "theta=math.atan((h*new*math.sin(phi))/((h*new)-(h*new_dash*math.cos(phi))));\n", - "theta=theta*57.2957795; #converting radians to degrees\n", - "\n", - "#Result\n", - "print(\"change in compton shift in Angstrom is\",delta_lamda);\n", - "print(\"wavelength of scattered photons in Angstrom is\",lamda_dash);\n", - "print(\"energy of recoiling electron in J is\",E);\n", - "print(\"energy of recoiling electron in eV is\",EeV);\n", - "print(\"angle at which recoiling electron appears in degrees is\",int(theta));\n", - "\n", - "#answers given in the book are wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('change in compton shift in Angstrom is', 0.02429)\n", - "('wavelength of scattered photons in Angstrom is', 2.02429)\n", - "('energy of recoiling electron in J is', 1.1933272900621974e-17)\n", - "('energy of recoiling electron in eV is', 74.482)\n", - "('angle at which recoiling electron appears in degrees is', 45)\n" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.3, Page number 135" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "\n", - "#Variable declaration\n", - "h=6.626*10**-34; #plancks constant in Js\n", - "m0=9.1*10**-31; #mass of the electron in kg\n", - "c=3*10**8; #velocity of light in m/s\n", - "phi=60; #angle of scattering in degrees\n", - "phi=phi*0.0174532925; #converting degrees to radians\n", - "E=10**6; #energy of photon in eV\n", - "E=E*1.6*10**-19; #converting eV into J\n", - "\n", - "#Calculation\n", - "delta_lamda=(h*(1-math.cos(phi)))/(m0*c);\n", - "delta_lamda=delta_lamda*10**10; #converting metre to angstrom\n", - "delta_lamda=math.ceil(delta_lamda*10**4)/10**4; #rounding off to 4 decimals\n", - "lamda=(h*c)/E;\n", - "lamdaA=lamda*10**10; #converting metre to angstrom\n", - "lamda_dash=delta_lamda+lamdaA;\n", - "lamda_dash=math.ceil(lamda_dash*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"compton shift in angstrom is\",delta_lamda);\n", - "print(\"energy of incident photon in m\",lamda);\n", - "print(\"wavelength of scattered photons in angstrom is\",lamda_dash);\n", - "\n", - "#answer for wavelength of scattered photon given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('compton shift in angstrom is', 0.0122)\n", - "('energy of incident photon in m', 1.242375e-12)\n", - "('wavelength of scattered photons in angstrom is', 0.025)\n" - ] - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.4, Page number 135" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "\n", - "#Variable declaration\n", - "h=6.626*10**-34; #plancks constant in Js\n", - "c=3*10**8; #velocity of light in m/s\n", - "lamda=5893; #wavelength in angstrom\n", - "P=60; #output power in Watt\n", - "\n", - "#Calculation\n", - "lamda=lamda*10**-10; #wavelength in metre\n", - "E=(h*c)/lamda;\n", - "EeV=E/(1.602176565*10**-19); #converting J to eV\n", - "EeV=math.ceil(EeV*10**4)/10**4; #rounding off to 4 decimals\n", - "N=P/E;\n", - "\n", - "#Result\n", - "print(\"energy of photon in J is\",E);\n", - "print(\"energy of photon in eV is\",EeV);\n", - "print(\"number of photons emitted per se cond is\",N);\n", - "\n", - "#answer for energy in eV given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('energy of photon in J is', 3.373154590191753e-19)\n", - "('energy of photon in eV is', 2.1054)\n", - "('number of photons emitted per se cond is', 1.7787503773015396e+20)\n" - ] - } - ], - "prompt_number": 15 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.5, Page number 136" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "\n", - "#Variable declaration\n", - "h=6.626*10**-34; #plancks constant in Js\n", - "c=3*10**8; #velocity of light in m/s\n", - "lamda=10; #wavelength in angstrom\n", - "\n", - "#Calculation\n", - "lamda=lamda*10**-10; #wavelength in metre\n", - "E=(h*c)/lamda;\n", - "EeV=E/(1.602176565*10**-19); #converting J to eV\n", - "EeV=EeV*10**-3; #converting eV to keV\n", - "EeV=math.ceil(EeV*10**3)/10**3; #rounding off to 3 decimals\n", - "P=h/lamda;\n", - "M=h/(lamda*c);\n", - "\n", - "#Result\n", - "print(\"energy of photon in J is\",E);\n", - "print(\"energy of photon in keV is\",EeV);\n", - "print(\"momentum in kg m/sec is\",P);\n", - "print(\"mass of photon in kg is\",M);\n", - "\n", - "#answer for energy of photon in keV given in the book is wrong by 1 decimal" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('energy of photon in J is', 1.9878e-16)\n", - "('energy of photon in keV is', 1.241)\n", - "('momentum in kg m/sec is', 6.626e-25)\n", - "('mass of photon in kg is', 2.2086666666666664e-33)\n" - ] - } - ], - "prompt_number": 18 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.6, Page number 136" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "\n", - "#Variable declaration\n", - "h=6.626*10**-34; #plancks constant in Js\n", - "m=9.1*10**-31; #mass of the electron in kg\n", - "e=1.602*10**-19;\n", - "V=1.25; #potential difference in kV\n", - "\n", - "#Calculation\n", - "V=V*10**3; #converting kV to V\n", - "lamda=h/math.sqrt(2*m*e*V);\n", - "lamda=lamda*10**10; #converting metre to angstrom\n", - "lamda=math.ceil(lamda*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"de Broglie wavelength in angstrom is\",lamda);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('de Broglie wavelength in angstrom is', 0.3471)\n" - ] - } - ], - "prompt_number": 21 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.7, Page number 136" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "\n", - "#Variable declaration\n", - "E=45; #energy of electron in eV\n", - "E=E*1.6*10**-19; #energy in J\n", - "h=6.626*10**-34; #plancks constant in Js\n", - "m=9.1*10**-31; #mass of the electron in kg\n", - "\n", - "#Calculation\n", - "lamda=h/math.sqrt(2*m*E);\n", - "lamda=lamda*10**10; #converting metres to angstrom\n", - "lamda=math.ceil(lamda*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"de Broglie wavelength in angstrom is\",lamda);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('de Broglie wavelength in angstrom is', 1.8305)\n" - ] - } - ], - "prompt_number": 24 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.8, Page number 137" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "\n", - "#Variable declaration\n", - "v=10**7; #velocity of electron in m/sec\n", - "h=6.626*10**-34; #plancks constant in Js\n", - "m=9.1*10**-31; #mass of the electron in kg\n", - "\n", - "#Calculation\n", - "lamda=h/(m*v);\n", - "lamda=lamda*10**10; #converting metres to angstrom\n", - "lamda=math.ceil(lamda*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"de Broglie wavelength in angstrom is\",lamda);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('de Broglie wavelength in angstrom is', 0.7282)\n" - ] - } - ], - "prompt_number": 25 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.9, Page number 137" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "\n", - "#Variable declaration\n", - "V=1000; #potential difference in V\n", - "h=6.626*10**-34; #plancks constant in Js\n", - "m=1.67*10**-27; #mass of proton in kg\n", - "e=1.6*10**-19; #charge of electron in J\n", - "\n", - "#Calculation\n", - "lamda=h/math.sqrt(2*m*e*V);\n", - "\n", - "#Result\n", - "print(\"de Broglie wavelength of alpha particle in metre is\",lamda);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('de Broglie wavelength of alpha particle in metre is', 9.063964727801313e-13)\n" - ] - } - ], - "prompt_number": 26 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.10, Page number 138" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "\n", - "#Variable declaration\n", - "L=25; #width of potential in armstrong\n", - "delta_x=0.05; #interval in armstrong\n", - "n=1; #particle is in its least energy\n", - "x=L/2; #particle is at the centre\n", - "pi=180; #angle in degrees\n", - "\n", - "#Calculation\n", - "pi=pi*0.0174532925; #angle in radians\n", - "L=L*10**-10; #width in m\n", - "delta_x=delta_x*10**-10; #interval in m\n", - "#probability P = integration of (A**2)*(math.sin(n*pi*x/L))**2*delta_x\n", - "#but A=math.sqrt(2/L)\n", - "#since the particle is in a small interval integration need not be applied\n", - "#therefore P=2*(L**(-1))*(math.sin(n*pi*x/L))**2*delta_x\n", - "P=2*(L**(-1))*((math.sin(n*pi*x/L))**2)*delta_x;\n", - "P=math.ceil(P*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"probability of finding the particle is\",P);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('probability of finding the particle is', 0.004)\n" - ] - } - ], - "prompt_number": 27 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.11, Page number 138" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "\n", - "#Variable declaration\n", - "n=1;\n", - "h=6.626*10**-34; #plancks constant in Js\n", - "m=9.1*10**-31; #mass of the electron in kg\n", - "L=1; #width of potential well in angstrom\n", - "\n", - "#Calculation\n", - "L=L*10**-10; #converting angstrom into metre\n", - "E=((n**2)*h**2)/(8*m*L**2);\n", - "EeV=E/(1.6*10**-19); #converting J to eV\n", - "EeV=math.ceil(EeV*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"lowest energy of electron in J is\",E);\n", - "print(\"lowest energy of electron in eV is\",EeV);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('lowest energy of electron in J is', 6.030752197802197e-18)\n", - "('lowest energy of electron in eV is', 37.693)\n" - ] - } - ], - "prompt_number": 28 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.12, Page number 139" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "\n", - "#Variable declaration\n", - "n=1;\n", - "h=6.626*10**-34; #plancks constant in Js\n", - "m=9.1*10**-31; #mass of the electron in kg\n", - "L=1; #width of potential well in angstrom\n", - "\n", - "#Calculation\n", - "L=L*10**-10; #converting angstrom into metre\n", - "E=(2*(n**2)*h**2)/(8*m*L**2);\n", - "E=E/(1.6*10**-19); #converting J to eV\n", - "E=math.ceil(E*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"lowest energy of system in eV is\",E);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('lowest energy of system in eV is', 75.385)\n" - ] - } - ], - "prompt_number": 29 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.13, Page number 139" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "h=6.626*10**-34; #plancks constant in Js\n", - "m=9.1*10**-31; #mass of the electron in kg\n", - "L=1; #width of potential well in angstrom\n", - "\n", - "#Calculation\n", - "L=L*10**-10; #converting angstrom into metre\n", - "#according to pauli's exclusion principle, 1st electron occupies n1=1 and second electron occupies n2=2\n", - "n1=1;\n", - "n2=2;\n", - "E=((2*(n1**2)*h**2)/(8*m*L**2))+(((n2**2)*h**2)/(8*m*L**2));\n", - "E=E/(1.6*10**-19); #converting J to eV\n", - "E=math.ceil(E*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"lowest energy of system in eV is\",E);\n", - "print(\"quantum numbers are\");\n", - "print(\"n=1,l=0,mL=0,mS=+1/2\");\n", - "print(\"n=1,l=0,mL=0,mS=-1/2\");\n", - "print(\"n=2,l=0,mL=0,mS=+1/2\");" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('lowest energy of system in eV is', 226.154)\n", - "quantum numbers are\n", - "n=1,l=0,mL=0,mS=+1/2\n", - "n=1,l=0,mL=0,mS=-1/2\n", - "n=2,l=0,mL=0,mS=+1/2\n" - ] - } - ], - "prompt_number": 30 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.14, Page number 140" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#Variable declaration\n", - "n=1;\n", - "h=6.626*10**-34; #plancks constant in Js\n", - "L=100; #width of potential well in angstrom\n", - "\n", - "#Calculation\n", - "L=L*10**-10; #converting angstrom into metre\n", - "E=0.025; #lowest energy in eV\n", - "E=E*(1.6*10**-19); #converting eV to J\n", - "m=((n**2)*h**2)/(8*E*L**2);\n", - "\n", - "#Result\n", - "print(\"mass of the particle in kg is\",m);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('mass of the particle in kg is', 1.3719961249999998e-31)\n" - ] - } - ], - "prompt_number": 31 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.15, Page number 141" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "k=1.38*10**-23;\n", - "T=6000; #temperature in K\n", - "h=6.626*10**-34; #plancks constant in Js\n", - "c=3*10**8; #velocity of light in m/s\n", - "lamda1=450; #wavelength in nm\n", - "lamda2=460; #wavelength in nm\n", - "\n", - "#Calculation\n", - "lamda1=lamda1*10**-9; #converting nm to metre\n", - "lamda2=lamda2*10**-9; #converting nm to metre\n", - "new1=c/lamda1;\n", - "new2=c/lamda2;\n", - "new=(new1+new2)/2;\n", - "A=math.exp((h*new)/(k*T));\n", - "rho_v=(8*math.pi*h*new**3)/(A*c**3);\n", - "\n", - "#Result\n", - "print(\"energy density of the black body in J/m^3 is\",rho_v);\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('energy density of the black body in J/m^3 is', 9.033622836188887e-16)\n" - ] - } - ], - "prompt_number": 32 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter_6.ipynb b/Engineering_Physics/Chapter_6.ipynb deleted file mode 100755 index df63cdce..00000000 --- a/Engineering_Physics/Chapter_6.ipynb +++ /dev/null @@ -1,899 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:95589aa74fb7b8b919d364696d403ce9619ba363e3435f491e57c82d78d5e42c" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Crystallography" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 6.1, Page number 185" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "r=0.071; #radius in nm\n", - "N=6.022*10**26; \n", - "\n", - "#Calculation\n", - "r=r*10**-9; #converting r from nm to m\n", - "#mass of carbon atom m = 12/N\n", - "m=12/N;\n", - "#mass of diamond M = 8*mass of one carbon atom\n", - "M=8*m;\n", - "#volume of diamond V = (8*r/sqrt(3))^3\n", - "V=(8*r/math.sqrt(3))**3;\n", - "d=M/V; #density in kg/m^3\n", - "d=math.ceil(d*100)/100; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"density of diamond in kg/m^3 is\",d);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('density of diamond in kg/m^3 is', 4520.31)\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 6.2, Page number 185" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "aBCC=0.332; #lattice constant in nm\n", - "aHCP=0.296; #lattice constant in nm\n", - "c=0.468; #c in nm\n", - "\n", - "#Calculation\n", - "aBCC=aBCC*10**-9; #converting nm to m\n", - "Vbcc=aBCC**3;\n", - "aHCP=aHCP*10**-9; #converting nm to m\n", - "c=c*10**-9; #converting nm to m\n", - "Vhcp=6*(math.sqrt(3)/4)*aHCP**2*c;\n", - "V=Vhcp-Vbcc;\n", - "Vch=(V*100)/Vbcc;\n", - "Vch=math.ceil(Vch*100)/100; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"percentage change in volume is\",Vch);\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('percentage change in volume is', 191.12)\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 6.3, Page number 186" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "r=1.278; #atomic radius of Cu in Angstrom\n", - "A=63.54; #atomic weight of Cu\n", - "n=4; #for FCC n=4\n", - "Na=6.022*10**26;\n", - "\n", - "#Calculation\n", - "r=r*10**-10; #converting atomic radius from Angstrom to m\n", - "a=2*math.sqrt(2)*r; \n", - "rho=(n*A)/(Na*a**3);\n", - "rho=math.ceil(rho*100)/100; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"density of Cu in kg/m^3 is\",rho);\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('density of Cu in kg/m^3 is', 8935.92)\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 6.4, Page number 186" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "import numpy as np\n", - "\n", - "#Variable declaration\n", - "rho=2180; #density of NaCl in kg/m^3\n", - "wNa=23; #atomic weight of Na\n", - "wCl=35.5; #atomic weight of Cl\n", - "n=4; #for FCC n=4\n", - "Na=6.022*10**26;\n", - "\n", - "#Calculation\n", - "A=wNa+wCl; #molecular weight of NaCl\n", - "x=np.reciprocal(3.);\n", - "a=((n*A)/(Na*rho))**x;\n", - "\n", - "#Result\n", - "print(\"interatomic distance in NaCl in m is\",a); \n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('interatomic distance in NaCl in m is', 5.6278114346454509e-10)\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 6.5, Page number 187" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable declaration\n", - "a=0.42; #lattice constant in nm\n", - "h1=1;\n", - "k1=0;\n", - "l1=1; #indices of the plane (101)\n", - "h2=2;\n", - "k2=2;\n", - "l2=1; #indices of the plane (221)\n", - "\n", - "#Calculation\n", - "a=a*10**-9; #converting from nm to m\n", - "d1=a/math.sqrt((h1**2)+(k1**2)+(l1**2)); #interplanar spacing for plane (101)\n", - "d1=d1*10**9; #converting from m to nm\n", - "d1=math.ceil(d1*10**5)/10**5; #rounding off to 5 decimals\n", - "d2=a/math.sqrt((h2**2)+(k2**2)+(l2**2)); #interplanar spacing for plane (221)\n", - "d2=d2*10**9; #converting from m to nm\n", - "\n", - "#Result\n", - "print(\"interplanar spacing for (101) in nm is\",d1);\n", - "print(\"interplanar spacing for (221) in nm is\",d2);\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('interplanar spacing for (101) in nm is', 0.29699)\n", - "('interplanar spacing for (221) in nm is', 0.14)\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 6.6, Page number 187" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#Variable declaration\n", - "h1=1;\n", - "k1=0;\n", - "l1=2; #indices for plane (102)\n", - "h2=2;\n", - "k2=3;\n", - "l2=1; #indices for plane (231)\n", - "h3=3;\n", - "k3=-1;\n", - "l3=2; #indices for plane (31'2)\n", - "\n", - "#Calculation\n", - "#intercepts made by the plane is a/h, b/k, c/l\n", - "#for plane (102) intercepts are a/1=a, b/0=infinite, c/2\n", - "#for plane (231) intercepts are a/2, b/3, c/1=c\n", - "#for plane (31'2) intercepts are a/3=a, b/-1=-b, c/2\n", - "\n", - "#Result\n", - "print(\"for plane (102) intercepts are a/1=a, b/0=infinite, c/2\");\n", - "print(\"for plane (231) intercepts are a/2, b/3, c/1=c\");\n", - "print(\"for plane (312) intercepts are a/3=a, b/-1=-b, c/2\");\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "for plane (102) intercepts are a/1=a, b/0=infinite, c/2\n", - "for plane (231) intercepts are a/2, b/3, c/1=c\n", - "for plane (312) intercepts are a/3=a, b/-1=-b, c/2\n" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 6.7, Page number 188" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "u1=1;\n", - "v1=1;\n", - "w1=1; #indices for plane (111)\n", - "u2=2;\n", - "v2=1;\n", - "w2=2; #indices for plane (212)\n", - "\n", - "#Calculation\n", - "A=u1*u2+v1*v2+w1*w2; \n", - "B1=math.sqrt((u1**2)+(v1**2)+(w1**2));\n", - "B2=math.sqrt((u2**2)+(v2**2)+(w2**2));\n", - "B=A/(B1*B2);\n", - "B=math.ceil(B*10**4)/10**4; #rounding off to 4 decimals\n", - "theta=math.acos(B); #angle in radian\n", - "theta=theta*57.2957795; #converting radian to degrees\n", - "theeta=math.ceil(theta*10**3)/10**3; #rounding off to 3 decimals\n", - "deg=int(theta); #converting to degrees\n", - "t=60*(theta-deg);\n", - "mi=int(t); #converting to minutes\n", - "sec=60*(t-mi); #converting to seconds\n", - "sec=math.ceil(sec*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"angle between the planes in degrees is\",theeta);\n", - "print(\"angle between the planes is\",deg,\"degrees\",mi,\"minutes\",sec,\"seconds\");\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('angle between the planes in degrees is', 15.783)\n", - "('angle between the planes is', 15, 'degrees', 46, 'minutes', 57.85, 'seconds')\n" - ] - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 6.8, Page number 188" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#sketching the crystallographic planes" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 6.9, Page number 189" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "d=0.2338; #interplanar distance in nm\n", - "h=-1;\n", - "k=1;\n", - "l=1; #indices of the plane (1'11)\n", - "\n", - "#Calculation\n", - "d=d*10**-9; #converting from nm to m\n", - "a=d*math.sqrt((h**2)+(k**2)+(l**2));\n", - "a=a*10**9; #converting lattice constant from m to nm\n", - "a=math.ceil(a*10**5)/10**5; #rounding off to 5 decimals\n", - "\n", - "#Result\n", - "print(\"lattice constant in nm is\",a);\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('lattice constant in nm is', 0.40496)\n" - ] - } - ], - "prompt_number": 15 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 6.10, Page number 189" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#variable declaration\n", - "h1=1;\n", - "k1=0;\n", - "l1=0; #indices for plane (100)\n", - "h2=1;\n", - "k2=1;\n", - "l2=0; #indices for plane (110)\n", - "h3=1;\n", - "k3=1;\n", - "l3=1; #indices for plane (111)\n", - "\n", - "#Calculation\n", - "#d=a/math.sqrt((h**2)+(k**2)+(l**2))\n", - "#d100=a/math.sqrt((h1**2)+(k1**2)+(l1**2))\n", - "x1=math.sqrt((h1**2)+(k1**2)+(l1**2));\n", - "#d100=a/x1 = a/1 = a\n", - "#d110=a/math.sqrt((h2**2)+(k2**2)+(l2**2))\n", - "x2=math.sqrt((h2**2)+(k2**2)+(l2**2));\n", - "x2=math.ceil(x2*10**4)/10**4; #rounding off to 4 decimals\n", - "#d110=a/x2 = a/sqrt(2)\n", - "#d111=a/math.sqrt((h3**2)+(k3**2)+(l3**2))\n", - "x3=math.sqrt((h3**2)+(k3**2)+(l3**2));\n", - "x3=math.ceil(x3*10**4)/10**4; #rounding off to 4 decimals\n", - "#d111=a/x3 = a/sqrt(3)\n", - "#hence d100:d110:d111=a:a/sqrt(2):a/sqrt(3)\n", - "#multiplying RHS by sqrt(6) we get d100:d110:d111=sqrt(6):sqrt(3):sqrt(2)\n", - "\n", - "#Result\n", - "print(\"value of x1 is\",x1);\n", - "print(\"value of x2 is\",x2);\n", - "print(\"value of x3 is\",x3);\n", - "print(\"d100:d110:d111=sqrt(6):sqrt(3):sqrt(2)\");" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('value of x1 is', 1.0)\n", - "('value of x2 is', 1.4143)\n", - "('value of x3 is', 1.7321)\n", - "d100:d110:d111=sqrt(6):sqrt(3):sqrt(2)\n" - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 6.11, Page number 190" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#variable declaration\n", - "h=2;\n", - "k=3;\n", - "l=1; #indices for plane (231)\n", - "\n", - "#Calculation\n", - "#intercepts made by the plane is a/h, b/k, c/l\n", - "#for a cubic unit cell, a=b=c\n", - "#for plane (231) intercepts are a/2, a/3, a/1 = a\n", - "#ratio of the intercepts is 1/2:1/3:1\n", - "#LCM is 6. multiplying by LCM, we get ratio l1:l2:l3 = 3:2:6\n", - "\n", - "#Result\n", - "print(\"l1:l2:l3 = 3:2:6\");" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "l1:l2:l3 = 3:2:6\n" - ] - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 6.12, Page number 190" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#variable declaration\n", - "h=1;\n", - "k=2;\n", - "l=3; #indices for plane (123)\n", - "l1=0.8; #l1 in armstrong\n", - "a=0.8; #a in armstrong\n", - "b=1.2; #b in armstrong\n", - "c=1.5; #c in armstrong\n", - "\n", - "#Calculation\n", - "#intercepts made by the plane is a/h, b/k, c/l\n", - "#for plane (123) intercepts are a/1 = a, b/2, c/3\n", - "#ratio of the intercepts l1:l2:l3 = a:b/2:c/3\n", - "#thus 0.8:l2:l3 = 0.8:1.2/2:1.5/3\n", - "l2=1.2/2; #l2 in armstrong\n", - "l3=1.5/3; #l3 in armstrong\n", - "\n", - "#Result\n", - "print(\"value of l2 in armstrong is\",l2);\n", - "print(\"value of l3 in armstrong is\",l3);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('value of l2 in armstrong is', 0.6)\n", - "('value of l3 in armstrong is', 0.5)\n" - ] - } - ], - "prompt_number": 18 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 6.13, Page number 191" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#Calculation\n", - "#in simple cubic unit cell, corner atom is the nearest neighbour to another corner atom. \n", - "#Hence nearest neighbour distance is a.\n", - "#in BCC the body centered atom is the nearest neighbour to a corner atom.\n", - "#the distance between body centered atom and corner atom is 2r\n", - "#but r=sqrt(3)*a/4\n", - "#distance = 2*sqrt(3)*a/4 = sqrt(3)*a/2\n", - "#in FCC the face centered atom is the nearest neighbour to a corner atom.\n", - "#the distance between face centered atom and corner atom is 2r\n", - "#but r = a/sqrt(8)\n", - "#distance = 2*a/sqrt(8) = a/sqrt(2)\n", - "\n", - "#Result\n", - "print(\"in simple cubic unit cell nearest neighbour distance is a\");\n", - "print(\"in body centered cubic unit cell nearest neighbour distance is sqrt(3)*a/2\");\n", - "print(\"in face centered cubic unit cell nearest neighbour distance is a/sqrt(2)\");" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "in simple cubic unit cell nearest neighbour distance is a\n", - "in body centered cubic unit cell nearest neighbour distance is sqrt(3)*a/2\n", - "in face centered cubic unit cell nearest neighbour distance is a/sqrt(2)\n" - ] - } - ], - "prompt_number": 19 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 6.14, Page number 191" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#variable declaration\n", - "a=2.04; #lattice parameter in armstrong\n", - "h=2;\n", - "k=1;\n", - "l=2; #indices for plane (212)\n", - "\n", - "#Calculation\n", - "a=a*10**-10; #converting from armstrong to m\n", - "d=a/math.sqrt((h**2)+(k**2)+(l**2));\n", - "d=d*10**10; #converting from m to armstrong\n", - "d=math.ceil(d*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"interplanar distance in armstrong is\",d);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('interplanar distance in armstrong is', 0.681)\n" - ] - } - ], - "prompt_number": 20 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 6.15, Page number 191" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#variable declaration\n", - "r=1.278; #radius of Cu in armstrong\n", - "M=63.54; #atomic weight of Cu\n", - "rho=8980; #density in kg/m^3\n", - "Na=6.022*10**26;\n", - "\n", - "#Calculation\n", - "r=r*10**-10; #radius in m\n", - "a=math.sqrt(8)*r;\n", - "n=(rho*Na*a**3)/M;\n", - "\n", - "#Result\n", - "print(\"interatomic distance in m is\",a);\n", - "print(\"number of atoms per Cu unit cell is\",int(n));" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('interatomic distance in m is', 3.6147298654256317e-10)\n", - "('number of atoms per Cu unit cell is', 4)\n" - ] - } - ], - "prompt_number": 21 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 6.16, Page number 192" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#variable declaration\n", - "a=0.429;\n", - "b=1;\n", - "c=0.379; #intercepts of an orthorhombic crystal\n", - "\n", - "#Calculation\n", - "#ratio of intercepts are 0.214:1:0.188 = (a/0.429)*0.214:1:(c/0.379)*0.188 = a/2:b:c/2\n", - "#thus the coefficients are 1/2:1:1/2. inverses are 2,1,2.\n", - "#thus miller indices for the first plane are (212)\n", - "#ratio of intercepts are 0.858:1:0.754 = (a/0.429)*0.0.858:1:(c/0.379)*0.754 = 2a:b:2c\n", - "#thus the coefficients are 2:1:2. inverses are 1/2,1,1/2. LCM is 2. multiplying with LCM we get 1,2,1\n", - "#thus miller indices for the second plane are (121)\n", - "#ratio of intercepts are 0.429:infinite:0.126 = (a/0.429)*0.429:infinite:(c/0.379)*0.126 = a:infiniteb:c/3\n", - "#thus the coefficients are 1:infinte:1/3. inverses are 1,0,3.\n", - "#thus miller indices for the third plane are (103)\n", - "\n", - "#Result\n", - "print(\"miller indices for the first plane are (212)\");\n", - "print(\"miller indices for the second plane are (121)\");\n", - "print(\"miller indices for the third plane are (103)\");\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "miller indices for the first plane are (212)\n", - "miller indices for the second plane are (121)\n", - "miller indices for the third plane are (103)\n" - ] - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 6.17, Page number 193" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "import numpy as np\n", - "\n", - "#variable declaration\n", - "h1=1;\n", - "k1=0;\n", - "l1=0; #indices of the first plane (100)\n", - "h2=1;\n", - "k2=1;\n", - "l2=0; #indices of the second plane (110)\n", - "h3=1;\n", - "k3=1;\n", - "l3=1; #indices of the third plane (111)\n", - "\n", - "#Calculation\n", - "n_1=np.reciprocal(4.);\n", - "n_2=np.reciprocal(2.);\n", - "n_3=np.reciprocal(6.);\n", - "n1=(n_1*4)+1; #number of atoms per unit cell in (100)\n", - "#number of atoms per m^2 is 2/a**2. but a=sqrt(8)*r.\n", - "#hence number of atoms per m^2 is 1/(4*r**2)\n", - "n2=(n_1*4)+(2*n_2); #number of atoms per unit cell in (110)\n", - "#number of atoms per m^2 is 1/a*sqrt(2)*a. but a=sqrt(8)*r.\n", - "#hence number of atoms per m^2 is 1/(8*sqrt(2)*r**2)\n", - "n3=(n_3*3)+(3*n_2); #number of atoms per unit cell in (111)\n", - "#number of atoms per m^2 is 2/(sqrt(3)/4)*a**2. but a=4*r.\n", - "#hence number of atoms per m^2 is 1/(2*sqrt(3)*r**2)\n", - "\n", - "#Result\n", - "print(\"number of atoms per unit cell in (100)\",n1);\n", - "print(\"number of atoms per m^2 is 1/(4*r**2)\");\n", - "print(\"number of atoms per unit cell in (110)\",n2);\n", - "print(\"number of atoms per m^2 is 1/(8*sqrt(2)*r**2)\");\n", - "print(\"number of atoms per unit cell in (111)\",n3);\n", - "print(\"number of atoms per m^2 is 1/(2*sqrt(3)*r**2)\");\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('number of atoms per unit cell in (100)', 2.0)\n", - "number of atoms per m^2 is 1/(4*r**2)\n", - "('number of atoms per unit cell in (110)', 2.0)\n", - "number of atoms per m^2 is 1/(8*sqrt(2)*r**2)\n", - "('number of atoms per unit cell in (111)', 2.0)\n", - "number of atoms per m^2 is 1/(2*sqrt(3)*r**2)\n" - ] - } - ], - "prompt_number": 22 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 6.18, Page number 194" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#variable declaration\n", - "r=0.97; #radius of Na+ ion in armstrong\n", - "R=1.81; #radius of Cl- ion in armstrong\n", - "\n", - "#Calculation\n", - "#atomic packing factor=packing density PD\n", - "#PD=Volume of atoms/Volume of unit cell\n", - "#volume of unit cell=a**3\n", - "#volume of atoms=number of atoms*volume of 1 atom = 4*(4/3)*math.pi*r**3\n", - "#but r=a/sqrt(8). hence PD = 4*(4/3)*math.pi*(a/(2*sqrt(2)))**3*(1/a**3) = 0.74\n", - "#atomic packing factor = 0.74\n", - "r=r*10**-10; #radius of Na+ ion in m\n", - "R=R*10**-10; #radius of Cl- ion in m\n", - "Vna = (4*4*math.pi*r**3)/3; #volume of Na atoms\n", - "Vcl = (4*4*math.pi*R**3)/3; #volume of Cl atoms \n", - "V=(2*(r+R))**3; #volume of unit cell\n", - "IPF=(Vna+Vcl)/V; #ionic packing factor\n", - "IPF=math.ceil(IPF*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"atomic packing factor = 0.74\");\n", - "print(\"ionic packing factor of NaCl crystal is\",IPF);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "atomic packing factor = 0.74\n", - "('ionic packing factor of NaCl crystal is', 0.6671)\n" - ] - } - ], - "prompt_number": 24 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter_7.ipynb b/Engineering_Physics/Chapter_7.ipynb deleted file mode 100755 index acb1144d..00000000 --- a/Engineering_Physics/Chapter_7.ipynb +++ /dev/null @@ -1,185 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:0a8ebb52dee60395969030b1d2962543e204a93314e21a66724d3bafb10b7ddf" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Crystal Imperfections" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.1, Page number 207 " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "k=1.38*10**-23;\n", - "Ev=0.98; #energy in eV/atom\n", - "T1=900; #temperature in C\n", - "T2=1000;\n", - "A=6.022*10**26; #avagadro's constant\n", - "w=196.9; #atomic weight in g/mol\n", - "d=18.63; #density in g/cm^3\n", - "\n", - "#Calculation\n", - "Ev=Ev*1.6*10**-19; #converting eV to J\n", - "d=d*10**3; #converting g/cm^3 into kg/m^3\n", - "N=(A*d)/w;\n", - "n=N*math.exp(-Ev/(k*T1));\n", - "#let valency fraction n/N be V\n", - "V=math.exp(-Ev/(k*T2));\n", - "\n", - "#Result\n", - "print(\"concentration of atoms per m^3 is\",N);\n", - "print(\"number of vacancies per m^3 is\",n);\n", - "print(\"valency fraction is\",V);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('concentration of atoms per m^3 is', 5.69780904012189e+28)\n", - "('number of vacancies per m^3 is', 1.8742498047705634e+23)\n", - "('valency fraction is', 1.1625392535344139e-05)\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.2, Page number 208 " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "k=1.38*10**-23;\n", - "A=6.022*10**26; #avagadro's constant\n", - "T=1073; #temperature in K\n", - "n=3.6*10**23; #number of vacancies\n", - "d=9.5; #density in g/cm^3\n", - "w=107.9; #atomic weight in g/mol\n", - "\n", - "#Calculation\n", - "d=d*10**3; #converting g/cm^3 into kg/m^3\n", - "N=(A*d)/w; #concentration of atoms\n", - "E=k*T*math.log((N/n), ); #energy in J\n", - "EeV=E/(1.602176565*10**-19); #energy in eV\n", - "EeV=math.ceil(EeV*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"concentration of atoms per m^3 is\",N);\n", - "print(\"energy for vacancy formation in J\",E);\n", - "print(\"energy for vacancy formation in eV\",EeV);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('concentration of atoms per m^3 is', 5.3020389249304915e+28)\n", - "('energy for vacancy formation in J', 1.762092900344914e-19)\n", - "('energy for vacancy formation in eV', 1.1)\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.3, Page number 209 " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "A=6.022*10**26; #avagadro's constant\n", - "k=1.38*10**-23;\n", - "w1=39.1; #atomic weight of K\n", - "w2=35.45; #atomic weight of Cl\n", - "Es=2.6; #energy formation in eV\n", - "T=500; #temperature in C\n", - "d=1.955; #density in g/cm^3\n", - "\n", - "#Calculation\n", - "Es=Es*1.6*10**-19; #converting eV to J\n", - "T=T+273; #temperature in K\n", - "d=d*10**3; #converting g/cm^3 into kg/m^3\n", - "N=(A*d)/(w1+w2);\n", - "n=N*math.exp(-Es/(2*k*T));\n", - "\n", - "#Result\n", - "print(\"number of Schotky defect per m^3 is\",n);\n", - "\n", - "#answer given in the book is wrong by 3rd decimal point" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('number of Schotky defect per m^3 is', 5.373777171020081e+19)\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter_8.ipynb b/Engineering_Physics/Chapter_8.ipynb deleted file mode 100755 index be4820c5..00000000 --- a/Engineering_Physics/Chapter_8.ipynb +++ /dev/null @@ -1,519 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:a97623c1294ef4fbd99f1423addadcfc2341e13ca402c26d0b2a69dd71e1782a" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Conducting materials" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.1, Page number 231" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#Variable declaration\n", - "m=9.1*10**-31; #mass of the electron in kg\n", - "n=2.533*10**28; #concentration of electrons per m^3\n", - "e=1.6*10**-19;\n", - "tow_r=3.1*10**-14; #relaxation time in sec\n", - "\n", - "#Calculation\n", - "rho=m/(n*(e**2*tow_r));\n", - "\n", - "#Result\n", - "print(\"electrical resistivity in ohm metre is\",rho);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('electrical resistivity in ohm metre is', 4.526937967219795e-08)\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.2, Page number 231" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "s=3.75*10**3; #slope\n", - "k=1.38*10**-23;\n", - "\n", - "#Calculation\n", - "Eg=2*k*s;\n", - "Eg=Eg/(1.6*10**-19); #converting J to eV\n", - "Eg=math.ceil(Eg*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"band gap of semiconductor in eV is\",Eg);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('band gap of semiconductor in eV is', 0.647)\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.3, Page number 231" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "T=989; #temperature in C\n", - "k=1.38*10**-23;\n", - "#let E-EF be E\n", - "E=0.5; #occupied level of electron in eV\n", - "\n", - "#Calculation\n", - "T=T+273; #temperature in K\n", - "E=E*1.6*10**-19; #converting eV to J\n", - "#let fermi=dirac distribution function f(E) be f\n", - "f=1/(1+math.exp(E/(k*T)));\n", - "f=math.ceil(f*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"probability of occupation of electrons is\",f);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('probability of occupation of electrons is', 0.011)\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.4, Page number 232" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "mew_e=0.0035; #mobility of electrons in m^2/Vs\n", - "E=0.5; #electric field strength in V/m\n", - "\n", - "#Calculation\n", - "vd=mew_e*E;\n", - "vd=vd*10**3;\n", - "\n", - "#Result\n", - "print(\"drift velocity of free electrons in m/sec is\",vd,\"*10**-3\");\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('drift velocity of free electrons in m/sec is', 1.75, '*10**-3')\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.5, Page number 232" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "A=6.022*10**23; #avagadro number\n", - "e=1.6*10**-19;\n", - "rho=1.73*10**-8; #resistivity of Cu in ohm metre\n", - "w=63.5; #atomic weight \n", - "d=8.92*10**3; #density in kg/m^3\n", - "\n", - "#Calculation\n", - "d=d*10**3;\n", - "sigma=1/rho;\n", - "sigmaa=sigma/10**7;\n", - "sigmaa=math.ceil(sigmaa*10**3)/10**3; #rounding off to 3 decimals\n", - "n=(d*A)/w;\n", - "mew=sigma/(n*e); #mobility of electrons\n", - "mew=mew*10**3;\n", - "mew=math.ceil(mew*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"electrical conductivity in ohm-1 m-1\",sigmaa,\"*10**7\");\n", - "print(\"concentration of carriers per m^3\",n);\n", - "print(\"mobility of electrons in m^2/Vsec is\",mew,\"*10**-3\");" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('electrical conductivity in ohm-1 m-1', 5.781, '*10**7')\n", - "('concentration of carriers per m^3', 8.459250393700786e+28)\n", - "('mobility of electrons in m^2/Vsec is', 4.2708, '*10**-3')\n" - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.6, Page number 232" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "n=18.1*10**28; #concentration of electrons per m^3\n", - "h=6.62*10**-34; #planck constant in Js\n", - "me=9.1*10**-31; #mass of electron in kg\n", - "\n", - "#Calculation\n", - "X=h**2/(8*me);\n", - "E_F0=X*(((3*n)/math.pi)**(2/3));\n", - "E_F0=E_F0/(1.6*10**-19); #converting J to eV\n", - "\n", - "#Result\n", - "print(\"Fermi energy in eV is\",E_F0);\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('Fermi energy in eV is', 3.762396978021977e-19)\n" - ] - } - ], - "prompt_number": 18 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.7, Page number 233" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "E_F0=5.5; #fermi energy in eV\n", - "h=6.63*10**-34; #planck constant in Js\n", - "me=9.1*10**-31; #mass of electron in kg\n", - "\n", - "#Calculation\n", - "E_F0=E_F0*1.6*10**-19; #converting eV to J\n", - "n=((2*me*E_F0)**(3/2))*((8*math.pi)/(3*h**3));\n", - "\n", - "#Result\n", - "print(\"concentration of free electrons per unit volume of silver per m^3 is\",n);\n", - "\n", - "#answer given in the book is wrong\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('concentration of free electrons per unit volume of silver per m^3 is', 4.603965704817037e+52)\n" - ] - } - ], - "prompt_number": 19 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.8, Page number 233" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "Eg=1.07; #energy gap of silicon in eV\n", - "k=1.38*10**-23;\n", - "T=298; #temperature in K\n", - "\n", - "#Calculation\n", - "Eg=Eg*1.6*10**-19; #converting eV to J\n", - "#let the probability of electron f(E) be X\n", - "#X=1/(1+exp((E-Ef)/(k*T)))\n", - "#but E=Ec and Ec-Ef=Eg/2\n", - "X=1/(1+math.exp(Eg/(2*k*T)))\n", - "\n", - "#Result\n", - "print(\"probability of an electron thermally excited is\",X);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('probability of an electron thermally excited is', 9.122602463573379e-10)\n" - ] - } - ], - "prompt_number": 21 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.9, Page number 234" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "k=1.38*10**-23;\n", - "m=9.1*10**-31; #mass of the electron in kg\n", - "vf=0.86*10**6; #fermi velocity in m/sec\n", - "\n", - "#Calculation\n", - "Efj=(m*vf**2)/2;\n", - "Ef=Efj/(1.6*10**-19); #converting J to eV\n", - "Ef=math.ceil(Ef*10**3)/10**3; #rounding off to 3 decimals\n", - "Tf=Efj/k;\n", - "Tf=Tf/10**4;\n", - "Tf=math.ceil(Tf*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"fermi energy of metal in J is\",Efj);\n", - "print(\"fermi energy of metal in eV is\",Ef);\n", - "print(\"fermi temperature in K is\",Tf,\"*10**4\");\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('fermi energy of metal in J is', 3.3651800000000002e-19)\n", - "('fermi energy of metal in eV is', 2.104)\n", - "('fermi temperature in K is', 2.4386, '*10**4')\n" - ] - } - ], - "prompt_number": 24 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.10, Page number 234" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#Variable declaration\n", - "sigma=5.82*10**7; #electrical conductivity in ohm^-1m^-1\n", - "K=387; #thermal conductivity of Cu in W/mK\n", - "T=27; #temperature in C\n", - "\n", - "#Calculation\n", - "T=T+273; #temperature in K\n", - "L=K/(sigma*T);\n", - "\n", - "#Result\n", - "print(\"lorentz number in W ohm/K^2 is\",L);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('lorentz number in W ohm/K^2 is', 2.2164948453608246e-08)\n" - ] - } - ], - "prompt_number": 25 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.11, Page number 235" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "m=9.1*10**-31; #mass of the electron in kg\n", - "e=1.6*10**-19;\n", - "k=1.38*10**-23;\n", - "n=8.49*10**28; #concentration of electrons in Cu per m^3\n", - "tow_r=2.44*10**-14; #relaxation time in sec\n", - "T=20; #temperature in C\n", - "\n", - "#Calculation\n", - "T=T+273; #temperature in K\n", - "sigma=(n*(e**2)*tow_r)/m;\n", - "sigmaa=sigma/10**7;\n", - "sigmaa=math.ceil(sigmaa*10**4)/10**4; #rounding off to 4 decimals\n", - "K=(n*(math.pi**2)*(k**2)*T*tow_r)/(3*m);\n", - "K=math.ceil(K*100)/100; #rounding off to 2 decimals\n", - "L=K/(sigma*T);\n", - "\n", - "#Result\n", - "print(\"electrical conductivity in ohm^-1 m^-1 is\",sigmaa,\"*10**7\");\n", - "print(\"thermal conductivity in W/mK is\",K);\n", - "print(\"Lorentz number in W ohm/K^2 is\",L);\n", - "\n", - "#answer for lorentz number given in the book is wrong\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('electrical conductivity in ohm^-1 m^-1 is', 5.8277, '*10**7')\n", - "('thermal conductivity in W/mK is', 417.89)\n", - "('Lorentz number in W ohm/K^2 is', 2.4473623172034308e-08)\n" - ] - } - ], - "prompt_number": 29 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/Chapter_9.ipynb b/Engineering_Physics/Chapter_9.ipynb deleted file mode 100755 index f85c8366..00000000 --- a/Engineering_Physics/Chapter_9.ipynb +++ /dev/null @@ -1,582 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:5fb520695164101d75312a7c320e0464f4d51d8732e4ed917802ba694545ac3e" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Semiconducting materials" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 9.1, Page number 266" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#Variable declaration\n", - "mew_e=0.36; #mobility of electrons in m^2/Vs\n", - "mew_h=0.14; #mobility of holes in m^2/Vs\n", - "sigma=2.2; #conductivity in ohm-1 m-1\n", - "T=300; #temperature in K\n", - "e=1.6*10**-19; #electron charge in C\n", - "\n", - "#Calculation\n", - "ni=sigma/(e*(mew_e+mew_h)); #carrier concentration per m^3\n", - "\n", - "#Result\n", - "print(\"carrier concentration of an intrinsic semiconductor per m^3 is\",ni);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('carrier concentration of an intrinsic semiconductor per m^3 is', 2.75e+19)\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 9.2, Page number 266" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "import numpy as np\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "T1=20; #temperature in C\n", - "T2=100; #temperature in C\n", - "sigma_i20=250; #conductivity in ohm-1 m-1\n", - "sigma_i100=1100; #conductivity in ohm-1 m-1\n", - "k=1.38*10**-23;\n", - "\n", - "#Calculation\n", - "T1K=T1+273; #temperature in K\n", - "T2K=T2+273; #temperature in K\n", - "T_1K=T1K**(-1);\n", - "T_2K=T2K**(-1);\n", - "T_1=T_2K-T_1K;\n", - "T_2=T2K/T1K;\n", - "Tk=T_1**(-1);\n", - "T_k=(T_2)**(3/2);\n", - "#intrinsic carrier concentration at T1K is ni20 = 2*((2*math.pi*k*m*293)/h**2)**(3/2)*((me*mh)/m**2)**(3/4)*math.exp(-Eg/(2*k*293))\n", - "#intrinsic carrier concentration at T2K is ni100 = 2*((2*math.pi*k*m*373)/h**2)**(3/2)*((me*mh)/m**2)**(3/4)*math.exp(-Eg/(2*k*373))\n", - "#dividing ni20/ni100 = (293/373)**(3/2)*(math.exp(-Eg/(2*k*293))/math.exp(-Eg/(2*k*373)))\n", - "#ni20/ni100 = (293/373)**(3/2)*math.exp((-Eg/(2*k))((1/293)-(1/373)))\n", - "#sigma_i20/sigma_i100 = (ni20*e*(mew_e+mew_h))/(ni100*e*(mew_e+mew_h)) = ni20/ni100\n", - "#therefore sigma_i20/sigma_i100 = ni20/ni100 = (293/373)**(3/2)*math.exp((-Eg/(2*k))((1/293)-(1/373)))\n", - "#math.exp((-Eg/(2*k))*((1/293)-(1/373))) = (sigma_i20/sigma_i100)*(373/293)**(3/2)\n", - "#by taking log on both sides we get (-Eg/(2*k))*((1/293)-(1/373)) = np.log((sigma_i20/sigma_i100)*(373/293)**(3/2))\n", - "#Eg=2*k*(((1/373)-(1/293))**(-1))*np.log((sigma_i20/sigma_i100)*(373/293)**(3/2))\n", - "Eg=2*k*Tk*np.log((sigma_i20/sigma_i100)*T_k); #band gap in J\n", - "EgeV=Eg*6.241*10**18; #converting J to eV\n", - "EgeV=math.ceil(EgeV*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"band gap of the semiconductor in J is\",Eg);\n", - "print(\"band gap of the semiconductor in eV is\",EgeV);\n", - "\n", - "#answer for band gap in eV given in the book is wrong in the 4th decimal point" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('band gap of the semiconductor in J is', 4.2210259829756855e-20)\n", - "('band gap of the semiconductor in eV is', 0.2635)\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 9.3, Page number 267" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#Variable declaration\n", - "I=10**-2; #current in Ampere\n", - "l=100; #length in mm\n", - "d=1; #thickness in mm\n", - "w=10; #breadth in mm\n", - "B=0.5; #magnetic field in Wb/m^2\n", - "RH=3.66*10**-4; #hall coefficient in m^3/C\n", - "\n", - "#Calculation\n", - "w=w*10**-3; #width in m\n", - "VH=(B*I*RH)/w; #hall voltage\n", - "VH=VH*10**4;\n", - "\n", - "#Result\n", - "print(\"Hall voltage in V is\",VH,\"*10**-4\");" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('Hall voltage in V is', 1.83, '*10**-4')\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 9.4, Page number 268" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "sigma=300; #conductivity in S/cm\n", - "T=300; #temperature in K\n", - "ni=1.5*10**10 #carrier concentration per cm^3\n", - "mew_e=1300; #mobility of electrons in cm^2/Vs\n", - "mew_h=500; #mobility of holes in cm^2/Vs\n", - "e=1.6*10**-19; #electron charge in C\n", - "\n", - "#Calculation\n", - "sigma=sigma*10**2; #sigma in S/m\n", - "mew_e=mew_e*10**-4; #mobility of electrons in m^2/Vs\n", - "ND=sigma/(e*mew_e); #concentration of electron per m^3\n", - "ni=ni*10**6; #carrier concentration per m^3\n", - "p=ni**2/ND; #hole concentration per m^3\n", - "p=p/10**8;\n", - "p=math.ceil(p*10**3)/10**3; #rounding off to 3 decimals\n", - "mew_h=mew_h*10**-4; #mobility of holes in m^2/Vs\n", - "NA=sigma/(e*mew_h); #concentration of hole per m^3\n", - "n=ni**2/NA; #electron concentration per m^3\n", - "n=n/10**7;\n", - "\n", - "#Result\n", - "print(\"concentration of electron for N-type semiconductor per m^3\",ND);\n", - "print(\"hole concentration per m^3\",p,\"*10**8\");\n", - "print(\"concentration of hole for P-type semiconductor per m^3\",NA);\n", - "print(\"electron concentration per m^3\",int(n),\"*10**7\");" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('concentration of electron for N-type semiconductor per m^3', 1.4423076923076921e+24)\n", - "('hole concentration per m^3', 1.561, '*10**8')\n", - "('concentration of hole for P-type semiconductor per m^3', 3.7499999999999995e+24)\n", - "('electron concentration per m^3', 6, '*10**7')\n" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 9.5, Page number 269" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "RH=-3.68*10**-5; #hall coefficient in m^3/C\n", - "e=1.6*10**-19; #electron charge in C\n", - "\n", - "#Calculation\n", - "#hall coefficient is negative implies charge carriers are electrons\n", - "n=(3*math.pi)/(8*(-RH)*e); #carrier concentration\n", - "\n", - "#Result\n", - "print(\"charge carriers are electrons\");\n", - "print(\"carrier concentration per m^3 is\",n);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "charge carriers are electrons\n", - "('carrier concentration per m^3 is', 2.000844505937792e+23)\n" - ] - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 9.6, Page number 269" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "Eg1=0.36; #energy gap of 1st material in eV\n", - "Eg2=0.72; #energy gap of 2nd material in eV\n", - "T=300; #temperature in K\n", - "mh=9*10**-31;\n", - "me=9*10**-31; \n", - "#given that 2*k*T=0.052; \n", - "#consider X=2*k*T\n", - "X=0.052;\n", - "\n", - "#Calculation\n", - "#intrinsic carrier concentration for A niA = 2*((2*math.pi*k*T*m)/h**2)**(3/2)*((me*mh)/m**2)**(3/4)*math.exp(-0.36/(2*k*T))\n", - "#intrinsic carrier concentration for B niB = 2*((2*math.pi*k*T*m)/h**2)**(3/2)*((me*mh)/m**2)**(3/4)*math.exp(-0.72/(2*k*T))\n", - "#dividing niA/niB = math.exp(-0.36/(2*k*T))*math.exp(0.72/(2*k*T))\n", - "#let niA/niB be A\n", - "A = math.exp(-0.36/X)*math.exp(0.72/X);\n", - "A=A/10**3;\n", - "A=math.ceil(A*10**5)/10**5; #rounding off to 5 decimals\n", - "\n", - "#Result\n", - "print(\"ratio of intrinsic carrier densities of A and B is\",A,\"*10**3\");" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('ratio of intrinsic carrier densities of A and B is', 1.01544, '*10**3')\n" - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 9.7, Page number 270" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "ND=2*10**22; #concentration of electron per m^3\n", - "sigma=112; #conductivity in ohm-1 m-1\n", - "e=1.6*10**-19; #electron charge in C\n", - "\n", - "#Calculation\n", - "mew=sigma/(ND*e); #mobility of electrons \n", - "mew=math.ceil(mew*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"mobility of electrons in m^2/Vs is\",mew);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('mobility of electrons in m^2/Vs is', 0.035)\n" - ] - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 9.8, Page number 270" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "w=500; #thickness in micrometre\n", - "A=2.5*10**-3; #area of cross section in cm^-2\n", - "Ix=1; #current in ampere\n", - "Bz=10; #magnetic field in Wb/cm^2\n", - "n=10**16; #donor concentration in m^-3\n", - "e=1.6*10**-19; #electron charge in C\n", - "\n", - "#Calculation\n", - "Bz=Bz*10**-4; #magnetic field in Wb/m^2\n", - "w=w*10**-6; #thickness in m\n", - "RH=(3*math.pi)/(8*n*e); #hall coefficient\n", - "VH=(Bz*Ix*RH)/w; #hall voltage\n", - "VH=VH/10**3;\n", - "VH=math.ceil(VH*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"hall voltage in V is\",VH,\"*10**3\");" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('hall voltage in V is', 1.4727, '*10**3')\n" - ] - } - ], - "prompt_number": 23 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 9.9, Page number 271" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "from __future__ import division\n", - "import numpy as np\n", - "\n", - "#Variable declaration\n", - "Eg=1.2; #energy gap in eV\n", - "T1=300; #temperature in K\n", - "T2=600; #temperature in K\n", - "k=1.38*10**-23;\n", - "\n", - "#Calculation\n", - "T_1=T1**(-1);\n", - "T_2=T2**(-1);\n", - "T=T_1-T_2;\n", - "Eg=Eg*1.602*10**-19; #Eg in J\n", - "#sigma_300=ni300*e*(mew_e+mew_h)\n", - "#sigma_600=ni600*e*(mew_e+mew_h)\n", - "#sigma_600/sigma_300 = ni600/ni300\n", - "#ni600/ni300 =((T2/T1)**(3/2))*math.exp(-Eg/(2*k*T2))*math.exp(Eg/(2*k*T1));\n", - "#ni600/ni300 =((T2/T1)**(3/2))*math.exp((Eg/(2*k))*T;\n", - "#let ni600/ni300 be X\n", - "X=((T2/T1)**(3/2))*math.exp((Eg/(2*k))*T);\n", - "\n", - "\n", - "#Result\n", - "print(\"ratio between the conductivity of material is\",int(X));\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('ratio between the conductivity of material is', 311270)\n" - ] - } - ], - "prompt_number": 25 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 9.10, Page number 272" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "sigma=10**-6; #electrical conductivity in ohm-1 m-1\n", - "mew_e=0.85; #electron mobility in m^2/Vs\n", - "mew_h=0.04; #hole mobility in m^2/Vs\n", - "e=1.6*10**-19; #electron charge in C\n", - "\n", - "#Calculation\n", - "ni=sigma/(e*(mew_e+mew_h)); #intrinsic carrier concentration\n", - "ni=ni/10**12;\n", - "ni=math.ceil(ni*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"intrinsic carrier concentration per m^3 is\",ni,\"*10**12\");" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('intrinsic carrier concentration per m^3 is', 7.0225, '*10**12')\n" - ] - } - ], - "prompt_number": 27 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 9.11, Page number 272" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "rho_p=10; #resistivity of p-type Si in ohm cm\n", - "rho_n=10; #resistivity of n-type Si in ohm cm\n", - "mew_e=1350; #electron mobility in cm^2/Vs\n", - "mew_h=480; #hole mobility in cm^2/Vs\n", - "ni=1.5*10**10; #carrier concentration in cm^-3\n", - "e=1.6*10**-19; #electron charge in C\n", - "\n", - "#Calculation\n", - "rho_p=rho_p*10**-2;#resistivity of p-type Si in ohm m\n", - "sigma_p=1/rho_p; #electrical conductivity\n", - "mew_h=mew_h*10**-3;\n", - "NA=sigma_p/(e*mew_h); #acceptor concentration\n", - "ni=ni*10**6; #carrier concentration in m^-3\n", - "n=ni**2/NA; #concentration of minority carriers in m^-3\n", - "n=n/10**12;\n", - "n=math.ceil(n*10**4)/10**4; #rounding off to 4 decimals\n", - "rho_n=rho_n*10**-2; #resistivity of n-type Si in ohm m\n", - "sigma_n=1/rho_n; #electrical conductivity\n", - "mew_e=mew_e*10**-3;\n", - "ND=sigma_n/(e*mew_e); #donor concentration\n", - "p=(ni**2)/ND; #concentration of minority carriers in m^-3\n", - "p=p/10**12;\n", - "p=math.ceil(p*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"donor concentration per m^3 is\",ND);\n", - "print(\"concentration of minority carriers per m^3\",p,\"*10**12\");\n", - "print(\"acceptor concentration per m^3 is\",NA);\n", - "print(\"concentration of minority carriers per m^3 is\",n,\"*10**12\");" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('donor concentration per m^3 is', 4.6296296296296284e+19)\n", - "('concentration of minority carriers per m^3', 4.861, '*10**12')\n", - "('acceptor concentration per m^3 is', 1.3020833333333331e+20)\n", - "('concentration of minority carriers per m^3 is', 1.7281, '*10**12')\n" - ] - } - ], - "prompt_number": 33 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/README.txt b/Engineering_Physics/README.txt deleted file mode 100755 index bd7c4bfa..00000000 --- a/Engineering_Physics/README.txt +++ /dev/null @@ -1,10 +0,0 @@ -Contributed By: KRISHNA CHAITANYA -Course: btech -College/Institute/Organization: JNTUH -Department/Designation: Computer Science -Book Title: Engineering Physics -Author: D. K. Bhattacharya & A. Bhaskaran -Publisher: Oxford University Press, New Delhi -Year of publication: 2013 -Isbn: 9780198065425 -Edition: 1
\ No newline at end of file diff --git a/Engineering_Physics/chapter1_2.ipynb b/Engineering_Physics/chapter1_2.ipynb deleted file mode 100755 index bd2e1aac..00000000 --- a/Engineering_Physics/chapter1_2.ipynb +++ /dev/null @@ -1,1232 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:18ac31f959977ef2080ed3a1b1a6990ce93e604dcfb0f72ab45c0c28a2428e0e" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Quantum Mechanics and Quantum Computing" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.1, Page number 41" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#Variable declaration\n", - "c=3*10**8 #velocity of light in m/s\n", - "h=6.626*10**-34 #planks constant \n", - "m=1.67*10**-27 #mass of proton\n", - "\n", - "#Calculation\n", - "v=c/10 #velocity of proton\n", - "lamda=h/(m*v) #de Broglie wave length\n", - "\n", - "#Result\n", - "print(\"the de Broglie wavelength in m is \",lamda);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the de Broglie wavelength in m is ', 1.3225548902195607e-14)\n" - ] - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.2, Page number 42" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "V=400; #potential in Volts\n", - "\n", - "#Calculation\n", - "lamda=12.56/math.sqrt(V); #de Broglie wavelength\n", - "\n", - "#Result\n", - "print(\"The de Broglie wavelength in Armstrong is\",lamda);\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('The de Broglie wavelength in Armstrong is', 0.628)\n" - ] - } - ], - "prompt_number": 19 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.3, Page number 42\n" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "m=1.674*10**(-27); #mass of neutron in kg\n", - "h=6.626*10**(-34);\n", - "E=0.025; #kinetic energy in eV\n", - "\n", - "#Calculation\n", - "Ej=E*1.6*10**-19; #kinetic energy in J\n", - "lamda=h/math.sqrt(2*m*Ej); #de Broglie wavelength\n", - "lamdaA=lamda*10**10; #converting wavelength from m to Armstrong\n", - "lamdaA=math.ceil(lamdaA*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"The de Broglie wavelength in metres is\",lamda);\n", - "print(\"The de Broglie wavelength in Armstrong is\",lamdaA);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('The de Broglie wavelength in metres is', 1.81062582829353e-10)\n", - "('The de Broglie wavelength in Armstrong is', 1.811)\n" - ] - } - ], - "prompt_number": 20 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.4, Page number 42" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "V=1600; #potential in Volts\n", - "\n", - "#Calculation\n", - "lamda=12.56/math.sqrt(V); #de Broglie wavelength\n", - "lamda=math.ceil(lamda*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"The de Broglie wavelength in Armstrong is\",lamda);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('The de Broglie wavelength in Armstrong is', 0.32)\n" - ] - } - ], - "prompt_number": 21 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.5, Page number 42" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "deltax=0.2; #distance in armstrong\n", - "h=6.626*10**(-34);\n", - "\n", - "#Calculation\n", - "delta_xm=deltax*10**-10; #distance in m\n", - "delta_p=h/(2*math.pi*delta_xm);\n", - "\n", - "#Result\n", - "print(\"The uncertainity in momentum of electron in kg m/sec is\",delta_p);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('The uncertainity in momentum of electron in kg m/sec is', 5.2728032646344916e-24)\n" - ] - } - ], - "prompt_number": 22 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.6, Page number 43" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "n1=1;\n", - "n2=1;\n", - "n3=1; #values in lowest energy\n", - "h=6.62*10**(-34);\n", - "M=9.1*10**-31; #mass in kg\n", - "L=0.1; #side in nm\n", - "\n", - "#Calculation\n", - "L=L*10**-9; #side in m\n", - "n=(n1**2)+(n2**2)+(n3**2);\n", - "E1=(n*h**2)/(8*M*L**2); #energy in j\n", - "E1eV=E1/(1.6*10**-19); #energy in eV\n", - "E1eV=math.ceil(E1eV*10)/10; #rounding off to 1 decimals\n", - "\n", - "#Result\n", - "print(\"lowest energy of electron in Joule is\",E1);\n", - "print(\"lowest energy of electron is eV\",E1eV);\n", - "\n", - "#answer for lowest energy in eV given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('lowest energy of electron in Joule is', 1.8059505494505486e-17)\n", - "('lowest energy of electron is eV', 112.9)\n" - ] - } - ], - "prompt_number": 23 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.7, Page number 43" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "M=9.1*10**(-31); #mass of electron in kg\n", - "h=6.66*10**(-34);\n", - "E=2000; #kinetic energy in eV\n", - "\n", - "#Calculation\n", - "Ej=E*1.6*10**-19; #kinetic energy in J\n", - "lamda=h/math.sqrt(2*M*Ej); #de Broglie wavelength\n", - "lamdaA=lamda*10**9; #converting wavelength from m to nm\n", - "lamdaA=math.ceil(lamdaA*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"The de Broglie wavelength in nm is\",lamdaA);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('The de Broglie wavelength in nm is', 0.028)\n" - ] - } - ], - "prompt_number": 24 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.8, Page number 43" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "n=1; #for minimum energy\n", - "h=6.626*10**(-34);\n", - "m=9.1*10**-31; #mass in kg\n", - "L=4*10**-10; #size in m\n", - "\n", - "#Calculation\n", - "E1=(n*h**2)/(8*m*L**2); #energy in j\n", - "\n", - "#Result\n", - "print(\"lowest energy of electron in Joule is\",E1);\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('lowest energy of electron in Joule is', 3.7692201236263733e-19)\n" - ] - } - ], - "prompt_number": 23 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.9, Page number 44" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "h=6.626*10**(-34);\n", - "m=9.1*10**-31; #mass in kg\n", - "lamda=1.66*10**-10; #wavelength in m\n", - "\n", - "#Calculation\n", - "v=h/(m*lamda); #velocity in m/sec\n", - "v_km=v*10**-3; #velocity in km/sec\n", - "E=(1/2)*m*v**2; #kinetic energy in joule\n", - "EeV=E/(1.6*10**-19); #energy in eV\n", - "EeV=math.ceil(EeV*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"velocity of electron in m/sec is\",round(v));\n", - "print(\"velocity of electron in km/sec is\",round(v_km));\n", - "print(\"kinetic energy of electron in Joule is\",E);\n", - "print(\"kinetic energy of electron in eV is\",EeV);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('velocity of electron in m/sec is', 4386337.0)\n", - "('velocity of electron in km/sec is', 4386.0)\n", - "('kinetic energy of electron in Joule is', 8.754176510091736e-18)\n", - "('kinetic energy of electron in eV is', 54.714)\n" - ] - } - ], - "prompt_number": 26 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.10, Page number 44" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable decleration\n", - "V=15; #potential in kV\n", - "\n", - "#Calculation\n", - "v=V*10**3; #potential in V\n", - "lamda=12.26/math.sqrt(v); #de Broglie wavelength\n", - "lamda=math.ceil(lamda*10**2)/10**2 #rounding off to 2 decimals\n", - "\n", - "#result\n", - "print(\"The de Broglie wavelength in Armstrong is\",lamda);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('The de Broglie wavelength in Armstrong is', 0.11)\n" - ] - } - ], - "prompt_number": 27 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.11, Page number 44\n" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Calculation\n", - "m=1.675*10**-27; #mass of neutron in kg\n", - "h=6.626*10**-34;\n", - "E=10; #kinetic energy in keV\n", - "\n", - "#Calculation\n", - "EeV=E*10**3; #Energy in eV\n", - "Ej=EeV*1.6*10**-19; #kinetic energy in J\n", - "v=math.sqrt(2*Ej/m); #velocity in m/s\n", - "lamda=h/(m*v); #de broglie wavelength in m\n", - "lamda_A=lamda*10**10; #de broglie wavelength in armstrong\n", - "lamda_A=math.ceil(lamda_A*10**4)/10**4 #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"The velocity in m/sec is\",round(v));\n", - "print(\"The de Broglie wavelength in metres is\",lamda);\n", - "print(\"The de Broglie wavelength in Armstrong is\",lamda_A);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('The velocity in m/sec is', 1382189.0)\n", - "('The de Broglie wavelength in metres is', 2.861996093951046e-13)\n", - "('The de Broglie wavelength in Armstrong is', 0.0029)\n" - ] - } - ], - "prompt_number": 28 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.12, Page number 45" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable decleration\n", - "m=9.1*10**-31; #mass of electron in kg\n", - "h=6.6*10**-34;\n", - "E=2; #kinetic energy in keV\n", - "\n", - "#Calculation\n", - "EeV=E*10**3; #Energy in eV\n", - "Ej=EeV*1.6*10**-19; #kinetic energy in J\n", - "p=math.sqrt(2*m*Ej); #momentum\n", - "lamda=h/p; #de broglie wavelength in m\n", - "lamda_A=lamda*10**10; #de broglie wavelength in armstrong\n", - "lamda_A=math.ceil(lamda_A*10**4)/10**4 #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"The de Broglie wavelength in metres is\",lamda);\n", - "print(\"The de Broglie wavelength in Armstrong is\",lamda_A);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('The de Broglie wavelength in metres is', 2.7348483695436575e-11)\n", - "('The de Broglie wavelength in Armstrong is', 0.2735)\n" - ] - } - ], - "prompt_number": 29 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.13, Page number 45" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "\n", - "#Variable decleration\n", - "m=1.676*10**-27; #mass of neutron in kg\n", - "h=6.62*10**-34;\n", - "E=0.025; #kinetic energy in eV\n", - "\n", - "#Calculation\n", - "Ej=E*1.6*10**-19; #kinetic energy in J\n", - "v=math.sqrt(2*Ej/m); #velocity in m/s\n", - "lamda=h/(m*v); #wavelength in m\n", - "lamda_A=lamda*10**10; #de broglie wavelength in armstrong\n", - "lamda_A=math.ceil(lamda_A*10**5)/10**5 #rounding off to 5 decimals\n", - "\n", - "#Result\n", - "print(\"The neutrons wavelength in metres is\",lamda);\n", - "print(\"The wavelength in Armstrong is\",lamda_A);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('The neutrons wavelength in metres is', 1.8079065940980725e-10)\n", - "('The wavelength in Armstrong is', 1.80791)\n" - ] - } - ], - "prompt_number": 30 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.14, Page number 45" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "\n", - "#Variable decleration\n", - "V=10; #potential in kV\n", - "\n", - "#Calculation\n", - "V=V*10**3; #potential in V\n", - "lamda=12.26/math.sqrt(V); #wavelength\n", - "\n", - "#Result\n", - "print(\"The wavelength in Armstrong is\",lamda);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('The wavelength in Armstrong is', 0.1226)\n" - ] - } - ], - "prompt_number": 31 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.15, Page number 45" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "\n", - "#Varialble decleration\n", - "h=6.626*10**-34;\n", - "m=9.1*10**-31; #mass in kg\n", - "l=1; #width in armstrong\n", - "\n", - "#Calculation\n", - "L=l*10**-10; #width in m\n", - "#permitted electron energies En=(n**2*h**2)/(8*m*L**2)\n", - "#let X = h**2/(8*m*L**2)\n", - "X = h**2/(8*m*L**2); #energy in J\n", - "XeV=X/(1.6*10**-19); #energy in eV\n", - "#in the 1st level n1=1\n", - "n1=1;\n", - "E1=(n1**2)*XeV; #energy in eV\n", - "\n", - "#in second level n2=2\n", - "n2=2;\n", - "E2=(n2**2)*XeV; #energy in eV\n", - "#in third level n3=\n", - "n3=3;\n", - "E3=(n3**2)*XeV; #energy in eV\n", - "\n", - "#Result\n", - "print(\"minimum energy the electron can have in eV is\",round(E1));\n", - "print(\"other values of energy are in eV and in eV\",round(E2),round(E3));\n", - "\n", - "#answers given in the book are wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('minimum energy the electron can have in eV is', 38.0)\n", - "('other values of energy are in eV and in eV', 151.0, 339.0)\n" - ] - } - ], - "prompt_number": 32 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.16, Page number 46\n" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "\n", - "#Variable decleration\n", - "n=1; #lowest state\n", - "L=10; #width in armstrong\n", - "\n", - "#Calculation\n", - "L=L*10**-10; #width in m\n", - "x=L/2;\n", - "delta_x=1; #interval in armstrong\n", - "delta_x=delta_x*10**-10; #interval in m\n", - "psi1=(math.sqrt(2/L))*math.sin(math.pi*x/L);\n", - "A=psi1**2;\n", - "p=A*delta_x;\n", - "p=math.ceil(p*10)/10; #de broglie wavelength in armstrong\n", - "\n", - "#Result\n", - "print(\"probability of finding the particle is \",p);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('probability of finding the particle is ', 0.2)\n" - ] - } - ], - "prompt_number": 33 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.17, Page number 46" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "d=970; #density of Na in kg/m^3\n", - "n=6.02*10**26;\n", - "h=6.62*10**(-34);\n", - "m=9.1*10**-31; #mass in kg\n", - "w=23; #atomic weight\n", - "\n", - "#Calculation\n", - "N=(d*n)/w; #number of atoms per m^3\n", - "A=(h**2)/(8*m);\n", - "B=(3*N)/math.pi;\n", - "Ef=A*B**(2/3);\n", - "EfeV=Ef/(1.6*10**-19);\n", - "EfeV=math.ceil(EfeV*10**2)/10**2 #rounding of to 2 decimals\n", - "\n", - "#Result\n", - "print(\"fermi energy of Na in eV is\",EfeV);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('fermi energy of Na in eV is', 3.16)\n" - ] - } - ], - "prompt_number": 34 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.18, Page number 46" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "n1=1;\n", - "n2=1;\n", - "n3=1; #values in lowest energy\n", - "h=6.62*10**(-34);\n", - "m=9.1*10**-31; #mass in kg\n", - "L=0.1; #side in nm\n", - "\n", - "#Calculation\n", - "L=L*10**-9; #side in m\n", - "n=(n1**2)+(n2**2)+(n3**2);\n", - "E1=(n*h**2)/(8*m*L**2); #energy in j\n", - "E1eV=E1/(1.6*10**-19); #energy in eV\n", - "E1eV=math.ceil(E1eV*10**1)/10**1 #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"lowest energy of electron in Joule is\",E1);\n", - "print(\"lowest energy of electron in eV is\",E1eV);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('lowest energy of electron in Joule is', 1.8059505494505486e-17)\n", - "('lowest energy of electron in eV is', 112.9)\n" - ] - } - ], - "prompt_number": 35 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.19, Page number 47" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "mn=1.676*10**-27; #mass of neutron in kg\n", - "me=9.1*10**-31; #mass of electron in kg\n", - "h=6.62*10**-34;\n", - "c=3*10**8; #velocity of light in m/sec\n", - "\n", - "#Calculation\n", - "En=2*me*c**2;\n", - "lamda=h/math.sqrt(2*mn*En); #wavelength in m\n", - "lamda_A=lamda*10**10; #converting lamda from m to A\n", - "lamda_A=math.ceil(lamda_A*10**6)/10**6 #rounding off to 6 decimals\n", - "\n", - "#Result\n", - "print(\"The de broglie wavelength in Angstrom is\",lamda_A);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('The de broglie wavelength in Angstrom is', 0.000283)\n" - ] - } - ], - "prompt_number": 36 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.20, Page number 47 ***************************************************************************" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "n2=2; #second quantum state\n", - "n4=4; #fourth quantum state\n", - "h=6.626*10**-34;\n", - "m=9.1*10**-31; #mass in kg\n", - "a=2; #potential box length in armstrong\n", - "\n", - "#Calculation\n", - "a=a*10**-10; #length in m\n", - "A=n2**2*h**2;\n", - "B=8*m*a**2;\n", - "E2=A/B; #energy in j\n", - "E2eV=E2/(1.6*10**-19); #energy in eV\n", - "C=n4**2*h**2;\n", - "E4=C/B; #energy in j\n", - "E4eV=E4/(1.6*10**-19); #energy in eV\n", - "\n", - "#Result\n", - "print(\"energy corresponding to second quantum state in Joule is\",E2);\n", - "print(\"energy corresponding to second quantum state in eV is\",E2eV);\n", - "print(\"energy corresponding to fourth quantum state in Joule is\",E4);\n", - "print(\"energy corresponding to fourth quantum state in eV is\",E4eV);\n", - "\n", - "\n", - "#answers given in the book are wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('energy corresponding to second quantum state in Joule is', 6.030752197802197e-18)\n", - "('energy corresponding to second quantum state in eV is', 37.69220123626373)\n", - "('energy corresponding to fourth quantum state in Joule is', 2.412300879120879e-17)\n", - "('energy corresponding to fourth quantum state in eV is', 150.7688049450549)\n" - ] - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.21, Page number 48 ***********" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "V=344; #accelerated voltage in V\n", - "n=1; #first reflection\n", - "theta=60; #glancing angle in degrees\n", - "\n", - "#Calculation\n", - "lamda=12.27/math.sqrt(V);\n", - "d=(n*lamda)/(2*math.sin(theta));\n", - "\n", - "#Result\n", - "print(\"The spacing of the crystal in Angstrom is\",lamda);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('The spacing of the crystal in Angstrom is', 0.6615540636030947)\n" - ] - } - ], - "prompt_number": 38 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.22, Page number 49 *************" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "n2=2; #second quantum state\n", - "n3=3; #fourth quantum state\n", - "h=6.626*10**-34;\n", - "m=9.1*10**-31; #mass in kg\n", - "a=1*10**-10; #width of potential well in m\n", - "\n", - "#Calculation\n", - "B=8*m*a**2;\n", - "E1=h**2/B; #ground state energy\n", - "E1eV=E1/(1.6*10**-19); #energy in eV\n", - "A=n2**2*h**2;\n", - "E2=A/B; #energy in j\n", - "E2eV=E2/(1.6*10**-19); #energy in eV\n", - "C=n3**2*h**2;\n", - "E3=C/B; #energy in j\n", - "E3eV=E3/(1.6*10**-19); #energy in eV\n", - "E1=math.ceil(E1*10**3)/10**3 #rounding off to 3 decimals\n", - "E1eV=math.ceil(E1eV*10**3)/10**3 #rounding off to 3 decimals\n", - "E2eV=math.ceil(E2eV*10**3)/10**3 #rounding off to 3 decimals\n", - "E3eV=math.ceil(E3eV*10**3)/10**3 #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"ground state energy in Joule is\",E1);\n", - "print(\"ground state energy in eV is\",E1eV);\n", - "print(\"first energy state in eV is\",E2eV);\n", - "print(\"second energy state in eV is\",E3eV);\n", - "\n", - "#answers given in the book are wrong by one decimal" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('ground state energy in Joule is', 0.001)\n", - "('ground state energy in eV is', 37.693)\n", - "('first energy state in eV is', 150.769)\n", - "('second energy state in eV is', 339.23)\n" - ] - } - ], - "prompt_number": 39 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.23, Page number 49" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "\n", - "#Variable decleration\n", - "n3=3; #fourth quantum state\n", - "h=6.626*10**-34;\n", - "m=9.1*10**-31; #mass in kg\n", - "\n", - "\n", - "#ground state energy E1 = h**2/(8*m*a**2)\n", - "#second excited state E3 = (9*h**2)/(8*m*a**2)\n", - "#required energy E = E3-E1\n", - "#E = (9*h**2)/(8*m*a**2) - h**2/(8*m*a**2)\n", - "#E = (h**2/(8*m*a**2))*(9-1)\n", - "#therefore E = (8*h**2)/(8*m*a**2)\n", - "#hence E = (h**2)/(m*a**2)\n", - "\n", - "#Result \n", - "# the required energy is E = (h**2)/(m*a**2)" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.24, Page number 50" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "delta_x=10**-8; #length of box in m\n", - "h=6.626*10**-34;\n", - "m=9.1*10**-31; #mass in kg\n", - "\n", - "#Calculation\n", - "delta_v=h/(m*delta_x); #uncertainity in m/sec\n", - "delta_vk=delta_v*10**-3; #uncertainity in km/sec\n", - "delta_vk=math.ceil(delta_vk*10**2)/10**2 #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"minimum uncertainity in velocity in m/sec is\",round(delta_v));\n", - "print(\"minimum uncertainity in velocity in km/sec is\",delta_vk);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('minimum uncertainity in velocity in m/sec is', 72813.0)\n", - "('minimum uncertainity in velocity in km/sec is', 72.82)\n" - ] - } - ], - "prompt_number": 40 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.25, Page number 50" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "mp=1.6*10**-27; #mass of proton in kg\n", - "me=9.1*10**-31; #mass of electron in kg\n", - "h=6.626*10**(-34);\n", - "c=3*10**10; #velocity of light in m/sec\n", - "\n", - "#Calculation\n", - "Ep=me*c**2;\n", - "lamda=h/math.sqrt(2*mp*Ep); #wavelength in m\n", - "lamda_A=lamda*10**10; #converting lamda from m to A\n", - "\n", - "#Result\n", - "print(\"The de broglie wavelength in Angstrom is\",lamda_A);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('The de broglie wavelength in Angstrom is', 4.092931643497047e-06)\n" - ] - } - ], - "prompt_number": 41 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 1.26, Page number 51 *************************************************" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "m=1.675*10**(-27); #mass of neutron in kg\n", - "h=6.626*10**(-34);\n", - "n=1; #diffractive order\n", - "d=0.314; #spacing in nm\n", - "E=0.04; #kinetic energy in eV\n", - "\n", - "#Calculation\n", - "d=d*10**-9; #spacing in m\n", - "Ej=E*1.6*10**-19; #kinetic energy in J\n", - "lamda=h/math.sqrt(2*m*Ej); #de Broglie wavelength\n", - "lamdaA=lamda*10**9; #converting wavelength from m to nm\n", - "theta=math.asin((n*lamda)/(2*d));\n", - "print(\"The de Broglie wavelength in metres is\",lamda);\n", - "print(\"The de Broglie wavelength in nm is\",lamdaA);\n", - "print(\"glancing angle in degrees is\",theta);\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('The de Broglie wavelength in metres is', 1.4309980469755228e-10)\n", - "('The de Broglie wavelength in nm is', 0.1430998046975523)\n", - "('glancing angle in degrees is', 0.2298853909391574)\n" - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/chapter2_2.ipynb b/Engineering_Physics/chapter2_2.ipynb deleted file mode 100755 index a118db3c..00000000 --- a/Engineering_Physics/chapter2_2.ipynb +++ /dev/null @@ -1,813 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:04561aafd347865fa8c83acfb9b60eb84db275f85862655b442f546023cadd1e" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Electron Theory of Metals" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.1, Page number 69" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#import module\n", - "import math\n", - "\n", - "#Calculation\n", - "# given that E-Ef = kT\n", - "# fermi function FE = 1/(1+exp((E-Ef)/kT)\n", - "# therefore FE = 1/(1+exp(kT/kT));\n", - "# FE = 1/(1+exp(1))\n", - "FE=1/(1+math.exp(1));\n", - "FE=math.ceil(FE*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"fermi function is\",FE);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('fermi function is', 0.27)\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.2, Page number 69" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "\n", - "#Calculation\n", - "# given that E-Ef = kT\n", - "# fermi function FE = 1/(1+exp((E-Ef)/kT)\n", - "# therefore FE = 1/(1+exp(kT/kT));\n", - "# FE = 1/(1+exp(1))\n", - "FE=1/(1+math.exp(1));\n", - "FE=math.ceil(FE*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"fermi function is\",FE);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('fermi function is', 0.269)\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.3, Page number 69" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "FE=10/100; #fermi function is 10%\n", - "Ef=5.5; #fermi energy of silver in eV\n", - "k=1.38*10**-23;\n", - "\n", - "#Calculation\n", - "E=Ef+(Ef/100);\n", - "#FE=1/(1+math.exp((E-Ef)/(k*T)))\n", - "#therefore 1/FE = 1+math.exp((E-Ef)/(k*T))\n", - "#therefore (1/FE)-1 = math.exp((E-Ef)/(k*T))\n", - "#therefore log((1/FE)-1) = (E-Ef)/(k*T)\n", - "#therefore T = (E-Ef)/(k*math.log((1/FE)-1))\n", - "#let X=E-Ef; \n", - "X=E-Ef; #energy in eV\n", - "X=X*1.6*10**-19; #energy in J\n", - "T = (X/(k*math.log((1/FE)-1)));\n", - "T=math.ceil(T*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"temperature in K is\",T);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('temperature in K is', 290.23)\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.4, Page number 70 **************************************" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "#let X=E-Ef\n", - "X=0.5; #E-Ef=0.5 in eV\n", - "\n", - "#Calculation\n", - "X=X*1.6*10**-19; #X in J\n", - "FE=1/100; #fermi function is 1% \n", - "k=1.38*10**-23;\n", - "#FE=1/(1+exp(X/(k*T)))\n", - "#therefore 1/FE = 1+math.exp(X/(k*T))\n", - "#therefore (1/FE)-1 = math.exp(X/(k*T))\n", - "#therefore log((1/FE)-1) = X/(k*T)\n", - "#but log(x) = 2.303*math.log10(x)\n", - "#therefore T = X/(k*math.log((1/FE)-1))\n", - "#but log(x)=2.303*math.log10(x)\n", - "#therefore T = X/(k*2.303*math.log10((1/FE)-1))\n", - "T = X/(k*2.303*math.log10((1/FE)-1));\n", - "\n", - "#Result\n", - "print(\"temperature in K is\",T);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('temperature in K is', 1261.3505710887953)\n" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.5, Page number 71 *******" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "rho_s=10.5*10**3; #density in kg/m^3\n", - "NA=6.02*10**26; #avagadro number per kmol\n", - "MA=107.9; \n", - "\n", - "#Calculation\n", - "n=(rho_s*NA)/MA;\n", - "sigma=6.8*10**7;\n", - "e=1.6*10**-19; #charge in coulomb\n", - "mew=sigma/(n*e);\n", - "mew=math.ceil(mew*10**6)/10**6; #rounding off to 6 decimals\n", - "\n", - "#Result\n", - "print(\"density of electrons is\",n);\n", - "print(\"mobility of electrons in silver in m^2/Vs is\",mew);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('density of electrons is', 5.85820203892493e+28)\n", - "('mobility of electrons in silver in m^2/Vs is', 0.007255)\n" - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.6, Page number 71 ***" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "d=8.92*10**3; #density in kg/m^3\n", - "rho=1.73*10**-8; #resistivity in ohm-m\n", - "m=9.1*10**-31; #mass in kg\n", - "w=63.5; #atomic weight\n", - "e=1.6*10**-19; #charge in coulomb\n", - "A=6.02*10**26; #avagadro number\n", - "\n", - "#Calculation\n", - "n=(d*A)/w;\n", - "mew=1/(rho*n*e);\n", - "tow=m/(n*(e**2)*rho);\n", - "mew=math.ceil(mew*10**6)/10**6; #rounding off to 6 decimals\n", - "\n", - "#Result\n", - "print(\"mobility of electrons in Copper in m/Vs is\",mew);\n", - "print(\"average time of collision of electrons in copper in sec is\",tow);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('mobility of electrons in Copper in m/Vs is', 0.004273)\n", - "('average time of collision of electrons in copper in sec is', 2.4297841992299697e-14)\n" - ] - } - ], - "prompt_number": 18 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.7, Page number 72" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "rho=1.54*10**-8; #resistivity in ohm-m\n", - "n=5.8*10**28; #electron/m^3\n", - "m=9.108*10**-31; #mass in kg\n", - "e=1.602*10**-19; #charge in coulomb\n", - "\n", - "#Calculation\n", - "tow=m/(n*(e**2)*rho);\n", - "\n", - "#Result\n", - "print(\"relaxation time of conduction electrons in sec is\",tow);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('relaxation time of conduction electrons in sec is', 3.973281032516849e-14)\n" - ] - } - ], - "prompt_number": 19 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.8, Page number 73" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "FE=10/100; #fermi function is 10%\n", - "Ef=5.5; #fermi energy of silver in eV\n", - "k=1.38*10**-23;\n", - "\n", - "#Calculation\n", - "E=Ef+(Ef/100);\n", - "#FE=1/(1+math.exp((E-Ef)/(k*T)))\n", - "#therefore 1/FE = 1+math.exp((E-Ef)/(k*T))\n", - "#therefore (1/FE)-1 = math.exp((E-Ef)/(k*T))\n", - "#therefore log((1/FE)-1) = (E-Ef)/(k*T)\n", - "#therefore T = (E-Ef)/(k*math.log((1/FE)-1))\n", - "#let X=E-Ef; \n", - "X=E-Ef; #energy in eV\n", - "X=X*1.6*10**-19; #energy in J\n", - "T = (X/(k*math.log((1/FE)-1)));\n", - "T=math.ceil(T*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"temperature in K is\",T);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('temperature in K is', 290.23)\n" - ] - } - ], - "prompt_number": 21 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.9, Page number 73" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "\n", - "#Calculation\n", - "# given that E-Ef = kT\n", - "# fermi function FpE = 1/(1+exp((E-Ef)/kT)\n", - "# therefore FpE = 1/(1+exp(kT/kT));\n", - "# FpE = 1/(1+exp(1))\n", - "FpE=1/(1+math.exp(1));\n", - "FpE=math.ceil(FpE*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"fermi function is\",FpE);\n", - "#the presence of electron at that energy level is not certain" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('fermi function is', 0.27)\n" - ] - } - ], - "prompt_number": 23 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.10, Page number 74 ****************************" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "m=9.1*10**-31; #mass in kg\n", - "h=6.626*10**-34;\n", - "A=(8*m)**(3/2);\n", - "\n", - "#Calculation\n", - "B=math.pi/(2*h**3);\n", - "EfeV=3.10; #fermi energy in eV\n", - "Ef=EfeV*1.6*10**-19; #fermi energy in J\n", - "EFeV=EfeV+0.02; #energy after interval in eV\n", - "EF=EFeV*1.6*10**-19; #energy after interval in J\n", - "function Q=f(E),Q=A*B*math.sqrt(E),endfunction\n", - "I=intg(Ef,EF,f)\n", - "\n", - "#Result\n", - "print(\"number of energy states per unit volume is\",I);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "ename": "SyntaxError", - "evalue": "invalid syntax (<ipython-input-25-15d658985351>, line 18)", - "output_type": "pyerr", - "traceback": [ - "\u001b[1;36m File \u001b[1;32m\"<ipython-input-25-15d658985351>\"\u001b[1;36m, line \u001b[1;32m18\u001b[0m\n\u001b[1;33m function Q=f(E),Q=A*B*math.sqrt(E),endfunction\u001b[0m\n\u001b[1;37m ^\u001b[0m\n\u001b[1;31mSyntaxError\u001b[0m\u001b[1;31m:\u001b[0m invalid syntax\n" - ] - } - ], - "prompt_number": 25 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.11, Page number 74" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "T=300; #temperature in K\n", - "n=8.5*10**28; #density per m^3\n", - "rho=1.69*10**-8; #resistivity in ohm/m^3\n", - "me=9.11*10**-31; #mass of electron in kg\n", - "e=1.6*10**-19; #charge in coulomb\n", - "KB=1.38*10**-23; #boltzmann constant in J/k\n", - "\n", - "#Calculation\n", - "lamda=math.sqrt(3*KB*me*T)/(n*(e**2)*rho);\n", - "\n", - "#Result\n", - "print(\"mean free path of electron in m is\",lamda);\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('mean free path of electron in m is', 2.892506814374228e-09)\n" - ] - } - ], - "prompt_number": 27 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.12, Page number 75" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "rho=1.43*10**-8; #resistivity in ohm-m\n", - "n=6.5*10**28; #electron/m^3\n", - "m=9.11*10**-34; #mass in kg\n", - "e=1.6*10**-19; #charge in coulomb\n", - "\n", - "#Calculation\n", - "tow=m/(n*(e**2)*rho);\n", - "\n", - "#Result\n", - "print(\"relaxation time of conduction electrons in sec is\",tow);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('relaxation time of conduction electrons in sec is', 3.8285032275416887e-17)\n" - ] - } - ], - "prompt_number": 28 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.13, Page number 75 ******" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "d=8.92*10**3; #density in kg/m^3\n", - "rho=1.73*10**-8; #resistivity in ohm-m\n", - "m=9.1*10**-31; #mass in kg\n", - "M=63.5; #atomic weight\n", - "e=1.6*10**-19; #charge in coulomb\n", - "A=6.02*10**26; #avagadro number\n", - "\n", - "#Calculation\n", - "n=(d*A)/M;\n", - "mew=1/(rho*n*e);\n", - "tow=m/(n*(e**2)*rho);\n", - "mew=math.ceil(mew*10**6)/10**6; #rounding off to 6 decimals\n", - "\n", - "#Result\n", - "print(\"mobility of electrons in Copper in m/Vs is\",mew);\n", - "print(\"average time of collision of electrons in copper in sec is\",tow);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('mobility of electrons in Copper in m/Vs is', 0.004273)\n", - "('average time of collision of electrons in copper in sec is', 2.4297841992299697e-14)\n" - ] - } - ], - "prompt_number": 31 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.14, Page number 76" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "MH=1.008*2*1.67*10**-27; #mass in kg\n", - "T=30; #temperature in C\n", - "\n", - "#Calculation\n", - "T=T+273; #temperature in K\n", - "KB=1.38*10**-23; #boltzmann constant in J/k\n", - "KE=(3/2)*KB*T; #kinetic energy in J\n", - "KEeV=KE*6.24*10**18; #kinetic energy in eV\n", - "cbar=math.sqrt((3*KB*T)/MH);\n", - "\n", - "#Result\n", - "print(\"average kinetic energy in J is\",KE);\n", - "print(\"average kinetic energy in eV is\",KEeV);\n", - "print(\"velocity of molecules in m/s is\",cbar);\n", - "\n", - "#answers for average kinetic energy in eV and velocity of electrons given in the book are wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('average kinetic energy in J is', 6.2720999999999986e-21)\n", - "('average kinetic energy in eV is', 0.039137903999999994)\n", - "('velocity of molecules in m/s is', 1930.269663853336)\n" - ] - } - ], - "prompt_number": 33 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.15, Page number 77 ****" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "Ee=10; #electron kinetic energy in eV\n", - "Ep=10; #proton kinetic energy in eV\n", - "me=9.1*10**-31; #mass of electron in kg\n", - "mp=1.67*10**-27; #mass of proton in kg\n", - "\n", - "#Calculation\n", - "EeeV=Ee*1.6*10**-19; #electron kinetic energy in J\n", - "EpeV=Ep*1.6*10**-19; #proton kinetic energy in J\n", - "cebar=math.sqrt((2*EeeV)/me);\n", - "cpbar=math.sqrt((2*EpeV)/mp);\n", - "\n", - "#Result\n", - "print(\"velocity of electron in m/s is\",cebar);\n", - "print(\"velocity of proton in m/s is\",cpbar);\n", - "\n", - "#answers given in the book are wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('velocity of electron in m/s is', 1875228.9237539817)\n", - "('velocity of proton in m/s is', 43774.05241316662)\n" - ] - } - ], - "prompt_number": 35 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.16, Page number 77" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "A=10; #area of cross section in mm^2\n", - "A=A*10**-6; #area of cross section in m^2\n", - "i=100; #current in amp\n", - "n=8.5*10**28; #number of electrons per mm^3\n", - "e=1.6*10**-19; #electron charge in coulumb\n", - "\n", - "#Calculation\n", - "vd=1/(n*A*e);\n", - "\n", - "#Result\n", - "print(\"drift velocity in m/s is\",vd);\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('drift velocity in m/s is', 7.3529411764705884e-06)\n" - ] - } - ], - "prompt_number": 36 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.17, Page number 78" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "tow=3*10**-14; #relaxation time in sec\n", - "n=8*10**28; #density of electrons per m^3\n", - "KB=1.38*10**-23; #boltzmann constant in J/k\n", - "T=0; #temperature in C\n", - "\n", - "#Calculation\n", - "T=T+273; #temperature in K\n", - "m=9.1*10**-31; #mass of electron in kg\n", - "sigma_T=((3*n*tow*(KB**2)*T)/(2*m));\n", - "sigma_T=math.ceil(sigma_T*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"thermal conductivity of copper in ohm-1 is\",sigma_T);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('thermal conductivity of copper in ohm-1 is', 205.68)\n" - ] - } - ], - "prompt_number": 38 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/chapter4_2.ipynb b/Engineering_Physics/chapter4_2.ipynb deleted file mode 100755 index 80203b2d..00000000 --- a/Engineering_Physics/chapter4_2.ipynb +++ /dev/null @@ -1,756 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:544912fca601384def1f6da3b02bc7431b47e0d8f9efa5f2e7d2a367448daaa6" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Magnetic Properties" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.1, Page number 119" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "H=6.5*10**-4; #magnetic field in T\n", - "M=1.4; #field with iron\n", - "\n", - "#Calculation\n", - "chi=M/H;\n", - "mew_r=1+chi;\n", - "mew_r=math.ceil(mew_r*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"relative permeability of iron is\",mew_r);\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('relative permeability of iron is', 2154.85)\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.2, Page number 119" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "H=220; #field in amp/m\n", - "M=3300; #magnetisation in amp/m\n", - "\n", - "#Calculation\n", - "chi=M/H;\n", - "mew_r=1+chi;\n", - "\n", - "#Result\n", - "print(\"relative permeability is\",mew_r);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('relative permeability is', 16.0)\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.3, Page number 120 *****" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "r=5.29*10**-11; #radius of orbit in m\n", - "B=2; #applied field in Tesla\n", - "e=1.602*10**-19; #charge of electron in coulomb\n", - "m=9.108*10**-31; #mass of electron in kg\n", - "\n", - "#Calculation\n", - "mew=(e**2)*(r**2)*B/(4*m);\n", - "\n", - "#Result\n", - "print(\"magnetic moment in Am^2 is\",mew);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('magnetic moment in Am^2 is', 3.94260574090909e-29)\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.4, Page number 120" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "\n", - "#Variable decleration\n", - "chi=0.5*10**-5; #susceptibility \n", - "H=10**6; #field strength in amp/m\n", - "\n", - "#Calculation\n", - "mew_0=4*math.pi*10**-7;\n", - "I=chi*H;\n", - "B=mew_0*(I+H);\n", - "B=math.ceil(B*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"intensity of magnetisation in Amp/m is\",I);\n", - "print(\"flux density in Weber/m^2 is\",B);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('intensity of magnetisation in Amp/m is', 5.0)\n", - "('flux density in Weber/m^2 is', 1.257)\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.5, Page number 120" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "e=2.86; #edge in armstrong\n", - "e=e*10**-10; #edge in m\n", - "Is=1.76*10**6; #magnetisation in amp/m\n", - "mewB=9.27*10**-24; #1 bohr magneton in amp m^2\n", - "\n", - "#Calculation\n", - "N=2/(e**3); #density per m^3\n", - "mewbar=Is/N;\n", - "mew_bar=mewbar/mewB;\n", - "mew_bar=math.ceil(mew_bar*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"average dipole moment in mewB is\",mew_bar);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('average dipole moment in mewB is', 2.221)\n" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.6, Page number 121 ***" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "H=10**6; #magnetic field in amp/m\n", - "chi=1.5*10**-3; #susceptibility\n", - "\n", - "#Calculation\n", - "mew_0=4*math.pi*10**-7;\n", - "M=chi*H;\n", - "B=mew_0*(M+H);\n", - "\n", - "#Result\n", - "print(\"magnetisation in Amp/m is\",M);\n", - "print(\"flux density in Tesla is\",B);\n", - "\n", - "#answer for flux density given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('magnetisation in Amp/m is', 1500.0)\n", - "('flux density in Tesla is', 1.258522017028071)\n" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.7, Page number 121" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "chi=3.7*10**-3; #susceptibility \n", - "H=10**4; #field strength in amp/m\n", - "\n", - "#Calculation\n", - "mew_0=4*math.pi*10**-7;\n", - "M=chi*H;\n", - "B=mew_0*(M+H);\n", - "B=math.ceil(B*10**5)/10**5; #rounding off to 5 decimals\n", - "\n", - "#Result\n", - "print(\"magnetisation in Amp/m is\",M);\n", - "print(\"flux density in Weber/m^2 is\",B);\n", - "\n", - "#answer for flux density given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('magnetisation in Amp/m is', 37.0)\n", - "('flux density in Weber/m^2 is', 0.01262)\n" - ] - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.8, Page number 121" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "r=0.052*10**-9; #radius of orbit in m\n", - "B=1; #magnetic field in Wb/m^2\n", - "e=1.6*10**-19; #charge of electron in coulomb\n", - "m=9.1*10**-31; #mass of electron in kg\n", - "\n", - "#Calculation\n", - "dmew=(e**2)*(r**2)*B/(4*m);\n", - "\n", - "#Result\n", - "print(\"magnetic moment in Am^2 is\",dmew);\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('magnetic moment in Am^2 is', 1.901714285714286e-29)\n" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.9, Page number 122" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "\n", - "#Variable decleration\n", - "chi=-0.5*10**-5; #susceptibility \n", - "H=9.9*10**4; #field strength in amp/m\n", - "\n", - "#Calculation\n", - "mew_0=4*math.pi*10**-7;\n", - "I=chi*H;\n", - "B=mew_0*H*(1+chi);\n", - "I=math.ceil(I*10**4)/10**4; #rounding off to 4 decimals\n", - "B=math.ceil(B*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"intensity of magnetisation in Amp/m is\",I);\n", - "print(\"flux density in Weber/m^2 is\",B);\n", - "\n", - "#answer for flux density given in the book is wrong " - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('intensity of magnetisation in Amp/m is', -0.495)\n", - "('flux density in Weber/m^2 is', 0.1245)\n" - ] - } - ], - "prompt_number": 18 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.10, Page number 122" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "r=6.1*10**-11; #radius of H atom in m\n", - "new=8.8*10**15; #frequency in rev/sec\n", - "e=1.6*10**-19;\n", - "\n", - "#Calculation\n", - "mew0=4*math.pi*10**-7;\n", - "i=e*new;\n", - "B=(mew0*i)/(2*r);\n", - "mew=i*math.pi*(r**2);\n", - "i=math.ceil(i*10**7)/10**7; #rounding off to 7 decimals\n", - "B=math.ceil(B*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"current in amp is\",i);\n", - "print(\"magnetic induction in weber/m^2 is\",B);\n", - "print(\"dipole moment in amp m^2 is\",mew);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('current in amp is', 0.0014081)\n", - "('magnetic induction in weber/m^2 is', 14.503)\n", - "('dipole moment in amp m^2 is', 1.645933169972273e-23)\n" - ] - } - ], - "prompt_number": 22 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.11, Page number 123" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "Is=1.96*10**6; #saturation magnetisation in amp/m\n", - "a=3; #cube edge of iron in armstrong\n", - "a=a*10**-10; #cube edge of iron in m\n", - "mew_b=9.27*10**-24; #bohr magneton in amp/m^2\n", - "n=2; #number of atoms per unit cell\n", - "\n", - "#Calculation\n", - "N=n/(a**3);\n", - "mewbar=Is/N;\n", - "mew_ab=mewbar/mew_b;\n", - "mew_ab=math.ceil(mew_ab*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"average number of Bohr magnetons in bohr magneton per atom is\",mew_ab);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('average number of Bohr magnetons in bohr magneton per atom is', 2.8544)\n" - ] - } - ], - "prompt_number": 24 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.12, Page number 123" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "I=3000; #magnetisation in amp/m\n", - "B=0.005; #flux density in weber/m^2\n", - "\n", - "#Calculation\n", - "mew0=4*math.pi*10**-7;\n", - "H=(B/mew0)-I;\n", - "mew_r=(I/H)+1;\n", - "H=math.ceil(H*10**3)/10**3; #rounding off to 3 decimals\n", - "mew_r=math.ceil(mew_r*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"magnetic force in amp/m is\",H);\n", - "print(\"relative permeability is\",mew_r);\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('magnetic force in amp/m is', 978.874)\n", - "('relative permeability is', 4.065)\n" - ] - } - ], - "prompt_number": 28 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.13, Page number 124" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "H=1800; #magnetising field in amp/m\n", - "phi=3*10**-5; #magnetic flux in weber\n", - "A=0.2; #cross sectional area in cm^2\n", - "\n", - "#Calculation\n", - "A=A*10**-4; #cross sectional area in m^2\n", - "B=phi/A;\n", - "mew=B/H;\n", - "mew=math.ceil(mew*10**8)/10**8 #rounding off to 8 decimals\n", - "\n", - "#Result\n", - "print(\"the permeability in Henry/m is\",mew);\n", - "\n", - "#answer given in the book is wron" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the permeability in Henry/m is', 0.00083334)\n" - ] - } - ], - "prompt_number": 31 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.14, Page number 124 ********************" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "r=0.04; #radius of circular loop in m\n", - "i=1000; #current in mA\n", - "i=i*10**-3; #current in amp\n", - "B=10**-3; #magnetic flux density in Wb/m^2\n", - "theta=45; #angle in degrees\n", - "\n", - "#Calculation\n", - "A=math.pi*(r**2);\n", - "mew=i*A;\n", - "tow=i*B*math.cos(theta);\n", - "mew=math.ceil(mew*10**6)/10**6 #rounding off to 6 decimals\n", - "\n", - "#Result\n", - "print(\"the magnetic dipole moment in amp m^2 is\",mew);\n", - "print(\"the torque in Nm is\",tow);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the magnetic dipole moment in amp m^2 is', 0.005027)\n", - "('the torque in Nm is', 0.0005253219888177298)\n" - ] - } - ], - "prompt_number": 36 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.15, Page number 125" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "\n", - "#Variable decleration\n", - "A=100; #area of hysteris loop in m^2\n", - "B=0.01; #flux density in wb/m^2\n", - "H=40; #magnetic field in amp/m\n", - "M=7650; #atomic weight in kg/m^3\n", - "\n", - "#Calculation\n", - "hl=A*B*H;\n", - "\n", - "#Result\n", - "print(\"the hysterisis loss per cycle in J/m^3 is\",hl);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the hysterisis loss per cycle in J/m^3 is', 40.0)\n" - ] - } - ], - "prompt_number": 38 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 4.17, Page number 125" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "hl=200; #hysterisis loss per cycle in J/m^3\n", - "M=7650; #atomic weight in kg/m^3\n", - "m=100; #magnetisation cycles per second\n", - "\n", - "#Calculation\n", - "hpl=hl*m;\n", - "pl=hpl/M;\n", - "pl=math.ceil(pl*10**4)/10**4 #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"hysterisis power loss per second in watt/m^3 is\",hpl);\n", - "print(\"the power loss in watt/kg is\",pl); \n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('hysterisis power loss per second in watt/m^3 is', 20000)\n", - "('the power loss in watt/kg is', 2.6144)\n" - ] - } - ], - "prompt_number": 40 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/chapter5_2.ipynb b/Engineering_Physics/chapter5_2.ipynb deleted file mode 100755 index 14018aea..00000000 --- a/Engineering_Physics/chapter5_2.ipynb +++ /dev/null @@ -1,639 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:19dabe1afe46093105a84b4746899bd5b483ca26e3b557510765740ff72179af" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Superconductivity" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 5.1, Page number 148" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "Tc=3.7; #in kelvin\n", - "Hc_0=0.0306; \n", - "T=2\n", - "\n", - "#Calculation\n", - "Hc_2k=Hc_0*(1-((T/Tc)**2));\n", - "Hc_2k=math.ceil(Hc_2k*10**5)/10**5; #rounding off to 5 decimals\n", - "\n", - "#Result\n", - "print(\"the critical feild at 2K in tesla is\",Hc_2k);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the critical feild at 2K in tesla is', 0.02166)\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 5.2, Page number 149\n" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "T=4.2; #in kelvin\n", - "Tc=7.18; #in kelvin\n", - "Hc_0=6.5*10**4; #in amp per meter\n", - "D=10**-3\n", - "\n", - "#Calculation\n", - "R=D/2; #radius is equal to half of diameter\n", - "Hc_T=Hc_0*(1-((T/Tc)**2));\n", - "Hc_T=math.ceil(Hc_T*10)/10; #rounding off to 1 decimals\n", - "Ic=2*math.pi*R*Hc_T #critical current is calculated by 2*pi*r*Hc(T)\n", - "Ic=math.ceil(Ic*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"the critical feild in Tesla is\",round(Hc_T));\n", - "print(\"the critical current in Amp is\",Ic);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the critical feild in Tesla is', 42759.0)\n", - "('the critical current in Amp is', 134.34)\n" - ] - } - ], - "prompt_number": 19 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 5.3, Page number 149\n" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "lamda_T=75 #in nm\n", - "T=3.5 \n", - "HgTc=4.12 #in K\n", - "\n", - "#Calculation\n", - "lamda_o=lamda_T*math.sqrt(1-((T/HgTc)**4));\n", - "lamda_o=math.ceil(lamda_o*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"the pentration depth at 0k is\",lamda_o);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the pentration depth at 0k is', 51.92)\n" - ] - } - ], - "prompt_number": 29 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 5.4, Page number 150" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "lamda_T1=396 #pentration depth in armstrong\n", - "lamda_T2=1730 #pentration depth in armstrong\n", - "T1=3 #temperature in K\n", - "T2=7.1 #temperature in K\n", - "\n", - "#Calculation\n", - "#lamda_T2**2=lamda_0**2*(((Tc**4-T2**4)/Tc**4)**-1)\n", - "#lamda_T1**2=lamda_0**2*(((Tc**4-T1**4)/Tc**4)**-1)\n", - "#dividing lamda_T2**2 by lamda_T1**2 = (Tc**4-T1**4)/(Tc**4-T2**4)\n", - "#let A=lamda_T2**2 and B=lamda_T1**2\n", - "A=lamda_T2**2\n", - "B=lamda_T1**2\n", - "C=A/B\n", - "C=math.ceil(C*10**4)/10**4; #rounding off to 4 decimals\n", - "X=T1**4\n", - "Y=T2**4\n", - "Y=math.ceil(Y*10**2)/10**2; #rounding off to 2 decimals\n", - "#C*((TC**4)-Y)=(Tc**4)-X\n", - "#C*(Tc**4)-(Tc**4)=C*Y-X\n", - "#(Tc**4)*(C-1)=(C*Y)-X\n", - "#let Tc**4 be D\n", - "#D*(C-1)=(C*Y)-X\n", - "D=((C*Y)-X)/(C-1)\n", - "D=math.ceil(D*10)/10; #rounding off to 1 decimals\n", - "Tc=D**(1/4)\n", - "Tc=math.ceil(Tc*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"the pentration depth at 0k is\",Tc);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the pentration depth at 0k is', 7.1932)\n" - ] - } - ], - "prompt_number": 44 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 5.5, Page number 150" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "Tc=7.2 #in K\n", - "Ho=6.5*10**3 #in amp per m\n", - "T=5 #in K\n", - "\n", - "#Calculation\n", - "Hc=Ho*(1-((T/Tc)**2))\n", - "Hc=math.ceil(Hc*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"the critical magnetic feild at 5K in amp per m is\",Hc)\n", - "\n", - "# answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the critical magnetic feild at 5K in amp per m is', 3365.36)\n" - ] - } - ], - "prompt_number": 33 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 5.6, Page number 151" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "Tc=3.5 #in K\n", - "Ho=3.2*10**3 #in amp per m\n", - "T=2.5 #in K\n", - "\n", - "#Calculation\n", - "Hc=Ho*(1-((T/Tc)**2))\n", - "Hc=math.ceil(Hc*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"the critical magnetic feild at 5K in amp per m is\",Hc)\n", - "\n", - "#answer in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the critical magnetic feild at 5K in amp per m is', 1567.35)\n" - ] - } - ], - "prompt_number": 45 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 5.7, Page number 151" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "Hc=5*10**3 #in amp per m\n", - "Ho=2*10**4 #in amp per m\n", - "T=6 #in K\n", - "\n", - "#Calculation\n", - "Tc=T/math.sqrt(1-(Hc/Ho))\n", - "Tc=math.ceil(Tc*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"the critical magnetic feild at 5K in amp per m is\",Tc)\n", - "\n", - "#answer in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the critical magnetic feild at 5K in amp per m is', 6.93)\n" - ] - } - ], - "prompt_number": 66 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 5.8, Page number 152" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "Hc=2*10**3 #in amp per m\n", - "R=0.02 #in m\n", - "\n", - "#Calculation\n", - "Ic=2*math.pi*R*Hc\n", - "Ic=math.ceil(Ic*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"the critical current is\",Ic)\n", - "\n", - "#answer in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the critical magnetic feild at 5K in amp per m is', 251.33)\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 5.9, Page number 152" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "M1=199.5 #in a.m.u\n", - "T1=5 #in K\n", - "T2=5.1 #in K\n", - "\n", - "#Calculation\n", - "M2=((T1/T2)**2)*M1\n", - "M2=math.ceil(M2*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"the isotopic mass of M2 is\",M2)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the isotopic mass of M2 is', 191.754)\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 5.10, Page number 152" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "D=3*10**-3 #in meters\n", - "Tc=8 #in K \n", - "T=5 #in K \n", - "Ho=5*10**4\n", - "\n", - "#Calculation\n", - "R=D/2\n", - "Hc=Ho*(1-((T/Tc)**2))\n", - "Ic=2*math.pi*R*Hc\n", - "Ic=math.ceil(Ic*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"critical magnetic feild in amp per m is\",round(Hc));\n", - "print(\"critical current in amp is\",Ic);\n", - "\n", - "#answer in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('critical magnetic feild in amp per m is', 30469.0)\n", - "('critical current in amp is', 287.162)\n" - ] - } - ], - "prompt_number": 22 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 5.11, Page number 153" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "M1=199.5 \n", - "M2=203.4 \n", - "Tc1=4.185 #in K\n", - "\n", - "#Calculation\n", - "Tc2=Tc1*math.sqrt(M1/M2)\n", - "Tc2=math.ceil(Tc2*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"the critical temperature is\",Tc2)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the critical temperature is', 4.145)\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 5.12, Page number 154" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "V=8.5*10**-6 #in volts\n", - "e=1.6*10**-19 #in C\n", - "h=6.626*10**-24\n", - "\n", - "#Calculation\n", - "new=2*e*V/h\n", - "new=math.ceil(new*10**5)/10**5; #rounding off to 5 decimals\n", - "\n", - "#Result\n", - "print(\"EM wave generated frequency in Hz is\",new)\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('EM wave generated frequency in Hz is', 0.41051)\n" - ] - } - ], - "prompt_number": 24 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 5.13, Page number 154" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#Variable declaration\n", - "p1=1 #in mm\n", - "p2=6 #in mm\n", - "Tc1=5 #in K\n", - "\n", - "#Calculation\n", - "Tc2=Tc1*(p2/p1);\n", - "\n", - "#Result\n", - "print(\"the critical temperature in K is\",round(Tc2))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the critical temperature in K is', 30.0)\n" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 5.14, Page number 154\n" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#Variable declaration\n", - "Tc=8.7 #in K\n", - "Hc=6*10**5 #in A per m\n", - "Ho=3*10**6 #in A per m\n", - "\n", - "#Calculation\n", - "T=Tc*(math.sqrt(1-(Hc/Ho)))\n", - "\n", - "#Result\n", - "print(\" maximum critical temperature in K is\",T)\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "(' maximum critical temperature in K is', 7.781516561699267)\n" - ] - } - ], - "prompt_number": 15 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/chapter6_2.ipynb b/Engineering_Physics/chapter6_2.ipynb deleted file mode 100755 index 4c7f2be8..00000000 --- a/Engineering_Physics/chapter6_2.ipynb +++ /dev/null @@ -1,238 +0,0 @@ -{ - "metadata": { - "name": "chapter6 (1)" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "Dielectric Properties" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.1, Page number 187" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "# To calculate the energy stored in the condenser and polarizing the dielectric\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nC=2; #capacitance in micro farad\nC=C*10**-6; #capacitance in farad\nV=1000; #voltage in Volts\nepsilon_r=100; \n\n#Calculation\nW=(C*(V**2))/2;\nC0=C/epsilon_r;\nW0=(C0*(V**2))/2;\nW_0=1-W0;\n\n#Result\nprint(\"energy stored in the condenser in Joule is\",W);\nprint(\"energy stored in the dielectric in Joule is\",W_0);", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "('energy stored in the condenser in Joule is', 1.0)\n('energy stored in the dielectric in Joule is', 0.99)\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.2, Page number 188" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "# To calculate the ratio between electronic and ionic polarizability\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nepsilon_r=4.94;\nN=2.69; #let n**2 be N\n\n#Calculaion\n#(epsilon_r-1)/(epsilon_r+2) = (N*alpha)/(3*epsilon_0)\n#alpha = alpha_e+alpha_i\n#therefore (epsilon_r-1)/(epsilon_r+2) = (N*(alpha_e+alpha_i))/(3*epsilon_0)\n#let (N*(alpha_e+alpha_i))/(3*epsilon_0) be X\nX=(epsilon_r-1)/(epsilon_r+2);\n#Ez=n^2\n#therefore (N-1)/(N+2) = (N*alpha_e)/(3*epsilon_0)\n#let (N*alpha_e)/(3*epsilon_0) be Y\nY=(N-1)/(N+2);\n#dividing X/Y = (N*(alpha_e+alpha_i))/(N*alpha_e)\n#therefore X/Y = 1+(alpha_i/alpha_e)\n#let alpha_i/alpha_e be A\nR=(X/Y)-1;\nR=math.ceil(R*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint(\"ratio between electronic and ionic polarizability is\",R);\n\n#answer given in the book is wrong in the second part", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "('ratio between electronic and ionic polarizability is', 0.5756)\n" - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.3, Page number 188" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "# To calculate the dielectric constant of the material\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nN=3*10**28; #atoms per m^3\nalpha_e=10**-40; #farad m^2\nepsilon_0=8.854*10**-12; #f/m\n\n#Calculation\nepsilon_r=1+(N*alpha_e/epsilon_0);\nepsilon_r=math.ceil(epsilon_r*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint(\"dielectric constant of the material is\",epsilon_r);", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "('dielectric constant of the material is', 1.339)\n" - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.4, Page number 189" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "# To calculate the electronic polarizability of He atoms\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nepsilon_0=8.854*10**-12; #f/m\nepsilon_r=1.0000684;\n\n#Calculation\nN=2.7*10**25; #atoms per m^3\nalpha_e=(epsilon_0*(epsilon_r-1))/N;\n\n#Result\nprint(\"electronic polarizability of He atoms in Fm^2 is\",alpha_e);", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "('electronic polarizability of He atoms in Fm^2 is', 2.2430133333322991e-41)\n" - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.5, Page number 189" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "# To calculate the capacitance and charge\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nepsilon_0=8.854*10**-12; #f/m\nA=100; #area in cm^2\nA=A*10**-4; #area in m^2\nV=100; #potential in V\nd=1; #plate seperation in cm\n\n#Calculation\nd=d*10**-2; #plate seperation in m\nC=(epsilon_0*A)/d;\nQ=C*V;\n\n#Result\nprint(\"charge on the plates in F is\",C);\nprint(\"charge on the capacitor in coulomb is\",Q);", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "('charge on the plates in F is', 8.854e-12)\n('charge on the capacitor in coulomb is', 8.854e-10)\n" - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.6, Page number 190" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "# To calculate the resultant voltage across the capacitors\n\n#import module\nimport math\nfrom __future__ import division\n\n\n#Variable decleration\nQ=2*10**-10; #charge in coulomb\nd=4; #plate seperation in mm\nd=d*10**-3; #plate seperation in m\nepsilon_r=3.5;\nepsilon_0=8.85*10**-12; #f/m\nA=650; #area in mm^2\n\n#Calculation\nA=A*10**-6; #area in m^2\nV=(Q*d)/(epsilon_0*epsilon_r*A);\nV=math.ceil(V*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint(\"voltage across the capacitor in Volts is\",V);", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "('voltage across the capacitor in Volts is', 39.735)\n" - } - ], - "prompt_number": 9 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.7, Page number 190" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "# To calculate the dielectric displacement\n\n#import module\nimport math\nfrom __future__ import division\n\n\n#Variable decleration\nV=10; #potential in volts\nd=2*10**-3; #plate seperation in m\nepsilon_r=6; #dielectric constant\nepsilon_0=8.85*10**-12; #f/m\n\n#Calculation\nE=V/d;\nD=epsilon_0*epsilon_r*E;\n\n#Result\nprint(\"dielectric displacement in cm^-2 is\",D);\n\n#answer given in the book is wrong in the 7th decimal point", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "('dielectric displacement in cm^-2 is', 2.6549999999999994e-07)\n" - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.8, Page number 191" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "# To calculate the polarizability and relative permittivity of He\n\n#import module\nimport math\nfrom __future__ import division\n\n\n#Variable decleration\nR=0.55; #radius of He atom in angstrom\nR=R*10**-10; #radius of He atom in m\nepsilon_0=8.84*10**-12; #f/m\nN=2.7*10**25;\n\n#Calculation\nalpha_e=4*math.pi*epsilon_0*R**3;\nepsilon_r=(N*alpha_e/epsilon_0)+1;\nepsilon_r=math.ceil(epsilon_r*10**6)/10**6; #rounding off to 6 decimals\n\n#Result\nprint(\"polarizability in farad m^2 is\",alpha_e);\nprint(\"relative permitivity is\",epsilon_r);", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "('polarizability in farad m^2 is', 1.848205241292183e-41)\n('relative permitivity is', 1.000057)\n" - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.9, Page number 191" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "# To calculate the field strength and total dipole moment\n\n#import module\nimport math\nfrom __future__ import division\n\n\n#Variable decleration\nV=15; #potential difference in volts\nC=6; #capacity in micro farad\nC=C*10**-6; #capacity in farad\nepsilon_0=8.84*10**-12; #f/m\nepsilon_r=8;\nA=360; #surface area in cm^2\n\n#Calculation\nA=A*10**-4; #surface area in m^2\nE=(V*C)/(epsilon_0*epsilon_r*A);\nd=epsilon_0*(epsilon_r-1)*V*A;\n\n#Result\nprint(\"field strength in V/m is\",E);\nprint(\"total dipole moment in cm is\",d);\n\n#answer for field strength E given in the book is wrong ", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "('field strength in V/m is', 35350678.73303167)\n('total dipole moment in cm is', 3.34152e-11)\n" - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example number 6.10, Page number 191" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "# To calculate the complex polarisability of material\n\n#import module\nimport math\nfrom __future__ import division\n\n#Variable decleration\nepsilonr=4.36; #dielectric constant\nt=2.8*10**-2; #loss tangent(t)\nN=4*10**28; #number of electrons\nepsilon0=8.84*10**-12; \n\n#Calculation\nepsilon_r = epsilonr*t;\nepsilonstar = (complex(epsilonr,-epsilon_r));\nalphastar = (epsilonstar-1)/(epsilonstar+2);\nalpha_star = 3*epsilon0*alphastar/N; #complex polarizability(Fm**2)\n\n#Result\nprint(\"the complex polarizability in F-m^2 is\"'alphastar',alpha_star);\n#disp('j',I,R);\n#by taking 10^-40 common we get alphastar = (3.5-j0.06)*10^-40 F-m^2", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "('the complex polarizability in F-m^2 isalphastar', (3.5037933503257222e-40-6.000743833211258e-42j))\n" - } - ], - "prompt_number": 11 - }, - { - "cell_type": "code", - "collapsed": false, - "input": "", - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/chapter7_2.ipynb b/Engineering_Physics/chapter7_2.ipynb deleted file mode 100755 index d4161b18..00000000 --- a/Engineering_Physics/chapter7_2.ipynb +++ /dev/null @@ -1,1514 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:b26f0e8151a54ecdc596868a34547e181ac6dce2c5aea4a02c15b80e1401fd4f" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Semiconductors" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.1, Page number 251" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "T1=300; #temp in K\n", - "T2=310; #temp in K\n", - "ni1=2.5*10**19; #per cubic metre\n", - "EgeV1=0.72; #value of Eg in eV\n", - "EgeV2=1.12; #value of Eg in eV\n", - "\n", - "#Calculation\n", - "Eg1=EgeV1*1.6*10**-19; #Eg in J\n", - "Eg2=EgeV2*1.6*10**-19; #Eg in J\n", - "KB=1.38*10**-23; #boltzmann constant in J/k\n", - "#density of electron hole pair is ni = A*(T**(3/2))*exp(-Eg/(2*KB*T))\n", - "#let (T**(3/2))*exp(-Eg/(2*KB*T)) be X\n", - "X1=(T1**(3/2))*math.exp(-Eg1/(2*KB*T1));\n", - "X2=(T2**(3/2))*math.exp(-Eg2/(2*KB*T2));\n", - "#therefore ni1=A*X1 and ni2=A*X2. dividing ni2/ni1 we get X2/X1\n", - "ni2=ni1*(X2/X1);\n", - "\n", - "#Result\n", - "print(\"the number of electron hole pairs per cubic metre is\",ni2);\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the number of electron hole pairs per cubic metre is', 2.3207901206362184e+16)\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.2, Page number 251" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "RH=3.66*10**-4; #hall coefficient in m^3/coulomb\n", - "sigma=112; #conductivity in ohm-1 m-1\n", - "e=1.6*10**-19;\n", - "\n", - "#Calculation\n", - "ne=1/(RH*e);\n", - "#sigma = e*ne*(mew_e+mew_h)\n", - "#assuming mew_h = 0\n", - "mew_e=sigma/(e*ne);\n", - "\n", - "#Result\n", - "print(\"the charge carrier density per m^3 is\",ne);\n", - "print(\"electron mobility in m^2/Vs is\",mew_e);\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the charge carrier density per m^3 is', 1.7076502732240434e+22)\n", - "('electron mobility in m^2/Vs is', 0.040992)\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.3, Page number 252" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "ni=1.5*10**16; #intrinsic concentration per m^3\n", - "e=1.6*10**-19;\n", - "mew_e=0.13; #mobility of electrons in m^2/Vs\n", - "mew_h=0.05; #mobility of holes in m^2/Vs\n", - "ND=5*10**20; #conductivity in atoms/m^3\n", - "\n", - "#Calculation\n", - "sigma1=ni*e*(mew_e+mew_h);\n", - "nd=(ni**2)/ND;\n", - "sigma2=ND*e*mew_e;\n", - "NA=5*10**20;\n", - "na=(ni**2)/NA;\n", - "sigma3=NA*e*mew_h;\n", - "sigma1=math.ceil(sigma1*10**7)/10**7; #rounding off to 7 decimals\n", - "sigma2=math.ceil(sigma2*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"intrinsic conductivity of Si in ohm-1 m-1 is\",sigma1);\n", - "print(\"conductivity of Si during donor impurity in ohm-1 m-1 is\",sigma2);\n", - "print(\"conductivity of Si during acceptor impurity in ohm-1 m-1 is\",round(sigma3));" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('intrinsic conductivity of Si in ohm-1 m-1 is', 0.000432)\n", - "('conductivity of Si during donor impurity in ohm-1 m-1 is', 10.41)\n", - "('conductivity of Si during acceptor impurity in ohm-1 m-1 is', 4.0)\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.4, Page number 253" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "sigma1=2; #conductivity in ohm-1 m-1\n", - "EgeV=0.72; #band gap in eV\n", - "KB=1.38*10**-23; #boltzmann constant\n", - "T1=20; #temp in C\n", - "T2=40; #temp in C\n", - "\n", - "#Calculation\n", - "Eg=EgeV*1.6*10**-19; #in J\n", - "T1=T1+273; #temp in K\n", - "T2=T2+273; #temp in K\n", - "#sigma2/sigma1 = exp((-Eg/(2*KB))*((1/T2)-(1/T1)))\n", - "#by taking log on both sides we get 2.303*log10(sigma2/sigma1) = (Eg/(2*KB))*((1/T1)-(1/T2))\n", - "#let (Eg/(2*KB))*((1/T1)-(1/T2)) be X\n", - "X=(Eg/(2*KB))*((1/T1)-(1/T2));\n", - "#let log10(sigma2/sigma1) be Y\n", - "Y=X/2.303;\n", - "#log10(sigma2/sigma1) = log10(sigma2)-log10(sigma1)\n", - "#let log10(sigma2) be A\n", - "A=Y+math.log10(sigma1);\n", - "sigma2=10**A;\n", - "sigma2=math.ceil(sigma2*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"the conductivity in mho m-1 is\",sigma2);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the conductivity in mho m-1 is', 4.97)\n" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.5, Page number 253" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "mew_n=1300*10**-4; #in m^2/Vs\n", - "mew_p=500*10**-4; #in m^2/Vs\n", - "sigma=3*10**4; #conductivity in ohm-1 m-1\n", - "e=1.6*10**-19;\n", - "\n", - "#Calculation\n", - "N=sigma/(e*mew_n);\n", - "ni=1.5*10**16; #per m^3\n", - "p=(ni**2)/N;\n", - "P=sigma/(e*mew_p);\n", - "n=(ni**2)/P;\n", - "N=math.ceil(N*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"concentration of electrons in n-type per cubic metre are\",N);\n", - "print(\"concentration of holes in n-type per cubic metre are\",round(p));\n", - "print(\"concentration of electrons in p-type per cubic metre are\",round(n));\n", - "print(\"concentration of holes in p-type per cubic metre are\",P);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('concentration of electrons in n-type per cubic metre are', 1.4423076923076921e+24)\n", - "('concentration of holes in n-type per cubic metre are', 156000000.0)\n", - "('concentration of electrons in p-type per cubic metre are', 60000000.0)\n", - "('concentration of holes in p-type per cubic metre are', 3.7499999999999995e+24)\n" - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.6, Page number 254" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "ni=2.37*10**19; #intrinsic carrier density per m^3\n", - "mew_e=0.38; #in m**2/Vs\n", - "mew_n=0.18; #in m**2/Vs\n", - "\n", - "#Calculation\n", - "e=1.6*10**-19;\n", - "sigmai=ni*e*(mew_e+mew_n);\n", - "rho=1/sigmai;\n", - "rho=math.ceil(rho*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"resistivity in ohm m is\",rho);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('resistivity in ohm m is', 0.471)\n" - ] - } - ], - "prompt_number": 19 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.7, Page number 254" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "Eg=1.12; #band gap in eV\n", - "K=1.38*10**-23;\n", - "T=300; #temp in K\n", - "\n", - "#Calculation\n", - "#EF = (Eg/2)+(3*K*T/4)*log(mh/me)\n", - "#given me=0.12m0 and mh=0.28m0. therefore mh/me = 0.28/0.12 \n", - "#let mh/me be X. therefore X=0.28/0.12 \n", - "X=0.28/0.12;\n", - "EF=(Eg/2)+((3*K*T/4)*math.log(X));\n", - "\n", - "#Result\n", - "print(\"the position of fermi level in eV is\",EF);\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the position of fermi level in eV is', 0.56)\n" - ] - } - ], - "prompt_number": 21 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.8, Page number 254" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "KB=1.38*10**-23;\n", - "T=300; #temp in K\n", - "h=6.626*10**-34;\n", - "m0=9.11*10**-31;\n", - "mh=m0;\n", - "me=m0;\n", - "EgeV=0.7; #energy gap in eV\n", - "\n", - "#Calculation\n", - "Eg=EgeV*1.6*10**-19; #in J\n", - "A=((2*math.pi*KB/(h**2))**(3/2))*(me*mh)**(3/4);\n", - "B=T**(3/2);\n", - "C=math.exp(-Eg/(2*KB*T));\n", - "ni=2*A*B*C;\n", - "\n", - "#Result\n", - "print(\"concentration of intrinsic charge carriers per cubic metre is\",ni);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('concentration of intrinsic charge carriers per cubic metre is', 3.3481803992458756e+19)\n" - ] - } - ], - "prompt_number": 22 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.9, Page number 255" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "ni=2.4*10**19;\n", - "mew_e=0.39;\n", - "mew_h=0.19;\n", - "e=1.6*10**-19;\n", - "\n", - "#Result\n", - "sigmai=ni*e*(mew_e+mew_h);\n", - "rhoi=1/sigmai;\n", - "rhoi=math.ceil(rhoi*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"resistivity in ohm m is\",rhoi);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('resistivity in ohm m is', 0.45)\n" - ] - } - ], - "prompt_number": 24 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.10, Page number 255" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "l=1; #length in cm\n", - "l=l*10**-2; #length in m\n", - "e=1.6*10**-19;\n", - "w=1; #width in mm\n", - "t=1; #thickness in mm\n", - "\n", - "#Calculation\n", - "w=w*10**-3; #width in m\n", - "t=t*10**-3; #thickness in m\n", - "A=w*t;\n", - "ni=2.5*10**19;\n", - "mew_e=0.39;\n", - "mew_p=0.19;\n", - "sigma=ni*e*(mew_p+mew_e);\n", - "R=l/(sigma*A);\n", - "\n", - "#Result\n", - "print(\"resistance of intrinsic Ge rod in ohm is\",R);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('resistance of intrinsic Ge rod in ohm is', 4310.3448275862065)\n" - ] - } - ], - "prompt_number": 25 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.11, Page number 255" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "Eg=1.1; #energy gap in eV\n", - "m=9.109*10**-31;\n", - "k=1.38*10**-23;\n", - "T=300;\n", - "e=1.6*10**-19;\n", - "h=6.626*10**-34;\n", - "mew_e=0.48; #electron mobility\n", - "mew_h=0.013; #hole mobility\n", - "\n", - "#Calculation\n", - "C=2*(2*math.pi*m*k/(h**2))**(3/2);\n", - "X=2*k*T/e;\n", - "Y=-Eg/X;\n", - "A=math.exp(Y);\n", - "ni=C*(T**(3/2))*A;\n", - "sigma=ni*e*(mew_e+mew_h);\n", - "sigma=math.ceil(sigma*10**6)/10**6 #rounding off to 6 decimals\n", - "\n", - "#Result\n", - "print(\"conductivity in ohm-1 m-1 is\",sigma);\n", - "\n", - "# answer given in the book is wrong, Page number 255" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('conductivity in ohm-1 m-1 is', 0.001162)\n" - ] - } - ], - "prompt_number": 28 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.12, Page number 256" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "m=9.109*10**-31;\n", - "k=1.38*10**-23;\n", - "T=300;\n", - "e=1.6*10**-19;\n", - "h=6.626*10**-34;\n", - "Eg=0.7;\n", - "mew_e=0.4; #electron mobility\n", - "mew_h=0.2; #hole mobility\n", - "\n", - "#Calculation\n", - "C=2*(2*math.pi*m*k/((h**2)))**(3/2);\n", - "X=2*k*T/e;\n", - "ni=C*(T**(3/2))*math.exp(-Eg/X);\n", - "sigma=ni*e*(mew_e+mew_h);\n", - "sigma=math.ceil(sigma*10**3)/10**3 #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"conductivity in ohm-1 m-1\",sigma);\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('conductivity in ohm-1 m-1', 3.214)\n" - ] - } - ], - "prompt_number": 30 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.13, Page number 256" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "k=8.616*10**-5;\n", - "T1=20; #temp in C\n", - "T1=T1+273; #temp in K\n", - "T2=32; #temp in C\n", - "rho2=4.5; #resistivity in ohm m\n", - "rho1=2; #resistivity in ohm m\n", - "\n", - "#Calculation\n", - "T2=T2+273; #temp in K\n", - "dy=math.log10(rho2)-math.log10(rho1);\n", - "dx=(1/T1)-(1/T2);\n", - "Eg=2*k*dy/dx;\n", - "Eg=math.ceil(Eg*10**3)/10**3 #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"energy band gap in eV is\",Eg);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('energy band gap in eV is', 0.452)\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.13, Page number 256" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "k=8.616*10**-5;\n", - "T1=20; #temp in C\n", - "T2=32; ##temp in C\n", - "rho2=4.5; #resistivity in ohm m\n", - "rho1=2; #resistivity in ohm m\n", - "\n", - "#Calculation\n", - "T1=T1+273; #temp in K\n", - "T2=T2+273; #temp in K\n", - "dy=math.log10(rho2)-math.log10(rho1);\n", - "dx=(1/T1)-(1/T2);\n", - "Eg=2*k*dy/dx;\n", - "Eg=math.ceil(Eg*10**3)/10**3 #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"energy band gap in eV is\",Eg);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('energy band gap in eV is', 0.452)\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.14, Page number 257" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "EgeV=1; #energy in eV\n", - "k=1.38*10**-23;\n", - "Eg=EgeV*1.602*10**-19; #in J\n", - "#EF can be taken as (Ev+0.5)eV\n", - "#therefore (Ev+0.5)eV = (Ec+Ev)/2--------(1)\n", - "#let fermi level shift by 10% then (Ev+0.6)eV = ((Ec+Ev)/2)+((3*k*T/4)*log(4))-----(2)\n", - "#subtracting (1) from (2)\n", - "#0.1 eV = (3*k*T/4)*math.log(4)\n", - "E=0.1; #energy in eV\n", - "E=E*1.602*10**-19; #energy in J\n", - "T=(4*E)/(3*k*math.log(4));\n", - "\n", - "#Result\n", - "print(\"temperature in K is\",T);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('temperature in K is', 1116.520509905372)\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.15, Page number 257" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "ni=1.5*10**16;\n", - "e=1.6*10**-19;\n", - "mew_e=0.13;\n", - "mew_h=0.05;\n", - "\n", - "#Calculation\n", - "sigma=ni*e*(mew_e+mew_h);\n", - "M=28.1; #atomic weight of Si\n", - "d=2.33*10**3; #density in kg/m^3\n", - "v=M/d;\n", - "N=6.02*10**26;\n", - "N1=N/v;\n", - "#1 donor type impurity is added to 1 impurity atom\n", - "ND=N1/(10**8);\n", - "p=(ni**2)/ND;\n", - "sigma_exd=ND*e*mew_e;\n", - "#1 acceptor type impurity is added to 1 impurity atom\n", - "Na=N1/(10**8);\n", - "n=(ni**2)/Na;\n", - "sigma_exa=Na*e*mew_h;\n", - "sigma=math.ceil(sigma*10**7)/10**7 #rounding off to 7 decimals\n", - "sigma_exd=math.ceil(sigma_exd*10**3)/10**3 #rounding off to 3 decimals\n", - "sigma_exa=math.ceil(sigma_exa*10**3)/10**3 #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"conductivity in ohm-1 m-1 is\",sigma);\n", - "print(\"number of Si atoms per m^3 is\",N1);\n", - "print(\"conductivity for donor type impurity in ohm-1 m-1 is\",sigma_exd);\n", - "print(\"conductivity for acceptor type impurity in ohm-1 m-1 is\",sigma_exa);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('conductivity in ohm-1 m-1 is', 0.000432)\n", - "('number of Si atoms per m^3 is', 4.991672597864769e+28)\n", - "('conductivity for donor type impurity in ohm-1 m-1 is', 10.383)\n", - "('conductivity for acceptor type impurity in ohm-1 m-1 is', 3.994)\n" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.16, Page number 258" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "T=300; #temperature in K\n", - "KB=1.38*10**-23;\n", - "e=1.6*10**-19;\n", - "mew_e=0.19; #mobility of electrons in m^2/Vs\n", - "\n", - "#Calculation\n", - "Dn=mew_e*KB*T/e;\n", - "Dn=math.ceil(Dn*10**6)/10**6 #rounding off to 6 decimals\n", - "\n", - "#Result\n", - "print(\"diffusion coefficient of electrons in m^2/s is\",Dn);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('diffusion coefficient of electrons in m^2/s is', 0.004917)\n" - ] - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.17, Page number 259" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "\n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "RH=3.66*10**-4; #hall coefficient in m^3/coulomb\n", - "I=10**-2; #current in amp\n", - "B=0.5; #magnetic field in wb/m^2\n", - "t=1; #thickness in mm\n", - "\n", - "#Calculation\n", - "t=t*10**-3; #thickness in m\n", - "VH=(RH*I*B)/t;\n", - "VH=VH*10**3; #converting from Volts to mV\n", - "\n", - "#Result\n", - "print(\"Hall voltage in mV is\",VH);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('Hall voltage in mV is', 1.83)\n" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.18, Page number 259" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "RH=-7.35*10**-5; #hall coefficient\n", - "e=1.6*10**-19;\n", - "sigma=200;\n", - "\n", - "#Calculation\n", - "n=(-1/(RH*e));\n", - "mew=sigma/(n*e);\n", - "\n", - "#Result\n", - "print(\"density of charge carriers in m^3 is\",n);\n", - "print(\"mobility of charge carriers in m^2/Vs is\",mew);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('density of charge carriers in m^3 is', 8.503401360544217e+22)\n", - "('mobility of charge carriers in m^2/Vs is', 0.0147)\n" - ] - } - ], - "prompt_number": 15 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.19, Page number 259" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "I=50; #current in amp\n", - "B=1.5; #magnetic field in T\n", - "n=8.4*10**28; #free electron concentration in electron/m^3\n", - "t=0.5; #thickness in cm\n", - "e=1.6*10**-19;\n", - "\n", - "#Calculation\n", - "t=t*10**-2; #thickness in m\n", - "VH=(I*B)/(n*e*t);\n", - "VH=VH*10**6; #converting VH from V to micro V\n", - "VH=math.ceil(VH*10**4)/10**4 #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"magnitude of Hall voltage in microVolt is\",VH);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('magnitude of Hall voltage in microVolt is', 1.1161)\n" - ] - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.20, Page number 260" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "\n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "RH=3.66*10**-4;\n", - "e=1.6*10**-19;\n", - "rho_n=8.93*10**-3;\n", - "\n", - "#Calculation\n", - "n=1/(RH*e);\n", - "mew_e=RH/rho_n;\n", - "mew_e=math.ceil(mew_e*10**5)/10**5 #rounding off to 5 decimals\n", - "\n", - "#Result\n", - "print(\"n per m^3 is\",n);\n", - "print(\"mew_e in m^2/V is\",mew_e);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('n per m^3 is', 1.7076502732240434e+22)\n", - "('mew_e in m^2/V is', 0.04099)\n" - ] - } - ], - "prompt_number": 19 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.21, Page number 260" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "mew_e=0.13; #electron mobility in m^2/Vs\n", - "mew_h=0.048; #hole mobility in m^2/Vs\n", - "ni=1.5*10**16;\n", - "e=1.6*10**-19;\n", - "T=300; #temp in K\n", - "ND=10**23; #density per m^3\n", - "\n", - "#Calculation\n", - "sigmai=ni*e*(mew_e+mew_h);\n", - "sigma=ND*mew_e*e;\n", - "p=(ni**2)/ND;\n", - "sigmai=math.ceil(sigmai*10**5)/10**5 #rounding off to 5 decimals\n", - "\n", - "#Result\n", - "print(\"conductivity of intrinsic Si in s is\",sigmai);\n", - "print(\"conductivity in s is\",sigma);\n", - "print(\"equilibrium hole concentration per m^3 is\",round(p));\n", - "\n", - "#answers for sigmai and sigma given in the book are wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('conductivity of intrinsic Si in s is', 0.00043)\n", - "('conductivity in s is', 2080.0)\n", - "('equilibrium hole concentration per m^3 is', 2250000000.0)\n" - ] - } - ], - "prompt_number": 22 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.22, Page number 261" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "T=300; #temp in K\n", - "kB=1.38*10**-23;\n", - "mew_e=0.36; #mobility of electrons in m^2/Vs\n", - "e=1.6*10**-19;\n", - "mew_h=0.7; #mobility of electrons in m^2/Vs\n", - "sigma=2.12; #conductivity in ohm-1 m-1\n", - "C=4.83*10**21; #proportional constant\n", - "\n", - "#Calculation\n", - "ni=sigma/(e*(mew_e+mew_h));\n", - "#exp(-Eg/(2*kB*T)) = (C*(T^(3/2)))/ni\n", - "#let X be (C*(T^(3/2)))/ni\n", - "X=(C*(T**(3/2)))/ni;\n", - "#exp(-Eg/(2*kB*T)) = X \n", - "#applyinf log on both sides\n", - "#Eg/(2*kB*T) = log(X)\n", - "Eg=2*kB*T*math.log(X);\n", - "\n", - "#Result\n", - "print(\"forbidden energy gap in eV is\",Eg);\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('forbidden energy gap in eV is', 1.2016388762259164e-19)\n" - ] - } - ], - "prompt_number": 23 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.23, Page number 261" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "Eg=0.4; #energy gap in eV\n", - "Eg=Eg*1.6*10**-19; #Eg in J\n", - "KB=1.38*10**-23;\n", - "T1=0; #temp 1 in C\n", - "T2=50; #temp 2 in C\n", - "T3=100; #temp 3 in C\n", - "\n", - "#Calculation\n", - "T1k=T1+273; #temp 1 in K\n", - "T2k=T2+273; #temp 2 in K\n", - "T3k=T3+273; #temp 3 in K\n", - "#F(E) = 1/(1+(exp((E-Ep)/(KB*T))))\n", - "#but E-Ep = (1/2)*Eg\n", - "#therefore F(E) = 1/(1+(exp(Eg/(2*KB*T))))\n", - "FE1=1/(1+(math.exp(Eg/(2*KB*T1k))));\n", - "FE2=1/(1+(math.exp(Eg/(2*KB*T2k))));\n", - "FE3=1/(1+(math.exp(Eg/(2*KB*T3k))));\n", - "FE1=math.ceil(FE1*10**6)/10**6 #rounding off to 6 decimals\n", - "FE2=math.ceil(FE2*10**6)/10**6 #rounding off to 6 decimals\n", - "FE3=math.ceil(FE3*10**6)/10**6 #rounding off to 6 decimals\n", - "\n", - "#Result\n", - "print(\"probability of occupation at 0 C in eV is\",FE1);\n", - "print(\"probability of occupation at 50 C in eV is\",FE2);\n", - "print(\"probability of occupation at 100 C in eV is\",FE3);\n", - "\n", - "#answers given in the book are wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('probability of occupation at 0 C in eV is', 0.000205)\n", - "('probability of occupation at 50 C in eV is', 0.000762)\n", - "('probability of occupation at 100 C in eV is', 0.001992)\n" - ] - } - ], - "prompt_number": 26 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.24, Page number 262" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "Eg=1.2; #energy in eV\n", - "Eg=Eg*1.6*10**-19; #in J\n", - "KB=1.38*10**-23;\n", - "T1=600; #temp in K\n", - "T2=300; #temp in K\n", - "\n", - "#Calculation\n", - "#sigma is proportional to exp(-Eg/(2*KB*T))\n", - "#let sigma1/sigma2 be R\n", - "R=math.exp((Eg/(2*KB))*((1/T2)-(1/T1)));\n", - "\n", - "#Result\n", - "print(\"the ratio between conductivity is\",round(R));\n", - "\n", - "#answer given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the ratio between conductivity is', 108467.0)\n" - ] - } - ], - "prompt_number": 28 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.25, Page number 263" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "ni=2.5*10**19; #density of charge carriers in m^3\n", - "r=1/(10**6); #ratio\n", - "e=1.6*10**-19;\n", - "mew_e=0.36; #mobility of electrons in m^2/Vs\n", - "mew_h=0.18; #mobility of holes in m^2/Vs\n", - "N=4.2*10**28; #number of Si atoms per m^3\n", - "\n", - "#Calculation\n", - "Ne=r*N;\n", - "Nh=(ni**2)/Ne;\n", - "sigma=(Ne*e*mew_e)+(Nh*e*mew_h);\n", - "rho=1/sigma;\n", - "rho=math.ceil(rho*10**8)/10**8 #rounding off to 8 decimals\n", - "\n", - "#Result\n", - "print(\"number of impurity atoms per m^3 is\",Ne);\n", - "print(\"the resistivity of doped Ge in ohm m is\",rho);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('number of impurity atoms per m^3 is', 4.2e+22)\n", - "('the resistivity of doped Ge in ohm m is', 0.00041336)\n" - ] - } - ], - "prompt_number": 30 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.26, Page number 264" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "n=5*10**17; #concentration in m^3\n", - "vd=350; #drift velocity in m/s\n", - "E=1000; #electric field in V/m\n", - "e=1.6*10**-19;\n", - "\n", - "#Calculation\n", - "mew=vd/E;\n", - "sigma=n*e*mew;\n", - "sigma=math.ceil(sigma*10**4)/10**4 #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"the conductivity of material in ohm m is\",sigma);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the conductivity of material in ohm m is', 0.028)\n" - ] - } - ], - "prompt_number": 32 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.27, Page number 264" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "sigma_e=2.2*10**-4; #conductivity\n", - "mew_e=125*10**-3; #mobility of electrons in m^2/Vs\n", - "e=1.602*10**-19;\n", - "\n", - "#Calculation\n", - "ne=sigma_e/(e*mew_e);\n", - "\n", - "#Result\n", - "print(\"concentration in m^3 is\",ne);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('concentration in m^3 is', 1.0986267166042448e+16)\n" - ] - } - ], - "prompt_number": 33 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.28, Page number 265" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "RH=3.66*10**-4; #hall coefficient in m^3/c\n", - "rho_i=8.93*10**-3; #resistivity in ohm m\n", - "e=1.6*10**-19;\n", - "\n", - "#Calculation\n", - "nh=1/(RH*e);\n", - "mew_h=1/(rho_i*nh*e);\n", - "mew_h=math.ceil(mew_h*10**4)/10**4 #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"density of charge carriers in m^3 is\",nh);\n", - "print(\"mobility of charge carriers is %f m^2/Vs\",mew_h);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('density of charge carriers in m^3 is', 1.7076502732240434e+22)\n", - "('mobility of charge carriers is %f m^2/Vs', 0.041)\n" - ] - } - ], - "prompt_number": 35 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 7.29, Page number 265" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import module\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "I=3; #current in mA\n", - "I=I*10**-3; #current in amp\n", - "e=1.6*10**-19;\n", - "RH=3.66*10**-4; #hall coefficient in m^3/C\n", - "B=1; #flux density in w/m^2\n", - "d=2; #dimension along Y in cm\n", - "z=1; #dimension along z in mm\n", - "\n", - "#Calculation\n", - "d=d*10**-2; #dimension along Y in m\n", - "z=z*10**-3; #dimension along z in m\n", - "A=d*z; #area in m^2\n", - "EH=RH*I*B/A;\n", - "VH=EH*d;\n", - "VH=VH*10**3; #converting from V to mV\n", - "n=1/(RH*e);\n", - "VH=math.ceil(VH*10**2)/10**2 #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"Hall voltage in mV is\",VH);\n", - "print(\"charge carrier concentration in m^3 is\",n);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('Hall voltage in mV is', 1.1)\n", - "('charge carrier concentration in m^3 is', 1.7076502732240434e+22)\n" - ] - } - ], - "prompt_number": 37 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/chapter8_2.ipynb b/Engineering_Physics/chapter8_2.ipynb deleted file mode 100755 index 2dc13b1f..00000000 --- a/Engineering_Physics/chapter8_2.ipynb +++ /dev/null @@ -1,253 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:064d55405a5d05f007b28f32cf39a9f99d10f303fc4084e2d14d99aaeb87858c" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Physics of Nano Materials" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.1, Page number 320" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "r=5; #radius in m\n", - "pi=3.14;\n", - "\n", - "#Calculation \n", - "SA=4*pi*r**2; #surface area of sphere in m^2\n", - "V=(4/3)*pi*r**3; #volume of sphere in m^3\n", - "R=SA/V; #ratio\n", - "#surface area to volume ratio can also be given by 3/radius\n", - "\n", - "#Result\n", - "print(\"surface area to volume ratio of sphere in m-1 is\",R);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('surface area to volume ratio of sphere in m-1 is', 0.6)\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.2, Page number 321" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "d=26; #distance in m\n", - "r=d/2; #radius in m\n", - "pi=3.14;\n", - "\n", - "#Calculation\n", - "SA=4*pi*r**2; #surface area of sphere in m^2\n", - "V=(4/3)*pi*r**3; #volume of sphere in m^3\n", - "R=SA/V; #ratio\n", - "R=math.ceil(R*10**3)/10**3; #rounding off to 3 decimals\n", - "#surface area to volume ratio can also be given by 3/radius\n", - "\n", - "#Result\n", - "print(\"surface area to volume ratio of sphere in m-1 is\",R);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('surface area to volume ratio of sphere in m-1 is', 0.231)\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.3, Page number 321" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "r=1; #radius in m\n", - "h=1; #height in m\n", - "pi=3.14\n", - "\n", - "#Calculation\n", - "V=(1/3)*pi*(r**2)*h;\n", - "V=math.ceil(V*10**2)/10**2; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"volume of cone in m^3 is\",V); " - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('volume of cone in m^3 is', 1.05)\n" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.4, Page number 321" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "r=3; # radius in m\n", - "h=4; # height in m\n", - "pi=3.14\n", - "\n", - "#Calculation\n", - "SA=pi*r*math.sqrt((r**2)+(h**2));\n", - "TSA=SA+(pi*r**2);\n", - "\n", - "#Result\n", - "print(\"total surface area of cone in m^2 is\",TSA);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('total surface area of cone in m^2 is', 75.36)\n" - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 8.5, Page number 322" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#import modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable decleration\n", - "V=100; #volume of cone in cubic inches\n", - "r=5; #radius of cone in inches\n", - "pi=3.14;\n", - "\n", - "#Calculation\n", - "r_m=r*0.0254; #radius of cone in m\n", - "#volume V=(1/3)*pi*(r**2)*h\n", - "#therefore h = (3*V)/(pi*r**2)\n", - "h=(3*V)/(pi*r**2); #height in inches\n", - "R=3/r_m;\n", - "h=math.ceil(h*10**3)/10**3; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"height of the cone in inches is\",h);\n", - "print(\"surface area to volume ratio in m-1 is\",R);\n", - "\n", - "#answer for the surface area to volume ratio given in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('height of the cone in inches is', 3.822)\n", - "('surface area to volume ratio in m-1 is', 23.62204724409449)\n" - ] - } - ], - "prompt_number": 18 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Engineering_Physics/screenshots/Capture1.png b/Engineering_Physics/screenshots/Capture1.png Binary files differdeleted file mode 100755 index b8e54e85..00000000 --- a/Engineering_Physics/screenshots/Capture1.png +++ /dev/null diff --git a/Engineering_Physics/screenshots/Capture2.png b/Engineering_Physics/screenshots/Capture2.png Binary files differdeleted file mode 100755 index 74b4cf73..00000000 --- a/Engineering_Physics/screenshots/Capture2.png +++ /dev/null diff --git a/Engineering_Physics/screenshots/Untitled.png b/Engineering_Physics/screenshots/Untitled.png Binary files differdeleted file mode 100755 index 86bbbd1e..00000000 --- a/Engineering_Physics/screenshots/Untitled.png +++ /dev/null diff --git a/Engineering_Physics/screenshots/Untitled1.png b/Engineering_Physics/screenshots/Untitled1.png Binary files differdeleted file mode 100755 index 2584f5af..00000000 --- a/Engineering_Physics/screenshots/Untitled1.png +++ /dev/null diff --git a/Engineering_Physics/screenshots/Untitled1_1.png b/Engineering_Physics/screenshots/Untitled1_1.png Binary files differdeleted file mode 100755 index 6c937ec4..00000000 --- a/Engineering_Physics/screenshots/Untitled1_1.png +++ /dev/null diff --git a/Engineering_Physics/screenshots/Untitled2.png b/Engineering_Physics/screenshots/Untitled2.png Binary files differdeleted file mode 100755 index 7461d551..00000000 --- a/Engineering_Physics/screenshots/Untitled2.png +++ /dev/null diff --git a/Engineering_Physics/screenshots/Untitled2_1.png b/Engineering_Physics/screenshots/Untitled2_1.png Binary files differdeleted file mode 100755 index a47a6ec9..00000000 --- a/Engineering_Physics/screenshots/Untitled2_1.png +++ /dev/null diff --git a/Engineering_Physics/screenshots/Untitled3.png b/Engineering_Physics/screenshots/Untitled3.png Binary files differdeleted file mode 100755 index 492ad660..00000000 --- a/Engineering_Physics/screenshots/Untitled3.png +++ /dev/null diff --git a/Engineering_Physics/screenshots/Untitled3_1.png b/Engineering_Physics/screenshots/Untitled3_1.png Binary files differdeleted file mode 100755 index cdbc1a6f..00000000 --- a/Engineering_Physics/screenshots/Untitled3_1.png +++ /dev/null diff --git a/Engineering_Physics/screenshots/Untitled_1.png b/Engineering_Physics/screenshots/Untitled_1.png Binary files differdeleted file mode 100755 index cb197fae..00000000 --- a/Engineering_Physics/screenshots/Untitled_1.png +++ /dev/null diff --git a/Engineering_Physics/screenshots/Untitled_2.png b/Engineering_Physics/screenshots/Untitled_2.png Binary files differdeleted file mode 100755 index cb197fae..00000000 --- a/Engineering_Physics/screenshots/Untitled_2.png +++ /dev/null diff --git a/Engineering_Physics/screenshots/capture.png b/Engineering_Physics/screenshots/capture.png Binary files differdeleted file mode 100755 index b105e148..00000000 --- a/Engineering_Physics/screenshots/capture.png +++ /dev/null diff --git a/Engineering_Physics/screenshots/screenshot1.PNG b/Engineering_Physics/screenshots/screenshot1.PNG Binary files differdeleted file mode 100755 index 419ba452..00000000 --- a/Engineering_Physics/screenshots/screenshot1.PNG +++ /dev/null diff --git a/Engineering_Physics/screenshots/screenshot1.png b/Engineering_Physics/screenshots/screenshot1.png Binary files differdeleted file mode 100755 index 94f80068..00000000 --- a/Engineering_Physics/screenshots/screenshot1.png +++ /dev/null diff --git a/Engineering_Physics/screenshots/screenshot2.PNG b/Engineering_Physics/screenshots/screenshot2.PNG Binary files differdeleted file mode 100755 index bf169152..00000000 --- a/Engineering_Physics/screenshots/screenshot2.PNG +++ /dev/null diff --git a/Engineering_Physics/screenshots/screenshot2.png b/Engineering_Physics/screenshots/screenshot2.png Binary files differdeleted file mode 100755 index f4cda54b..00000000 --- a/Engineering_Physics/screenshots/screenshot2.png +++ /dev/null diff --git a/Engineering_Physics/screenshots/screenshot3.PNG b/Engineering_Physics/screenshots/screenshot3.PNG Binary files differdeleted file mode 100755 index 4062fb31..00000000 --- a/Engineering_Physics/screenshots/screenshot3.PNG +++ /dev/null diff --git a/Engineering_Physics/screenshots/screenshot3.png b/Engineering_Physics/screenshots/screenshot3.png Binary files differdeleted file mode 100755 index 4367a009..00000000 --- a/Engineering_Physics/screenshots/screenshot3.png +++ /dev/null diff --git a/Engineering_Physics/screenshots/shot1.PNG b/Engineering_Physics/screenshots/shot1.PNG Binary files differdeleted file mode 100755 index 7e165764..00000000 --- a/Engineering_Physics/screenshots/shot1.PNG +++ /dev/null diff --git a/Engineering_Physics/screenshots/shot2.PNG b/Engineering_Physics/screenshots/shot2.PNG Binary files differdeleted file mode 100755 index c4b3d4ef..00000000 --- a/Engineering_Physics/screenshots/shot2.PNG +++ /dev/null diff --git a/Engineering_Physics/screenshots/shot3.PNG b/Engineering_Physics/screenshots/shot3.PNG Binary files differdeleted file mode 100755 index e14ec109..00000000 --- a/Engineering_Physics/screenshots/shot3.PNG +++ /dev/null diff --git a/Surveying_Volume_3/Chapter1.ipynb b/Surveying_Volume_3/Chapter1.ipynb deleted file mode 100755 index 015050ae..00000000 --- a/Surveying_Volume_3/Chapter1.ipynb +++ /dev/null @@ -1,83 +0,0 @@ -{ - "metadata": { - "name": "S3-C1" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "Electronic Distance Measurement" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 1.1,Page 22" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nT=273+25.0#temperature \np=752.0;#pressure mm Hg\nNo=294.0e-6;\nns=1.000284;\nD1=1438.254;#recorded distance in m\nh=263.42-243.25;#height difference in m\nR=6370e3;#radius of earth in m\n\n#calculation\nn=1+No*(273/T)*(p/760);\nD=D1*ns/n;\ncg=-h**2/2/D;\nHm=263.42/2+243.25/2;\nD=D+cg;\nch=-D*Hm/R\nEL=D+ch;\n\n#result\nprint \"equivalent length in m\",round(EL,3)", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "equivalent length in m 1438.081\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 1.2,Page 22" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nT=273+18.8;#temperature\np=713;\ne=3;\nc=299792.5e3;#speed of light in km/s\nf=11e6;#frequency in Hz\n\n#calculation\nn=1+(103.49/T*(p-e)+86.26/T*(1+5748.0/T)*e)/1e6;\nV=c/n;\nl=V/f;\n\n#result\nprint \"wavelenght of light in m\",round(l,3)", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "27.247 wavelenght of light in m\n" - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 1.3,Page 23" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nT=273.0+30.0;#temperature\nl=0.85;#wavelength in m\np=752.4;\nc=299792.5e3;#speed of light in km/s\nf=24e6;#frequency in Hz\n\n#calculation\nno=1+(287.604+4.8864/l**2+0.068/l**4)/1e6;\nns=1+(no-1)*273/T*p/760;\nV=c/ns;\nl=V/f;\n\n#result\nprint \"wavelength of light in m\",round(l,3)", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "wavelenght of light in m 12.488\n" - } - ], - "prompt_number": 1 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Surveying_Volume_3/Chapter1_1.ipynb b/Surveying_Volume_3/Chapter1_1.ipynb deleted file mode 100755 index 015050ae..00000000 --- a/Surveying_Volume_3/Chapter1_1.ipynb +++ /dev/null @@ -1,83 +0,0 @@ -{ - "metadata": { - "name": "S3-C1" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "Electronic Distance Measurement" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 1.1,Page 22" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nT=273+25.0#temperature \np=752.0;#pressure mm Hg\nNo=294.0e-6;\nns=1.000284;\nD1=1438.254;#recorded distance in m\nh=263.42-243.25;#height difference in m\nR=6370e3;#radius of earth in m\n\n#calculation\nn=1+No*(273/T)*(p/760);\nD=D1*ns/n;\ncg=-h**2/2/D;\nHm=263.42/2+243.25/2;\nD=D+cg;\nch=-D*Hm/R\nEL=D+ch;\n\n#result\nprint \"equivalent length in m\",round(EL,3)", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "equivalent length in m 1438.081\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 1.2,Page 22" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nT=273+18.8;#temperature\np=713;\ne=3;\nc=299792.5e3;#speed of light in km/s\nf=11e6;#frequency in Hz\n\n#calculation\nn=1+(103.49/T*(p-e)+86.26/T*(1+5748.0/T)*e)/1e6;\nV=c/n;\nl=V/f;\n\n#result\nprint \"wavelenght of light in m\",round(l,3)", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "27.247 wavelenght of light in m\n" - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 1.3,Page 23" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nT=273.0+30.0;#temperature\nl=0.85;#wavelength in m\np=752.4;\nc=299792.5e3;#speed of light in km/s\nf=24e6;#frequency in Hz\n\n#calculation\nno=1+(287.604+4.8864/l**2+0.068/l**4)/1e6;\nns=1+(no-1)*273/T*p/760;\nV=c/ns;\nl=V/f;\n\n#result\nprint \"wavelength of light in m\",round(l,3)", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "wavelenght of light in m 12.488\n" - } - ], - "prompt_number": 1 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Surveying_Volume_3/Chapter3.ipynb b/Surveying_Volume_3/Chapter3.ipynb deleted file mode 100755 index 4c4c37ac..00000000 --- a/Surveying_Volume_3/Chapter3.ipynb +++ /dev/null @@ -1,104 +0,0 @@ -{ - "metadata": { - "name": "S3-C3" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "Trilateration" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 3.1,Page 47" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos\nAB=25145.32;\nR=6370.0e3;#radius of earth\nha=325.14;\n\n#calculation\ntheta=AB*cos(3+9.0/60+40.0/3600)/R;\nAB_dash=AB/sin(pi/2+theta/2)*sin(pi/2-theta/2-(3+9.0/60+40.0/3600)*pi/180);\nCD=AB_dash-AB_dash*ha/R;\nS=CD+CD**3/24.0/R**2;\n\n#result\nprint \"sea level length in m\",round(S,3)", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "sea level length in m 25108.53\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": "Example 3.2,Page 50" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,asin\nAB=31325.14\nR=6370.0e3;#radius of earth\nha=1582.15;\nh=2669.17\n\n#calculation\nAB_dash=AB-h**2/2/AB;\ntheta=2*asin(AB_dash/2/R);\nAB_dash=AB-(h*sin(theta/2)+h**2/AB/2)\nCD=AB_dash-AB_dash*ha/R;\nS=CD+CD**3/24.0/R**2;\n\n#result\nprint \"sea level length in m\",round(S,3)", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "sea level length in m 31197.163\n" - } - ], - "prompt_number": 9 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 3.3,Page 53" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin, acos\nAB=1525.456;\nBC=2176.945;\nCD=1697.435;\nAD=2401.435;\nAC=3073.845;\nBD=2483.115;\n\n#calculation\n#alpha=A and beta=B and those are angles\nA1=acos((CD**2+AC**2-AD**2)/(2*CD*AC));\nA1=A1*180/pi;\nA2=acos((AD**2+BD**2-AB**2)/(2*AD*BD));\nA2=A2*180/pi;\nA3=acos((AB**2+AC**2-BC**2)/(2*AB*AC));\nA3=A3*180/pi;\nA4=acos((BC**2+BD**2-CD**2)/(2*BC*BD));\nA4=A4*180/pi;\nB1=acos((CD**2+BD**2-BC**2)/(2*CD*BD));\nB1=B1*180/pi;\nB2=acos((AD**2+AC**2-CD**2)/(2*AD*AC));\nB2=B2*180/pi;\nB3=acos((AB**2+BD**2-AD**2)/(2*AB*BD));\nB3=B3*180/pi;\nB4=acos((AC**2+BC**2-AB**2)/(2*AC*BC));\nB4=B4*180/pi;\ne1=360-A1-A2-A3-A4-B1-B2-B3-B4;#error\ne2=A1+B1-A3-B3;#error\ne3=A2+B2-A4-B4;#error\n#angle update\nA1=A1+e1/8-e2/4;\nA3=A3+e1/8+e2/4;\nB1=B1+e1/8-e2/4;\nB3=B3+e1/8+e2/4;\nA2=A2+e1/8-e3/4;\nB2=B2+e1/8-e3/4;\nA4=A4+e1/8+e3/4;\nB4=B4+e1/8+e3/4;\n#updating sides\nAD=1525.456*sin(B3*pi/180)/sin(A2*pi/180);\nBD=1525.456*sin(A3*pi/180+B3*pi/180)/sin(A2*pi/180);\nAC=1525.456*sin(A4*pi/180+B3*pi/180)/sin(B4*pi/180);\nBC=1525.456*sin(A3*pi/180)/sin(B4*pi/180);\nCD=BC*sin(A4*pi/180)/sin(B1*pi/180)\n\n#result\n\nprint \"equation for B2 is wrong\"\nprint \"corrected length of AD in m \",round(AD,3)\nprint \"corrected length of AC in m \",round(AC,3)\nprint \"corrected length of BD in m \",round(BD,3)\nprint \"corrected length of BC in m \",round(BC,3)\nprint \"corrected length of CD in m \",round(CD,3)\n", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "27.5965629411\nequation for B2 is wrong\ncorrected length of AD in m 2401.251\ncorrected length of AC in m 3073.446\ncorrected length of BD in m 2413.581\ncorrected length of BC in m 2176.758\ncorrected length of CD in m 1697.416\n" - } - ], - "prompt_number": 25 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 3.4,Page 59" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,log,sin\n#angles found by cosine law\n#alpha=A and beta=B and those are angles\nA1=45.801596;\nA2=40.605250;\nA3=50.143258;\nA4=43.077646;\nB1=48.779868;\nB2=44.141587;\nB3=49.733152;\nB4=37.737035;\n\n#calculation\ne1=360-A1-A2-A3-A4-B1-B2-B3-B4;#error\n#angle update\nA1=A1+e1/8;\nA3=A3+e1/8;\nB1=B1+e1/8;\nB3=B3+e1/8;\nA2=A2+e1/8;\nB2=B2+e1/8;\nA4=A4+e1/8;\nB4=B4+e1/8;\nE2=log(sin(A1*pi/180),10)*log(sin(A2*pi/180),10)*log(sin(A3*pi/180),10)*log(sin(A4*pi/180),10)-log(sin(B1*pi/180),10)*log(sin(B2*pi/180),10)*log(sin(B3*pi/180),10)*log(sin(B4*pi/180),10);\nc3=E2/17.1;\nc4=E2/17.0;\nA1=A1-c3;\nB1=B1+c3;\n\n#result\nprint \"corrected angle A1 in degrees\",A1,\"corrected angle B1 in degrees\",B1", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "corrected angle A1 in degrees 45.7991704812 corrected angle B1 in degrees 48.7774455188\n" - } - ], - "prompt_number": 2 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Surveying_Volume_3/Chapter4.ipynb b/Surveying_Volume_3/Chapter4.ipynb deleted file mode 100755 index f2b5c7ec..00000000 --- a/Surveying_Volume_3/Chapter4.ipynb +++ /dev/null @@ -1,970 +0,0 @@ -{ - "metadata": { - "name": "S3-C4" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "Principles of Field Astronomy" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.1,Page 81" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\ntheta=25+14.0/60;\nR=6370.0;\n\n#calculation\nAB=cos(theta*pi/180)*(16+10.0/60)\ndis=2*pi*R*AB/360.0;\n\n#result\nprint \"distance of AB in m \",round(dis,3)", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "distance of AB in m 1625.863\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.2,Page 81" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nimport numpy as np\nfrom scipy import linalg\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\nLongA=52+24.0/60;\nLongB=55+30.0/60;\nlatA=18+10.0/60;\nlatB=15.0;\nR=6370.0;#radius of earth\n\n#calculation\nP=LongB-LongA;\nPA=90-latA;\nPB=90-latB;\nAB=acos(cos(PB*pi/180)*cos(PA*pi/180)+sin(PB*pi/180)*sin(PA*pi/180)*cos(P*pi/180));\ndis=AB*R;\n#solving for A\na = np.array([[0.5,0.5], [0.5,-0.5]])\nb = np.array([atan(cos((PB/2-PA/2)*pi/180)/tan(P*pi/180)/cos((PB/2+PA/2)*pi/180))*180/pi,atan(sin((PB/2-PA/2)*pi/180)/tan(P*pi/180)/sin((PB/2+PA/2)*pi/180))*180/pi])\nx = np.linalg.solve(a, b)\nA=x[0];\nA=deg_to_dms(A);\n\n#result\nprint \"distance of AB in km \",round(dis,2)\nprint \"direction of B to A in deg min sec\",A", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "distance of AB in km 482.72\ndirection of B to A in deg min sec [117, 8, 30.72]\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.3,Page 83" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\nb=40.0;\np=6.0;\n\n#calculation\na=pi/2-asin(cos(b*pi/180)*cos(p*pi/180));\nBC=a*180/pi-b;\nBC=BC*1.853*60;\nB=asin(sin(b*pi/180)/sin(a))\nB=deg_to_dms(B*180/pi);\n\n#result\nprint \"distance BC in km\",round(BC,2)\nprint \"angle of B deg min sec\",B", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "distance BC in km 41.43\nangle of B deg min sec [82, 53, 56.83]\n" - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.4,Page 105" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\ncoal=90.0-28.0-24.0/60;#coaltitude\ncola=90.0-48.0-30.0/60;#colatitude\n\n\n#calculation\ndelta=pi/2-acos((cos(coal*pi/180)*cos(cola*pi/180)+sin(coal*pi/180)*sin(cola*pi/180)*cos(50*pi/180)));\nH=acos(cos(coal*pi/180)/(sin(cola*pi/180)*cos(delta))-tan(delta)/tan(cola*pi/180));\nH=deg_to_dms(H*180/pi); \ndelta=deg_to_dms(delta*180/pi); \n\n#result\nprint \"H in deg min sec\",H\nprint \"declination in deg mi sec\",delta", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "H in deg min sec [99, 7, 55.94]\ndelta in deg mi sec [46, 57, 38.26]\n" - } - ], - "prompt_number": 25 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.5,Page 107" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\ndelta=22+45.0/60;\ntheta=55.0;\nH=45+15.0/60;\n\n#calculation\nalpha=asin((cos(H*pi/180)+tan(theta*pi/180)*tan(delta*pi/180))*cos(theta*pi/180)*cos(delta*pi/180));\nalpha=alpha*180/pi;\nA=acos(sin(delta*pi/180)/(cos(theta*pi/180)*cos(alpha*pi/180))-tan(alpha*pi/180)*tan(theta*pi/180));\nA=deg_to_dms(360-A*180/pi);\n\n#result\nprint \"azimuth in deg mi sec\",A", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "azimuth in deg mi sec [244, 40, 8.11]\n" - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.6,Page 109" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\ncoal=42.0;\ncode=100+40.0/60;#co-declination\n\n#calculation\nalpha=pi/2-acos((cos(coal*pi/180)*cos(code*pi/180)+sin(coal*pi/180)*sin(code*pi/180)*cos(35*pi/180)));\nA=acos((cos(code*pi/180)-cos(coal*pi/180)*cos(pi/2-alpha))/(sin(coal*pi/180)*sin(pi/2-alpha)));\nA=deg_to_dms(A*180/pi);\nalpha=deg_to_dms(alpha*180/pi);\n\n#result\nprint \"azimuth in deg min sec\",A\nprint \"alpha in deg min sec\",alpha", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "azimuth in deg mi sec [142, 1, 26.46]\nalpha in deg min sec [23, 38, 48.21]\n" - } - ], - "prompt_number": 33 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.7,Page 113" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\ntheta=33+42.0/60+34.0/3600;\ndelta=81+55.0/60+14.0/3600;\n\n#calculation\nH1=acos(tan(theta*pi/180)/tan(delta*pi/180));\nH1=deg_to_dms(360-H1*180/pi);\nalpha=asin(sin(theta*pi/180)/sin(delta*pi/180));\nalpha=deg_to_dms(alpha*180/pi);\nA=asin(cos(delta*pi/180)/cos(theta*pi/180));\nA=deg_to_dms(A*180/pi);\n\n\n#result\nprint \"azimuth in deg min sec\",A\nprint \"alpha in deg min sec\",alpha\nprint \"hour angle in deg min sec\",H1", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "azimuth in deg min sec [9, 43, 37.11]\nalpha in deg min sec [34, 5, 36.7]\nhour angle in deg min sec [275, 26, 3.85]\n" - } - ], - "prompt_number": 41 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.8,Page 114" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\nalpha=0.0;\ntheta=25+45.0/60;\n\n#calculation\ndelta=asin(sin(alpha)/sin(theta*pi/180));\n\n#result\nprint \"declination in degrees\",delta", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "declination in degrees 0.0\n" - } - ], - "prompt_number": 42 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.9,Page 116" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\ncola=90.0-49.0;#colatitude\ncode=90.0+19.0;#codeclination\n\n#calculation\nA1=acos((cos(code*pi/180)-cos(cola*pi/180)*cos(pi/2))/sin(cola*pi/180)/sin(pi/2));\nA1=deg_to_dms(360-A1*180/pi);\nH=acos((0-cos(cola*pi/180)*cos(code*pi/180))/sin(cola*pi/180)*sin(code*pi/180));\nH=deg_to_dms(H*180/pi)\n\n#result\nprint \"azimuth in deg min sec\",A1\nprint \"hour angle in deg min sec\",H", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "azimuth in deg min sec [240, 14, 52.45]\nhour angle in deg min sec [69, 15, 38.0]\n" - } - ], - "prompt_number": 18 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.10,Page 120" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\n#part1\ndelta=38+15.0/60;\ntheta=25+10.0/60;\n\n#calculation\nz=delta-theta;\nalpha=90-z;\nz=deg_to_dms(z);\nalpha=deg_to_dms(alpha);\n\n#result\nprint \"zenith distance in deg min sec\",z\nprint \"altitude in deg min sec\",alpha\n\n#part2\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n if sd==60:\n m=m+1;\n sd=0;\n \n sd=round(sd,2)\n return [d, m, sd]\ndelta=22+40.0/60;\ntheta=25+10.0/60;\n\n#calculation\nz=-delta+theta;\nalpha=90-z;\nz=deg_to_dms(z);\nalpha=deg_to_dms(alpha);\n\n#result\nprint \"zenith distance in deg min sec\",z\nprint \"altitude in deg min sec\",alpha\n\n#part3\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md+1)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\ndelta=70+20.0/60;\ntheta=25+10.0/60;\n\n#calculation\nz=delta-theta;\nz=deg_to_dms(z);\n\n\n#result\nprint \"zenith distance in deg min sec\",z\n\n", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "zenith distance in deg min sec [13, 4, 60.0]\naltitude in deg min sec [76, 55, 0.0]\nzenith distance in deg min sec [2, 30, 0.0]\naltitude in deg min sec [87, 30, 0.0]\nzenith distance in deg min sec [45, 10, -0.0]\n" - } - ], - "prompt_number": 20 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.11,Page 122" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n if sd==60:\n m=m+1;\n sd=0;\n \n sd=round(sd,2)\n return [d, m, sd]\ntheta=42+50.0/60;\ndelta=83+40.0/60;\n\n#calculation\nz=180-delta-theta;\nalpha=90-z;\nz=deg_to_dms(z);\nalpha=deg_to_dms(alpha);\n\n#result\nprint \"zenith distance in deg min sec\",z\nprint \"altitude in deg min sec\",alpha", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "zenith distance in deg min sec [53, 29, 60.0]\naltitude in deg min sec [36, 30, 0.0]\n" - } - ], - "prompt_number": 21 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.12,Page 133" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n if sd==60:\n m=m+1;\n sd=0;\n \n sd=round(sd,2)\n return [d, m, sd]\n#part1\ndol=110-82-30.0/60; #differnce in longitude\nST=18+35.0/60+10.0/3600;#standard time\n\n#calculation\nLMT=ST+dol/15.0;\nLMT=deg_to_dms(LMT);\n\n#result\nprint \"LMT in hr min sec\",LMT\n\n#part2\ndol=82+30.0/60+30; #differnce in longitude\nST=18+35.0/60+10.0/3600;#standard time\n\n#calculation\nLMT=ST-dol/15.0;\nLMT=deg_to_dms(LMT);\n\n#result\nprint \"LMT in hr min sec\",LMT\n\n#part1\ndol=82+30.0/60-30; #differnce in longitude\nST=18+35.0/60+10.0/3600;#standard time\n\n#calculation\nLMT=ST-dol/15.0;\nLMT=deg_to_dms(LMT);\n\n#result\nprint \"LMT in hr min sec\",LMT", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "LMT in hr min sec [20, 25, 10.0]\nLMT in hr min sec [11, 5, 10.0]\nLMT in hr min sec [15, 5, 10.0]\n" - } - ], - "prompt_number": 66 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.13,Page 134" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n if sd==60:\n m=m+1;\n sd=0;\n \n sd=round(sd,2)\n return [d, m, sd]\n#part1\nLMT=8+30.0/60+15.0/3600;\nLong=45+30.0/60;\n\n#calculation\nGMT=LMT+Long/15.0;\nGMT=deg_to_dms(GMT)\n\n#result\nprint \"GMT in hr min sec (AM)\",GMT\n\n\n#part2\nLMT=6+40.0/60+10.0/3600;\nLong=55+30.0/60;\n\n#calculation\nGMT=LMT-Long/15.0;\nGMT=deg_to_dms(GMT)\n\n#result\nprint \"GMT in hr min sec (PM)\",GMT", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "GMT in hr min sec (AM) [11, 32, 15.0]\nGMT in hr min sec (PM) [2, 58, 10.0]\n" - } - ], - "prompt_number": 71 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.14,Page 134" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n if sd==60:\n m=m+1;\n sd=0;\n \n sd=round(sd,2)\n return [d, m, sd]\n#part1\nGMT=20+30.0/60+15.0/3600;\nLong=82+30.0/60;\n\n#calculation\nLMT=GMT+Long/15.0-24;\nLMT=deg_to_dms(LMT);\n\n#result\nprint \"LMT in hr min sec (next day)\",LMT\n\n#part1\nGMT=20+30.0/60+15.0/3600;\nLong=120.0;\n\n#calculation\nLMT=GMT-Long/15.0;\nLMT=deg_to_dms(LMT);\n\n#result\nprint \"LMT in hr min sec (same day)\",LMT", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "LMT in hr min sec (next day) [2, 0, 15.0]\nLMT in hr min sec (same day) [12, 30, 15.0]\n" - } - ], - "prompt_number": 74 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.15,Page 135" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n if sd==60:\n m=m+1;\n sd=0;\n \n sd=round(sd,2)\n return [d, m, sd]\n#part1\nRA=6+15.0/60+20.0/3600;\nHA=8+10.0/60+30.0/3600;\n\n#calculation\nLST=RA+HA;\nLST=deg_to_dms(LST);\n\n#result\nprint \"LST in hr min sec\",LST\n\n#part2\nRA=8+40.0/60+15.0/3600;\nHA=3+50.0/60+20.0/3600;\n\n#calculation\nLST=RA-HA;\nLST=deg_to_dms(LST);\n\n#result\nprint \"LST in hr min sec\",LST\n", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "LST in hr min sec [14, 25, 50.0]\nLST in hr min sec [4, 49, 55.0]\n" - } - ], - "prompt_number": 76 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.16,Page 135" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n if sd==60:\n m=m+1;\n sd=0;\n \n sd=round(sd,2)\n return [d, m, sd]\n#part1\nLHA=6+30.0/60+10.0/3600;\n\n#calculation\nLAT=LHA+12;\nLAT=deg_to_dms(LAT);\n\n#result\nprint \"LAT in hr min sec\",LAT;\n\n#part2\nLHA=18+40.0/60+20.0/3600;\n\n#calculation\nLAT=LHA+12-24;\nLAT=deg_to_dms(LAT);\n\n#result\nprint \"LAT in hr min sec\",LAT;", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "LAT in hr min sec [18, 30, 10.0]\nLAT in hr min sec [6, 40, 20.0]\n" - } - ], - "prompt_number": 78 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.17,Page 136" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n if sd==60:\n m=m+1;\n sd=0;\n \n sd=round(sd,2)\n return [d, m, sd]\nLong=60.0;\nLHA=5+30.0/60+20.0/3600;\n\n#calculation\nGMT=LHA+12-Long/15.0;\nGMT=deg_to_dms(GMT);\n\n#result\nprint \"GMT in hr min sec\",GMT\n", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "GMT in hr min sec [13, 30, 20.0]\n" - } - ], - "prompt_number": 79 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.18,Page 138" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n if sd==60:\n m=m+1;\n sd=0;\n \n sd=round(sd,2)\n return [d, m, sd]\n#parta\nGMT=0;\nET=10.0/60+1.8/3600;\n\n#calculaion\nGAT=GMT+ET;\nGAT=deg_to_dms(GAT);\n\n#result\nprint \"GAT in hr min sec\",GAT\n\n#partb\nGMT=0;\nET=-13.0/60-28.5/3600;\n\n#calculaion\nGAT=GMT+ET+24;\nGAT=deg_to_dms(GAT);\n\n#result\nprint \"GAT in hr min sec\",GAT", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "GAT in hr min sec [0, 10, 1.8]\nGAT in hr min sec [23, 46, 31.5]\n" - } - ], - "prompt_number": 81 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.19,Page 138" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n if sd==60:\n m=m+1;\n sd=0;\n \n sd=round(sd,2)\n return [d, m, sd]\nET1=-3.0/60-51.4/3600; #ET at april 2\nET2=-3.0/60-33.5/3600; #ET at april 3\n\n#calculation\ndET=(ET2-ET1)*18.0/24; #change in ET\nET=ET1+dET;\nET=deg_to_dms(ET);\n\n#result\nprint \"ET (-ve) in hr min s\",ET", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "ET in hr min s [0, 3, 37.97]\n" - } - ], - "prompt_number": 83 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.20,Page 138" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n if sd==60:\n m=m+1;\n sd=0;\n \n sd=round(sd,2)\n return [d, m, sd]\nLAT=15+12.0/60+40.0/3600;\nLong=20+3.0/60;\nGMN=5.0/60+10.65/3600;\n\n#calculation\nGAT=LAT+Long/15.0;\ne1=(GAT-12)*0.22/3600+GMN;\nLAT=GAT+e1-Long/15.0;\nLAT=deg_to_dms(LAT);\n\n#result\nprint \"LAT in hr min sec\",LAT\n", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "LAT in hr min sec [15, 17, 51.65]\n" - } - ], - "prompt_number": 84 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.21,Page 139" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n if sd==60:\n m=m+1;\n sd=0;\n \n sd=round(sd,2)\n return [d, m, sd]\nLong=56+35.0/60;\nLMT=7+15.0/60+25.0/3600;\nGMN=3.0/60+54.0/3600;\n\n#calculation\nGMT=LMT-Long/15.0;\ne1=GMN+(12-GMN)*0.25/3600;\nLAT=GMT+Long/15.0+e1;\nLAT=deg_to_dms(LAT);\n\n#result\nprint \"LAT in hr min sec\",LAT\n", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "LAT in hr min sec [7, 19, 21.98]\n" - } - ], - "prompt_number": 86 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.22,Page 142" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n if sd==60:\n m=m+1;\n sd=0;\n \n sd=round(sd,2)\n return [d, m, sd]\nST=7+15.0/60+30.0/3600;\n\n#calculation\ntr=9.8296/3600*ST;\nST=ST-tr;\nST=deg_to_dms(ST);\n\n#result\nprint \"solar mean time in hr min sec\",ST", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "solar mean time in hr min sec [7, 14, 18.65]\n" - } - ], - "prompt_number": 87 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.23,Page 142" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n if sd==60:\n m=m+1;\n sd=0;\n \n sd=round(sd,2)\n return [d, m, sd]\nST=7+45.0/60+50.0/3600;\n\n#calculation\ntr=9.8565/3600*ST;\nST=ST+tr;\nST=deg_to_dms(ST);\n\n#result\nprint \"solar mean time in hr min sec\",ST", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "solar mean time in hr min sec [7, 47, 6.52]\n" - } - ], - "prompt_number": 90 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.24,Page 143" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#finding LST\n\n#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n if sd==60:\n m=m+1;\n sd=0;\n \n sd=round(sd,2)\n return [d, m, sd]\nLong=140+35.0/60+20.0/3600;\nGST=13+15.0/60+30.0/3600;\n\n#calculation\nLST=GST+9.8565/3600*Long/15.0;\nLST=deg_to_dms(LST);\n\n#result\nprint \"LST in deg min sec\",LST\n\n#part2\nLong=160+45.0/60+30.0/3600;\nGST=13+15.0/60+30.0/3600;\n\n#calculation\nLST=GST-9.8565/3600*Long/15.0;\nLST=deg_to_dms(LST);\n\n#result\nprint \"LST in deg min sec\",LST", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "LST in deg min sec [13, 17, 2.38]\nLST in deg min sec [13, 13, 44.37]\n" - } - ], - "prompt_number": 93 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.25,Page 145" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n if sd==60:\n m=m+1;\n sd=0;\n \n sd=round(sd,2)\n return [d, m, sd]\nLong=75.0;\nGST=15+55.0/60+13.0/3600;\nLMT=11.0;\n\n#calculation\nLST=GST+Long/15.0*9.8565/3600+LMT+9.8565/3600*LMT;\nLST=LST-24;\nLST=deg_to_dms(LST);\n\n#result\nprint \"LST of next day in deg min sec\",LST", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "LST of next day in deg min sec [2, 57, 50.7]\n" - } - ], - "prompt_number": 95 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.26,Page 145" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n if sd==60:\n m=m+1;\n sd=0;\n \n sd=round(sd,2)\n return [d, m, sd]\nLong=75.0;\nGST=5+25.0/60+15.0/3600;\nLMT=5.0+40.0/60;\n\n#calculation\nLST=GST-Long/15.0*9.8565/3600+LMT+9.8565/3600*(LMT);\nLST=deg_to_dms(LST);\n\n#result\nprint \"LST of next day in deg min sec\",LST", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "LST of next day in deg min sec [11, 5, 21.57]\n" - } - ], - "prompt_number": 96 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.27,Page 146" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n if sd==60:\n m=m+1;\n sd=0;\n \n sd=round(sd,2)\n return [d, m, sd]\nLong=75.0;\nGST=11+45.0/60+10.0/3600;\nLST=26+35.0/60+42.0/3600;\n\n#calculation\nLMM=GST+Long/15*9.8565/3600;\nLMT=LST-LMM-(LST-LMM)*9.8296/3600;\nLMT=deg_to_dms(LMT-12)\n\n#result\nprint \"LMT in hr min sec (PM)\",LMT \n\n", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "LMT in hr min sec (PM) [2, 47, 16.96]\n" - } - ], - "prompt_number": 97 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.28,Page 147" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n if sd==60:\n m=m+1;\n sd=0;\n \n sd=round(sd,2)\n return [d, m, sd]\nLong=90.0;\nGST=9+15.0/60+14.0/3600;\nLST=31+35.0/60+12.0/3600;\n\n#calculation\nLMM=GST-Long/15*9.8565/3600;\nLMT=LST-LMM-(LST-LMM)*9.8296/3600;\nLMT=deg_to_dms(LMT-12)\n\n#result\nprint \"LMT in hr min sec (PM)\",LMT", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "LMT in hr min sec (PM) [10, 17, 17.46]\n" - } - ], - "prompt_number": 100 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.29,Page 149" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n if sd==60:\n m=m+1;\n sd=0;\n \n sd=round(sd,2)\n return [d, m, sd]\nLong=150.0;\nGST=12+25.0/60+15.0/3600;\nLST=30+15.0/60+10.0/3600;\nLMN=18+15.0/60+10.0/3600;\n\n#calculation\nLMM=GST+Long/15*9.8565/3600;\nLMT=LMN-LMM-(LMN-LMM)*9.8296/3600;\nLMT=deg_to_dms(LMT)\n\n#result\nprint \"LMT in hr min sec (PM)\",LMT\n\n#part2\nLMM=GST+Long/15*9.8565/3600;\nLMT=LST-LMM-(LST-LMM)*9.8296/3600;\nLMT=deg_to_dms(LMT-12)\n\n#result\nprint \"LMT in hr min sec (AM)\",LMT", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "LMT in hr min sec (PM) [5, 47, 19.38]\nLMT in hr min sec (AM) [5, 45, 21.42]\n" - } - ], - "prompt_number": 102 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.30,Page 150 " - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n if sd==60:\n m=m+1;\n sd=0;\n \n sd=round(sd,2)\n return [d, m, sd]\ntheta=35+15.0/60+20.0/3600;\ndelta=88+15.0/60+45.0/3600;\nRA=1+45.0/60+15.0/3600;\n\n#calculation\nH=acos(tan(theta*pi/180)/tan(delta*pi/180));\nH=H*180/pi/15;\nLST=RA+H;\nLST=deg_to_dms(LST);\n\n#result\nprint \"LST in hr min sec\",LST", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "LST in hr min sec [7, 40, 20.12]\n" - } - ], - "prompt_number": 103 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.31,Page 151" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n if sd==60:\n m=m+1;\n sd=0;\n \n sd=round(sd,2)\n return [d, m, sd]\nRA=22+25.0/60+10.0/3600;\nST=14+45.0/60;#sidereal time\nLong=90.0;\nGMT=27+15.0/60;\nLMN=15+21.0/60+15.0/3600;\n\n#calculation\nMT=12+24-GMT+Long/15;#mean time interval\nacc=9.8565/3600*MT;\nHA=LMN-acc-MT;\nLST=HA+24-RA;\nLST=deg_to_dms(LST);\n\n#result\nprint \"LST in hr min sec\",LST\n", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "LST in hr min sec [2, 8, 39.62]\n" - } - ], - "prompt_number": 105 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.32,Page 152" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n if sd==60:\n m=m+1;\n sd=0;\n \n sd=round(sd,2)\n return [d, m, sd]\nLong=60;\nGMT=11+15.0/60+20.0/3600;\n\n#calculation\nLMT=GMT-Long/15*9.8296/3600;\nLMT=deg_to_dms(LMT);\n\n#result\nprint \"LMT in hr min sec \",LMT\n\n#part2\nLong=45;\nGMT=11+15.0/60+20.0/3600;\n\n#calculation\nLMT=GMT+Long/15*9.8296/3600;\nLMT=deg_to_dms(LMT);\n\n#result\nprint \"LMT in hr min sec \",LMT\n", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "LMT in hr min sec [11, 14, 40.68]\nLMT in hr min sec [11, 15, 49.49]\n" - } - ], - "prompt_number": 107 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": "Example 4.33,Page 153" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#finding LMT\n\n#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n if sd==60:\n m=m+1;\n sd=0;\n \n sd=round(sd,2)\n return [d, m, sd]\nLong=75;\nGMT=6+18.0/60+20.0/3600;\nLST=10+25.0/60+15.0/3600;\n\n#calculation\nLMT=GMT+Long/15*9.8296/3600;\nLST=LST-9.8296/3600*LST;\nLMT=LMT+LST;\nLMT=deg_to_dms(LMT);\n\n#result\nprint \"LMT in hr min sec \",LMT", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "LMT in hr min sec [16, 42, 41.72]\n" - } - ], - "prompt_number": 111 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.34,Page 154" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n if sd==60:\n m=m+1;\n sd=0;\n \n sd=round(sd,2)\n return [d, m, sd]\nGST=7+35.0/60+40.0/3600;\n\n#calculation\nGMT=24-GST-(24-GST)*9.8296/3600;\nGMT=deg_to_dms(GMT);\n\n#result\nprint \"GMT in hr min sec\",GMT", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "GMT in hr min sec [16, 21, 38.74]\n" - } - ], - "prompt_number": 112 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": "Example 4.34,Page 154" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#finding LMT\n\n#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n if sd==60:\n m=m+1;\n sd=0;\n \n sd=round(sd,2)\n return [d, m, sd]\nLong=120.0;\nGMT=12+3.0/60+24.6/3600;\n\n#calculation\nLMT=GMT-17.8/24*Long/15.0/3600;\nLMT=deg_to_dms(LMT);\n\n#result\nprint \"LMT of LAN in hr min sec\",LMT\n\n#part2\nLong=45;\nGMT=12+3.0/60+24.6/3600;\n\n#calculation\nLMT=GMT+17.8/24*Long/15.0/3600;\nLMT=deg_to_dms(LMT);\n\n#result\nprint \"LMT of LAN in hr min sec\",LMT", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "LMT of LAN in hr min sec [12, 3, 18.67]\nLMT of LAN in hr min sec [12, 3, 26.83]\n" - } - ], - "prompt_number": 114 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.35,Page 156" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n if sd==60:\n m=m+1;\n sd=0;\n \n sd=round(sd,2)\n return [d, m, sd]\n#one of the 2 solution\nf0=5+1.9/60;\nn=0.25;\ndel0=0;\ndel1=-0.1;\nd2=23.0;#del1/2\n\n#calculation\nfn=f0+n*d2/60+n*(n-1)/2*(del1+del0)/60;\nfn=deg_to_dms(fn)\n\n#result\nprint \"sun declination in deg min sec\",fn", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "sun declination in deg min sec [5, 7, 39.56]\n" - } - ], - "prompt_number": 117 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.36,Page 157" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n if sd==60:\n m=m+1;\n sd=0;\n \n sd=round(sd,2)\n return [d, m, sd]\nalt=23+40.0/60;\nazi=145.0;\nlat=50.0;\n\n#calculation\ndelta=pi/2-acos(cos(pi/2-lat*pi/180)*cos(pi/2-alt*pi/180)+sin(pi/2-lat*pi/180)*sin(pi/2-alt*pi/180)*cos(azi*pi/180));\nH=acos((cos(pi/2-alt*pi/180)-cos(pi/2-lat*pi/180)*cos(pi/2-delta))/sin(pi/2-lat*pi/180)*sin(pi/2-delta))\nH=deg_to_dms(360-H*180/pi);\ndelta=deg_to_dms(delta*180/pi);\n\n#result\nprint \"there is a calculation mistake in calculating H in the book\"\nprint \"declination in deg min sec\",delta\nprint \"hour angle in deg min sec\",H", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "declination in deg min sec [-10, 3, 51.85]\nhour angle in deg min sec [325, 4, 44.11]\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.37,Page 158" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n if sd==60:\n m=m+1;\n sd=0;\n \n sd=round(sd,2)\n return [d, m, sd]\nalt=25+30.0/60;\nazi=45.0;\nlat=42.0;\n\n#calculation\ndelta=pi/2-acos(cos(pi/2-lat*pi/180)*cos(pi/2-alt*pi/180)+sin(pi/2-lat*pi/180)*sin(pi/2-alt*pi/180)*cos(azi*pi/180));\nH=acos((cos(pi/2-alt*pi/180)-cos(pi/2-lat*pi/180)*cos(pi/2-delta))/sin(pi/2-lat*pi/180)*sin(pi/2-delta))\nH=deg_to_dms(H*180/pi);\ndelta=deg_to_dms(delta*180/pi);\n\n#result\nprint \"declination in deg min sec\",delta\nprint \"hour angle in deg min sec\",H", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "declination in deg min sec [49, 40, 22.06]\nhour angle in deg min sec [93, 58, 30.79]\n" - } - ], - "prompt_number": 122 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.38,Page 158" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#finding hour angle,azimuth\n\n#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n if sd==60:\n m=m+1;\n sd=0;\n \n sd=round(sd,2)\n return [d, m, sd]\ndelta=21.0*pi/180+25.0/60*pi/180;\nlat=25+40.0/60;\n\n#calculation\nH=acos((0-cos(pi/2-lat*pi/180)*cos(pi/2-delta))/sin(pi/2-lat*pi/180)*sin(pi/2-delta));\nA=acos(cos(pi/2-delta)/sin(pi/2-lat*pi/180));\nH=deg_to_dms(360-H*180/pi);\nA=deg_to_dms(A*180/pi);\n\n#result\nprint \"hour angle in deg min sec\",H\nprint \"azimuth in deg min sec\",A", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "hour angle in deg min sec [260, 35, 53.78]\nazimuth in deg min sec [66, 6, 4.59]\n" - } - ], - "prompt_number": 130 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.39,Page 161" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#finding latitude\n\n#initialisation of variable\nimport numpy as np\nfrom scipy import linalg\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n if sd==60:\n m=m+1;\n sd=0;\n \n sd=round(sd,2)\n return [d, m, sd]\n#calculation\nA=np.array([[1,1],[1,-1]]);\nb=np.array([[90],[0]]);\nx=np.linalg.solve(A,b);\n\n#result\nprint \"latitude in degrees\",x[0]", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "latitude in degrees [ 45.]" - }, - { - "output_type": "stream", - "stream": "stdout", - "text": "\n" - } - ], - "prompt_number": 131 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.40,Page 161" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#finding altitude\n\n#initialisation of variable\nimport numpy as np\nfrom scipy import linalg\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n if sd==60:\n m=m+1;\n sd=0;\n \n sd=round(sd,2)\n return [d, m, sd]\ntheta=53+20.0/60;\ndelta=53+20.0/60;\n\n#calculation\nalpha=theta+delta-90;\nalpha=deg_to_dms(alpha);\n\n#result\nprint \"altitude in deg min sec\",alpha", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "altitude in deg min sec [16, 40, 0.0]\n" - } - ], - "prompt_number": 132 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.41,Page 162" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#finding GAT\n\n#initialisation of variable\nimport numpy as np\nfrom scipy import linalg\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n if sd==60:\n m=m+1;\n sd=0;\n \n sd=round(sd,2)\n return [d, m, sd]\nGMT=18+30.0/60;\nET=1.0/60+25.4/3600-0.67*6.5/3600;\n\n#calculation\nGAT=GMT+ET;\nGAT=deg_to_dms(GAT)\n\n#result\nprint \"GAT in hr min sec\",GAT", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "GAT in hr min sec [18, 31, 21.05]\n" - } - ], - "prompt_number": 133 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.42,Page 163" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#finding LMT\n\n#initialisation of variable\nimport numpy as np\nfrom scipy import linalg\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n if sd==60:\n m=m+1;\n sd=0;\n \n sd=round(sd,2)\n return [d, m, sd]\nLong=30.0;\nGAT=13+15.0/60+10.0/3600;\nET=6.0/60+15.35/3600+0.3/3600*1.25278;\n\n#calculation\nLMT=GAT+ET-Long/15.0;\nLMT=deg_to_dms(LMT);\n\n#result\nprint \"LMT in hr min sec\",LMT", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "LMT in hr min sec [11, 21, 25.73]\n" - } - ], - "prompt_number": 134 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.43,Page 163" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#finding LHA\n\n#initialisation of variable\nimport numpy as np\nfrom scipy import linalg\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n if sd==60:\n m=m+1;\n sd=0;\n \n sd=round(sd,2)\n return [d, m, sd]\nLong=45.0;\nE=11+55.0/60+5.0/3600-1.5/6*17.0/3/3600;\n\n#calculation\nGMT=14+40.0/60+Long/15.0;\nGHA=GMT+E;\nLHA=GHA-24-Long/15;\nLHA=deg_to_dms(LHA);\n\n#result\nprint \"LHA of the sun in hr min sec\",LHA\n", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "LHA of the sun in hr min sec [2, 35, 3.58]\n" - } - ], - "prompt_number": 135 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 4.44,Page 164" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#finding GMT\n\n#initialisation of variable\nimport numpy as np\nfrom scipy import linalg\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n if sd==60:\n m=m+1;\n sd=0;\n \n sd=round(sd,2)\n return [d, m, sd]\nE=11+55.0/60+24.0/3600+0.5/3600*(2+40.0/60+21.2/3600);\nGHA=8+35.0/60+45.2/3600;\n\n#calculation\nGMT=GHA+24-E;\nGMT=deg_to_dms(GMT);\n\n#result\nprint \"GMT in hr min sec\",GMT", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "GMT in hr min sec [20, 40, 19.86]\n" - } - ], - "prompt_number": 136 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Surveying_Volume_3/Chapter5.ipynb b/Surveying_Volume_3/Chapter5.ipynb deleted file mode 100755 index 4d4ee9e6..00000000 --- a/Surveying_Volume_3/Chapter5.ipynb +++ /dev/null @@ -1,398 +0,0 @@ -{ - "metadata": { - "name": "S3-C5" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "Uses Of Field Astronomy in surveying" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 5.1,Page 174" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\n#printing result in degree minute and seconds respectively\nl1=11.5;\nl2=13.5;\nr1=8.5;\nr2=6.5;\nalpha=3+15.0/60+28.0/3600;\nOB=121+45.0/60+18.0/3600;\nOA=43+25.0/60+20.51/3600;\n\n#calculation\ngamma=(l1+l2)/4-(r1+r2)/4;\ne=gamma*tan(alpha*pi/180)/3600; #correction\nCH=OB-OA-e;\nCH=deg_to_dms(CH);\n\n#result\nprint \"corrected horizontal angle in deg,min,sec respectively\",CH", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "corrected horizontal angle in deg,min,sec respectively [78, 19, 57.35]\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 5.2,Page 184" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\nalpha=30+32.0/60+18.0/3600;#latitude\nd=16.0/60+2.85/3600; #diameter of sun\n\n#calculation\nC1=-58.0/3600/tan(alpha*pi/180); \nC2=8.8/3600*cos(alpha*pi/180); \nC3=d; \nCL=alpha+C1+C2+C3;\nCL=deg_to_dms(CL);\n\n#result\nprint \"corrected latutude in deg,min,sec respectively\",CL", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "corrected latutude in deg,min,sec respectively [30, 46, 50.12]\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 5.3,Page 184" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\nalpha=40+52.0/60+10.0/3600;#latitude\n\n#calculation\nC1=-58.0/3600/tan(alpha*pi/180);\nCL=alpha+C1;\nCL=deg_to_dms(CL);\n\n#result\nprint \"corrected latutude in deg,min,sec respectively\",CL", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "corrected latutude in deg,min,sec respectively [40, 51, 2.97]\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 5.4,Page 197" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\nLMT=21+23.0/60+05.0/3600; #local chronometer time\nLong=65.0+19.0/60; #longitude\nGST=13+15.0/60+20.0/3600;\nRA=9+32.0/60+15.0/3600;\nLong2=82.0+30.0/60; #longitude of India\n\n#calculation\ne1=Long/15*9.8565/3600; #error\nSIT=RA+24-GST+e1; #sidereal time interval after LMM\ne2=SIT*9.8296/3600; #error\nMI=SIT-e2; #mean interval after LMM\nLMT=LMT-(Long2-Long)/15.0;\nCE=MI-LMT;\nCE=deg_to_dms(CE);\n\n#result\nprint \"chronometer error in hours,min,sec respectively\",CE", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "chronometer error in hours,min,sec respectively [0, 0, 2.56]\n" - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 5.5,Page 198" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\nMST=12+32.0/60+15.0/3600; #mean sidereal time\nRA=15+45.0/60+10.0/3600;\ntheta=55+14.0/60+20.0/3600;#latitude\ndelta=15+24.0/60+30.0/3600;#declination\nalpha=35+44.0/60+10.0/3600;#zenith deistance\n\n#calculation\nc=90-theta;\np=90-delta;\nz=90-alpha;\nH=acos(cos(z*pi/180)/sin(c*pi/180)/sin(p*pi/180)-1/(tan(p*pi/180)*tan(c*pi/180)))\nH=H/15*180/pi;\nLST=RA-H;\nCE=MST-LST;\nCE=deg_to_dms(CE);\n\n#result\nprint \"chronometer error in hours,min,sec respectively\",CE", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "chronometer error in hours,min,sec respectively [0, 0, 12.94]\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 5.6,Page 199" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\nLMTe=6+34.0/60+18.0/3600;# LMT east\nLMTw=8+58.0/60+2.0/3600; # LMT west\nRA=16+11.0/60+25.0/3600;\nLong=125+33.0/60;\nGST=8+25.0/60+14.0/3600;\n\n#calculation\ne1=Long/15*9.8565/3600; #error\nSIT=RA-GST+e1; #sidereal time interval after LMM\ne2=SIT*9.8296/3600;\nMI=SIT-e2; #mean time interval after LMM\nLMTav=(LMTe+LMTw)/2; #mean LMT\nCE=LMTav-MI;\nCE=deg_to_dms(CE);\n\n#result\nprint \"chronometer error in slower side in hours,min,sec respectively\",CE", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "chronometer error in slower side in hours,min,sec respectively [0, 0, 6.9]\n" - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 5.7,Page 204" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\nLMM=15+9.0/60+5.21/3600;# mean LMT\nGMT=10+9.0/60+3.76/3600;\nLong=75.0;#longitude\nalpha=42+30.0/60+42.0/3600;\ntheta=34+48.0/60+12.0/3600;\ndelta=15+36.0/60+48.0/3600;\n\n#calculation\nH=acos(sin(alpha*pi/180)/cos(theta*pi/180)/cos(delta*pi/180)-(tan(delta*pi/180)*tan(theta*pi/180)))\nH=H/15*180/pi;\nGAT=12+H-Long/15;\nLMT=GAT+Long/15-5.0/60-40.0/3600;\nCE=LMM-LMT;\nCE=deg_to_dms(CE);\n\n#result\nprint \"chronometer error in slower side in hours,min,sec respectively\",CE", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "[0, 0, 1.45] chronometer error in slower side in hours,min,sec respectively\n" - } - ], - "prompt_number": 23 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 5.8,Page 219" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\nd=5+1.0/60+50.0/3600;\ndel1=75+14.0/60+20.0/3600;\ndel2=70+12.0/60+30.0/3600;\n\n#calculation\nk=cos(del1*pi/180)/cos(del2*pi/180);\nA2=pi/2-atan((cos(d*pi/180)-k)/sin(d*pi/180));\nA2=A2*180/pi;\nA2=120+15.0/60+10.0/3600-A2;\nCR=360-A2;\nA2=deg_to_dms(A2);\nCR=deg_to_dms(CR);\n\n#result\nprint \"azimuth of angle R in degree,minites,seconds respectively\",A2\nprint \"true bearing of CR in degree,minites,seconds respectively\",CR", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "azimuth of angle R in degree,minites,seconds respectively [100, 27, 40.0]\ntrue bearing of CR in degree,minites,seconds respectively [259, 32, 20.0]\n" - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 5.9,Page 223" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\na=26.0/60+51.0/3600;\np=56.0/60+5.1/3600;#polar distance\n\n#calculation\nH=acos(a/p);\nA=p*sin(H)/cos(30.75694*pi/180);\nCR=25+35.0/60+40.0/3600-A;\nCR=deg_to_dms(CR);\n\n#result\nprint \"azimuth of angle CR in degree,minites,seconds respectively\",CR", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "azimuth of angle CR in degree,minites,seconds respectively [24, 38, 22.01]\n" - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 5.10,Page 227 " - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\nLong=75.0;#longitude\nGST=11+40.0/60+32.4/3600;\nRA=12+25.0/60+18.35/3600;\nGMT=15+45.0/60+25.3/3600;\ndelta=22+6.0/60+32.5/3600;\n\n#calculation\ne1=Long/15*9.8565/3600;\nLSTofLMM=GST-e1;\nLMT=GMT+Long/15;\nSIT=LMT+LMT*9.8565/3600;#sidereal time interval\nLHA=SIT+LSTofLMM;\nH=RA+24-LHA;\nH=H*15;\nB=atan(tan(delta*pi/180)*tan(H*pi/180));\nB=B*180/pi;\nA=atan(tan(H*pi/180)*cos(B*pi/180)/sin((B-32-15.0/60)*pi/180))\nA=A*180/pi;\nTB=360+A-135-15.0/60-20.0/3600;\nTB=deg_to_dms(TB);\n\n#result\nprint \"true bearing TB in degree,minites,seconds respectively\",TB\nprint \"there is slight difference in the answers due to rounding off error in the book\"", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "true bearing TB in degree,minites,seconds respectively [313, 17, 36.07]\nthere is slight difference in the answers due to rounding off error in the book\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 5.11,Page 237" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\nz=51+47.0/60+18.0/3600;#zenith distance\np=88+57.0/60+57.0/3600;#polar distance\nc=61+27.0/60+55.0/3600;#co-latitude\n\n#calculation\ns=(z+p+c)/2;\nA=2*atan(sqrt(sin((s-z)*pi/180)/sin(s*pi/180)*sin((s-c)*pi/180)/sin((s-p)*pi/180)));\nA=A*180/pi;\nTB=360-A-165-18.0/60-20.0/3600;\nTB=deg_to_dms(TB);\n\n#result\nprint \"true bearing TB in degree,minites,seconds respectively\",TB", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "true bearing TB in degree,minites,seconds respectively [80, 59, 47.52]\n" - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 5.12,Page 241" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#finding latitude\n\n#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\nz2=90-40-13.0/60-15.0/3600;\ndel2=12+15.0/60+30.0/3600;#declination of star\n\n#calculation\ntheta=z2+del2;\ntheta=deg_to_dms(theta);\n\n#result\nprint \"altitude in degree,minites,seconds respectively\",theta", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "altitude in degree,minites,seconds respectively [62, 2, 15.0]\n" - } - ], - "prompt_number": 9 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 5.13,Page 244" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\nalpha1=30+45.0/60+25.0/3600;\nalpha2=40+48.0/60+30.0/3600;\n\n#calculation\ne1=-58/3600/tan(alpha1*pi/180); #error 1\ne2=-58/3600/tan(alpha2*pi/180); #error 2\ntheta=(alpha1+alpha2+e1+e2)/2;\ntheta=deg_to_dms(theta)\n\n#result\nprint \"latitude in degree,minites,seconds respectively\",theta", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "latitude in degree,minites,seconds respectively [34, 21, 48.1]\n" - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 5.14,Page 258" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\nZP=37+29.0/60+40.0/3600;#colatitde\nZM=56+24.0/60+50.0/3600;#coaltitude\nPM=67+54.0/60+24.0/3600;#codeclination\n\n#calculation\nA1=acos((cos(PM*pi/180)-cos(ZP*pi/180)*cos(ZM*pi/180))/(sin(ZP*pi/180)*sin(ZM*pi/180)));\nA1=A1*180/pi;\nA=360-A1;\nA=deg_to_dms(A);\n\n#result\nprint \"azimuth of sun in degree,minites,seconds respectively\",A", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "azimuth of sun in degree,minites,seconds respectively [262, 53, 12.16]\n" - } - ], - "prompt_number": 11 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 5.15,Page 259" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\ntheta=54+30.0/60;#latitude\ndelta=62+12.0/60+21.0/3600;#declination\n\n#calculation\nalpha=asin(sin(theta*pi/180)/sin(delta*pi/180));\nA1=acos(tan(theta*pi/180)/tan(alpha));\nA1=A1*180/pi;\nTB=360-A1-65-18.0/60-42.0/3600;\nTB=deg_to_dms(TB);\nalpha=deg_to_dms(alpha*180/pi);\nH=atan(tan(theta*pi/180)/tan(delta*pi/180));\nH=deg_to_dms(H*180/pi);\n\n#result\nprint \"true bearing in degree,minites,seconds respectively\",TB\nprint \"altitude in degree,minites,seconds respectively\",alpha\nprint \"hour angle in degree,minites,seconds respectively\",H", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "true bearing in degree,minites,seconds respectively [241, 16, 19.55]\naltitude in degree,minites,seconds respectively [66, 58, 7.13]\nhour angle in degree,minites,seconds respectively [36, 27, 49.32]\n" - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 5.16,Page 261" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\nalpha=44+12.0/60+30.0/3600;\nd=15.0/60+45.86/3600;#diameter correction\nLong=7+20.0/60+15.0/3600;#longitude\n\n#calculation\nalpha=alpha+d-58/3600/tan(alpha)+8.8/3600*cos(alpha);\nGAT=Long/15;\ne2=6.82/3600*GAT;\ndelta=22+18.0/60+12.8/3600+e2;\ntheta=delta+90-alpha;\ntheta=deg_to_dms(theta);\n\n#result\nprint \"altitude in degree,minites,seconds respectively\",theta", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "[67, 49, 51.7] altitude in degree,minites,seconds respectively\n" - } - ], - "prompt_number": 47 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 5.17,Page 262" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\nGMT=16+22.0/60+55.0/3600;\nET=3.0/60+43.0/3600;\nc=90-42-20.0/60;\np=90-18-45.0/60-50.0/60;\nz=90-43-38.0/60;\n\n#calculation\nH=acos(cos(z*pi/180)/sin(c*pi/180)/sin(p*pi/180)-1/tan(c*pi/180)*1/tan(p*pi/180));\nH=H*180/pi;\nLAT=12-H/15;\nLMT=LAT-ET;\nLong=GMT-LMT;\nLong=Long*15;\nLong=deg_to_dms(Long);\n\n#result\nprint \"Longitude in degree,minites,seconds respectively\",Long", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "Longitude in degree,minites,seconds respectively [114, 50, 53.21]\n" - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 5.18,Page 263" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\nalpha=21+35.0/60+30.0/3600;#mean observed altitude\nC=(4.5+5.5-3.5-2.5)/4*15.0/3600;\nc=44+30.0/60;#colatitude\nz=68+26.0/60+34.0/3600;#coaltitude\np=94+4.0/60+15.0/3600;#codeclination\ns=(c+p+z)/2;\n\n#calculation\ncr=-58/3600/tan(alpha);#correction refraction\ncp=8.8/3600*cos(alpha);#correction parallax\nalpha=alpha+C+cr+cp; #corrected altitude\nA=2*atan(sqrt(sin((s-z)*pi/180)/sin(s*pi/180)*sin((s-c)*pi/180)/sin((s-p)*pi/180)));\nA=A*180/pi;\nMh=(121+45.0/60+20.0/3600+122+47.0/60)/2;#mean horizontal angle\nAZ=360-Mh-A;\nAZ=deg_to_dms(AZ);\n\n#result\nprint \"Azimuth from north(clockwise) in degree,minites,seconds respectively\",AZ", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "[117, 0, 19.45] Azimuth from north(clockwise) in degree,minites,seconds respectively\n" - } - ], - "prompt_number": 55 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Surveying_Volume_3/Chapter6.ipynb b/Surveying_Volume_3/Chapter6.ipynb deleted file mode 100755 index 3fb19c9c..00000000 --- a/Surveying_Volume_3/Chapter6.ipynb +++ /dev/null @@ -1,629 +0,0 @@ -{ - "metadata": { - "name": "S3-C6" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "Photogrammetry" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 6.1,Page 281" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,sqrt,acos,asin,atan,cos,sin,tan\nDa=184.32;\nDb=95.84;\nAx=-115.0\nBy=-115.0;\n\n#calculation\nphi=atan(Ax/By);\nAB=sqrt(Ax**2+By**2);\ntheta=acos((Da**2+AB**2-Db**2)/2/Da/AB);\nalpha=phi-theta;\nxc=Da*cos(alpha)-115.0;\nyc=-Da*sin(alpha);\n\n#result\nprint \"the coordiantes in mm x is\",round(xc),\"y is\",round(yc,2)", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "the coordiantes in mm x is 64.0 y is -43.72\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 6.2,Page 290" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,sqrt,acos,asin,atan,cos,sin,tan\nf=0.152;\nH=1800;#elevation of topmost point\nh=300;#elevation of ground\n\n#calculation\nS=f/(H-h);\n\n#result\nprint \"scale of photograph in 1 in\",round(1/S)", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "scale of photograph in 1 in 9868.0\n" - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 6.3,Page 290" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,sqrt,acos,asin,atan,cos,sin,tan\nf=0.150 #focal length\nh1=1500.0;#elevation A\nh2=1200.0;#elevation B\nh3=1000.0;#elevation C\nH=3000.0;#height\n\n#calculation\nhav=1.0/3*(h1+h2+h3);\nS1=f/(H-h1);\nS2=f/(H-h2);\nS3=f/(H-h3);\nSav=f/(H-hav);\n\n#result\nprint \"scale of point 1 in 1 in\",round(1/S1);\nprint \"scale of point 2 in 1 in\",round(1/S2);\nprint \"scale of point 3 in 1 in\",round(1/S3);\nprint \"average scale in 1 in\",round(1/Sav);", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "scale of point 1 in 1 in 10000.0\nscale of point 2 in 1 in 12000.0\nscale of point 3 in 1 in 13333.0\naverage scale in 1 in 11778.0\n" - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 6.4,Page 292" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,sqrt,acos,asin,atan,cos,sin,tan\nab=188.0;\nAB=120;\nSm=1.0/20000;\n\n#calculation\nS=ab/AB*Sm;\n\n#result\nprint \"scale of photograph in 1 in\",round(1/S)", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "scale of photograph in 1 in 12766.0\n" - } - ], - "prompt_number": 15 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 6.5,Page 295" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,sqrt,acos,asin,atan,cos,sin,tan\nxa=45.35;\nxb=-40.16;\nf=152.4;#focal length\nH=1500.0;#actual height\nha=200.0;#height A\nhb=150.0;#height B\nya=38.41;\nyb=-45.65;\n\n#calculation\nXa=xa*(H-ha)/f;\nYa=ya*(H-hb)/f;\nXb=xb*(H-ha)/f;\nYb=yb*(H-hb)/f;\nAB=sqrt((Xb-Xa)**2+(Yb-Ya)**2);\n\n#result\nprint \"distance of AB in m\",round(AB,3)", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "distance of AB in m 1042.361\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 6.6,Page298" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,sqrt,acos,asin,atan,cos,sin,tan\nd=62.4;#displacement\nH=250.0;#height of datum\nr=115.4;#image distance\n\n#calculation\nh=H*d/r;\n\n#result\nprint \"height of chimney in m\",round(h,3)", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "height of chimney in m 135.182\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 6.7,Page 299" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,sqrt,acos,asin,atan,cos,sin,tan\nra=88.25;#image distance of A\nrb=81.23;#image distance of B\nrc=68.14;#image distance of C\nH=2000.0;\nha=255;\nhb=200;\nhc=145;\nf=0.1524;\n\n#calculation\naa=ra*ha/H;\nbb=rb*hb/H;\ncc=rc*hc/H;\nS=f/H;\n\n#result\nprint \"relief distance of A in mm\",round(aa,2)\nprint \"relief distance of B in mm\",round(bb,2)\nprint \"relief distance of C in mm\",round(cc,2)\nprint \"scale of photograph in 1 in\",round(1/S)", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "relief distance of A in mm 11.25\nrelief distance of B in mm 8.12\nrelief distance of C in mm 4.94\nscale of photograph in 1 in 13123.0\n" - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 6.8,Page 300" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,sqrt,acos,asin,atan,cos,sin,tan\nf=0.1524;#focal length\nS=0.08251/1000;#scale\n\n#calculation\nH=f/S;\n\n#result\nprint \"flying height in m\",round(H,3)", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "flying height in m 1847.049\n" - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 6.9,Page 300" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,sqrt,acos,asin,atan,cos,sin,tan\nimport numpy as np\n\n#solving the quadratic polynomial in H\n#0=0.4064-365.929H-289685.07\ncoeff=[0.4064, -365.929,-289685.926];\nH=np.roots(coeff);\n\n#result\nprint \"height required in m\",round(H[0],2)", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "height required in m 1407.02\n" - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 6.10,Page 309" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,sqrt,acos,asin,atan,cos,sin,tan\nS=1.0/10000;#scale\nA=500.0;#area\npw=0.3;\nl=0.23;\nw=0.23;\n\n#calculation\na=(1-0.6)*(1-pw)*l*w/S**2/1000/1000;\nN=A/a;\n\n#result\nprint \"no. of photographs taken\",round(N)", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "no. of photographs taken 338.0\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 6.11,Page 310" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,sqrt,acos,asin,atan,cos,sin,tan\nL=25.0e3;\nk=0.23e4;#l/s=w/s;\npl=0.6;\npw=0.3;\nW=20.0e3;\n\n#calculation\nN=((L/((1-pl)*k)+1))*((W/((1-pw)*k)+1)+1);\n\n#result\nprint \"no. of photographs taken\",round(N)", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "no. of photographs taken 406.0\n" - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 6.12,Page 310" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,sqrt,acos,asin,atan,cos,sin,tan\nf=0.1524;#focal length\nS=1.0/10000;#scale\npw=0.3;#side lap\nw=0.23;#format width\npl=0.6;\nl=0.23;\n\n#calculation\nW=(1-pw)/S*w;\nH=f/S+300;\nN2=30/W+1;\nN2=round(N2)\nL=(1-pl)*1/S*l/1000;\nT=3600*L/240.0;\nAd=T*240e3/60.0/60.0;#adjusted ground distance\nN1=40.0e3/Ad+1;\nN1=round(N1)\nN=N1*N2;\n\n#result\nprint \"height over datum in m\",H\nprint \"no. of flight strips\",round(N2-1)\nprint \"length of each photograph cover in km\",round(L,3)\nprint \"exposure time in s\",round(T)\nprint \"no. of photographs taken\",round(N)", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "height over datum in m 1824.0\nno. of flight strips 0.0\nlength of each photograph cover in km 0.92\nexposure time in s 14.0\nno. of photographs taken 44.0\n" - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 6.12b,Page 317" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,sqrt,acos,asin,atan,cos,sin,tan\nt=3.0/180*pi;\nya=82.25;\nxa=-62.45;\ns=220;\nf=152.4;#focal length\nH=2500.0e3;\nh=500.0e3;\n\n#calculation\ntheta=s-180;\nya_dash=xa*sin(theta*pi/180)+ya*cos(theta*pi/180)+f*tan(t)\nS=(f/cos(t)-ya_dash*sin(t))/(H-h);\n\n#result\nprint \"scale of photograph in 1 in\",round(1/S)", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "scale of photograph in 1 in 13246.0\n" - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 6.13,Page 319" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,sqrt,acos,asin,atan,cos,sin,tan\nt=3*pi/180;\nxa=-62.45;\nxb=78.25;\nf=152.4;#focal length\nH=2500.0;#actual height\nhb=800#height B\nha=500.0;#height A\nya=82.25;\nyb=-41.15;\ns=220.0;\n\n#calculation\ntheta=s-180;\nya1=xa*sin(theta*pi/180)+ya*cos(theta*pi/180)+f*tan(t); # ya'\nxa1=xa*cos(theta*pi/180)-ya*sin(theta*pi/180); #xa'\nxb1=xb*cos(theta*pi/180)-yb*sin(theta*pi/180); #xb'\nyb1=xb*sin(theta*pi/180)+yb*cos(theta*pi/180)+f*tan(t); # yb'\nXa=xa1*(H-ha)/(f/cos(t)-ya1*sin(t));\nXb=xb1*(H-hb)/(f/cos(t)-yb1*sin(t));\nYa=ya1*cos(t)*(H-ha)/(f/cos(t)-ya1*sin(t));\nYb=yb1*cos(t)*(H-hb)/(f/cos(t)-yb1*sin(t));\nAB=sqrt((Xb-Xa)**2+(Yb-Ya)**2);\n\n#result\nprint \"distance of AB in m\",round(AB,3)\n", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "distance of AB in m 2307.753\n -100.708756369 78.25 82.25 -41.15 0.642787609687\n" - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 6.14,Page 324" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,sqrt,acos,asin,atan,cos,sin,tan\nri=95.0;\nf=152.4;\nt=3*pi/180;\nl=50*pi/180;\n\n#calculation\ndt=ri**2*sin(t)*cos(l)**2/(f-ri*sin(t)*cos(l));\n \n#result\nprint \"tilt displacement of the image in mm\",round(dt,2)", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "tilt displacement of the image in mm 1.31\n" - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 6.15,Page 351" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,sqrt,acos,asin,atan,cos,sin,tan\nd=230.0;#square side\nf=152.4#focal length\npl=0.6;\n\n#calculation\nk=(1-pl)*d/f;\nV=k/0.15;\n\n#result\nprint \"vertical exaggeration is\",round(V,2)", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "vertical exaggeration is 4.02\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 6.16,Page 360" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,sqrt,acos,asin,atan,cos,sin,tan\nxa=51.23;\nxb=91.48;\nya=48.33;\nyb=-51.63;\nf=152.4;#focal length\nB=425.0;#actual height\nhb=842.86#height B\nha=820.97;#height A\nr1=10.42;\nr2=9.67;\nb1=89.12;#b'\nb=89.43;\nra=11.62;\nrb=14.53;\n\n#calculation\nC=0.5*((b1-r1)+(b-r2))\npa=C+ra;\npb=C+rb;\nXa=B*xa/pa;\nXb=xb*B/pb;\nYa=ya*B/pa;\nYb=yb*B/pb;\nAB=sqrt((Xb-Xa)**2+(Yb-Ya)**2);\n\n#result\nprint \"distance of AB in m\",round(AB,3)", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "distance of AB in m 492.28\n" - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 6.17,Page 363" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,sqrt,acos,asin,atan,cos,sin,tan\nC=79.0;\nra=11.42;#elevarion in image\nrb=15.65;#elevarion in image\nhb=651;#height of B\nH=1500;#height\n\n#calculation\ndelp=ra-rb;#pa=ra+c and pb=rb+c so ra-rb=pa-pb\npa=ra+C;\nha=hb+delp/pa*(H-hb);\n\n#result\nprint \"height of A in m\",round(ha,3)", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "height of A in m 611.282\n" - } - ], - "prompt_number": 11 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 6.18,Page 364" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,sqrt,acos,asin,atan,cos,sin,tan\nB=741.0;\nf=152.4;\npa=94.32;\nha=325;\n\n#calculation\nH=ha+B*f/pa;\n\n#result\nprint \"height in m\",round(H,3)", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "height in m 1522.29\n" - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 6.19,Page 364" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,sqrt,acos,asin,atan,cos,sin,tan\nH=1632.0;\nf=152.4;#focal length\npa=82.75;\nha=283;\n\n#calculation\nB=pa/f*(H-ha);\n\n#result\nprint \"width of air base in m\",round(B,3)", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "width of air base in m 732.479\n" - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 6.20,Page 377" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,sqrt,acos,asin,atan,cos,sin,tan\nalpha=50.0;\nbeta=46.0;\nf=300.0;\nxa=24.0;\nxb=30.0;\nbeta=46.0;\n\n#calculation\ndela=xa/f;\ndelb=xb/f;\nA=alpha+dela*180/pi; #angle A\nB=beta-delb*180/pi; #angle B\nD=180-A-B;\nAD=1300.0*sin(B*pi/180)/sin(D*pi/180);\nY=6/(sqrt(xa**2+f**2))*AD;\nRD=60.12+Y;\n\n#result\nprint \"distance of AD in m\",round(AD,2)\nprint \"RL of D in m\",round(RD,2)", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "distance of AD in m 843.34\nRL of D in m 76.93\n" - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 6.21,Page 378" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,sqrt,acos,asin,atan,cos,sin,tan\nf=152.4;\nL=120;#length\nx1=40.0;\nx2=-90.0;\n\n#calculation\nX=f*L/(x1-x2);\nY=L*x1/(x1-x2);\nh=X*(30-20)/f;\n\n#result\nprint \"the coordinates of D in m is X=\",round(X,2),\"Y =\",round(Y,2);\nprint \"elevation of D in m\",round(h,2)", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "the coordinates of D in m is X= 140.68 Y = 36.92\nelevation of D in m 9.23\n" - } - ], - "prompt_number": 15 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 6.22,Page 380" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,sqrt,acos,asin,atan,cos,sin,tan\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\nf=150.4;\nxc=-32.43;\nxd=9.52;\n\n#calculation\nthc=atan(xc/f);\nthd=atan(xd/f);\nth=thd-thc;\nth=th*180/pi;\nAz=325+15.0/60+th;\nAz=deg_to_dms(Az);\n\n#result\nprint \"Azimuth of D in deg,min,sec respectively\",Az", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "Azimuth of D in deg,min,sec respectively [341, 2, 23.9]\n" - } - ], - "prompt_number": 16 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 6.23,Page 382" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,sqrt,acos,asin,atan,cos,sin,tan\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\nBC=66.0;\nAC=81.6;\nxb=3.0;\nya=1.25;\nxa=3.3;\ntheta=23+43.0/60;\n\n#calcualtions\nf=(xa+xb)/2/tan(theta*pi/180)+sqrt((xa+xb)**2/4/(tan(theta*pi/180))**2+xa*xb);\naa=atan(ya/sqrt(xa**2+f**2))\nVa=AC*tan(aa);\nab=atan(-1.87/sqrt(xa**2+f**2));\nVb=-BC*tan(ab);\n\n#result\nprint \"focal length in cm\",round(f,2)\nprint \"horizontal distance in m\",round(Vb+Va,2)\n", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "focal length in cm 15.0\nhorizontal distance in m 14.68\n" - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 6.24,Page 383" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,sqrt,acos,asin,atan,cos,sin,tan\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\nEab=300.0;#average elevation\nf=152.4;\nxa=28.4;\nxb=-22.5;\nya=24.5;\nyb=38.4;\nHa=2322.0;\nha=400.0;\nhb=200.0;\nab=61.05;\nAB=810;\n\n#calculation\nHa=300+AB/ab*f;\nXa=round((Ha-ha)/f*xa,2);\nXb=round((Ha-ha)/f*xb,2);\nYa=round((Ha-hb)/f*ya,2);\nYb=round((Ha-hb)/f*yb,2);\nAB=sqrt((Xa-Xb)**2+(Ya-Yb)**2);\nH=300+810/AB*(Ha-Eab);\nXa=(H-ha)/f*xa;\nXb=(H-ha)/f*xb;\nYa=(H-hb)/f*ya;\nYb=(H-hb)/f*yb;\nAB1=sqrt((Xa-Xb)**2+(Ya-Yb)**2);\n\n#result\nprint \"Xb is calculated wrong in the book that resulted in the error\"\nprint \"length AB in m\", round(AB,2)\nprint \"corrected length AB in m\", round(AB1,2)\nprint \"flying height in m\",round(H,3)\n\n", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "length AB in m 670.47\ncorrected length AB in m 816.12\nflying height in m 2742.807\n" - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 6.25,Page 386" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,sqrt,acos,asin,atan,cos,sin,tan\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\nAB=300.0;\nab=102.4;\nf=152.4;#focal length\nhab=320.0;\nd=7.8;\nr=75.4;\n\nH=hab+AB/ab*f;\nh=d*H/r;\n\n#result\nprint \"height difference in m\",round(h,2)", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "height difference in m 79.29\n" - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 6.26,Page 386" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,sqrt,acos,asin,atan,cos,sin,tan\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\nf=152.4;\nb=74.25;\nht=100.0;\nH=700.0;#flying height\n\n#calculation\nB=b*H/f;\npb=f*B/H;\npt=f*B/(H-ht);\ndelp=pt-pb;\nht=delp/pt*(H);\n\n#result\nprint \"error due to parallax in mm\",round(delp,2)\nprint \"height of chimney in m\",round(ht,2)", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "error due to parallax in mm 12.38\nheight of chimney in m 100.0\n" - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 6.27,Page 387" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,sqrt,acos,asin,atan,cos,sin,tan\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\nB=180.0;\nf=120.0;\npa=54.32\npb=46.35;\n\n#calculation\ndelH=B*f/pa/pb*(pa-pb);\n\n#result\nprint \"height difference in m\",round(delH,2)", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "height difference in m 68.38\n" - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Example 6.28,Page 387" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#initialisation of variable\nfrom math import pi,sqrt,acos,asin,atan,cos,sin,tan\nL1=30000.0;\npl=0.6;\nk=12000.0*0.2;#=l/S and w/S\npw=0.3;\nW1=24000;\n\n#calculation\nN=round(((L1/((1-pl)*k)+1)+1))*round(((W1/((1-pw)*k)+1)+1));\nNf=N/33-1;#flight strips\ngd=(1-pl)*k;#grounf distance\nI=gd/(200e3)*60.0*60.0;#exposure interval\nad=round(I)/60.0/60*200e3;#actual distance\n\n#result\nprint \"no. of photographs taken\",round(N)\nprint \"no. of flight strips\",Nf\nprint \"ground distance in m\",round(gd,2)\nprint \"exposure interval in s\", round(I)\nprint \"actual distance in m\",round(ad,2)", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "no. of photographs taken 528.0\nno. of flight strips 15.0\nground distance in m 960.0\nexposure interval in s 17.0\nactual distance in m 944.44\n" - } - ], - "prompt_number": 35 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Surveying_Volume_3/Chapter_1_.ipynb b/Surveying_Volume_3/Chapter_1_.ipynb deleted file mode 100755 index da68e1c2..00000000 --- a/Surveying_Volume_3/Chapter_1_.ipynb +++ /dev/null @@ -1,3834 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:4905c8953e99a0af987b7c0ce644a5ad7cb3e945c4ca11d9468aa082d89ca9a1" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "FIELD ASTRONOMY" - ] - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.1, Page 30" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin\n", - "#part1\n", - "a =40; # longitude of A\n", - "b =73; # longitude of B\n", - "\n", - "#calculation\n", - "dol =b-a; # difference of longitude\n", - "\n", - "#result\n", - "print \" difference of longitude is in degrees\",round(dol);\n", - "\n", - "#part2\n", - "a =20; # longitude of A\n", - "b =150; # longitude of B\n", - "\n", - "#calculation\n", - "dol =b-a; # difference of longitude\n", - "\n", - "#result\n", - "print \" difference of longitude is in degrees \",round(dol);\n", - "\n", - "#part3\n", - "a =-20; # longitude of A\n", - "b =50; # longitude of B\n", - "\n", - "#calculation\n", - "dol =b-a; # difference of longitude\n", - "\n", - "#result\n", - "print \" difference of longitude is in degrees\",round(dol);\n", - "\n", - "#part4\n", - "a =-40; # longitude of A\n", - "b =150; # longitude of B\n", - "\n", - "#calculation\n", - "dol =360-(b-a); # difference of longitude\n", - "\n", - "#result\n", - "print \" difference of longitude is in degrees\",round(dol);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " difference of longitude is 33.0\n", - " difference of longitude is 130.0\n", - " difference of longitude is 70.0\n", - " difference of longitude is 170.0\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.2.1,Page 31" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos\n", - "latA =28.0+42.0/60.0; # latitude of A\n", - "lonA =31.0*60.0+12.0; # longitude of A\n", - "latB =28.0+42.0/60.0; # latitude of B\n", - "lonB =47.0*60.0+24.0; # longitude of B\n", - "\n", - "#calculation\n", - "d=( lonB - lonA )*cos( latA /180* pi);\n", - "\n", - "#result\n", - "print \" distance between A & B in (km) \",round(d *1.852,3)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " distance between A & B in (km) 1578.989\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.2.2,Page 31" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos\n", - "latA =12.0+36.0/60.0; # latitude of A\n", - "lonA =115.0*60.0+6.0; # longitude of A\n", - "latB =12.0+36.0/60.0; # latitude of B\n", - "lonB =-150.0*60.0-24.0; # longitude of B\n", - "\n", - "#calculation\n", - "d=( 360*60+lonB - lonA )*cos( latA /180* pi);\n", - "\n", - "#result\n", - "print \" distance between A & B in (km) \",round(d *1.852,3) " - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " distance between A & B in (km) 10247.946\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.3,Page 31" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "latA =15;\n", - "latB =12.0+6.0/60.0;\n", - "lonA =50.0+12.0/60.0;\n", - "lonB =54.0;\n", - "Re =6370.0; # radius of earth\n", - "\n", - "#calculation\n", - "b=(90 - latA )*pi /180;\n", - "a=(90 - latB )*pi /180;\n", - "P=( lonB - lonA )*pi /180;\n", - "p= acos ( cos (P)*sin(a)* sin (b)+ cos (a)*cos(b)); #spherical triangle law\n", - "x= atan ( cos (a/2-b/2)/ cos (a/2+b /2) * tan (pi /2-P /2) );#spherical triangle law \n", - "y= atan ( sin (a/2-b/2)/ sin (a/2+b /2) * tan (pi /2-P /2) ); #spherical triangle law\n", - "dol =pi -x-y;\n", - "dol=dol*180/pi;\n", - "a= dol *3600 %60;\n", - "b= ((dol *3600 -a)%3600) /60;\n", - "c=( dol *3600 - b*60 -a) /3600;\n", - "\n", - "#result\n", - "print \" distance from A to B in (km) \",round(p*Re,3);\n", - "print \" direction of B from A towards east of south \",round(a,3),\"seconds\",b,\"minutes\",c,\"degrees\";\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " distance from A to B in (km) 522.104\n", - " direction of B from A towards east of south 35.16 seconds 19.0 minutes 52.0 degrees\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.4,Page 33" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan,asin\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = (md - m) * 60\n", - " sd=round(sd,2)\n", - " return [d, m, sd]\n", - "latA =45.0;\n", - "a1=45.0+13.108/60;\n", - "p =(300.0/60.0) *pi /180; # side AB\n", - "b=(90 - latA )*pi /180; # side PA\n", - "\n", - "# calculation\n", - "a= acos ( cos (p)*cos(b)); # side BP\n", - "BC=a *180/ pi - latA ;\n", - "d=BC *1.852*60;\n", - "B=asin(sin(latA*pi/180)/sin(a1*pi/180));\n", - "B=deg_to_dms(B*180/pi);\n", - "\n", - "\n", - "#result\n", - "print \" distance of BC in (km)\",round(d,3)\n", - "print \"the angle in deg,min,sec is\",B" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " distance of BC in (km) 24.181\n", - "the angle in deg,min,sce is [85, 0, 33.27]\n" - ] - } - ], - "prompt_number": 27 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.6.1,Page 37" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "delta =42+15.0/60; # declination of star\n", - "theta =26+40.0/60; # lattude of star\n", - "\n", - "#caculation\n", - "zend =90.0 - theta -90+ delta ;\n", - "alt =90.0 - zend ;\n", - "\n", - "#for zenith distance\n", - "#a= zend *3600 %60;\n", - "b= ((zend *3600 )%3600) /60;\n", - "c=( zend *3600 - b*60 -a) /3600;\n", - "print \" zenith distance \",round(a,3),\"seconds\",b,\"minutes\",c,\"degrees\";\n", - "\n", - "#for altitude\n", - "a= alt *3600 %60;\n", - "b= ((alt *3600 -a)%3600) /60;\n", - "c=( alt *3600 - b*60 -a) /3600;\n", - "print \" altitude of star \",round(a,3),\"seconds\",b,\"minutes\",c,\"degrees\";\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " zenith distance 0.0 seconds 35.0 minutes 15.0 degrees\n", - " altitude of star 0.0 seconds 25.0 minutes 74.0 degrees\n" - ] - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.6.2,Page 36" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "delta =23+20.0/60; # declination of star\n", - "theta =26+40.0/60; # lattude of star\n", - "\n", - "#caculation\n", - "zend =90.0 + theta -90- delta ;\n", - "alt =90.0 - zend ;\n", - "\n", - "#for zenith distance\n", - "a= zend *3600 %60;\n", - "b= ((zend *3600 -a)%3600) /60;\n", - "c=( zend *3600 - b*60 -a) /3600;\n", - "print \" zenith distance \",round(a,3),\"seconds\",b,\"minutes\",c,\"degrees\";\n", - "\n", - "#for altitude\n", - "\n", - "b= ((alt *3600 )%3600) /60;\n", - "c=( alt *3600 - b*60 -a) /3600;\n", - "print \" altitude of star \",round(a,3),\"seconds\",b,\"minutes\",c,\"degrees\";" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " zenith distance 0.0 seconds 20.0 minutes 3.0 degrees\n", - " altitude of star 0.0 seconds 40.0 minutes 86.0 degrees\n" - ] - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.6.3,Page 37" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "delta =65+40.0/60; # declination of star\n", - "theta =26+40.0/60; # lattude of star\n", - "\n", - "#caculation\n", - "zend =90.0 - theta -90+ delta ;\n", - "alt =90.0 - zend ;\n", - "\n", - "#for zenith distance\n", - "a= zend *3600 %60;\n", - "b= ((zend *3600 -a)%3600) /60;\n", - "c=( zend *3600 - b*60 -a) /3600;\n", - "print \" zenith distance \",round(a,3),\"seconds\",b,\"minutes\",c,\"degrees\";\n", - "\n", - "#for altitude\n", - "a= alt *3600 %60;\n", - "b= ((alt *3600 -a)%3600) /60;\n", - "c=( alt *3600 - b*60 -a) /3600;\n", - "print \" altitude of star \",round(a,3),\"seconds\",b,\"minutes\",c,\"degrees\";" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " zenith distance 0.0 seconds 0.0 minutes 39.0 degrees\n", - " altitude of star 0.0 seconds 0.0 minutes 51.0 degrees\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.7,Page 37" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "delta =85+20.0/60; # declination of star\n", - "theta =46+50.0/60; # lattude of star\n", - "\n", - "#caculation\n", - "zend =90.0 - theta +90- delta ;\n", - "alt =90.0 - zend ;\n", - "\n", - "#for zenith distance\n", - "\n", - "b= ((zend *3600 )%3600) /60;\n", - "c=( zend *3600 - b*60 -a) /3600;\n", - "print \" zenith distance \",round(a,3),\"seconds\",b,\"minutes\",c,\"degrees\";\n", - "\n", - "#for altitude\n", - "a= alt *3600 %60;\n", - "b= ((alt *3600 -a)%3600) /60;\n", - "c=( alt *3600 - b*60 -a) /3600;\n", - "print \" altitude of star \",round(a,3),\"seconds\",b,\"minutes\",c,\"degrees\";" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " zenith distance 0.0 seconds 50.0 minutes 47.0 degrees\n", - " altitude of star 0.0 seconds 10.0 minutes 42.0 degrees\n" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.8,Page 38" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "delta =56+10.0/60; # declination of star\n", - "theta =56+10.0/60; # lattude of star\n", - "\n", - "#caculation\n", - "zend =90.0 - theta +90- delta ;\n", - "alt =90.0 - zend ;\n", - "\n", - "#for zenith distance\n", - "a= zend *3600 %60;\n", - "b= ((zend *3600-a )%3600) /60;\n", - "c=( zend *3600 - b*60 -a) /3600;\n", - "print \" zenith distance \",round(a,3),\"seconds\",b,\"minutes\",c,\"degrees\";\n", - "\n", - "#for altitude\n", - "#a= alt *3600 %60;\n", - "b= ((alt *3600 )%3600) /60;\n", - "c=( alt *3600 - b*60 -a) /3600;\n", - "print \" altitude of star \",round(a,3),\"seconds\",b,\"minutes\",c,\"degrees\";" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " zenith distance 0.0 seconds 40.0 minutes 67.0 degrees\n", - " altitude of star 0.0 seconds 20.0 minutes 22.0 degrees\n" - ] - } - ], - "prompt_number": 15 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.9,Page 38" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "import numpy as np\n", - "a=np.array([[1.0,-1.0],[1.0,1.0]])\n", - "b=np.array([59.0/3,332.0/3])\n", - "\n", - "#calculation\n", - "x=np.linalg.solve(a,b);\n", - "\n", - "#result\n", - "print\"declination of star in (degrees)\",round(x[0],3);\n", - "print\"latitude of the place of observation (degrees)\",x[1];" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "declination of star in (degrees) 65.167\n", - "latitude of the place of observation (degrees) 45.5\n" - ] - } - ], - "prompt_number": 22 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.10,Page 39" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "theta =20+30.0/60;\n", - "H =42+6.0/60; # hour angle\n", - "delta =50.0;\n", - "\n", - "\n", - "# in triangle ZPM\n", - "\n", - "#calculation\n", - "PZ =(90 - delta )*pi /180;\n", - "H=H*pi /180;\n", - "PM =(90 - theta )*pi /180;\n", - "ZM= acos (( cos (PZ)* cos (PM)+sin(PM)*sin(PZ)* cos (H)));\n", - "alpha =pi /2- ZM;\n", - "alpha = alpha *180/ pi;\n", - "A =(( cos(PM)-cos (PZ)* cos (ZM))/ sin (PZ)/sin(ZM));\n", - "\n", - "if A <0:\n", - " A=-A;\n", - " A=acos(A)\n", - " A=180-A*180/pi;\n", - " \n", - "\n", - "#for altitude\n", - "alt=alpha;\n", - "a= alt *3600 %60;\n", - "b=((alt *3600-a )%3600) /60;\n", - "c=( alt *3600 - b*60 -a) /3600;\n", - "print \" altitude of star \",round(a,3),\"seconds\",b,\"minutes\",c,\"degrees\";\n", - "\n", - "\n", - "#for azimuth \n", - "a= A *3600 %60;\n", - "b= ((A *3600-a )%3600) /60;\n", - "c=( A *3600 - b*60 -a) /3600;\n", - "print\" azimuth of star in (degrees ) westwards \",round(a,3),\"seconds\",b,\"minutes\",c,\"degrees\";\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " altitude of star 36.75 seconds 38.0 minutes 45.0 degrees\n", - " azimuth of star in (degrees ) westwards 25.551 seconds 4.0 minutes 116.0 degrees\n" - ] - } - ], - "prompt_number": 32 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.11,Page 40" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "theta = -8 -30.0/60;\n", - "H =322.0; # hour angle\n", - "delta =50;\n", - "\n", - "\n", - "# in triangle ZPM\n", - "\n", - "#calculation\n", - "PZ =(90 - delta )*pi /180;\n", - "H =2* pi -H*pi /180;\n", - "PM =(90 - theta )*pi /180;\n", - "ZM= acos (( cos (PZ)* cos (PM)+sin(PM)*sin(PZ)* cos (H)));\n", - "alpha =pi /2- ZM;\n", - "alpha=alpha*180/pi;\n", - "A =(( cos(PM)-cos (PZ)* cos (ZM))/ sin (PZ)/sin(ZM));\n", - "\n", - "if A <0:\n", - " A=-A;\n", - " A=acos(A)\n", - " A=180-A*180/pi;\n", - " \n", - "#result\n", - "#for altitude\n", - "alt=alpha;\n", - "a= alt *3600 %60;\n", - "b=((alt *3600-a )%3600) /60;\n", - "c=( alt *3600 - b*60 -a) /3600;\n", - "print \" altitude of star \",round(a,3),\"seconds\",b,\"minutes\",c,\"degrees\";\n", - "\n", - "\n", - "#for azimuth \n", - "a= A *3600 %60;\n", - "b= ((A *3600-a )%3600) /60;\n", - "c=( A *3600 - b*60 -a) /3600;\n", - "print\" azimuth of star in (degrees ) eastwards \",round(a,3),\"seconds\",b,\"minutes\",c,\"degrees\";\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " altitude of star 48.256 seconds 48.0 minutes 22.0 degrees\n", - " azimuth of star in (degrees ) eastwards 22.798 seconds 39.0 minutes 138.0 degrees\n" - ] - } - ], - "prompt_number": 31 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.12,Page 42" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "alpha =22+36.0/60; # altitude of star\n", - "A =42.0 # azimuth angle\n", - "delta =40.0; # latitude of observer\n", - "\n", - "# in triangle ZPM\n", - "\n", - "#calculation\n", - "PZ =(90 - delta )*pi /180;\n", - "A=A*pi /180;\n", - "ZM =(90 - alpha )*pi /180;\n", - "PM= acos (( cos (PZ)* cos (ZM)+sin(ZM)*sin(PZ)* cos (A)));\n", - "theta =pi /2- PM\n", - "theta=theta*180/pi;\n", - "H =(( cos(ZM)-cos (PZ)* cos (PM))/ sin (PZ)/sin(PM));\n", - "if H <0:\n", - " H=-H;\n", - " H=acos(H)\n", - " H=180-H*180/pi;\n", - " \n", - "\n", - "#result\n", - "#for declination \n", - "alt=theta;\n", - "a= alt *3600 %60;\n", - "b=((alt *3600-a )%3600) /60;\n", - "c=( alt *3600 - b*60 -a) /3600;\n", - "print \" declination of star \",round(a,3),\"seconds\",b,\"minutes\",c,\"degrees\";\n", - "\n", - "#for hour angle\n", - "a= H *3600 %60;\n", - "b= ((H *3600-a )%3600) /60;\n", - "c=( H *3600 - b*60 -a) /3600;\n", - "print\" hour angle of star \",round(a,3),\"seconds\",b,\"minutes\",c,\"degrees\";" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " declination of star 12.44 seconds 35.0 minutes 50.0 degrees\n", - " hour angle of star 5.342 seconds 21.0 minutes 103.0 degrees\n" - ] - } - ], - "prompt_number": 34 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.13,Page 42" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "alpha =21+30.0/60; # a l t i t u d e o f s t a r\n", - "A =140.0 # azimuth a n g l e\n", - "delta =48.0; # l a t i t u d e o f o b s e r v e r\n", - "\n", - "#calculation\n", - "PZ =(90 - delta )*pi /180;\n", - "A=A*pi /180;\n", - "ZM =(90 - alpha )*pi /180;\n", - "PM =( cos(PZ)*cos(ZM)+ sin (ZM)* sin (PZ)* cos (A));\n", - "\n", - "if PM <0:\n", - " PM=-PM\n", - " PM=acos(PM)\n", - " PM=180-PM*180/pi;\n", - "\n", - "H= acos (( cos (ZM)-cos(PZ)*cos(PM*pi /180) )/ sin (PZ)/sin (PM*pi /180) );\n", - "H =2* pi -H;\n", - "H=H*180/pi;\n", - "\n", - "#result\n", - "#for declination \n", - "alt=PM-90;\n", - "a= alt *3600 %60;\n", - "b=((alt *3600-a )%3600) /60;\n", - "c=( alt *3600 - b*60 -a) /3600;\n", - "print \" declination of star southwards \",round(a,3),\"seconds\",b,\"minutes\",c,\"degrees\";\n", - "\n", - "#for hour angle\n", - "a= H *3600 %60;\n", - "b= ((H *3600-a )%3600) /60;\n", - "c=( H *3600 - b*60 -a) /3600;\n", - "print\" hour angle of star \",round(a,3),\"seconds\",b,\"minutes\",c,\"degrees\";" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " declination of star southwards 12.098 seconds 48.0 minutes 11.0 degrees\n", - " hour angle of star 22.619 seconds 20.0 minutes 322.0 degrees\n" - ] - } - ], - "prompt_number": 44 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.14,Page 43" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = (md - m) * 60\n", - " sd=round(sd,2)\n", - " return [d, m, sd]\n", - "# part 1\n", - "delta =22+12.0/60;\n", - "theta =42+30.0/60;\n", - "\n", - "#calculation\n", - "ZP =(90 - theta )*pi /180;\n", - "PM =(90 - delta )*pi /180;\n", - "A= acos ( cos (PM)/sin(ZP));\n", - "H=180 - acos ( tan (pi /2- ZP)*tan(pi /2- PM)) *180/ pi\n", - "A=deg_to_dms(A*180/ pi);\n", - "H=deg_to_dms(H/15);\n", - "\n", - "#result\n", - "print \" azimuth of setting sun in ( degrees,min,second) \",A\n", - "print \" suns hour angle in ( hr,min,second ) : \",H\n", - "\n", - "#part 2\n", - "delta = -22 -12/60;\n", - "theta =42+30.0/60;\n", - "\n", - "#calculation\n", - "ZP =(90 - theta )*pi /180;\n", - "PM =(90 - delta )*pi /180;\n", - "A= acos ( cos (PM)/sin(ZP));\n", - "H=180 - acos ( tan (pi /2- ZP)*tan(pi /2- PM)) *180/ pi\n", - "A=deg_to_dms(A*180/ pi);\n", - "H=deg_to_dms(H/15);\n", - "\n", - "#result\n", - "print \" azimuth of setting sun in ( degrees,min,second) \",A\n", - "print \" suns hour angle in ( hr,min,second ) : \",H" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " azimuth of setting sun in ( degrees,min,second) [59, 10, 14.72]\n", - " suns hour angle in ( hr,min,second ) : [7, 27, 50.23]\n", - " azimuth of setting sun in ( degrees,min,second) [120, 32, 13.17]\n", - " suns hour angle in ( hr,min,second ) : [4, 33, 4.97]\n" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.15,Page 44" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "delta =22+12.0/60;\n", - "theta =42+30.0/60;\n", - "ef deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = (md - m) * 60\n", - " sd=round(sd,2)\n", - " return [d, m, sd]\n", - "\n", - "#calculation\n", - "ZP =(90 - theta )*pi /180;\n", - "PM =(90 - delta )*pi /180;\n", - "A= acos ( cos (PM)/sin(ZP));\n", - "H=180 - acos ( tan (pi /2- ZP)*tan(pi /2- PM)) *180/ pi\n", - "A=deg_to_dms(180-A*180/ pi);\n", - "H=deg_to_dms(H/15);\n", - "\n", - "#result\n", - "print \" azimuth of setting sun in ( degrees,min,second) \",A\n", - "print \" suns hour angle in ( hr,min,second ) : \",H\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " azimuth of setting sun in ( degrees,min,second) [120, 49, 45.28]\n", - " suns hour angle in ( hr,min,second ) : [7, 27, 50.23]\n" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.16,Page 61" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "time = -3 -28.41/60; # greenwich time at july 1 1951\n", - "change = -11.82/60;\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = (md - m) * 60\n", - " sd=round(sd,2)\n", - " return [d, m, sd]\n", - "\n", - "#calculation\n", - "c12 = change/24*12 # change of time in 12 hours\n", - "tch =time +c12;\n", - "tch=deg_to_dms(tch/60);\n", - "\n", - "#result\n", - "print \" greenwich mean time error in 12 th hour(-ve) in( deg,min,sec) \",tch\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " greenwich mean time error in 12 th hour(-ve) in( deg,min,sec) [0, 3, 34.32]\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.17,Page 61" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = (md - m) * 60\n", - " return [d, m, sd]\n", - "#printing result in degree minute and seconds respectively \n", - "GMN = -14*60 -10;\n", - "changeET =1*1.5;\n", - "\n", - "#calculation\n", - "neterr =GMN+ changeET ;\n", - "GAT = time + neterr ;\n", - "GAT=GAT+10*3600+30*60;\n", - "hr= round ( GAT /3600) ;\n", - "b=GAT -hr *3600;\n", - "mi= round (b /60 -1);\n", - "c=GAT -hr *3600 - mi *60;\n", - "\n", - "#result\n", - "print hr,\"hour\",mi,\"minutes\",c,\"seconds of GAT\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "10.0 hour 15.0 minutes 48.0265 seconds of GAT\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.18,Page 62" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#part1\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = (md - m) * 60\n", - " return [d, m, sd]\n", - "A =50+12.0/60+48.0/3600;\n", - "time =A /15*3600\n", - "\n", - "#calculation\n", - "hr= round ( time /3600) ;\n", - "b=time -hr *3600;\n", - "mi= round (b /60 -1);\n", - "c=time -hr *3600 - mi *60;\n", - "\n", - "#result\n", - "print hr,\"hour\",mi,\"minutes\",c,\"seconds of angles\"\n", - "\n", - "#part 2\n", - "#initialisation of variable\n", - "A =8+18.0/60+6.0/3600;\n", - "time =A /15*3600\n", - "\n", - "#calculation\n", - "hr= round ( time /3600-1) ;\n", - "b=time -hr *3600;\n", - "mi= round (b /60 );\n", - "c=time -hr *3600 - mi *60;\n", - "\n", - "#result\n", - "print hr,\"hour\",mi,\"minutes\",c,\"seconds of angles\"\n", - "\n", - "#part 3\n", - "#initialisation of variable\n", - "A =258+36.0/60+30.0/3600;\n", - "time =A /15*3600\n", - "\n", - "#calculation\n", - "hr= round ( time /3600) ;\n", - "b=time -hr *3600;\n", - "mi= round (b /60 );\n", - "c=time -hr *3600 - mi *60;\n", - "\n", - "#result\n", - "print hr,\"hour\",mi,\"minutes\",c,\"seconds of angles\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "3.0 hour 20.0 minutes 51.2 seconds of angles\n", - "-0.0 hour 33.0 minutes 12.4 seconds of angles\n", - "17.0 hour 14.0 minutes 26.0 seconds of angles\n" - ] - } - ], - "prompt_number": 21 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.19,Page 62" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#part1\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "A =4+34.0/60+13.0/3600;\n", - "\n", - "#calculation\n", - "angle =A *15;\n", - "angle=deg_to_dms(angle);\n", - "\n", - "#result\n", - "print \"angle in degree,minute,second respectively\",angle\n", - "\n", - "#part 2\n", - "#initialisation of variable\n", - "A =18+11.0/60+38.0/3600;\n", - "\n", - "#calculation\n", - "angle =A *15;\n", - "angle=deg_to_dms(angle);\n", - "\n", - "#result\n", - "print \"angle in degree,minute,second respectively\",angle\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "angle in degree,minute,second respectively [68, 33, 15.0]\n", - "angle in degree,minute,second respectively [272, 54, 30.0]\n" - ] - } - ], - "prompt_number": 15 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.20.a,Page 64" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "longP =20 # longitude of the place\n", - "longSM =82+30.0/60; # longitude of standard meridion\n", - "\n", - "#calculation\n", - "dolong =longSM - longP ; # difference in longitude\n", - "dot = dolong /15.0; # difference in time\n", - "LMT =20+24.0/60+6.0/3600 - dot ;\n", - "LMT=deg_to_dms(LMT)\n", - "\n", - "#result\n", - "print \"LMT in hours,minute,second respectively\",LMT" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[16, 14, 6.0] Local mean time in hours,minute,second respectively\n" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.20.b,Page 64" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "longP =-20 # longitude of the place\n", - "longSM =82+30.0/60; # longitude of standard meridion\n", - "\n", - "#calculation\n", - "dolong =longSM - longP ; # difference in longitude\n", - "dot = dolong /15.0; # difference in time\n", - "LMT =20+24.0/60+6.0/3600 - dot ;\n", - "LMT=deg_to_dms(LMT)\n", - "\n", - "#result\n", - "print \"LMT in hours,minute,second respectively\",LMT" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[13, 34, 6.0] Local mean time in hours,minute,second respectively\n" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.21.a,Page 64" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "LMT =9+40.0/60+12.0/3600;\n", - "longP = -42 -36.0/60;\n", - "\n", - "#calculation\n", - "dot = longP /15;\n", - "GMT =LMT -dot;\n", - "GMT=deg_to_dms(GMT);\n", - "\n", - "#result\n", - "print \"GMT in hours,minute,second respectively\",GMT" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[12, 30, 36.0] GMT in hours,minute,second respectively\n" - ] - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.21.b,Page 64" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "LMT =4+32.0/60+10.0/3600;\n", - "longP = -56 -32.0/60;\n", - "\n", - "#calculation\n", - "dot = longP /15;\n", - "GMT =LMT +dot;\n", - "GMT=deg_to_dms(GMT);\n", - "\n", - "#result\n", - "print \"GMT in hours,minute,second respectively\",GMT" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[0, 46, 2.0] GMT in hours,minute,second respectively\n" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.22,Page 65" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "#part1\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "GCT =18+40.0/60+12.0/3600; # greenwich civil time\n", - "longP =72+30.0/60; # longitude of the place\n", - "\n", - "#calculation\n", - "dot = longP /15.0;\n", - "LMT = GCT +dot;\n", - "LMT=deg_to_dms(LMT);\n", - "\n", - "#result\n", - "print \"LMT in hours,minute,second respectively\",LMT\n", - "\n", - "#part 2\n", - "#initiallisation of variable\n", - "GCT =18+40.0/60+12.0/3600; # greenwich civil time\n", - "longP =-72-30.0/60; # longitude of the place\n", - "\n", - "#calculation\n", - "dot = longP /15.0;\n", - "LMT = GCT +dot;\n", - "LMT=deg_to_dms(LMT);\n", - "\n", - "#result\n", - "print \"LMT in hours,minute,second respectively\",LMT\n", - "\n", - "#part 3\n", - "#initialisation of variable\n", - "def deg_to_dms(deg):\n", - " d = int(deg);\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d-24, m, sd]\n", - "GCT =18+40.0/60+12.0/3600; # greenwich civil time\n", - "longP =110+32.0/60; # longitude of the place\n", - "\n", - "#calculation\n", - "dot = longP /15.0;\n", - "LMT = GCT +dot;\n", - "LMT=deg_to_dms(LMT);\n", - "\n", - "#result\n", - "print \"LMT of next day in hours,minute,second respectively\",LMT" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "LMT in hours,minute,second respectively [23, 30, 12.0]\n", - "LMT in hours,minute,second respectively [13, 50, 12.0]\n", - "LMT of next day in hours,minute,second respectively [2, 2, 20.0]\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.23,Page 66" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "LMT =10+20.0/60+30.0/3600; # local mean time\n", - "longP =102+30.0/60; # longitude of the place\n", - "\n", - "#calculation\n", - "dot = longP /15;\n", - "GMT =LMT -dot;\n", - "mGMN =12 - GMT ; #mean time interval\n", - "i= mGMN *0.32/3600; # increase in mGMN\n", - "ETGMN =5.0/60+4.35/3600;\n", - "ch=i+ ETGMN ; # change in GMT\n", - "GMT =ch+GMT;\n", - "LMT = GMT +dot;\n", - "LMT=deg_to_dms(LMT);\n", - "\n", - "#result\n", - "print \"LMT in hours,minute,second respectively\",LMT" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[10, 25, 37.07] LMT in hours,minute,second respectively\n" - ] - } - ], - "prompt_number": 27 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.24,Page 67" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "LMT =15+12.0/60+40.0/3600; # local mean time\n", - "longP = -20 -30.0/60; # longitude of the place\n", - "\n", - "#calculation\n", - "dot = longP /15;\n", - "GMT =LMT -dot;\n", - "mGMN =12 - GMT ; #mean time interval\n", - "i= mGMN *0.32/3600; # increase in mGMN\n", - "ETGMN =5.0/60+4.35/3600;\n", - "ch=i+ ETGMN ; # change in GMT\n", - "GMT =ch+GMT;\n", - "LMT = GMT +dot;\n", - "LMT=deg_to_dms(LMT);\n", - "\n", - "#result\n", - "print \"LMT in hours,minute,second respectively\",LMT" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[15, 17, 42.89] LMT in hours,minute,second respectively\n" - ] - } - ], - "prompt_number": 29 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.25,Page 70" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "time =4+20.0/60+30.0/3600;\n", - "\n", - "#calculation\n", - "accn = time *9.8565/3600; # acceleration\n", - "stime = time + accn ; # sidereal time\n", - "stime=deg_to_dms(stime);\n", - "\n", - "#result\n", - "print \"sidereal time in hours,minute,second respectively\",stime" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[4, 21, 12.79] sidereal time in hours,minute,second respectively\n" - ] - } - ], - "prompt_number": 30 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.26,Page 71" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "stime =8+40.0/60+50.0/3600;\n", - "\n", - "#calcculation\n", - "accn =-time *9.8565/3600; # acceleration\n", - "mtime = stime + accn ; # mean time\n", - "mtime=deg_to_dms(mtime);\n", - "\n", - "#result\n", - "print \"mean time in hours,minute,second respectively\",mtime" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[8, 40, 7.21] mean time in hours,minute,second respectively\n" - ] - } - ], - "prompt_number": 32 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.27,Page 72" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "longP = -160 -30.0/60 -30.0/3600; # longitude of the place\n", - "GST =16+30.0/60+12.0/3600; # standard time\n", - "\n", - "#calculation\n", - "dot = longP /15; # difference in time\n", - "i= dot *9.8565/3600; # error\n", - "LST =GST -i;\n", - "LST=deg_to_dms(LST);\n", - "\n", - "#result\n", - "print \"LST of LMM in hours,minute,second respectively\",LST\n", - "\n", - "#part 2\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "longP = 160 +30.0/60 +30.0/3600; # longitude of the place\n", - "GST =16+30.0/60+12.0/3600; # standard time\n", - "\n", - "#calculation\n", - "dot = longP /15; # difference in time\n", - "i= dot *9.8565/3600; # error\n", - "LST =GST -i;\n", - "LST=deg_to_dms(LST);\n", - "\n", - "#result\n", - "print \"LST of LMM in hours,minute,second respectively\",LST\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[16, 31, 57.47] LST of LMM in hours,minute,second respectively\n", - "[16, 28, 26.53] LST of LMM in hours,minute,second respectively\n" - ] - } - ], - "prompt_number": 34 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.28,Page 73" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "longP =85+20.0/60; # longitude of the place\n", - "GST =6+30.0/60; # standard time\n", - "GMN =6+32.0/60+12.0/3600;\n", - "\n", - "#calculation\n", - "dot = longP /15; # difference in time\n", - "i= dot *9.8565/3600; # error\n", - "LST =GMN -i; #LST at L .M.N\n", - "i2=GST *9.8565/3600; # error in GST\n", - "LST2 =GST+i2;\n", - "LST = LST + LST2 # lst at L .M.N\n", - "LST=deg_to_dms(LST);\n", - "\n", - "#result\n", - "print \"LST in hours,minute,second respectively\",LST" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[13, 2, 19.99] LST in hours,minute,second respectively\n" - ] - } - ], - "prompt_number": 38 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.29,Page 75" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "longP =112+20.0/60+15.0/3600; # longitude of the place\n", - "GST =8+10.0/60+28.0/3600; #GST at GMM\n", - "lst =18+28.0/60+12.0/3600; \n", - "\n", - "#calculation\n", - "dot = longP /15; \n", - "i= dot *9.8565/3600; # error\n", - "LST = GST +i; #LST at L .M.N\n", - "LMM =lst -LST;\n", - "i2=LMM *9.8565/3600; # error in LMM\n", - "LMT =LMM -i2; # local mean time\n", - "LMT=deg_to_dms(LMT);\n", - "\n", - "#result\n", - "print \"LMT in hours,minute,second respectively\",LMT" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[10, 14, 48.91] LMT in hours,minute,second respectively\n" - ] - } - ], - "prompt_number": 40 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.30,Page 76" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "longP =85+20.0/60; # longitude of the place\n", - "GST =18+30.0/60; # standard time\n", - "gst =6+32.0/60+12.0/3600; #GST at GMN\n", - "\n", - "#calculation\n", - "dot = longP /15; \n", - "GMT =GST -dot -12;\n", - "i= GMT *9.8565/3600; # error\n", - "GMT = GMT +i; # SI time\n", - "LST = GMT +dot+ gst ; #LST at LMT\n", - "LST=deg_to_dms(LST);\n", - "\n", - "#result\n", - "print \"LST in hours,minute,second respectively\",LST" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[13, 2, 19.99] LST in hours,minute,second respectively\n" - ] - } - ], - "prompt_number": 42 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.31,Page 78" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "longP =112+20.0/60+15.0/3600; # longitude of the place\n", - "GST =8+10.0/60+28.0/3600; #GST at GMM\n", - "lst =18+28.0/60+12.0/3600; # local sidereal time\n", - "\n", - "#clculation\n", - "dot = longP /15; \n", - "gmm = lst +dot - GST ; # SI at GMM\n", - "i= gmm *9.8565/3600; # error\n", - "gmm =gmm -i; #LST at L .M.N\n", - "LMT =gmm -dot; # local mean time\n", - "LMT=deg_to_dms(LMT);\n", - "\n", - "#result\n", - "print \"LMT in hours,minute,second respectively\",LMT\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[10, 14, 48.7] LMT in hours,minute,second respectively\n" - ] - } - ], - "prompt_number": 44 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.32,Page 79" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#part 1\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "longP =162+30.0/60+15.0/3600; # longitude of the place\n", - "GST =10+30.0/60+15.0/3600; #GST at GMM\n", - "RA =22+11.0/60+30.0/3600; # local sidereal time\n", - "\n", - "#calculation\n", - "dot = longP /15; \n", - "i= dot *9.8565/3600; # e r r o r\n", - "gmm = GST +i; #LST at L .M.N\n", - "lmn =RA -gmm; # SI o f LMN\n", - "i2=lmn *9.8565/3600; # error 2\n", - "LMT =lmn -i2;\n", - "LMT1=deg_to_dms(LMT);\n", - "\n", - "#result\n", - "print \"LMT observed at upper transit in hours,minute,second respectively\",LMT1\n", - "\n", - "#part 2\n", - "#initialisation of variable\n", - "i3 =12*9.8565/3600; # retardation\n", - "\n", - "#calculation\n", - "LMT = LMT +12 - i3;\n", - "LMT=deg_to_dms(LMT);\n", - "\n", - "#result\n", - "print \"LMT observed at lower transit in hours,minute,second respectively\",LMT" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "LMT observed at upper transit in hours,minute,second respectively [11, 37, 33.31]\n", - "LMT observed at lower transit in hours,minute,second respectively [23, 35, 35.04]\n" - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.33,Page 80" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "longP =60+30.0/60; # longitude of the place\n", - "GST =7+30.0/60+48.6/3600; #GST at GMM\n", - "RA =17+28.0/60 +40.0/1600;\n", - "\n", - "#calculation\n", - "dot = longP /15; \n", - "i= dot *9.8565/3600; # error\n", - "gmm =GST -i; #LST at L .M.N\n", - "LMT =RA -gmm; # local mean time\n", - "i2=LMT*9.8296/3600;\n", - "GMT=LMT-i2-longP/15;\n", - "LMT=deg_to_dms(LMT);\n", - "GMT=deg_to_dms(GMT);\n", - "\n", - "#result\n", - "print \"LMT in hours,minute,second respectively\",LMT\n", - "print \"GMT in hours,minute,second respectively\",GMT" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "LMT in hours,minute,second respectively [9, 59, 21.15]\n", - "GMT in hours,minute,second respectively [5, 55, 42.96]\n" - ] - } - ], - "prompt_number": 42 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.34,Page 82" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "GMT=13+21.0/60+54.0/3600; #GMT of the place\n", - "LongA=40+30.0/60; #longitude of A\n", - "LongB=-40-30.0/60; #longitude of B\n", - "\n", - "#calculation\n", - "delA=LongA/15.0*9.8296/3600;#error\n", - "delB=LongB/15.0*9.8296/3600;#error\n", - "GA=GMT+delA;\n", - "GA=deg_to_dms(GA);\n", - "GB=GMT+delB;\n", - "GB=deg_to_dms(GB);\n", - "\n", - "#result\n", - "print \"corected time of A in hours,minute,second respectively\",GA\n", - "print \"corected time of B in hours,minute,second respectively\",GB" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "corected time of A in hours,minute,second respectively [13, 22, 20.54]\n", - "corected time of B in hours,minute,second respectively [13, 21, 27.46]\n" - ] - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.35,Page 83" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "GMT=7+12.0/60+28.0/3600; #GMT of the place\n", - "Long=50+30.0/60; #longitude \n", - "LMT=11+30.0/60+12.0/3600; \n", - "\n", - "#calculation\n", - "delA=LongA/15.0*9.8296/3600;#error\n", - "delB=LMT*9.8296/3600;#error\n", - "LA=GMT+delA; #LMT at transit\n", - "LMT=LMT-delB;\n", - "LMT=LMT+LA;\n", - "LMT=deg_to_dms(LMT);\n", - "\n", - "#result\n", - "print \"LMT in hours,minute,second respectively\",LMT" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "LMT in hours,minute,second respectively [18, 41, 13.47]\n" - ] - } - ], - "prompt_number": 41 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.36,Page 84" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "GST=8+25.0/60+25.0/3600;\n", - "\n", - "#calculation\n", - "GMT=24-GST;\n", - "i=GMT*9.8296/3600;\n", - "GMT=GMT-i;\n", - "GMT=deg_to_dms(GMT);\n", - "\n", - "#result\n", - "print \"GMT in hours,minute,second respectively\",GMT" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "GMT in hours,minute,second respectively [15, 32, 1.89]\n" - ] - } - ], - "prompt_number": 43 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.37,Page 85" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "GMT=12+03.0/60+46.09/3600; #GMT of the place\n", - "LongA=-130.0; #longitude of A\n", - "LongB=49.0; #longitude of B\n", - "\n", - "#calculation\n", - "delA=LongA/15.0*11.71/24/3600;\n", - "delB=LongB/15.0*11.71/24/3600;\n", - "LMTA=GMT+delA;\n", - "LMTA=deg_to_dms(LMTA);\n", - "LMTB=GMT+delB;\n", - "LMTB=deg_to_dms(LMTB);\n", - "\n", - "#result\n", - "print \"LMT at A on July 2 in hours,minute,second respectively\",LMTA\n", - "print \"LMT at B on July 2 in hours,minute,second respectively\",LMTB" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[12, 3, 41.86] LMT at A in hours,minute,second respectively\n", - "[12, 3, 47.68] LMT at B in hours,minute,second respectively\n" - ] - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.38,Page 86" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "Lat=50+30.0/60; # latitude of place\n", - "Dec=74+22/60; #declination of place\n", - "RA=14+50.0/60+52.0/3600;\n", - "\n", - "#calculation\n", - "H=acos(tan(Lat*pi/180)/tan(Dec*pi/180));\n", - "H=H*180/pi;\n", - "H=H/15.0;\n", - "LST=H+RA;\n", - "LST=deg_to_dms(LST);\n", - "\n", - "#result \n", - "print \"LST in hours,minute,second respectively\",LST" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[19, 29, 26.59] LST in hours,minute,second respectively\n" - ] - } - ], - "prompt_number": 20 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.39,Page 87" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "Long=120+30.0/60; #langitude\n", - "GST=14+30.0/60+28.25/3600;\n", - "GMT=2+5.0/60;\n", - "LMN=12.0;\n", - "LST=14+31.0/60+47.43/3600;\n", - "RA=23+20.0/60+20.0/3600;\n", - "\n", - "#calculation\n", - "e1=Long*15.0*9.8565/3600;\n", - "GST=GST+e1;\n", - "LMT=GMT+24-8-2.0/60;\n", - "LMM=LMN+24-LMT; #mean LMN\n", - "e2=LMM*9.8565/3600;\n", - "LMM=LMM+e2;\n", - "LST=LST+24-LMM;\n", - "HA=LST-RA+24;\n", - "HA=deg_to_dms(HA);\n", - "\n", - "#result\n", - "print \"HA in hours,minutes,seconds respectively\",HA" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[21, 11, 30.51] HA in hours,minutes,seconds respectively\n" - ] - } - ], - "prompt_number": 21 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.40,Page 86" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "Long=75+28.0/60; #langitude\n", - "LMT=5+30.0/60;\n", - "GST=20+15.0/60+32.58/3600;\n", - "\n", - "#calculation\n", - "e1=Long/15.0*9.8565/3600;\n", - "GST=GST+e1;\n", - "e2=LMT*9.8565/3600;\n", - "LMT=LMT+e2;\n", - "HA=GST+LMT;\n", - "HAMS=HA-LMT-12+e2;\n", - "HA=deg_to_dms(HA);\n", - "HAMS=deg_to_dms(HAMS);\n", - "\n", - "#result\n", - "print \"HA in hours,minutes,seconds respectively\",HA\n", - "print \"HAMS in hours,minutes,seconds respectively\",HAMS\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "HA in hours,minutes,seconds respectively [25, 47, 16.38]\n", - "HAMS in hours,minutes,seconds respectively [8, 17, 16.38]\n" - ] - } - ], - "prompt_number": 40 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.41,Page 90" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "Long=45.0; #langitude\n", - "del1=1067.2/3600;\n", - "del2=1083.9/3600;\n", - "del3=1100.3/3600;\n", - "f0=-16-14.0/60-24.0/3600;\n", - "\n", - "#calculation\n", - "n=(10-Long/15)/24.0;\n", - "Del0=del2-del1;\n", - "Del1=del3-del2;\n", - "fn=-f0+n*del2+n*(n-1)/4*(Del0+Del1)\n", - "fn=deg_to_dms(fn);\n", - "\n", - "#result\n", - "print \"sun's declination in hours,minutes,seconds respectively\",fn" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "sun's declination in hours,minutes,seconds respectively [16, 19, 38.43]\n" - ] - } - ], - "prompt_number": 39 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.42,Page 101" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "aziA =32+41.0/60+30.0/3600; # azimuth o f A\n", - "aziB =110+28.0/60+42.0/3600; # azimuth o f B\n", - "vaA =10+21.0/60+12.0/3600; # vertical angle of A\n", - "vaB = -2 -18.0/60 -30.0/3600; # vertical angle o f B\n", - "lA1 =11;\n", - "lB1 =11.5;\n", - "rA1 =7.5;\n", - "rB1 =7;\n", - "lB2 =10;\n", - "lA2 =10.5;\n", - "rB2 =7.5;\n", - "rA2 =8;\n", - "d =20;\n", - "# partA\n", - "#calculation\n", - "sigl =lA1+ lA2 ;\n", - "sigr =rA1+ rA2 ;\n", - "b= sigl /4*d- sigr /4*d;\n", - "i= tan( vaA );\n", - "caziA = aziA +i *29.95/3600;\n", - "caziA1=deg_to_dms(caziA);\n", - "\n", - "#result\n", - "print \"corrected azimuth of A in (degrees,minutes,seconds)\",caziA1\n", - "\n", - "#part2 \n", - "#calculation\n", - "i= tan( vaB );\n", - "caziB = aziB +i*b /3600;\n", - "ha=caziB - caziA;\n", - "caziB=deg_to_dms(caziB);\n", - "ha=deg_to_dms(ha);\n", - "\n", - "#result\n", - "print \"corrected azimuth of B in (degrees,minutes,seconds)\",caziB\n", - "print \"horizontal difference of angle between A & B in (degrees,minutes,seconds)\",ha\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "corrected azimuth of A in (degrees,minutes,seconds) [32, 42, 10.04]\n", - "corrected azimuth of B in (degrees,minutes,seconds) [110, 29, 15.02]\n", - "horizontal difference of angle between A & B in (degrees,minutes,seconds) [77, 47, 4.98]\n" - ] - } - ], - "prompt_number": 38 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.43,Page 102" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "v1 =18+36.0/60+48.0/3600; # vertical angle 1\n", - "v2 =18+35.0/60+56.0/3600; # vertical angle 2\n", - "slm =28+36.0/60+20.0/3600; # altitude of sun measured\n", - "ds =15.0/60+59.35/3600; # dia of sun\n", - "\n", - "#calculation\n", - "mv =( v1+v2) /2; #mean vertical angle\n", - "i=v1 -v2; # error\n", - "sl=slm+i; #new altitude of sun\n", - "sl=sl+ds;\n", - "ir = -57.0/3600/( tan( slm *pi /180+26* pi /180/3600) );#error due to refraction\n", - "sl=sl+ir;\n", - "ip =8.8/3600* cos( slm *pi /180+26* pi /180/3600);# error due to parallex\n", - "sl=sl+ip;\n", - "sl=deg_to_dms(sl);\n", - "\n", - "#result\n", - "print \"corrected altitude in (deg,min,sec) respectively\",sl" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[28, 51, 34.59] corrected altitude in (deg,min,sec) respectively\n" - ] - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.44,Page 115" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "long =4+30.0/60;\n", - "i= long *9.8565/3600; # longitude\n", - "gst =14+38.0/60+12.0/3600; #GST on GMM\n", - "lst =gst -i; #LST on LMM\n", - "RA =7+36.0/60+21.24/3600;\n", - "\n", - "#calculation\n", - "LST =RA;\n", - "SI=LST - lst +24;\n", - "LCT =17+56.0/60+8.86/3600 -1; # local chronometer time\n", - "i2=SI *9.8296/3600;\n", - "LMM =SI -i2;\n", - "ce=LCT - LMM ;\n", - "\n", - "#result\n", - "print \" chronometer error in (s)\",round(ce *3600,2)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "2.19 chronometer error in (s)\n" - ] - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Exampe 1.45,Page 116" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "c =90 -36 -30.0/60 -30.0/3600; # co latitude\n", - "p =90 -16 -12.0/60 -18.4/3600; # co declination\n", - "z =90 -30 -12.0/60 -30.0/3600; # co altitude\n", - "s=(p+z+c) /2;\n", - "\n", - "#calculation\n", - "s1=s-c;\n", - "s2=s-p;\n", - "s3=s-z;\n", - "H =2* atan ( sqrt (sin(s1*pi /180) * sin (s2*pi /180) / sin (s*pi/180) / sin (s3*pi /180) ));\n", - "H=H *180/ pi;\n", - "H=24 -H /15;\n", - "LST =H +5+18.0/60+12.45/3600 -24;\n", - "ce =1+2.0/60+5.25/3600 - LST ;\n", - "\n", - "#result\n", - "print \" chronometer error in (s)\",round (ce *3600+2,2)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "19.34 chronometer error in (s)\n" - ] - } - ], - "prompt_number": 21 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.46,Page 118" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "c =90 -36 -40.0/60 -30.0/3600; # co latitude\n", - "p =90 -17 -26.0/60 -42.1/3600; # co declination\n", - "z =90 -36 -14.0/60 -16.8/3600; # co altitude\n", - "\n", - "#calculation\n", - "s=(p+z+c) /2;\n", - "s1=s-c;\n", - "s2=s-p;\n", - "s3=s-z;\n", - "H =2* atan ( sqrt (sin(s1*pi /180) * sin (s2*pi /180) / sin(s*pi/180) / sin (s3*pi /180) ));\n", - "H=H *180/ pi;\n", - "H=H /15;\n", - "i =12 -11 -56.0/60 -22.8/3600; # error in time\n", - "LAT =15+49.0/60+40.6/3600; # local actual time\n", - "GAT =LAT -H;\n", - "GMT =GAT -i;\n", - "LMT = GMT +H;\n", - "ce =15+49.0/60+12.6/3600 - LMT;\n", - "ce=deg_to_dms(ce)\n", - "\n", - "#result\n", - "print \" chronometer error in (s)\",ce" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " chronometer error in (s) [0, 3, 9.2]\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.47,Page 119" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "RA =17+12.0/60+48.0/3600;\n", - "gst =9+26.0/60+12.0/3600; #GST on GMN\n", - "long =138.0/15+45.0/15/60; # l o n g i t u d e\n", - "lst =- long *9.85645/3600+9+26.0/60+12.0/3600; #LST on LMN\n", - "LST =17+12.0/60+48.0/3600; # local sidereal time\n", - "\n", - "#calculation\n", - "SI=LST - lst ;\n", - "MI=-SI *9.8296/3600+ SI;\n", - "LCT =7+47.0/60+2.0/3600; # local chronometer time\n", - "ce=LCT -MI;\n", - "\n", - "#result\n", - "print \" chronometer error in (s)\",round(ce *3600,2) " - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " chronometer error in (s) 11.52\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.48,Page 145" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#part 1\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan,asin\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "theta =54+30.0/60; # l o g i t u d e\n", - "delta =62+12.0/60+21.0/3600; # d e c l i n a t i o n\n", - "\n", - "#calculation\n", - "lat = asin (sin( theta *pi /180) /sin( delta *pi /180) );\n", - "lat = lat *180/ pi;\n", - "lat=deg_to_dms(lat);\n", - "\n", - "#result\n", - "print \"Latitude in (deg,min,sec)\",lat;\n", - "\n", - "#part 2\n", - "#initialisation of variable\n", - "A =53+25.0/60; # azimuth of star\n", - "h =65+18.0/60+42.0/3600; # horizontal angle\n", - "\n", - "#calculation\n", - "A=A+h;\n", - "A=360-A;\n", - "A=deg_to_dms(A);\n", - "\n", - "#result\n", - "print \"Azimuth in (deg,min,sec)\",A;\n", - "\n", - "#part 3 \n", - "#initialisation of variable\n", - "lst =4+39.0/60+6.5/3600; #LST o f LMN\n", - "LST =10+58.0/60+38.0/3600+2+49.0/60+25.3/3600; #LST of observation\n", - "\n", - "#calculation\n", - "LMN =LST -lst;\n", - "i= LMN *9.8565/3600; # e r r o r\n", - "LMT =LMN -i;\n", - "LMT=deg_to_dms(LMT)\n", - "\n", - "#results\n", - "print \"LMT in (hr,min,sec)\",LMT;" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[66, 58, 7.13] Latitude in (deg,min,sec)\n", - "[241, 16, 18.0] Azimuth in (deg,min,sec)\n", - "[9, 7, 26.62] LMT in (hr,min,sec)\n" - ] - } - ], - "prompt_number": 34 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.49,Page 148" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#part 1\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan,asin\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "theta =53+32.0/60; # logitude\n", - "delta =56+42.0/60+53.2/3600; # declination\n", - "lat = asin (sin ( theta *pi /180) /sin( delta *pi /180) );\n", - "lat = lat *180/ pi;\n", - "lat=deg_to_dms(lat);\n", - "\n", - "#result\n", - "print \"Latitude in (deg,min,sec)\",lat;\n", - "\n", - "#part 2\n", - "#initialisation of variable\n", - "As= asin ( cos ( delta *pi /180) /cos ( theta *pi /180) ); #azimuth of star\n", - "h =75+18.0/60+20.0/3600; # angle between line and star\n", - "\n", - "#calculation\n", - "A=h-As *180/ pi;\n", - "A=360 -A;\n", - "A=deg_to_dms(A);\n", - "\n", - "#result\n", - "print \"Azimuth in (deg,min,sec)\",A;\n", - "\n", - "#part 3\n", - "#initialisation of variable\n", - "LST =10+58.0/60+3.9/3600+22+10.0/60+38.5/3600 -24; #LST of observation\n", - "long =5+40.0/60+18.0/3600; # longitude\n", - "\n", - "#calculation\n", - "i= long *9.8565/3600; # error\n", - "lst =4+58.0/60+23.84/3600+ i; #LST on LMN\n", - "LMM =LST -lst;\n", - "i2=LMM *9.8565/3600; # error in LMM\n", - "LMT =LMM -i2;\n", - "LMT=deg_to_dms(LMT)\n", - "\n", - "#results\n", - "print \"LMT in (hr,min,sec)\",LMT;\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Latitude in (deg,min,sec) [74, 9, 33.08]\n", - "Azimuth in (deg,min,sec) [352, 7, 3.66]\n", - "LMT in (hr,min,sec) [4, 8, 41.69]\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.50,Page 151" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan,asin\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "Long =(15.0+30.0/60); \n", - "GMT =19+12.0/60+28.6/3600;\n", - "GST=10+12.0/60+36.2/3600;\n", - "RA=10 +12.0/60 +6.3/3600;\n", - "theta=35.0;\n", - "delta=20+6.0/60+48.4/3600;\n", - "\n", - "#calculation\n", - "i= Long/15.0 *9.8656/3600; \n", - "LSTofLMM=GST-i;\n", - "LMT = GMT + Long/15.0 ;\n", - "i2=LMT *9.8656/3600; # error in LMT\n", - "SI = LMT +i2;\n", - "LST =LSTofLMM+ SI ;\n", - "H=LST-RA ; # hour angle\n", - "H=H *15;\n", - "H=360 -H;\n", - "B=atan(tan(delta*pi/180)/cos(H*pi/180));\n", - "B=B*180/pi;\n", - "x=B-theta; #defined as 'B-theta'\n", - "As= atan ( tan ((H) *pi /180) * cos((B) *pi /180) / sin ((x)*pi /180) );#calculating azimuth \n", - "h =36+28.0/60+18.0/3600; # angle between line and star\n", - "A =180+ As *180/ pi -h; #azimuth\n", - "A=deg_to_dms(A);\n", - "\n", - "#result\n", - "print \"Azimuth in (deg,min,sec)\",A;\n", - "print \"there is a miscalculation in the step of calculating As thus resulted in change in answer\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Azimuth in (deg,min,sec) [55, 16, 8.27]\n", - "there is a miscalculation in the step of calculating As thus resulted in change in answer\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.51,Page 153 " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan,asin\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "alpha =33+35.0/60+10.0/3600; # altitude\n", - "ZM =90 - alpha ;\n", - "delta =22+5.0/60+35.0/3600; # declination\n", - "PM =90 - delta ;\n", - "theta =52+30.0/60+20.0/3600; # latitude\n", - "ZP =90 - theta ;\n", - "\n", - "#calculation\n", - "As= acos (( cos (PM*pi /180) -cos(ZP*pi /180) * cos (ZM*pi/180) )/( sin (ZP*pi /180) *sin(ZM*pi /180) ));\n", - "h =18+20.0/60+30.0/3600; # angle between line and star\n", - "A=As *180/ pi+h;\n", - "A=deg_to_dms(A);\n", - "\n", - "#result\n", - "print \"Azimuth in (deg,min,sec)\",A;" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Azimuth in (deg,min,sec) [115, 27, 19.68]\n" - ] - } - ], - "prompt_number": 35 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.52,Page 154" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#part 1\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan,asin\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "GAT =5+17.0/60+6.0/60; #GAT \n", - "delta =17+46.0/60+52.0/3600; # declination\n", - "\n", - "#calculation\n", - "i =37.0/3600* GAT ;\n", - "delta =delta -i;\n", - "delta1=deg_to_dms(delta);\n", - "\n", - "#result\n", - "print \"Declination in (deg,min,sec)\",delta1;\n", - "\n", - "#part 2\n", - "#initialisation of variable\n", - "p=90 - delta ; # co declination\n", - "altitude =23+15.0/60+20.0/3600; # altitude of sun\n", - "i2 =2.0/60+12.0/3600; # error due to refraction\n", - "i3 =8.0/3600; # error due to parallax\n", - "\n", - "#calculation\n", - "altitude = altitude -i2+i3;\n", - "c =90 -55 -46.0/60 -12.0/3600; # colatitude\n", - "z=90 - altitude ; # co altitude\n", - "s=(p+z+c) /2;\n", - "s1=s-c;\n", - "s2=s-p;\n", - "s3=s-z;\n", - "A =2* atan ( sqrt (sin(s3*pi /180) * sin (s1*pi /180) / sin (s*pi/180) / sin (s2*pi /180) ));\n", - "A=A *180/ pi;\n", - "A=deg_to_dms(A);\n", - "\n", - "#result\n", - "print \"Altitude in (deg,min,sec)\",A;" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Declination in (deg,min,sec) [17, 43, 32.82]\n", - "Altitude in (deg,min,sec) [92, 23, 10.67]\n" - ] - } - ], - "prompt_number": 34 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.53,Page 156" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan,asin\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "GMT =17+5.0/60+2.0/3600; \n", - "i =9.8565/3600* GMT;\n", - "GST =3+12.0/60+12.0/3600;\n", - "wl =1+18.0/60; # west longitude\n", - "RA =16+23.0/60+30.0/3600;\n", - "\n", - "#calculation\n", - "H= GMT +i+ GST +wl -RA; # hour angle\n", - "H=H *15;\n", - "p =90 -29 -52.0/60;\n", - "c =90 -52 -8.0/60;\n", - "z= acos ( cos (H*pi /180) * sin (p*pi /180) *sin(c*pi /180) + cos(p*pi /180) * cos (c*pi /180) );\n", - "A= asin ( sin (p*pi /180) * sin (H*pi /180) /sin(z));\n", - "A=A *180/ pi\n", - "A=deg_to_dms(A);\n", - "\n", - "#result\n", - "print \"Azimuth in (deg,min,sec)\",A;" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Azimuth in (deg,min,sec) [78, 38, 33.24]\n" - ] - } - ], - "prompt_number": 33 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.54,Page 157" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan,asin\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "c2 =24+30.0/60+20.0/3600;\n", - "d2 =24+30.0/60+40.0/3600;\n", - "c3 =25;\n", - "d3 =25+1.0/60;\n", - "\n", - "#calculation\n", - "alt =( c2+c3+d3+d2)/4;#mean observed altitude\n", - "il =(10.6 -9.4) /4*15.0/3600; # error \n", - "alt = alt +il;\n", - "ir = -57.0/3600/ tan (( alt *pi /180) ); # correction of refraction\n", - "ip =8.0/3600* cos (alt*pi /180) ; # correction of parallax\n", - "alt =alt -ir+ip;#altitude corrected\n", - "z=90 - alt;#ZM\n", - "delta =1+32.0/60+16.8/3600 -56.2/3600*(3.0/60+1.86/3600) ;#declination of sun\n", - "p=90 - delta ;#PM\n", - "c =90 -36 -48.0/60 -30.0/3600;#ZP\n", - "s=(p+z+c) /2;\n", - "s1=s-c;\n", - "s2=s-p;\n", - "s3=s-z;\n", - "A =2* atan ( sqrt (sin(s3*pi /180) * sin (s1*pi /180) / sin (s*pi/180) / sin (s2*pi /180) ));#azimuth calculation\n", - "A=A *180/ pi;\n", - "A=A +81+59.0/60+10.0/3600;\n", - "A=360 -A;\n", - "A=deg_to_dms(A);\n", - "\n", - "#result\n", - "print \"Azimuth in (deg,min,sec)\",A;\n", - "print \"there is a miscalculation in the step of calculating Azimuth and error due to refrection thus resulted in change in answer\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Azimuth in (deg,min,sec) [170, 1, 36.93]\n", - "there is a miscalculation in the step of calculating Azimuth and error due to refrection thus resulted in change in answer\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.55,Page 178" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan,asin\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "alpha =65+40.0/60+18.0/3600; # altitude\n", - "delta =53+12.0/60+10.0/3600; # declination\n", - "\n", - "#calculation\n", - "i =57.0/3600*1/ tan ( alpha *pi /180) ; \n", - "alpha =alpha -i;\n", - "z=90 - alpha ; # zenith distance\n", - "lat =delta -z;\n", - "lat=deg_to_dms(lat);\n", - "\n", - "#result\n", - "print \"Latitude in (deg,min,sec)\",lat" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[28, 52, 2.23] Latitude in (deg,min,sec)\n" - ] - } - ], - "prompt_number": 58 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.56,Page 178" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan,asin\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "alpha =64+36.0/60+20.0/3600; # altitude\n", - "delta =26+12.0/60+10.0/3600; # declination\n", - "\n", - "#calculation\n", - "i =57.0/3600*1/ tan ( alpha *pi /180) ; # error\n", - "alpha =alpha -i;\n", - "z=90 - alpha ; # zenith distance\n", - "lat = delta +z;\n", - "lat=deg_to_dms(lat);\n", - "\n", - "#result\n", - "print \"Latitude in (deg,min,sec)\",lat" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Latitude in (deg,min,sec) [51, 36, 17.06]\n" - ] - } - ], - "prompt_number": 31 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.57,Page 178" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan,asin\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "alpha =44+12.0/60+30.0/3600; # altitude\n", - "longP =75+20.0/60+15.0/3600; # longitude of place\n", - "delta =22+18.0/60+12.8/3600; # declination of sun\n", - "\n", - "#calculation\n", - "i =57.0/3600*1/ tan ( alpha *pi /180) ; # error\n", - "i2 =8.78/3600* cos( alpha ); #error due to parallax\n", - "i3 =15.0/60+45.86/3600; #error due to semi diameter\n", - "alpha =alpha -i+i2+i3;\n", - "z=90 - alpha ; # zenith distance\n", - "delT = longP /15;\n", - "i4 =6.82/3600* delT ; # error in time\n", - "delta =i4+ delta ;\n", - "lat = delta +z;\n", - "lat=deg_to_dms(lat);\n", - "\n", - "#result\n", - "print \"Latitude in (deg,min,sec)\",lat" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[67, 51, 21.23] Latitude in (deg,min,sec)\n" - ] - } - ], - "prompt_number": 62 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.58,Page 180" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#for alpha 1\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan,asin\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "theta =80;\n", - "delta =46+45.0/60+30.0/3600;\n", - "\n", - "#calculation\n", - "alpha1 =90 - theta + delta ;\n", - "alpha1=deg_to_dms(alpha1);\n", - "\n", - "#result\n", - "print \"alpha1 to the north in (deg,min,sec)\",alpha1\n", - "\n", - "#for alpha2\n", - "#calculation\n", - "alpha2 = theta +delta -90;\n", - "alpha2=deg_to_dms(alpha2)\n", - "\n", - "#result\n", - "print \"alpha2 to the south(deg,min,sec)\",alpha2" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[56, 45, 30.0] alpha1 to the north in (deg,min,sec)\n", - "[36, 45, 30.0] lpha1 to the south(deg,min,sec)\n" - ] - } - ], - "prompt_number": 69 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.59,Page 181" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan,asin\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "delta1 =20+25.0/60+48.0/3600; # declination of star 1\n", - "delta2 =79+30.0/60+52.0/3600; # declination of star 2\n", - "alpha1 =48+18.0/60+12.0/3600; #altitude of star 1\n", - "alpha2 =47+54.0/60+6.0/3600; #altitude of star 2\n", - "\n", - "#calculation\n", - "r1 =58.0/3600/ tan( alpha1 *pi /180) # error 1\n", - "r2 =58.0/3600/ tan( alpha2 *pi /180) # error 2\n", - "lat =90 -( alpha1 - alpha2 ) /2+( delta1 - delta2 ) /2+( r1 -r2)/2;\n", - "lat=deg_to_dms(lat);\n", - "\n", - "#result\n", - "print \"Latitude in (deg,min,sec)\",lat;\n", - "print \" there is a miscalculation in the step of calculating (delta1-delta2)/2 so there is a difference in the answer\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Latitude in (deg,min,sec) [60, 15, 24.63]\n", - " there is a miscalculation in the step of calculating (delta1-delta2)/2 so there is a difference in the answer\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.60,Page 182" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan,asin\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "alphal =18+36.0/60+40.0/3600; #altitude at lower culmination\n", - "alphau =59+48.0/60+20.0/3600; #altitude at upper culmination\n", - "lat =( alphal + alphau )/2;\n", - "lat1=deg_to_dms(lat);\n", - "delta =90+ lat - alphau ;\n", - "delta1=deg_to_dms(delta);\n", - "\n", - "\n", - "#result\n", - "print \"Latitude in (deg,min,sec)\",lat1;\n", - "print \"Declination of star in (deg,min,sec)\",delta1" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[39, 12, 30.0] Latitude of star in (deg,min,sec)\n", - "[69, 24, 10.0] Declination of star in (deg,min,sec)\n" - ] - } - ], - "prompt_number": 74 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.61,Page 183" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan,asin\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "alpha =40+36.0/60+30.0/3600; # altitude of star\n", - "delta =10+36.0/60+40.0/3600; # declination of star\n", - "H =46+36.0/60+20.0/3600; # hour angle of star\n", - "\n", - "#calculation\n", - "n= atan ( tan ( delta *pi /180) /cos(H*pi /180) );\n", - "lat =n+ acos ( sin ( alpha *pi /180) *sin(n)/ sin ( delta *pi/180) );\n", - "lat = lat *180/ pi;\n", - "lat=deg_to_dms(lat);\n", - "\n", - "#result\n", - "print \"Latitude in (deg,min,sec)\",lat;" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[36, 49, 43.99] Latitude in (deg,min,sec)\n" - ] - } - ], - "prompt_number": 75 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.62,Page 183" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan,asin\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "alpha =42+10.0/60+40.0/3600; # altitude o f sun\n", - "delta =23+12.0/60+18.6/3600; # declination of sun ' s angle\n", - "LMT =14+50.0/60;\n", - "\n", - "#calculation\n", - "i =57.0/3600*1/ tan ( alpha *pi /180) ; # error\n", - "i2 =8.78/3600* cos( alpha ); # correction due to parallax\n", - "i3 =15.0/60+45.86/3600; # coreection due to semi diamter\n", - "longP =108+30.0/60; # longitude of place\n", - "alpha =alpha -i+i2+i3;\n", - "delT = longP /15; # change in time\n", - "GMT = LMT + delT ;\n", - "i4 =1.2/3600* GMT; # error in time\n", - "H=( GMT -12+ i4 - delT ) *15; # hour angle\n", - "i5 =10.6/3600* GMT; # error in declination\n", - "delta = delta +i5;\n", - "ZM =(90 - alpha )*pi /180;\n", - "PM =(90+ delta )*pi /180;\n", - "A= asin ( sin (PM)/sin(ZM)* sin (H*pi /180) );\n", - "A=pi -A;\n", - "ZP =2* atan ( sin (A/2+ H*pi /360) / sin (A/2-H*pi /360) *tan(PM/2- ZM /2) );\n", - "lat =pi /2- ZP;\n", - "lat = lat *180/ pi +1+6.0/60;\n", - "lat=deg_to_dms(lat);\n", - "\n", - "#result\n", - "print \"Latitude in (deg,min,sec)\",lat;" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[1, 19, 7.46] Latitude in (deg,min,sec)\n" - ] - } - ], - "prompt_number": 78 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.63,Page 185" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan,asin\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "delta =15+20.0/60+48.0/3600; # declination of star\n", - "Int =9+22.0/60+6.0/3600; # interval\n", - "\n", - "#calculation\n", - "dint =Int *9.8565/3600; # change in interval\n", - "H=( Int+ dint ) *15/2; # hour angle\n", - "lat = atan (tan( delta *pi /180) /cos(H*pi /180) );\n", - "lat = lat *180/ pi +5.0/6*16.0/3600;\n", - "lat=deg_to_dms(lat);\n", - "\n", - "#result\n", - "print \"Latitude in (deg,min,sec)\",lat;" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[39, 22, 1.79] Latitude in (deg,min,sec)\n" - ] - } - ], - "prompt_number": 79 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.64,Page 186" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan,asin\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "RA =1+41.0/60+48.64/3600;\n", - "lat =48+36.0/60+40/3600; # latitude\n", - "delta =88+58.0/60+28.26/3600; # declination of polaris\n", - "GMM =16+48.0/60+20.86/3600;\n", - "longP =7+20.0/60; # longitude of place P\n", - "i1 =51.0/3600; # error due to barometer\n", - "i2 =1.0/3600; # error due to barometer\n", - "i3 = -1.0/3600; # error due to temp\n", - "\n", - "#calculation\n", - "lat =lat -i1+i2+i3;\n", - "delT = longP /15;\n", - "i4= delT *9.8565/3600;\n", - "lst = GMM +i4;\n", - "LMT =20+24.0/60+50.0/3600;\n", - "i6 =9.8565/3600* LMT ; # e r r o r i n LMT\n", - "LST = LMT +i6+lst -24;\n", - "H=LST -RA; # hour a n g l e\n", - "H=H *15;\n", - "lat =lat -(90 - delta )*cos(H*pi /180) +.5* sin (1/3600* pi/180) *(90 - delta ) **2*( sin (H*pi /180) )**2* tan ( lat *pi/180) ;\n", - "lat=deg_to_dms(lat);\n", - "\n", - "#result\n", - "print \"Latitude in (deg,min,sec)\",lat;" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[49, 36, 18.45] Latitude in (deg,min,sec)\n" - ] - } - ], - "prompt_number": 81 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 1.65,Page 187" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin,cos,acos,atan,asin\n", - "def deg_to_dms(deg):\n", - " d = int(deg)\n", - " md = abs(deg - d) * 60\n", - " m = int(md)\n", - " sd = round((md - m) * 60,2)\n", - " return [d, m, sd]\n", - "longP =120 -4 -20.0/60; # longitude of point\n", - "GST =8+30.0/60+20.0/3600; #GST on GMM\n", - "delta =6+15.0/60+2.0/3600; # deflection\n", - "alpha =39+20.0/60+30.0/3600; # altitude\n", - "theta =56+54.0/60+30.0/3600; # longitude\n", - "\n", - "#calculation\n", - "delT = longP /15;\n", - "i= delT *9.8565/3600; # error in time\n", - "lst = GST +i; #LST on LMM\n", - "LST =19+52.0/60+16.0/3600;\n", - "RA=LST;\n", - "LMN =LST -lst;\n", - "i2=LMN *9.8565/3600; # error in LMN\n", - "LMN =LMN -i2;\n", - "OSM =10+55.0/60+30.0/3600; #Observed mean time\n", - "i3 =1.0/60+25.0/3600; # e r r o r i n obs e r v ed t ime\n", - "OSM =OSM -i3;\n", - "LMT = OSM +4.0/15+21.0/60.0/15;\n", - "I=LMN - LMT ; # interval\n", - "i4 =1.21/3600; # error in interval\n", - "I=I+i4;\n", - "H=I; # hour angle\n", - "B= cos ( delta *pi /180) * cos ( theta *pi /180) / cos ( alpha *pi/180) ;\n", - "m =225* H **2*3600**2/2.0/206265.0;\n", - "lat = alpha +m*B /3600;\n", - "lat =90 - lat +6+15.0/60+2.0/3600;\n", - "lat=deg_to_dms(lat);\n", - "\n", - "#result\n", - "print \"Latitude in (deg,min,sec)\",lat;" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[56, 53, 17.77] Latitude in (deg,min,sec)\n" - ] - } - ], - "prompt_number": 85 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Surveying_Volume_3/Chapter_2.ipynb b/Surveying_Volume_3/Chapter_2.ipynb deleted file mode 100755 index f9526973..00000000 --- a/Surveying_Volume_3/Chapter_2.ipynb +++ /dev/null @@ -1,1006 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:ca6f7f2cf84d957176ecf14fb0c306b69df620b66b59adb595e323ae5d6031bb" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "PHOTOGRAPHIC SURVEYING" - ] - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 2.1, Page 215" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "# Initialization of Variable\n", - "from math import pi\n", - "from math import atan\n", - "f =120.80 # focal length\n", - "a = -35.52 # elevation of A\n", - "b =8.48 # elevation of B\n", - "c =48.26 # elevation of C\n", - "\n", - "#calculation\n", - "alphaa = atan (a/f);\n", - "alphab = atan (b/f);\n", - "alphac = atan (c/f);\n", - "phi =(354+30/60) *pi /180; # azimuth o f camera\n", - "phia =phi - alphaa -360* pi /180; # azimuth o f a\n", - "phib = phia + alphab; # azimuth o f b\n", - "phic = phia + alphac ; # azimuth o f c\n", - "\n", - "#result\n", - "print \" azimuth of a in ( degrees ) \",round(phia /pi *180,2)\n", - "print \" azimuth of b in ( degrees ) \",round(phib /pi *180,2)\n", - "print \" azimuth of c in ( degrees ) \",round(phic /pi *180,2)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " azimuth of a in ( degrees ) 10.39\n", - " azimuth of b in ( degrees ) 14.4\n", - " azimuth of c in ( degrees ) 32.16\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 2.2,Page 216" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi\n", - "from math import atan,sin,sqrt\n", - "f =150.0; # focal length of camera\n", - "ap =20.2 # elevation of a from p\n", - "aa1 =16.4; # distace to the right\n", - "aq =35.2 # elevation of a from q\n", - "PQ =100.0; # distace of PQ\n", - "RL =126.845; # r educed level of instrument\n", - "\n", - "#calculation\n", - "alphap = atan (ap/f);\n", - "alphaq = atan (aq/f);\n", - "P=pi /3- alphap ; # angle P\n", - "Q =40* pi /180 - alphaq ; # angle Q\n", - "A=pi -P-Q; # angle A;\n", - "AP=PQ* sin (Q)/sin(A);\n", - "AQ=PQ* sin (P)/sin(A);\n", - "Pa1 = sqrt (ap **2+ f **2) ;\n", - "AA1 = aa1 *AP/ Pa1 ;\n", - "RLa =RL+AA1; # reduced level of A\n", - "\n", - "#result\n", - "print \" distance of AP (m) \",round(AP,2);\n", - "print \"distance of AQ (m) \",round(AQ,2);\n", - "print \" reduced level of A in (M) \",round(RLa,2)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " distance of AP (m) 45.9\n", - "distance of AQ (m) 80.6\n", - " reduced level of A in (M) 131.82\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 2.3,Page 218" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin\n", - "theta =(44+30/60) *pi /180; # angle b/w two points\n", - "x1 =68.24; #distance of 1st point\n", - "x2 =58.48; #distance of 2nd point\n", - "\n", - "#calculation\n", - "f=( x1+x2)/ tan ( theta ) /2+ sqrt (( x1+x2) **2/4/( tan ( theta ))\n", - "**2+ x1*x2);\n", - "\n", - "#result\n", - "print \" focal length of lens in (mm) \",round(f,2);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " focal length of lens in (mm) 156.69\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 2.4, Page 240" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin\n", - "# part 1\n", - "\n", - "H =1200.0;#altitude\n", - "h =80.0; #elevation of hill\n", - "f =15.0/100.0;\n", - "\n", - "#calculation\n", - "R80 =f/(H-h);\n", - "print \" representative fraction of hill is ( time s) \",round(R80,5);\n", - "\n", - "# part 2\n", - "#initialisation of variable\n", - "h =300.0; #elevation of hill\n", - "\n", - "#calculation\n", - "R300 =f/(H-h);\n", - "\n", - "#result\n", - "print \" representative fraction of hill is ( time s) \",round(R300,5) ;" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " representative fraction of hill is ( time s) 0.00013\n", - " representative fraction of hill is ( time s) 0.00017\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 2.5,Page 240" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin\n", - "R =1.0/8000.0;\n", - "h =1500.0;\n", - "f =20.0/100.0;\n", - "\n", - "#calculation\n", - "H=h+f/R;\n", - "\n", - "#result\n", - "print \" height above sea level in (m) \",round(H,3);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " height above sea level in (m) 3100.0\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 2.6,Page 241" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin\n", - "h =500.0; #elevation of point\n", - "f =20.0/100.0; # focal length\n", - "v =8.65/100.0; # vertical distance of photograph\n", - "ho =2000.0; # horizontal distance of photograph\n", - "R=v/ho; # representative fraction\n", - "h1 =800;\n", - "\n", - "#calculation\n", - "H=h+f/R;\n", - "S=(H-h1)/f /100; # scale of photograph\n", - "\n", - "print \" height above sea level in (m) \",round(H,2);\n", - "print \" 1cm in photograph represents centimetres \",round(S,3)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " height above sea level in (m) 5124.28\n", - " 1cm in photograph represents centimetres 216.214\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 2.7, Page 241" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin\n", - "m =1.0/50000.0; #map scale\n", - "pd =10.16; # photo distance\n", - "md =2.54; #map distance\n", - "f =16.0/100.0;\n", - "h =200;\n", - "\n", - "#calculation\n", - "R=pd/md*m; # representative fraction\n", - "H=h+f/R;\n", - "\n", - "#result\n", - "print \" height above sea level in (m) \",round(H,3)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " height above sea level in (m) 2200.0\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 2.8,Page 242" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin\n", - "f =20 # f o c a l l e n g t h\n", - "xa =2.65; # x coordinate of a\n", - "xb = -1.92; # x coordinate of b\n", - "ya =1.36; # x coordinate of a\n", - "yb =3.65; # y coordinate of b\n", - "H =2500.0;\n", - "ha =500.0; # elevation of a\n", - "hb =300.0; # elevation of b\n", - "\n", - "#calculation\n", - "Xa =(H-ha)/f*xa;\n", - "Xb =(H-hb)/f*xb;\n", - "Ya =(H-ha)/f*ya;\n", - "Yb =(H-hb)/f*yb;\n", - "AB= sqrt ((Xa -Xb) **2+( Ya -Yb)**2);\n", - "\n", - "#result\n", - "print \" distance between A & B in (m) \",round(AB,3)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " distance between A & B in (m) 545.213\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 2.9,Page 243" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin\n", - "f =20.0 # focal length\n", - "xa =2.65; # x coordinate of a\n", - "xb = -1.92; # x coordinate of b\n", - "ya =1.36; # y coordinate of a\n", - "yb =3.65; # y coordinate of b\n", - "ha =500.0; # elevation of a\n", - "hb =300.0; # elevation of b\n", - "ABg =545.0;\n", - "ab =5.112;\n", - "\n", - "#calculation\n", - "hab =ha /2+ hb /2;\n", - "Happ =hab+ ABg *f/ab\n", - "Xa =( Happ -ha)/f*xa;\n", - "Xb =( Happ -hb)/f*xb;\n", - "Ya =( Happ -ha)/f*ya;\n", - "Yb =( Happ -hb)/f*yb;\n", - "AB= sqrt ((Xa -Xb) **2+( Ya -Yb)**2);\n", - "Hact =ABg/AB *( Happ - hab )+ hab ;\n", - "\n", - "#result\n", - "print \" actual flying height of A & B in (m) \",round(Hact,3);" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " actual flying height of A & B in (m) 2499.706\n" - ] - } - ], - "prompt_number": 9 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 2.10,Page 243" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin\n", - "\n", - "f =20.0/100.0;\n", - "Sd =1.0/10000.0;\n", - "h =250.0; # elevation\n", - "r =6.44;\n", - "\n", - "#calculation\n", - "H=f/Sd;\n", - "d=r*h/H;\n", - "\n", - "#result\n", - "print \"relief displacement of the point in ( cm) \",round(d,3)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "relief displacement of the point in ( cm) 0.805\n" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 2.11,Page 244" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin\n", - "h =50.0; # elevation\n", - "H =2500.0 -1250.0;\n", - "r =6.35;\n", - "\n", - "#calculation\n", - "d=r*h/H;\n", - "\n", - "#result\n", - "print \"releif displacement of the point in ( cm) \",round(d,3)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "releif displacement of the point in ( cm) 0.254\n" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 2.12,Page 244" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin\n", - "f =20.0/100.0; # focal length\n", - "l =250; #length of line\n", - "lp =8.5/100.0; #length of line in photograph\n", - "\n", - "#calculation\n", - "H=l*f/lp; # height of camera above datum\n", - "r =6.46; # distace of image of top o f the towe r\n", - "d =0.46; # releif displacement\n", - "h=d*H/r;\n", - "\n", - "#result\n", - "print \" height of tower above its base in (m) \",round(h,2)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "41.89 height of tower above its base in (m) \n" - ] - } - ], - "prompt_number": 28 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 2.13,Page 267" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin\n", - "l =20/100; # length of photograph\n", - "w =20/100; # breadth of photograph\n", - "Pl =0.6; # longitudinal lap\n", - "Pw =0.3; # side lap\n", - "s =100*20;\n", - "\n", - "#calculation\n", - "L=(1 - Pl)*s;\n", - "W=(1 - Pw)*s;\n", - "Ar=L*W /1000/1000;\n", - "N =100/ Ar;\n", - "A= round (N);\n", - "\n", - "#result\n", - "print \"no . o f photographs to be taken \",A+1;\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "no . o f photographs to be taken 90.0\n" - ] - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 2.14,Page 267" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin\n", - "Pl =0.6; # longitudinal lap\n", - "Pw =0.3; # side lap\n", - "L1 =10000.0;\n", - "s =100.0*20.0;\n", - "\n", - "#calculation\n", - "L2=L1;\n", - "N1=L1 /((1 - Pl)*s) +1;\n", - "A1= round (N1);\n", - "if N1 -A1 <0:\n", - " N1=A1;\n", - "else :\n", - " N1=A1+1;\n", - "\n", - "N2=L2 /((1 - Pw)*s) +1;\n", - "A2= round (N2);\n", - "if N2 -A2 <0:\n", - " N2=A2\n", - "else :\n", - " N2=A2+1;\n", - "\n", - "N=N1*N2;\n", - "\n", - "#result\n", - "print \"no . of photographs to be taken \",N;" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "no . of photographs to be taken 126.0\n" - ] - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 2.15,Page 268" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin\n", - "Pl =0.6; # longitudinal lap\n", - "Pw =0.3; # side lap\n", - "L1 =12500.0;\n", - "s =100.0*20.0;\n", - "L2 =8000.0;\n", - "\n", - "#calculation\n", - "N1=L1 /((1 - Pl)*s) +1;\n", - "A1= round (N1);\n", - "if N1 -A1 <0:\n", - " N1=A1;\n", - "else :\n", - " N1=A1+1;\n", - "\n", - "N2=L2 /((1 - Pw)*s) +1;\n", - "A2= round (N2);\n", - "if N2 -A2 <0:\n", - " N2=A2\n", - "else :\n", - " N2=A2+1;\n", - "\n", - "N=N1*N2;\n", - "\n", - "#result\n", - "print \"no . of photographs to be taken \",N;" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "no . of photographs to be taken 119.0\n" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 2.16,Page 268" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "#part1\n", - "from math import pi,tan,sqrt,sin\n", - "f =30.0/100.0; # focal length\n", - "h =400.0; #elevation of datum\n", - "r =12000.0; # ratio\n", - "s =120.0*20.0;\n", - "L2 =24000.0;\n", - "L1 =30000.0;\n", - "Pl =0.6; # longitudinal lap\n", - "Pw =0.3; # side lap\n", - "\n", - "#calculation\n", - "H=h+r*f;\n", - "\n", - "#result\n", - "print \" height above datum in (m) \",round(H,2);\n", - "\n", - "# part 2\n", - "#calculation\n", - "W=(1 - Pw)*s;\n", - "\n", - "#result\n", - "print \" ground width covered in each photograph (m) \",round(W,2);\n", - "\n", - "# part 3\n", - "N2=L2 /((1 - Pw)*s) +1;\n", - "A2= round (N2);\n", - "if N2 -A2 <0:\n", - " N2=A2\n", - "else :\n", - " N2=A2+1;\n", - "\n", - "#result\n", - "print \"no . of flights required \",N2;\n", - "\n", - "#part 4-9\n", - "#calculation\n", - "Asf =L2 /(N2 -1) ; # actual spacing between flights\n", - "Sfl = Asf /600; # spacing of flight lines\n", - "gd =(1 - Pl)*s; # ground distance\n", - "Ei=gd /55.5; # exposure interval\n", - "Ei= round (Ei);\n", - "Ags =55.56* Ei;# adgusted ground distance\n", - "N1=L1/ Ags +1;\n", - "A1= round (N1);\n", - "if N1 -A1 <0:\n", - " N1=A1;\n", - "else :\n", - " N1=A1+1;\n", - "N=N1*N2;\n", - "\n", - "#result\n", - "print \"actual spacing in m\",Asf\n", - "print \"spacing of flight lines in cm\",round(Sfl,2)\n", - "print \"exposure interval in s\",Ei\n", - "print \"adjusted ground distance in m\",round(Ags)\n", - "print \"no . of photographs to be taken per flight line\",N1\n", - "print \"no . of photographs to be taken \",N;" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " height above datum in (m) 4000.0\n", - " ground width covered in each photograph (m) 1680.0\n", - "no . of flights required 16.0\n", - "actual spacing in m 1600.0\n", - "spacing of flight lines in cm 2.67\n", - "exposure interval in s 17.0\n", - "adjusted ground distance in m 945.0\n", - "no . of photographs to be taken per flight line 33.0\n", - "no . of photographs to be taken 528.0\n" - ] - } - ], - "prompt_number": 15 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 2.17,Page 301" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin\n", - "f =150.0/1000.0; # focal length\n", - "r =20000.0; #ratio\n", - "Pl =0.6; # longitudinal lap\n", - "l =23.0/100.0; # l e n g t h\n", - "w =23.0/100.0; # width\n", - "\n", - "#calculation\n", - "B=(1 - Pl)*l*r; # base length\n", - "H=f*r;\n", - "h =0;\n", - "dh =(H-h) **2/ B/f *0.1/1000;\n", - "\n", - "#result\n", - "print \" error in height in (m) \",round(dh,3)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " error in height in (m) 3.261\n" - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 2.18,Page 302" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin\n", - "H =600.0;\n", - "f =150.0/1000.0;\n", - "b =6.375/100.0;\n", - "h1 =0.0;\n", - "h2 =120.0; # height of chimney\n", - "\n", - "#calculation\n", - "s=H/f;\n", - "B=s*b; # datum elevation\n", - "p1=B*f *1000/(H-h1);\n", - "p2=B*f *1000/(H-h2);\n", - "delp =p2 -p1;\n", - "delh =H* delp /1000/( b+ delp /1000) ;\n", - "\n", - "#result\n", - "print \" parallax height of the chimney in (m)\",round(delh,3)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " parallax height of the chimney in (m) 120.0\n" - ] - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 2.19,Page 303" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "from math import pi,tan,sqrt,sin\n", - "B =200.0;\n", - "f =120.0;\n", - "p2 =52.52; # parallax for top pole\n", - "p1 =48.27; # parallax for bottom pole\n", - "\n", - "#calculation\n", - "delh =(p2 -p1)/p2/p1*B*f;\n", - "\n", - "#result\n", - "print \" difference in elevation of two points in (m) \",round(delh,3)\n", - "print \"there is again a miscalculation in the step of calculating elevation thus there is a change in the answer\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " difference in elevation of two points in (m) 40.234\n", - "there is again a miscalculation in the step of calculating elevation thus there is a change in the answer\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 2.20,Page 303" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#initialisation of variable\n", - "# part 1\n", - "delp =1.48/1000.0;\n", - "H =5000.0;\n", - "h =500.0;\n", - "b =90.0/1000.0; #mean principal base\n", - "\n", - "#calculation\n", - "dh =(H-h) **2* delp /((H-h)* delp +b*H);\n", - "\n", - "#result\n", - "print \" difference in height between two points in(m) \",round(dh,3)\n", - "\n", - "# part 2\n", - "#variable decleration\n", - "delp =15.5/1000.0;\n", - "\n", - "#calculation\n", - "dh =(H-h) **2* delp /((H-h)* delp +b*H);\n", - "\n", - "#result\n", - "print \" difference in height between two points in(m) \",round(dh,3)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " difference in height between two points in(m) 65.629\n", - " difference in height between two points in(m) 603.896\n" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Surveying_Volume_3/README.txt b/Surveying_Volume_3/README.txt deleted file mode 100755 index 2c27e6c8..00000000 --- a/Surveying_Volume_3/README.txt +++ /dev/null @@ -1,10 +0,0 @@ -Contributed By: Tarun Kumar Das -Course: btech -College/Institute/Organization: College of Engineering -Department/Designation: Industrial Engineering -Book Title: Surveying Volume 3 -Author: A K Arora -Publisher: Lakshmi Publications, Chennai -Year of publication: 2011 -Isbn: 9788189401276 -Edition: 1
\ No newline at end of file diff --git a/Surveying_Volume_3/screenshots/chapter1.png b/Surveying_Volume_3/screenshots/chapter1.png Binary files differdeleted file mode 100755 index 14135a76..00000000 --- a/Surveying_Volume_3/screenshots/chapter1.png +++ /dev/null diff --git a/Surveying_Volume_3/screenshots/chapter4.png b/Surveying_Volume_3/screenshots/chapter4.png Binary files differdeleted file mode 100755 index ad0a4bc9..00000000 --- a/Surveying_Volume_3/screenshots/chapter4.png +++ /dev/null diff --git a/Surveying_Volume_3/screenshots/chapter5.png b/Surveying_Volume_3/screenshots/chapter5.png Binary files differdeleted file mode 100755 index bd0c856e..00000000 --- a/Surveying_Volume_3/screenshots/chapter5.png +++ /dev/null diff --git a/Surveying_Volume_3/screenshots/solved_example.png.PNG b/Surveying_Volume_3/screenshots/solved_example.png.PNG Binary files differdeleted file mode 100755 index 830e56f0..00000000 --- a/Surveying_Volume_3/screenshots/solved_example.png.PNG +++ /dev/null diff --git a/Surveying_Volume_3/screenshots/solved_example_2.png.PNG b/Surveying_Volume_3/screenshots/solved_example_2.png.PNG Binary files differdeleted file mode 100755 index dbcd4f71..00000000 --- a/Surveying_Volume_3/screenshots/solved_example_2.png.PNG +++ /dev/null diff --git a/Surveying_Volume_3/screenshots/solved_example_3.png.PNG b/Surveying_Volume_3/screenshots/solved_example_3.png.PNG Binary files differdeleted file mode 100755 index 0622b196..00000000 --- a/Surveying_Volume_3/screenshots/solved_example_3.png.PNG +++ /dev/null diff --git a/Thermodynamics_by_F_P_Durham/README.txt b/Thermodynamics_by_F_P_Durham/README.txt deleted file mode 100755 index f88f2e55..00000000 --- a/Thermodynamics_by_F_P_Durham/README.txt +++ /dev/null @@ -1,10 +0,0 @@ -Contributed By: Pratik Tanna -Course: bca -College/Institute/Organization: CZMG BCA, Jamnagar -Department/Designation: BCA -Book Title: Thermodynamics by F P Durham -Author: F. P. Durham -Publisher: Prentice Hall -Year of publication: 1959 -Isbn: 1105809269 -Edition: 2nd
\ No newline at end of file diff --git a/Thermodynamics_by_F_P_Durham/chapter10.ipynb b/Thermodynamics_by_F_P_Durham/chapter10.ipynb deleted file mode 100755 index c9d863da..00000000 --- a/Thermodynamics_by_F_P_Durham/chapter10.ipynb +++ /dev/null @@ -1,164 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:290fc441b8b16bf79982880c80bb6a81fed30d12de1c6a3c7f5a66a567e435bd" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 10: Refrigeration" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 10.1, page no. 193" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "capacity = 5.0 #tons\n", - "hp = 10.0 #hp\n", - "\n", - "#calculation\n", - "beta = (778*3.33*capacity)/(hp*550)\n", - "\n", - "#result\n", - "print \"Coefficient of performance = \", round(beta, 2)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Coefficient of performance = 2.36\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 10.2, page no. 197" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "P1 = 30.0 #lb/in^2\n", - "P2 = 200.0 #lb/in^2\n", - "capacity = 3.0 #tons\n", - "\n", - "#calculation\n", - "#From the pressure enthalpy chart\n", - "Tt1 = -1 #F\n", - "st1 = 1.34\n", - "ht1 = 612.0\n", - "ht2 = 733.0\n", - "ht3 = 141.0\n", - "ht4 = 141.0\n", - "WbyJ = ht2-ht1\n", - "Q = ht1-ht3\n", - "beta = Q/WbyJ\n", - "Qdot = capacity*3.33\n", - "wdot = Qdot/Q\n", - "Power = wdot*778*WbyJ\n", - "Power = Power/550.0\n", - "\n", - "#result\n", - "print \"Coefficient of performance = \", round(beta, 2)\n", - "print \"Evarator temperature = %d F\" %Tt1\n", - "print \"Power required = %.2f hp\" %Power\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Coefficient of performance = 3.89\n", - "Evarator temperature = -1 F\n", - "Power required = 3.63 hp\n" - ] - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 10.3, page no. 200" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "P1 = 14.0 #lb/in^2\n", - "P2 = 60.0 #lb/in^2\n", - "Tt1 = 80+460.0 #R\n", - "Tt4 = -20+460.0 #R\n", - "m = 30.0 #lbm/sec\n", - "cp = 0.24\n", - "\n", - "#calculation\n", - "Tt2 = round(Tt1*(P2/P1)**(0.286))\n", - "Tt3 = round(Tt4*(P2/P1)**(0.286))\n", - "WbyJ1 = cp*(Tt2-Tt1)\n", - "WbyJ2 = cp*(Tt3-Tt4)\n", - "Q = cp*(Tt1-Tt4)\n", - "beta = Q/(WbyJ1-WbyJ2)\n", - "Power = (m*778)*(WbyJ1-WbyJ2)\n", - "Wdot = Power/550.0\n", - "\n", - "#result\n", - "print \"Coefficient of performance = %.3f\" %beta\n", - "print \"Net power = %d hp\" %Wdot\n", - "\n", - "#difference in answer due to rounding of in Python" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Coefficient of performance = 1.923\n", - "Net power = 529 hp\n" - ] - } - ], - "prompt_number": 24 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Thermodynamics_by_F_P_Durham/chapter11.ipynb b/Thermodynamics_by_F_P_Durham/chapter11.ipynb deleted file mode 100755 index ddbbdc4c..00000000 --- a/Thermodynamics_by_F_P_Durham/chapter11.ipynb +++ /dev/null @@ -1,484 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:1bc460ef0aed5b06b0770ef04462064cc24e898eb90d5d0126bc2216d06cd7e0" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 11: Nozzels & Jet Propulsion" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 11.1, page no. 207" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import math\n", - "\n", - "\n", - "#initialization\n", - "P1 = 100.0 #lb/in^2\n", - "P2 = 14.7 #lb/in^2\n", - "T1 = 600+460.0 #R\n", - "T2 = 300+460.0 #R\n", - "area = 1.0 #in^2\n", - "\n", - "#calculation\n", - "#From steam tables\n", - "ht1 = 1329.1 \n", - "h2 = 1192.8\n", - "v2 = 30.53\n", - "Vel = math.sqrt(2*32.2*778.0*(ht1-h2))\n", - "\n", - "wdot = area*Vel/(144*v2)\n", - "\n", - "\n", - "#result\n", - "print \"Exit velocity = %d ft/sec\" %Vel\n", - "print \"Mass flow rate = %.3f lbm/sec\" %wdot\n", - "#difference in exit velocity due to rounding off in Python" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Exit velocity = 2613 ft/sec\n", - "Mass flow rate = 0.594 lbm/sec\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 11.2, page no. 210" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import math\n", - "\n", - "#initialization\n", - "Pt1 = 100.0 #lb/in^2\n", - "P2 = 15.0 #lb/in^2\n", - "A = 1.0 #in^2\n", - "T = 500+460.0 #F\n", - "gamma = 1.4\n", - "\n", - "#calculation\n", - "Pratio = P2/Pt1\n", - "r1 = (P2/Pt1)**((gamma-1)/gamma)\n", - "r2 = (P2/Pt1)**(2/gamma)\n", - "r3 = (P2/Pt1)**((gamma+1)/gamma)\n", - "V2 = math.sqrt(2*gamma*32.2*53.3*T*(1-r1)/(gamma-1))\n", - "wdot = A*Pt1*math.sqrt(2*gamma*(r2-r3)/(gamma-1)) /(math.sqrt(53.3*T/32.2))\n", - "\n", - "#result\n", - "print \"Exit velocity = %d ft/sec\" %V2\n", - "print \"Mass flow rate = \", round(wdot, 3), \"lbm/sec\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Exit velocity = 2196 ft/sec\n", - "Mass flow rate = 1.107 lbm/sec\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 11.3, page no. 212" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import math\n", - "\n", - "#initialization\n", - "Pt1 = 100.0 #lb/in^2\n", - "Tt1 = 960.0 #RP2 = 15 #lb/in^2\n", - "wdot = 1.13 #lbm/sec\n", - "gamma = 1.4\n", - "\n", - "#calculation\n", - "Pstar = Pt1*(2/(1+gamma))**(gamma/(gamma-1))\n", - "Tstar = Tt1*(2/(1+gamma))\n", - "Vstar = math.sqrt(gamma*32.2*53.3*Tstar)\n", - "vstar = 53.3*Tstar/(144*Pstar)\n", - "Astar = wdot*vstar*144/Vstar\n", - "\n", - "#result\n", - "print \"Ideal throat area = \", round(Astar,3), \"in^2\"\n", - "print \"Ideal pressure = \", round(Pstar, 1), \"lb/in^2\"\n", - "print \"Ideal temperature = %d R\" %Tstar\n", - "print \"Ideal throat specific volume = \", round(vstar, 1), \"ft^3/lbm\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Ideal throat area = 0.658 in^2\n", - "Ideal pressure = 52.8 lb/in^2\n", - "Ideal temperature = 800 R\n", - "Ideal throat specific volume = 5.6 ft^3/lbm\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 11.4, page no. 215" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import math\n", - "\n", - "\n", - "#initialization\n", - "ht1 = 1329.1\n", - "st1 = 1.7581\n", - "h2s = 1151.4\n", - "s2s = 1.7581\n", - "\n", - "#calculation\n", - "eta = math.sqrt((ht1-1192.8)/(ht1-h2s))\n", - "\n", - "#result\n", - "print \"efficiency = \", round(eta, 2)\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "efficiency = 0.88\n" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 11.5, page no. 216" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initializaiton\n", - "v = 2200.0 #exit velocity from ex. 11.2\n", - "p = 15.0 #exit pressure\n", - "n_eta = 0.95 #nozzle efficiency 95%\n", - "t2 = 598.0\n", - "\n", - "#calculations\n", - "V2 = n_eta*v\n", - "v = (53.3*t2)/(144.0*p)\n", - "w = (1.0*V2)/(144.0*v)\n", - "\n", - "print \"Volume at exit \", round(v, 1), \"ft^3/lbm\"\n", - "print \"The mass flow is \", round(w, 3), \"lbm/sec\"\n", - "#difference in answers due to rounding off in Python, check manually" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Volume at exit 14.8 ft^3/lbm\n", - "The mass flow is 0.984 lbm/sec\n" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 11.6, page no. 219" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "v = 500.0 #ft/sec\n", - "P = 14.7 #lb/in^2\n", - "T = 60+460.0 #R\n", - "eta = 0.85\n", - "cp = 0.24\n", - "gamma = 1.4\n", - "\n", - "#calculation\n", - "Pt2 = eta*P*(1+ (gamma-1)*v**2 /(2*gamma*32.2*53.3*T))**(gamma/(gamma-1))\n", - "Tratio = 1+(gamma-1)*v*v/(2*gamma*32.2*53.3*T)\n", - "Tt2 = T*Tratio\n", - "\n", - "#result\n", - "print \"Exit stagnation temperature = %d R\" %(Tt2+1)\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Exit stagnation temperature = 541 R\n" - ] - } - ], - "prompt_number": 19 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 11.7, page no. 222" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import math\n", - "\n", - "#initialization\n", - "P = 30.0 #lb/in^2\n", - "T = 1000+460.0 #R\n", - "Pd = 14.7 #lb/in^2\n", - "w = 60.0 #lbm/sec\n", - "eta = 0.95 #percent\n", - "R = 53.3\n", - "gamma = 1.35\n", - "cp = 0.264\n", - "\n", - "#calculation\n", - "V2s = math.sqrt(2*gamma*32.2*53.3*T*(1-(Pd/P)**(0.259))/(gamma-1))\n", - "V2 = eta*V2s\n", - "Fn = w*(V2)/32.2\n", - "\n", - "#result\n", - "print \"Thrust of the engine = %d ft/sec\" %Fn\n", - "\n", - "#difference due to +5 in V2s calculation while sqrt" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Thrust of the engine = 3196 ft/sec\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 11.8, page no. 226" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import math\n", - "\n", - "#initialization\n", - "v = 600.0 #ft/sec\n", - "T = 60+460.0 #R\n", - "P = 14.7 #lb/in^2\n", - "Pratio = 6.0\n", - "Tin = 1540+460.0 #R\n", - "cp = 0.264\n", - "cpratio = 1.35\n", - "\n", - "#calculation\n", - "Pt2byP1 = (1+(cpratio-1)*v**2/(cpratio*2*32.2*53.3*T))**(3.86)\n", - "Pt3byP1 = Pt2byP1*Pratio\n", - "eta = 1-1/(Pt3byP1)**0.259\n", - "Tt3 = T*(Pt3byP1)**((cpratio-1)/cpratio)\n", - "Q = cp*(Tin-Tt3)\n", - "V6 = math.sqrt(eta*2*32.2*778*Q + v**2)\n", - "Fn = (V6-v)/32.2\n", - "\n", - "#resullts\n", - "print \"Thermal efficiency = \", round(eta, 3)\n", - "print \"thrust per pound of air per sec = \", round(Fn, 1), \"lb-sec/lbm\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Thermal efficiency = 0.403\n", - "thrust per pound of air per sec = 59.8 lb-sec/lbm\n" - ] - } - ], - "prompt_number": 27 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 11.9, page no. 229" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "V = 1000.0 #mph\n", - "P = 14.7 #lb/in^2\n", - "T = 60.0 #F\n", - "g = 1.4\n", - "\n", - "#calculation\n", - "\n", - "V1 = V*(88/T)\n", - "Pratio = (1+ (g-1)*V1**2 /(2*g*32.2*53.3*(T+460)))**(g/(g-1))\n", - "eta = 1-1/(Pratio)**0.286\n", - "\n", - "#result\n", - "print \"Theoretical cycle efficiency = \", round(eta, 3)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Theoretical cycle efficiency = 0.256\n" - ] - } - ], - "prompt_number": 29 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 11.10, page no. 230" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import math\n", - "\n", - "#initialization\n", - "P = 300.0 #lb/in^2\n", - "P2 = 14.7 #lb/in^2\n", - "T = 4540+460.0 #R\n", - "w = 100.0 #lbm/sec\n", - "g = 1.25\n", - "MW = 30.0\n", - "R = 1544.0\n", - "\n", - "#calculation\n", - "R = R/MW\n", - "Pratio = P2/P\n", - "V4 = math.sqrt(2*g*32.2*51.5*T*(1-(Pratio)**((g-1)/g))/(g-1)) \n", - "Fn = w*V4/32.2\n", - "\n", - "#result\n", - "print \"Thrust = %d lb\" %Fn" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Thrust = 19031 lb\n" - ] - } - ], - "prompt_number": 30 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Thermodynamics_by_F_P_Durham/chapter12.ipynb b/Thermodynamics_by_F_P_Durham/chapter12.ipynb deleted file mode 100755 index 466838d2..00000000 --- a/Thermodynamics_by_F_P_Durham/chapter12.ipynb +++ /dev/null @@ -1,543 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:369d727c64e74475d8c5bb63540cbc246cbdecc5bfe067dfd2c4f31c8ec059a2" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 12: Mixtures" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.1, page no 235" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "w1 = 2 #lbm\n", - "w2 = 1 #lbm\n", - "P = 30 #lbm/in^2\n", - "T = 60+460 #R\n", - "\n", - "#calculation\n", - "R1 = 35.1\n", - "R2 = 55.1\n", - "Rm = (w1*R1+w2*R2)/(w1+w2)\n", - "vm = (w1+w2)*Rm*T/(144*P)\n", - "p1 = w1*R1*T/(144*vm)\n", - "p2 = w2*R2*T/(144*vm)\n", - "\n", - "#result\n", - "print \"Gas constant of the mixture = \", round(Rm, 1), \"lb/in^2\"\n", - "print \"Volume of the mixture = \", round(vm, 1), \"ft^3\"\n", - "print \"Partial pressure of CO2 = \", round(p1, 1), \"lb/in^2\"\n", - "print \"Partial pressure of N2 = \", round(p2, 1), \"lb/in^2\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Gas constant of the mixture = 41.8 lb/in^2\n", - "Volume of the mixture = 15.1 ft^3\n", - "Partial pressure of CO2 = 16.8 lb/in^2\n", - "Partial pressure of N2 = 13.2 lb/in^2\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.3, page no. 238" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import scipy.integrate\n", - "\n", - "#initialization\n", - "cpm = 0.2523\n", - "Rm = 54.7\n", - "T1 = 60+460.0 #R\n", - "T2 = 400+460.0 #R\n", - "\n", - "#calculation\n", - "cvm = cpm-Rm/778.0\n", - "Q = cpm*(T2-T1)\n", - "W = Rm*(T2-T1)\n", - "#Rm is divided and multiplied by 778.!\n", - "def s(T):\n", - " cp = cpm/T\n", - " return cp\n", - "ds = scipy.integrate.quadrature(s, T1, T2)[0]\n", - "\n", - "#result\n", - "print \"Entropy change = \", round(ds, 3), \"B/lbm\"\n", - "print \"specific work = \", W, \"ft-lb/lbm\"\n", - "print \"Heat added per pound of mixture = \", round(Q, 1), \"B/lbm\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Entropy change = 0.127 B/lbm\n", - "specific work = 18598.0 ft-lb/lbm\n", - "Heat added per pound of mixture = 85.8 B/lbm\n" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.4, page no. 239" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "P = 14.7 #lb/in^2\n", - "T = 80+460.0 #R\n", - "\n", - "#calculation\n", - "#From steam tables\n", - "Ps = 0.5069 #lb/in^2\n", - "v = 633.1 #ft^3/lbm\n", - "Pair = P-Ps\n", - "vair = 53.3*T/(144*Pair)\n", - "wair = 1/(1+vair/v)\n", - "wwater = vair/v/(1+vair/v)\n", - "\n", - "#result\n", - "print \"Partial pressure of air = \", round(Pair, 1), \"ft^3/lbm\"\n", - "print \"Partial pressure of water vapor = \", Ps, \"ft^3/lbm\"\n", - "print \"Gravimetric analysis of air = \", round(wair, 4)\n", - "print \"Gravimetric analysis of water = \", round(wwater, 4)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Partial pressure of air = 14.2 ft^3/lbm\n", - "Partial pressure of water vapor = 0.5069 ft^3/lbm\n", - "Gravimetric analysis of air = 0.9782\n", - "Gravimetric analysis of water = 0.0218\n" - ] - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.5, page no. 240" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "P = 14.7 #lb/in^2\n", - "T = 80+460.0 #R\n", - "M = 18\n", - "Ps = 0.5069 #lb/in^2\n", - "\n", - "#calculation\n", - "Pair = P-Ps\n", - "R = 1544/M\n", - "v = R*T/(144*Ps)\n", - "vair = 53.3*T/(144*Pair)\n", - "wair = 1/(1+vair/v)\n", - "wwater = vair/v/(1+vair/v)\n", - "\n", - "#result\n", - "print \"Partial pressure of air = \", round(Pair, 2), \"ft^3/lbm\"\n", - "print \"Specific volume = \", round(v), \"ft^3/lbm\"\n", - "print \"Gravimetric analysis of air = \", round(wair, 4)\n", - "print \"Gravimetric analysis of water = \", round(wwater, 4)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Partial pressure of air = 14.19 ft^3/lbm\n", - "Specific volume = 629.0 ft^3/lbm\n", - "Gravimetric analysis of air = 0.9781\n", - "Gravimetric analysis of water = 0.0219\n" - ] - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.6, page no. 242" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "RH = 0.62\n", - "T = 80+460.0 #R\n", - "\n", - "#calculation\n", - "#From stram tables\n", - "P = RH*0.5069\n", - "\n", - "#result\n", - "print \"Partial pressure of water vapor = \", round(P, 4), \"lb/in^2\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Partial pressure of water vapor = 0.3143 lb/in^2\n" - ] - } - ], - "prompt_number": 18 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Exmaple 12.7, page no. 243" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "P = 14.5 #lb/in^2\n", - "T = 70+460.0 #R\n", - "rh = 0.34\n", - "\n", - "#calculation\n", - "#From steam tables\n", - "Pg = 0.3631 #lb/in^2\n", - "Pair = P-Pg\n", - "wratio = rh*0.622*Pg/Pair\n", - "\n", - "#result\n", - "print \"Specific humidity = %.5f lbm/lbm\" %wratio" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Specific humidity = 0.00543 lbm/lbm\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Exmaple 12.8, page no. 244" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "T = 100+460.0 #R\n", - "rh = 0.6\n", - "\n", - "#calculation\n", - "#From steam tables\n", - "Pg = 0.9492 #lb/in^2\n", - "Pwv = rh*Pg\n", - "T = 83 #F\n", - "\n", - "#result\n", - "print \"Dew point is obtained from saturation pressure table and is equal to %d F\" %T" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Dew point is obtained from saturation pressure table and is equal to 83 F\n" - ] - } - ], - "prompt_number": 19 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.9, page no. 246" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "T1 = 80+460.0 #R\n", - "T2 = 90+460.0 #R\n", - "P = 14.5 #lb/in^2\n", - "cp = 0.24\n", - "\n", - "#calculation\n", - "#From steam tables\n", - "hg2 = 1096.6\n", - "hf3 = 48.02\n", - "Pg2 = 0.5069\n", - "hf2 = hf3\n", - "Pair = P-Pg2\n", - "wg2 = 0.622*Pg2/Pair\n", - "hgv1 = 1100.9\n", - "wwv1 = (cp*(T1-T2)+wg2*(hg2-hf3))/(hgv1-hf3)\n", - "Pg = 0.6982\n", - "xi = wwv1*(P-Pg)/(Pg*0.622)\n", - "\n", - "#result\n", - "print \"Specific humidity = \", round(wwv1, 4), \"lbm/lbm\"\n", - "print \"relative humidity = \", round(xi, 3)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Specific humidity = 0.0202 lbm/lbm\n", - "relative humidity = 0.641\n" - ] - } - ], - "prompt_number": 20 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.10, page no. 247" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "T1 = 69.0 #F\n", - "T2 = 84.0 #F\n", - "P = 14.7 #lb/in^2\n", - "\n", - "#calculation\n", - "# from wet bulb n dry bulb temperature charts\n", - "sh = 82.0/7000.0\n", - "rh = 47.0\n", - "Pwv = 0.27\n", - "T = 62.0 #F\n", - "h = 33.3\n", - "\n", - "#result\n", - "print \"Specific humidity = \", round(sh, 4), \"lbm/lbm\"\n", - "print \"Relative humidity = \" , rh, \"%\"\n", - "print \"Partial pressure = \", round(Pwv, 2), \"lb/in^2\"\n", - "print \"Dew point = \", T, \"F\"\n", - "print \"Enthalpy per pound of air = \", round(h, 1), \"V/lbm dry air\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Specific humidity = 0.0117 lbm/lbm\n", - "Relative humidity = 47.0 %\n", - "Partial pressure = 0.27 lb/in^2\n", - "Dew point = 62.0 F\n", - "Enthalpy per pound of air = 33.3 V/lbm dry air\n" - ] - } - ], - "prompt_number": 24 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.11, page no. 250" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import math\n", - "\n", - "#initialization\n", - "g1 = [0.489, 100, 700, 35.1, 0.154]\n", - "g2 = [0.483, 15, 600, 55.2, 0.177]\n", - "g3 = [0.028, 30, 500, 386, 0.754]\n", - "\n", - "#calculation\n", - "v1 = g1[0] *g1[3] *g1[2] /(144*g1[1])\n", - "v2 = g2[0] *g2[3] *g2[2] /(144*g2[1])\n", - "v3 = g3[0] *g3[3] *g3[2] /(144*g3[1])\n", - "vm = v1+v2+v3\n", - "Tm = (g1[0] *g1[4] *g1[2] +g2[0] *g2[4] *g2[2] +g3[0] *g3[4] *g3[2])/(g1[0] *g1[4] +g2[0] *g2[4] +g3[0] *g3[4])\n", - "Pm = (g1[0] *g1[3] +g2[0] *g2[3] +g3[0] *g3[3]) *Tm/(vm*144)\n", - "ds1 = g1[0] *(g1[4] *math.log(Tm/g1[2]) +g1[3] /778.0 *math.log(vm/v1))\n", - "ds2 = g2[0] *(g2[4] *math.log(Tm/g2[2]) +g2[3] /778.0 *math.log(vm/v2))\n", - "ds3 = g3[0] *(g3[4] *math.log(Tm/g3[2]) +g3[3] /778.0 *math.log(vm/v3))\n", - "ds = ds1+ds2+ds3\n", - "\n", - "#result\n", - "print \"Pressure = \", round(Pm, 1), \"lb/in^2\"\n", - "print \"Temperature = \", round(Tm), \"R\"\n", - "print \"Entropy change = \", round(ds, 4), \"B/R\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Pressure = 25.2 lb/in^2\n", - "Temperature = 630.0 R\n", - "Entropy change = 0.0914 B/R\n" - ] - } - ], - "prompt_number": 26 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 12.13, page no. 254" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "vdot1 = 8500.0 #cfm of air\n", - "v1 = 12.775 #from chart\n", - "wdot = vdot1/v1\n", - "\n", - "h2 = 20.3 #from chart\n", - "h1 = 13.85 #from chart\n", - "h4 = 29.0 #from chart\n", - "h3 = 20.3 #from chart\n", - "\n", - "#Part a\n", - "Q12 = h2 - h1\n", - "Q12 = wdot*Q12\n", - "print \"Capacity of preheater: \", round(Q12, 2), \"B/min\"\n", - "\n", - "#Part b\n", - "Q34 = h4 - h3\n", - "Q34 = wdot*Q34\n", - "print \"Capacity of reheater: \", round(Q34, 2), \"B/min\"\n", - "\n", - "#Part c\n", - "\n", - "w2 = 20.0/7000.0 #from chart\n", - "w3 = 54.0/7000.0 #from chart\n", - "W = w3 - w2\n", - "W = wdot*W\n", - "print \"Rate of water addition: \", round(W, 2), \"lbm/min\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Capacity of preheater: 4291.59 B/min\n", - "Capacity of reheater: 5788.65 B/min\n", - "Rate of water addition: 3.23 lbm/min\n" - ] - } - ], - "prompt_number": 3 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Thermodynamics_by_F_P_Durham/chapter13.ipynb b/Thermodynamics_by_F_P_Durham/chapter13.ipynb deleted file mode 100755 index 134029ab..00000000 --- a/Thermodynamics_by_F_P_Durham/chapter13.ipynb +++ /dev/null @@ -1,302 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:9400ac9019314c4e9a568a522343f0bdbb2a3d098bb24add69a9bd20d9589ad0" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 13: Gas Dynamics" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 13.1, page no. 259" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import math\n", - "\n", - "#initialization\n", - "v = 2000.0 #ft/sec\n", - "P = 14.7 #lb/in^2\n", - "g = 1.4\n", - "T = 10+460.0 #R\n", - "\n", - "#calculation\n", - "c = math.sqrt(g*32.2*53.3*T)\n", - "Nm = v/c\n", - "Tratio = 1+ (g-1)/2 *Nm**2\n", - "Tt = Tratio*T\n", - "Pratio = (Tratio)**(g/(g-1))\n", - "Pt = Pratio*P\n", - "\n", - "#result\n", - "print \"Stagnation temperature = %d R\" %Tt\n", - "print \"Stagnation pressure = \", round(Pt, 1), \"lb/in^2\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Stagnation temperature = 802 R\n", - "Stagnation pressure = 95.8 lb/in^2\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 13.2, page no. 261" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import math\n", - "\n", - "#initialization\n", - "A = 0.3 #ft^2\n", - "P = 30.0 #lb/in^2\n", - "T = 160+460.0 #R\n", - "Mn = 0.82\n", - "g = 1.4\n", - "\n", - "#calculation\n", - "w = A*144*P*math.sqrt(g*32.2) *Mn*(1+ (g-1)/2.0 *(Mn)**2)**(-3)/math.sqrt(53.3*T)\n", - "\n", - "#result\n", - "print \"Mass flow = \", round(w, 1), \"lbm/sec\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Mass flow = 26.9 lbm/sec\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 13.3, page no. 263" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import math\n", - "\n", - "#initialization\n", - "Mn = 3.0\n", - "Mni = 0.2\n", - "w = 10.0 #lbm/sec\n", - "g = 1.4\n", - "P = 200.0 #lb/in^2\n", - "T = 400+460.0 #R\n", - "\n", - "#calculation\n", - "Astar = w*math.sqrt(53.3*T) *((g+1)/2)**3 /(P*math.sqrt(g*32.2))\n", - "A1ratio = (2.0/(g+1) + (g-1)*Mni**2 /(g+1))**3 /Mni\n", - "A1 = A1ratio*Astar\n", - "A2ratio = (2.0/(g+1) + (g-1)*Mn**2 /(g+1))**3 /Mn\n", - "A2 = A2ratio*Astar\n", - "Pexit = P/(1+ Mni*Mn**2)**(g/(g-1))\n", - "\n", - "#result\n", - "print \"Throat Area = \", round(Astar, 2), \"in^2\"\n", - "print \"Inlet Area = \", round(A1, 2), \"in^2\"\n", - "print \"Exit Area = \", round(A2, 2), \"in^2\"\n", - "print \"Exit pressure = \", round(Pexit, 2), \"lb/in^2\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Throat Area = 2.76 in^2\n", - "Inlet Area = 8.16 in^2\n", - "Exit Area = 11.67 in^2\n", - "Exit pressure = 5.44 lb/in^2\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 13.4, page no. 266" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import math\n", - "\n", - "#initialization\n", - "Pi = 750.0 #lb/in^2\n", - "g = 1.25\n", - "TA = 2.0 #in^2\n", - "r = 3.0\n", - "\n", - "#calculation\n", - "Fstar = round(((g+1)*(2.0/(g+1))**5 *TA*750))\n", - "Me = 2.45\n", - "Fratio = round(((1+g*Me**2)/(Me*(math.sqrt(4.5+ (g**2 -1)*Me**2)))), 3)\n", - "F2 = Fratio*Fstar\n", - "Pratio = (1+ 0.2*Me**2)**5\n", - "Fnstar = Fratio-((g+1)/2.0)**5 *r/(Pratio*2.25)\n", - "Fn = Fnstar*Fstar\n", - "\n", - "#result\n", - "print \"Internal rocket thrust = %d lb\" %F2 #answer in textbook is wrong\n", - "print \"External thrust = %d lb\" %Fn #answer in textbook is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Internal rocket thrust = 2316 lb\n", - "External thrust = 2229 lb\n" - ] - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 13.5, page no. 270" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "Tt2 = 1620+460 #R\n", - "Tt1 = 60+460 #R\n", - "Mi = 0.2\n", - "P = 40 #lb/in^2\n", - "g = 1.35\n", - "\n", - "#calculation\n", - "Tratio = Tt2/Tt1\n", - "#From figure\n", - "fM = 4*0.036\n", - "NM2 = 0.49\n", - "Pratio = 0.98/0.885\n", - "Pt2 = P/Pratio\n", - "\n", - "#result\n", - "print \"Final stagnation pressure = \", round(Pt2, 1), \"lb/in^2\"\n", - "print \"Final mach number = \", round(fM, 3)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Final stagnation pressure = 36.1 lb/in^2\n", - "Final mach number = 0.144\n" - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 13.6, page no. 273" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "M = 0.4\n", - "l = 10.0 #ft\n", - "dia = 3.0 #in\n", - "P = 50.0 #lb/in^2\n", - "ff = 0.008\n", - "T = 100+460.0 #R\n", - "\n", - "#calculation\n", - "constant = 4*ff*l/dia\n", - "exitM = 2.9-constant\n", - "Nm2 = 0.5\n", - "Ptratio = 2.73/2.3\n", - "Pt2 = P/Ptratio\n", - "\n", - "#result\n", - "print \"Exit total pressure = \", round(Pt2, 1), \"lb/in^2\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Exit total pressure = 42.1 lb/in^2\n" - ] - } - ], - "prompt_number": 17 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Thermodynamics_by_F_P_Durham/chapter14.ipynb b/Thermodynamics_by_F_P_Durham/chapter14.ipynb deleted file mode 100755 index e037e77a..00000000 --- a/Thermodynamics_by_F_P_Durham/chapter14.ipynb +++ /dev/null @@ -1,383 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:e1f2ab4731e8126f69d8554acbb321ab940bce50cce33579f99b691416bd49a5" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 14: Heat Transfer" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.1, page no. 279" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "T = 50.0 #F\n", - "Q = 3.9 #B/hr-ft^2\n", - "\n", - "#calculation\n", - "#From table 14.1\n", - "k = 0.026 #B/hr-ft-F\n", - "dx = k*T/Q\n", - "\n", - "#result\n", - "print \"Required thickness = ft\", round(dx, 3), \"lb/in^2\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Required thickness = ft 0.333 lb/in^2\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.2, page no. 281" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "x1 = 1.0 #in\n", - "x2 = 4.0 #in\n", - "T1 = 85.0 #F\n", - "T2 = 30.0 #F\n", - "\n", - "#calculation\n", - "QbyA = 12*(T1-T2)/(x1/0.3 + x2/0.026)\n", - "\n", - "#result\n", - "print \"Rate of heat flow = \", round(QbyA, 1), \"B/r-ft^2-F\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Rate of heat flow = 4.2 B/r-ft^2-F\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.3, page no. 283" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import math\n", - "\n", - "#initialization\n", - "L = 6.5 #in\n", - "thick = 1.0 #in\n", - "k = 0.06 #B/hr-ft-F\n", - "T1 = 350.0 #F\n", - "T2 = 110.0 #F\n", - "\n", - "#calculation\n", - "QbyL = 2*math.pi*k*(T1-T2)/math.log(1+2/L)\n", - "\n", - "#result\n", - "print \"heat flow = %d B/hr-ft\" %QbyL" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "heat flow = 337 B/hr-ft\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.4, page no. 283" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import math\n", - "\n", - "#initialization\n", - "t = 0.25 #in\n", - "dia = 5.5 #in\n", - "t2 = 0.6 #in\n", - "To = 100.0 #F\n", - "kp = 34.5 #B/hr-ft-F\n", - "ki = 0.05 #B/hr-ft-F\n", - "l = 10.0 #ft\n", - "Q = 2000.0 #B/hr\n", - "\n", - "#calculation\n", - "dT = Q*(1/kp *math.log(1+ 2*t/dia) + 1/ki *math.log(1 + 4*t/(dia+2*t)))/(2*math.pi*l)\n", - "T1 = dT+To\n", - "\n", - "#result\n", - "print \"Inner surface temperature of the pipe = \", round(T1, 1), \"F\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Inner surface temperature of the pipe = 198.2 F\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.5, page no. 286" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "Tsurr = 90.0 #F\n", - "T = 85.0 #F\n", - "\n", - "#calculation\n", - "H = 4.2/(Tsurr-T)\n", - "\n", - "#result\n", - "print \"Film coefficient = %.2f B/hr-ft^2-F\" %H" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Film coefficient = 0.84 B/hr-ft^2-F\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.6, page no. 288" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "k = 0.04 #B/hr-ft-F\n", - "thick = 1.0 #in\n", - "T1 = 90.0 #F\n", - "T2 = 30.0 #F\n", - "Air = 2.5 #B/hr-ft^2-F\n", - "film = 2.0 #B/hr-ft^2-F\n", - "\n", - "#calculation\n", - "U = 1.0/(1.0/Air + thick/12.0/k + 1/film)\n", - "Q = U*(T1-T2)\n", - "\n", - "#result\n", - "print \"Rate of heat transfer per unit square area = %.1f B/hr-ft^2\" %Q" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Rate of heat transfer per unit square area = 20.1 B/hr-ft^2\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.7, page no. 291" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import math\n", - "\n", - "#initialization\n", - "U = 115.0 #B/hr-ft^2-F\n", - "T1 = 190.0 #F\n", - "T2 = 160.0 #F\n", - "Tc1 = 65.0 #F\n", - "Tc2 = 100.0 #F\n", - "w = 140.0 #lbm/min\n", - "c = 0.8 #B/lbm F\n", - "\n", - "#calculation\n", - "Q = w*60.0*c*(T1-T2) #answer in textbook for Q is wrong. Hence, the difference in final answer\n", - "dT = ((T1-Tc2) - (T2-Tc1))/math.log((T1-Tc2)/(T2-Tc1))\n", - "A = Q/(U*dT)\n", - "\n", - "#result\n", - "print \"Required Area = %.1f ft^2\" %A" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Required Area = 19.0 ft^2\n" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.8, page no. 294" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "e = 0.8\n", - "T1 = 100+460.0 #R\n", - "T2 = 300+460.0 #R\n", - "\n", - "#calculation\n", - "Qdot = 0.173*10**-8 *(T2**4 - T1**4)/(1/e +1/e -1)\n", - "\n", - "#result\n", - "print \"Radiant heat transfer per sq. foot = %d B/hr-ft^2\" %(Qdot+1)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Radiant heat transfer per sq. foot = 272 B/hr-ft^2\n" - ] - } - ], - "prompt_number": 15 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 14.9, page no. 294" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "T1 = 400+460.0 #R\n", - "A = 40.0 #in^2\n", - "e = 0.1\n", - "T2 = 70+460.0 #R\n", - "\n", - "#calculation\n", - "Q = A*e*0.173*10**-8 *(T1**4 - T2**4)/144.0\n", - "\n", - "#result\n", - "print \"Rate of heat transfer = %.2f B/hr\" %Q\n", - "#answer in the book is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Rate of heat transfer = 22.49 B/hr\n" - ] - } - ], - "prompt_number": 19 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Thermodynamics_by_F_P_Durham/chapter2.ipynb b/Thermodynamics_by_F_P_Durham/chapter2.ipynb deleted file mode 100755 index 33489895..00000000 --- a/Thermodynamics_by_F_P_Durham/chapter2.ipynb +++ /dev/null @@ -1,285 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:4b491165aaa84eef66101894e30c202e368215710941e1135ee996c3417298e7" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 2: Types of Energy" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.1, page no. 19" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import scipy.integrate\n", - "\n", - "#initialization\n", - "k = 20 #lb/in\n", - "x = 3 #in\n", - "\n", - "#calculation\n", - "def fun(x):\n", - " y = k*x\n", - " return y\n", - "\n", - "w = scipy.integrate.quadrature(fun, 0.0, 3.0)\n", - "\n", - "#result\n", - "print \"Work done = %d in-lb\" %(round(w[0]))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Work done = 90 in-lb\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.2, page no. 22" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import scipy.integrate\n", - "\n", - "#initialization\n", - "w = 0.1 #lbm\n", - "Pv = 30000 #ft-lb/lbm\n", - "v1 = 14.0 #ft^3 /lbm\n", - "v2 = 3.0 #ft^3/lbm\n", - "\n", - "#calculation\n", - "def func(v):\n", - " W = Pv/v\n", - " return W\n", - "\n", - "temp = scipy.integrate.quadrature(func, v1, v2,)\n", - "Work = w * temp[0]\n", - "\n", - "#result\n", - "#Answer varies a bit from the text due to rounding off of log value\n", - "print \"Work done = %d ft-lb\" %Work" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Work done = -4621 ft-lb\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.3, page no. 27" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import scipy.integrate\n", - "\n", - "#initialization of variables\n", - "T1 = 500.0 #R\n", - "T2 = 1000.0 #R\n", - "w = 2.0 #lbm\n", - "\n", - "#calculations\n", - "def c(T):\n", - " cp=0.282+0.00046*T\n", - " return cp\n", - "\n", - "Q = scipy.integrate.quadrature(c, T1, T2,)[0]\n", - "Heat = Q*w\n", - "\n", - "#results\n", - "print \"Heat flow = %d B\" %(Heat)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Heat flow = 626 B\n" - ] - } - ], - "prompt_number": 9 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.4, page no. 29" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import scipy.integrate\n", - "\n", - "#initialization\n", - "T1 = 500.0 #R\n", - "T2 = 1060.0 #R\n", - "w = 1 #lbm\n", - "\n", - "#calculation\n", - "def v(T):\n", - " cv = 0.258-120/T +40000/T**2\n", - " return cv\n", - "\n", - "Q = scipy.integrate.quadrature(v, T1, T2,)[0]\n", - "cvm=Q/(T2-T1)\n", - "\n", - "#result\n", - "print \"The amount of heat: \", round(Q,1), \"B/lbm\"\n", - "print \"Mean specific heat = %.3f B/lbm F\" %cvm" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The amount of heat: 96.6 B/lbm\n", - "Mean specific heat = 0.172 B/lbm F\n" - ] - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.5, page no. 31" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "w=1 #lbm\n", - "Sw=0.3120 #B/lbm R\n", - "Ss=1.7566 #B/lb R\n", - "T=672 #R\n", - "\n", - "#calculation\n", - "Q=T*(Ss-Sw)\n", - "\n", - "\n", - "#result\n", - "print \"Latent heat of water = %d B/lbm\" %Q" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Latent heat of water = 970 B/lbm\n" - ] - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.6, page no. 31" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import scipy.integrate\n", - "\n", - "#initialization\n", - "w=1 #lbm\n", - "T1=492 #R\n", - "T2=672 #R\n", - "cp=1 #B/lbm F\n", - "\n", - "#calculation\n", - "dQ=cp*(T2-T1)\n", - "def ds(T):\n", - " s=1/T\n", - " return s\n", - "\n", - "entropy = scipy.integrate.quadrature(ds, T1, T2,)[0]\n", - "\n", - "#results\n", - "print \"Entropy change = \", round(entropy, 3), \"B/lbm R\" " - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Entropy change = 0.312 B/lbm R\n" - ] - } - ], - "prompt_number": 15 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Thermodynamics_by_F_P_Durham/chapter3.ipynb b/Thermodynamics_by_F_P_Durham/chapter3.ipynb deleted file mode 100755 index 29e0de91..00000000 --- a/Thermodynamics_by_F_P_Durham/chapter3.ipynb +++ /dev/null @@ -1,179 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:2f3fb462cc0db08450310246022ae2504547e2c6d9d1ee2fc4b7cff1e946c1f6" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 3: Properties of Thermodynamic Media" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.1, page no. 43" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initilisation\n", - "P = 80 #lb/in^2\n", - "x = 0.9 #quality\n", - "hg = 1183.1 #B/lbm\n", - "hfg = 901.1 #B/lbm\n", - "\n", - "#calculation\n", - "h=hg-(1-x)*hfg\n", - "\n", - "#result\n", - "print \"Enthalpy of steam = \", round(h), \"B/lbm\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Enthalpy of steam = 1093.0 B/lbm\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.2, page no. 44" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initilisation\n", - "P = 100 #lb/in^2\n", - "T = 470 #F\n", - "T2 = 500 #F\n", - "T1 = 450 #F\n", - "\n", - "#calculation\n", - "#From table 4 of appendix\n", - "v1 = 5.268\n", - "v2 = 5.589\n", - "v = v1+2*(v2-v1)/5.0\n", - "\n", - "#result\n", - "print \"Specific volume at \", T, \"F\", \"= \", round(v,3), \"ft**3/lbm\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Specific volume at 470 F = 5.396 ft**3/lbm\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.3, page no. 47" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initilisation\n", - "\n", - "R = 1544.0 #ft-lb/R\n", - "M = 44.0 #lbm\n", - "\n", - "#calculation\n", - "Rdash=R/M\n", - "\n", - "#result\n", - "print \"Gas constant for CO2 = \", round(Rdash, 1), \"ft-lb/lbm R\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Gas constant for CO2 = 35.1 ft-lb/lbm R\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.4, page no. 48" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialisation\n", - "h = 138.7 #enthalpy - from table 6\n", - "t = 580.0 #R absolute temprature\n", - "p = 11520.0 #pressure\n", - "g = 53.3 #gas constant\n", - "\n", - "#calculation\n", - "#v = RT/P\n", - "\n", - "v = (g*t)/p\n", - "\n", - "#result\n", - "print \"The volume for air at given conditions is \", round(v, 2), \"ft**3/lbm\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The volume for air at given conditions is 2.68 ft**3/lbm\n" - ] - } - ], - "prompt_number": 1 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Thermodynamics_by_F_P_Durham/chapter4.ipynb b/Thermodynamics_by_F_P_Durham/chapter4.ipynb deleted file mode 100755 index 7891e5f3..00000000 --- a/Thermodynamics_by_F_P_Durham/chapter4.ipynb +++ /dev/null @@ -1,398 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:910acb7ed7ee37a2d5b97a6f5e2b66763e4dc01353e87c18f37d153efde41037" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 4: The First Law of Thermodynamics" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.1, page no. 55" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initilisation\n", - "m = 0.5 #mass rate of flow(lbm/sec)\n", - "Pi = 14.0 #inlet pressure(lb/in^2)\n", - "SVi = 13.0 #inlet specific volume(ft^3/lbm)\n", - "Vi = 100.0 #inlet velocity(ft/sec)\n", - "P = 75.5 #power input(hp)\n", - "Hr = 8.65 #heat rejected(zB/sec)\n", - "Pd = 150.0 #discharge pressure(lb/in^2)\n", - "SVd = 2.1 #discharge specific volume(ft^3/lb)\n", - "Vd = 200.0 #discharge velocity(ft/sec)\n", - "z1 = 3.0 #distance(ft)\n", - "z2 = 10.0 #distance(ft)\n", - "\n", - "#calculation\n", - "WbyJ=P*550/(m*778)\n", - "Q=Hr/m\n", - "Wi=144*Pi*SVi/(778)\n", - "Wo=144*Pd*SVd/(778)\n", - "PEi=z1/778\n", - "PEf=z2/778\n", - "KEi=Vi**2 /(2*32.2*778)\n", - "KEf=Vd**2 /(2*32.2*778)\n", - "du=-Q+WbyJ+PEi-PEf+KEi-KEf+Wi-Wo\n", - "\n", - "#result\n", - "print \"Increase in internal energy = \", round(du,1) ,\"B/lbm\" " - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Increase in internal energy = 64.2 B/lbm\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.2, page no. 57" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initilisation\n", - "d = 500.0 #depth of well(ft)\n", - "Pi = 14.0 #pump inlet pressure(lb/in^2)\n", - "Pd = 15.0 #discharge pressure(lb/in^2)\n", - "Sv = 0.016 #specific volume of water(ft^3 /lb)\n", - "\n", - "#calculation\n", - "Wi = 144*Pi*Sv\n", - "Wf = 144*Pd*Sv\n", - "PEi = 0\n", - "PEf = d\n", - "Winput = Wf-Wi+PEf-PEi\n", - "\n", - "#result\n", - "print \"Input work = \", round(Winput, 1), \"ft-lb/lbm\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Input work = 502.3 ft-lb/lbm\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.3, page no. 61" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initilisation\n", - "T1 = 70 #temperature(F)\n", - "T2 = 140 #temperature(F)\n", - "m = 10 #mass of water(lb)\n", - "Cp = 1 #specific volume for water(B/lbm F)\n", - "\n", - "#calculation\n", - "Q = Cp*(T2-T1)\n", - "Qdot = m*Q\n", - "w = 0 #since no change in pressure\n", - "\n", - "#result\n", - "print \"Work done = \", w\n", - "print \"Change in enthalpy= \", Qdot, \"B\"\n", - "print \"Heat added per pound = \", Q, \"B/lbm\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Work done = 0\n", - "Change in enthalpy= 700 B\n", - "Heat added per pound = 70 B/lbm\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.4, page no. 63" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initilisation\n", - "W = 64000.0 #ft-lbm/lb\n", - "P = 14.0 #pressure(lb/in^2)\n", - "W2 = 48500.0 #work input(ft-lbm/lb)\n", - "\n", - "#calculation\n", - "dh1 = W/778.0\n", - "dh2 = W2/778.0\n", - "\n", - "#result\n", - "print \"For the actual process = %.1f B/lbm\" %dh1\n", - "print \"For the frictionless process = \", round(dh2, 1), \"B/lbm\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "For the actual process = 82.3 B/lbm\n", - "For the frictionless process = 62.3 B/lbm\n" - ] - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.5, page no. 66" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import math\n", - "\n", - "#initilisation\n", - "ht = 308 #B/lbm\n", - "h = 298 #B/lbm\n", - "\n", - "#calculation\n", - "V = math.sqrt(2*32.2*778*(ht-h))\n", - "\n", - "#result\n", - "print \"Velocity of tha gas= %d ft/sec\" %V" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Velocity of tha gas= 707 ft/sec\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.6, page no. 69" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initilisation\n", - "hp = 10000 #hp\n", - "v = 100.0 #lbm/sec\n", - "\n", - "#calculation\n", - "W = hp*550/v\n", - "enthalpy = W/778.0\n", - "\n", - "#result\n", - "print \"Decrease in stagnation enthalpy= %.1f B/lbm\" %enthalpy" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Decrease in stagnation enthalpy= 70.7 B/lbm\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.7, page no. 69" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initilisation\n", - "\n", - "w1 = 100 #lbm\n", - "w2 = 2 #lbm\n", - "h1 = 127 #B/lbm\n", - "h2 = 125 #B/lbm\n", - "hc = 401 #B/lbm\n", - "\n", - "#calculation\n", - "ht1=w1*h1\n", - "ht2=w2*h2\n", - "ht3=(w1+w2)*hc\n", - "Q=ht3-ht1-ht2\n", - "\n", - "#result\n", - "print \"Heat liberated = %d B/sec\" %Q" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Heat liberated = 27952 B/sec\n" - ] - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.8, page no. 72" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initilisation\n", - "\n", - "du=75 #B/lbm\n", - "m=0.01 #lbm\n", - "\n", - "#calculation\n", - "W=778*du\n", - "Wdot=m*W\n", - "\n", - "#result\n", - "print \"Work for the process = %d ft-lb\" %Wdot" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Work for the process = 583 ft-lb\n" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.9, page no. 72" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initilisation\n", - "m = 0.5 #lbm\n", - "\n", - "#calculation\n", - "#From tables\n", - "h1 = 48.02 #B/lbm\n", - "hf = 180.07 #B/lbm\n", - "hfg = 970.3 #B/lbm\n", - "h2 = hf+m*hfg\n", - "Q = h2-h1\n", - "\n", - "#result\n", - "print \"Heat added = %.1f B\" %Q" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Heat added = 617.2 B\n" - ] - } - ], - "prompt_number": 15 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Thermodynamics_by_F_P_Durham/chapter5.ipynb b/Thermodynamics_by_F_P_Durham/chapter5.ipynb deleted file mode 100755 index bf944c6e..00000000 --- a/Thermodynamics_by_F_P_Durham/chapter5.ipynb +++ /dev/null @@ -1,171 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:080ddee320ed2e8325a1bba2bf7e96e362906d7bc4b7f00bae6953ceccc830a0" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 5: The Second Law of Thermodynamics" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 5.1, page no. 87" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initilisation\n", - "Tr = 540.0 #R\n", - "Te = 2000.0 #R\n", - "m = 200.0 #B/lbm\n", - "\n", - "#calculation\n", - "eta = 1-(Tr/Te)\n", - "Qr = m*(1-eta)\n", - "\n", - "\n", - "#result\n", - "print \"Thermal efficiency is \", eta*100, \"%\"\n", - "print \"Heat rejected = %d B/lbm\" %Qr" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Thermal efficiency is 73.0 %\n", - "Heat rejected = 54 B/lbm\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 5.2, page no. 90" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import scipy.integrate\n", - "\n", - "#initilisation\n", - "cv=0.171 #B/lbm F\n", - "T2=580 #F\n", - "T1=520 #F\n", - "\n", - "#calculation\n", - "def fun(T):\n", - " cp=cv/T\n", - " return cp\n", - "\n", - "ds = scipy.integrate.quadrature(fun, T1, T2)[0]\n", - "\n", - "#result\n", - "print \"Change in entropy = %.4f B/lbm R\" %ds" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Change in entropy = 0.0187 B/lbm R\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 5.3, page no. 95" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import scipy.integrate\n", - "\n", - "#initilisation\n", - "\n", - "Q = 100.0 #B/lbm\n", - "Cp = 0.24 #B/lbm F\n", - "T1 = 70.0+460.0 #R\n", - "T2 = 550.0+460.0 #R\n", - "Ts = 50.0+460.0 #R\n", - "\n", - "#calculation\n", - "def fun(T):\n", - " cp = Cp/T\n", - " return cp\n", - " \n", - "ds1 = scipy.integrate.quadrature(fun, T1, T2)[0]\n", - "Tf = Q/Cp + T1\n", - "ds2 = scipy.integrate.quadrature(fun, T1, Tf)[0]\n", - "Qr = Ts*(ds2)\n", - "Qa = Q-Qr\n", - "Qun = Ts*(ds1)\n", - "Qa2 = Q-Qun\n", - "\n", - "#result\n", - "print \"Case 1\"\n", - "print \"Change in entropy = %.4f B/lbm R\" %ds1\n", - "print \"case 2\"\n", - "print \"Entropy change = %.4f B/lbm R\" %ds2\n", - "print \"Available energy = %.1f B/lbm\" %Qa\n", - "print \"case 3\"\n", - "print \"Available energy = %.1f B/lbm\" %Qa2" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Case 1\n", - "Change in entropy = 0.1548 B/lbm R\n", - "case 2\n", - "Entropy change = 0.1392 B/lbm R\n", - "Available energy = 29.0 B/lbm\n", - "case 3\n", - "Available energy = 21.1 B/lbm\n" - ] - } - ], - "prompt_number": 6 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Thermodynamics_by_F_P_Durham/chapter6.ipynb b/Thermodynamics_by_F_P_Durham/chapter6.ipynb deleted file mode 100755 index e688b1c7..00000000 --- a/Thermodynamics_by_F_P_Durham/chapter6.ipynb +++ /dev/null @@ -1,434 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:9350c41424c136ffdcb61a367641cc78b39d6999ad3a13b8f61c623099d55d5b" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 6: The Ideal Gas" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 6.1, page no. 101" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import scipy.integrate\n", - "\n", - "#intialization of variables\n", - "T1 = 40+460.0 #temperature(R)\n", - "T2 = 340+460.0 #temperature(R)\n", - "\n", - "#calculation\n", - "def Cv(T):\n", - "\tcv = 0.162+0.00046*T\n", - "\treturn cv\n", - "\t\n", - "du = scipy.integrate.quadrature(Cv, T1, T2)[0]\n", - "\n", - "#result\n", - "print \"Change in specific internal energy = %.1f B/lbm\" %du" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Change in specific internal energy = 138.3 B/lbm\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 6.2, page no. 103" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "\n", - "cp = 0.24 #B/lbm F\n", - "R = 53.3 #ft-lb/lbm F\n", - "\n", - "#calculation\n", - "cv = cp-R/778.0\n", - "\n", - "#result\n", - "print \"Specific heat at constant volume = %.3f B/lbm F\" %cv" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Specific heat at constant volume = 0.171 B/lbm F\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 6.3, page no. 104" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import scipy.integrate\n", - "\n", - "#initialization\n", - "T1 = 1400+460.0 #temperature(R)\n", - "T2 = 1200+460.0 #temperature(R)\n", - "\n", - "#calculation\n", - "def Cp(T):\n", - "\tcp = 0.317- 1.2*100/T + 4*10**4/T**2\n", - "\treturn cp\n", - "\n", - "dh = scipy.integrate.quadrature(Cp, T1, T2)[0]\n", - "\n", - "#result\n", - "print \"Change in stagnation enthalpy = %.1f B/lbm\" %dh" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Change in stagnation enthalpy = -52.3 B/lbm\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 6.4, page no. 106" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import scipy.integrate\n", - "\n", - "#initialization\n", - "T1 = 100+460.0 #temperature(R)\n", - "T2 = 300+460.0 #temperature(R)\n", - "P1 = 15.0 #pressure(lb/in^2)\n", - "P2 = 30.0 #pressure(lb/in^2)\n", - "Cp = 0.3 #constant pressure(B/lbm F)\n", - "R = 40.0 #gas constant(ft-lb/lbm R)\n", - "\n", - "#calculation\n", - "def fun(f):\n", - "\ts=Cp/f\n", - "\treturn s\n", - "def fun1(f):\n", - "\ts2=R/(f*778)\n", - "\treturn s2\n", - "\n", - "ds1 = scipy.integrate.quadrature(fun, T1, T2)[0]\n", - "ds2 = scipy.integrate.quadrature(fun1, P1, P2)[0]\n", - "ds = ds1 - ds2\n", - "\n", - "#result\n", - "print \"Change in entropy = %.4f B/lbm R\" %ds" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Change in entropy = 0.0560 B/lbm R\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 6.5, page no. 108" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "\n", - "T1 = 40+460.0 #temperature(R)\n", - "T2 = 340+460.0 #temperature(R)\n", - "P1 = 15.0 #pressure(lb/in^2)\n", - "cp = 0.24\n", - "cv = 0.171\n", - "\n", - "#calculation\n", - "gamma=cp/cv\n", - "P2=P1 *((T2/T1)**(gamma/(gamma-1)))\n", - "\n", - "#result\n", - "print \"Final pressure = %.1f lb/in^2\" %P2" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Final pressure = 76.9 lb/in^2\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 6.6, page no. 110" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import math\n", - "\n", - "#initialization\n", - "P1 = 16.0 #lb/in^2\n", - "P2 = 14.0 #lb/in^2\n", - "Tt = 83+460.0 #R\n", - "gamma = 1.4\n", - "cp = 0.24 #B/lbm F\n", - "\n", - "#calculation\n", - "T = Tt *(P2/P1)**((gamma-1)/gamma)\n", - "dh = cp*(Tt-T)\n", - "V = math.sqrt(2*32.2*778*dh)\n", - "\n", - "#result\n", - "print \"Actual temperature in the flow = %d R\" %T\n", - "print \"Flow velocity = %d ft/sec\" %V\n", - "\n", - "#difference in answeres is due to internal rounding off in Python" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Actual temperature in the flow = 522 R\n", - "Flow velocity = 494 ft/sec\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 6.7, page no. 111" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import math\n", - "import scipy.integrate\n", - "\n", - "#initialization\n", - "T1 = 400.0+460.0 #R\n", - "P1 = 100.0 #lb/in^2\n", - "P2 = 20.0 #lb/in^2\n", - "T2 = 140.0+460.0 #R\n", - "Cp = 50.0\n", - "\n", - "#calculation\n", - "Pratio = P1/P2\n", - "Tratio = T1/T2\n", - "C = math.log(Tratio)/math.log(Pratio)\n", - "n=1/(1-C)\n", - "v1=Cp*T1/(144*P1)\n", - "v2=Cp*T2/(144*P2)\n", - "w=144*P1*v1**n\n", - "def fun(v):\n", - "\tp=w/v**n\n", - "\treturn p\n", - "\n", - "Work = scipy.integrate.quadrature(fun, v1, v2)[0]\n", - "\n", - "#result\n", - "print \"Work done = %f ft-lb/lbm\" %Work" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Work done = 45118.149895 ft-lb/lbm\n" - ] - } - ], - "prompt_number": 9 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 6.8, page no. 113" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import math\n", - "\n", - "#initialization\n", - "P1 = 15.0 #lb/in^2\n", - "P2 = 20.0 #lb/in^2\n", - "T1 = 40+460 #R\n", - "T2 = 540+460 #R\n", - "\n", - "#calculation\n", - "#From table 6 at the two temperatures\"\n", - "phi1 = 0.58233\n", - "phi2 = 0.75042\n", - "ds = phi2-phi1-53.3*math.log(P2/P1)/778.0\n", - "\n", - "#result\n", - "print \"Entropy change = %.5f B/lbm R\" %ds" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Entropy change = 0.14838 B/lbm R\n" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 6.9, page no. 115" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#part a\n", - "\n", - "P2 = 1460.0 #pressure 2\n", - "P1 = 1900.0 #pressure 1\n", - "V2 = 1900.0 #volume 1\n", - "V1 = 1460.0 #volume 2\n", - "\n", - "pratio = (P2/P1)**3.5\n", - "vratio = (V2/V1)**2.5\n", - "\n", - "print \"Pressure ratio is \", round(pratio,2)\n", - "print \"Volume ratio is \", round(vratio,2)\n", - "\n", - "#part b\n", - "#from table 6\n", - "Pr2 = 50.34 #pressure 2\n", - "Pr1 = 141.51 #pressure 1\n", - "Vr2 = 10.743 #volume 1\n", - "Vr1 = 4.974 #volume 2\n", - "\n", - "pratio = (Pr2/Pr1)\n", - "vratio = (Vr2/Vr1)\n", - "\n", - "print \"Pressure ratio is \", round(pratio,2)\n", - "print \"Volume ratio is \", round(vratio,2)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Pressure ratio is 0.4\n", - "Volume ratio is 1.93\n", - "Pressure ratio is 0.36\n", - "Volume ratio is 2.16\n" - ] - } - ], - "prompt_number": 1 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Thermodynamics_by_F_P_Durham/chapter7.ipynb b/Thermodynamics_by_F_P_Durham/chapter7.ipynb deleted file mode 100755 index 0e9ab052..00000000 --- a/Thermodynamics_by_F_P_Durham/chapter7.ipynb +++ /dev/null @@ -1,649 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:698d37f412d89d016a22fab7149569fc8652a8ce9fa170122f874fd8734f1895" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 7: Thermodynamics Processes" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 7.1, page no. 124" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "\n", - "P1 = 160.0 #lb/in^2\n", - "T1 = 100.0 #F\n", - "P2 = 140.0 #lb/in^2\n", - "T2 = 550.0 #F\n", - "\n", - "#From steam tables\n", - "h1 = 67.97 #B/lbm\n", - "h2 = 1299.3 #B/lbm\n", - "s1 = 0.1295 #B/lbm R\n", - "s2 = 1.6785 #B/lbm R\n", - "\n", - "#calculation\n", - "dh = h2-h1\n", - "ds = s2-s1\n", - "\n", - "#result\n", - "print \"Change in enthalpy = %.1f B/lbm\" %dh\n", - "print \"Change in entropy = %.4f B/lbm R\" %ds" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Change in enthalpy = 1231.3 B/lbm\n", - "Change in entropy = 1.5490 B/lbm R\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 7.2, page no. 125" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "P1 = 160.0 #lb/in^2\n", - "T1 = 100.0 #F\n", - "P2 = 140.0 #lb/in^2\n", - "T2 = 550.0 #F\n", - "\n", - "#From steam tables\n", - "h1 = 67.97 \n", - "s1 = 0.1295\n", - "h2 = 1300.9\n", - "s2 = 1.6945\n", - "\n", - "#calculation\n", - "dh = h2-h1\n", - "ds = s2-s1\n", - "\n", - "#result\n", - "print \"Change in enthalpy = %.1f B/lbm\" %dh\n", - "print \"Change in entropy = %.4f B/lbm R\" %ds\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Change in enthalpy = 1232.9 B/lbm\n", - "Change in entropy = 1.5650 B/lbm R\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 7.3, page no. 126" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import scipy.integrate\n", - "\n", - "#initialization\n", - "P1 = 30.0 #lb/in^2\n", - "T1 = 300+460.0 #R\n", - "T2 = 60 +460.0 #R\n", - "cp = 0.25 #B/lbm F\n", - "R = 53.3 #ft-lb/lbm R\n", - "\n", - "#calculation\n", - "Q = cp*(T2-T1)\n", - "du = (cp-R/778)*(T2-T1)\n", - "W = 778*(Q-du)\n", - "def c(T):\n", - " ds = cp/T\n", - " return ds\n", - "S = scipy.integrate.quadrature(c, T1, T2)[0]\n", - "\n", - "#result\n", - "print \"Heat flow\", Q, \" B/lbm\"\n", - "print \"change in internal energy\", round(du, 1), \" B/lbm\"\n", - "print \"the work done is \", W, \" ft-lb/lbm\" #mistake in book for calculation of W\n", - "print \"Change in entropy = %.3f B/lbm R\" %S" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Heat flow -60.0 B/lbm\n", - "change in internal energy -43.6 B/lbm\n", - "the work done is -12792.0 ft-lb/lbm\n", - "Change in entropy = -0.095 B/lbm R\n" - ] - } - ], - "prompt_number": 15 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 7.4, page no. 129" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "\n", - "T1 = 300.0 #F\n", - "# From steam tables\n", - "\n", - "h1 = 269.59 #B/lbm\n", - "h2 = 1179.7 #B/lbm\n", - "s1 = 0.4369 #B/lbm R\n", - "s2 = 1.6350 #B/lbm R\n", - "\n", - "#calculation\n", - "dh = h2-h1\n", - "ds = s2-s1\n", - "\n", - "#result\n", - "print \"Change in enthalpy = %.1f B/lbm\" %dh\n", - "print \"Change in entropy = %.4f B/lbm R\" %ds" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Change in enthalpy = 910.1 B/lbm\n", - "Change in entropy = 1.1981 B/lbm R\n" - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 7.5, page no. 129" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import math\n", - "\n", - "#initialization\n", - "v = 12.8 #ft^3\n", - "T = 80+460.0 #R\n", - "P = 14.0 #lb/in^2\n", - "Pf = 500.0 #lb/in^2\n", - "\n", - "#calculation\n", - "Q = -53.3*T*math.log(Pf/P)/778.0\n", - "v2 = 53.3*T/(144*Pf)\n", - "w = v/v2\n", - "Qdot = w*Q\n", - "Wdot = w*W\n", - "ds = Q/T\n", - "dsbar = ds*w\n", - "\n", - "#result\n", - "print \"Work required = %d ft-lb\" %Wdot\n", - "print \"Heat transfer = %d B\" %Qdot\n", - "print \"Change in entropy = %.3f B/lbm \" %dsbar\n", - "print \"Change in internal energy is 0 cause this is a constant temperature process\"\n", - "\n", - "#answers will differ due to roundin offs" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Work required = -3295227 ft-lb\n", - "Heat transfer = -4235 B\n", - "Change in entropy = -7.844 B/lbm \n", - "Change in internal energy is 0 cause this is a constant temperature process\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 7.6, page no. 131" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "P1 = 14.7 #lb/in^2\n", - "P2 = 20.0 #lb/in^2\n", - "w = 1.0 #lbm\n", - "\n", - "#calculation\n", - "# From table 3 of appendix\n", - "v1 = 26.8\n", - "h1 = 1150.4\n", - "s1 = 1.7566\n", - "u1 = h1- 144*P1*v1/778\n", - "print \"Internal energy 1 = %.1f B/lbm\" %u1\n", - "\n", - "\n", - "# For pressure of 20 lb/in^2 , from table 2\n", - "v2 = 26.8\n", - "h2 = 1260.9\n", - "s2 = 1.8637\n", - "u2 = h2-144*P2*v2/778\n", - "du = u2-u1\n", - "ds = s2-s1\n", - "\n", - "#result\n", - "print \"Change in internal energy = %.1f B/lbm\" %du\n", - "print \"CHange in entropy = %.4f B/lbm R\" %ds" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Internal energy 1 = 1077.5 B/lbm\n", - "Change in internal energy = 84.2 B/lbm\n", - "CHange in entropy = 0.1071 B/lbm R\n" - ] - } - ], - "prompt_number": 19 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 7.7, page no. 133" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import scipy.integrate\n", - "import math\n", - "\n", - "#initialization\n", - "P1 = 100.0 #lb/in^2\n", - "T1 = 240+460.0 #R\n", - "T2 = 740+460.0 #R\n", - "cp = 0.171 #B?lbm F\n", - "\n", - "#calculation\n", - "dq = cp*(T2-T1)\n", - "def s(T):\n", - " ds = cp/T\n", - " return ds\n", - "ds = scipy.integrate.quadrature(s, T1, T2)[0]\n", - "cpm = 0.247\n", - "cv = cpm-53.3/778\n", - "Q = cv*(T2-T1)\n", - "ds2 = cv*math.log(T2/T1)\n", - "v1 = 53.3*T1/(144*P1)\n", - "P2 = P1*(T2/T1)\n", - "\n", - "# from table 6\n", - "h1 = 167.56\n", - "phi1 = 0.66321\n", - "u1 = h1-144*P1*v1/778.0\n", - "h2 = 291.30\n", - "phi2 = 0.79628\n", - "u2 = h2-144*P2*v1/778.0\n", - "Q3 = u2-u1\n", - "ds3 = phi2-phi1-53.3*math.log(P2/P1)/778.0\n", - "\n", - "print \"Part a\"\n", - "print \"work is zero\"\n", - "print \"Heat = %.1f B/lbm\" %dq\n", - "print \"Change in entropy = %.4f B/lbm R\" %ds\n", - "\n", - "print \"part b\"\n", - "print \"Heat = %.1f B/lbm\" %Q\n", - "print \"Change in entropy = %.4f B/lbm R\" %ds2\n", - "\n", - "print \"Part c\"\n", - "print \"Heat low = %.1f B/lbm\" %Q3\n", - "print \"Change in entropy = %.5f B/lbm R\" %ds3" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Part a\n", - "work is zero\n", - "Heat = 85.5 B/lbm\n", - "Change in entropy = 0.0922 B/lbm R\n", - "part b\n", - "Heat = 89.2 B/lbm\n", - "Change in entropy = 0.0962 B/lbm R\n", - "Part c\n", - "Heat low = 89.5 B/lbm\n", - "Change in entropy = 0.09614 B/lbm R\n" - ] - } - ], - "prompt_number": 20 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 7.8, page no. 136" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "P1 = 100.0 #lb/in^2\n", - "T1 = 500+460.0 #R\n", - "P2 = 16.0 #lb/in^2\n", - "\n", - "#calculation\n", - "# From table 4 of appendix, initial conditions are\n", - "ht1 = 1279.1\n", - "st1 = 1.7085\n", - "hg = 1152.0\n", - "sg = 1.7549\n", - "hfg = 969.7\n", - "sfg = 1.4415\n", - "st1 = 1.7085\n", - "Xdash = (sg-st1)/sfg\n", - "ht2 = hg-(Xdash)*hfg\n", - "hdiff = ht1-ht2\n", - "W = hdiff*778\n", - "\n", - "#result\n", - "print \"Change in entropy is zero\"\n", - "print \"heat trasnfer is zero since adiabatic\"\n", - "print \"Work done = %d ft-lb/lbm\" %W\n", - "print \"Change in enthalpy = %.1f B/lbm\" %hdiff" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Change in entropy is zero\n", - "heat trasnfer is zero since adiabatic\n", - "Work done = 123167 ft-lb/lbm\n", - "Change in enthalpy = 158.3 B/lbm\n" - ] - } - ], - "prompt_number": 21 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 7.9, page no. 137" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "g = 1.4\n", - "cv = 0.171 #B/lbm \n", - "P1 = 14.7 #lb/in^2\n", - "P2 = 100 #lb/in^2\n", - "T1 = 60+460 #R\n", - "w = 1 #lbm\n", - "\n", - "#calculation\n", - "Tratio = (P2/P1)**((g-1)/g)\n", - "T2 = T1*Tratio\n", - "WbyJ = cv*(T1-T2)\n", - "W = WbyJ*778.0\n", - "\n", - "#result\n", - "print \"Work done = %.1f B/lbm\" %W\n", - "print \"CHange in internal energy = %d ft-lb/lbm\" %WbyJ\n", - "\n", - "#difference in answers due to rounding offs" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Work done = -50463.5 B/lbm\n", - "CHange in internal energy = -64 ft-lb/lbm\n" - ] - } - ], - "prompt_number": 24 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 7.10, page no. 137" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import math\n", - "\n", - "#initialization\n", - "P1 = 25.0 #lb/in^2\n", - "T1 = 840+460.0 #R\n", - "P2 = 14.7 #lb/in^2\n", - "\n", - "#calculation\n", - "# from table 6 of appendix\n", - "ht1 = 316.94\n", - "Prt1 = 32.39\n", - "Pratio = P1/P2\n", - "Pr2 = Prt1/Pratio\n", - "h2 = 272.4\n", - "V2 = math.sqrt(2*32.2*778.0*(ht1-h2))\n", - "\n", - "#result\n", - "print \"Nozzle exit velocity = %d ft/sec\" %V2\n", - "\n", - "#difference in the answers is due to internal rounding off in Python." - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Nozzle exit velocity = 1493 ft/sec\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 7.11, page no. 139" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "P1 = 100.0 #lb/in^2\n", - "P2 = 16.0 #lb/in^2\n", - "T1 = 500+460.0 #R\n", - "eta = 0.996\n", - "\n", - "#calculation\n", - "# from appendix table 4\n", - "ht1 = 1279.1\n", - "st1 = 1.7085\n", - "hg = 1152\n", - "sg = 1.7549\n", - "hfg = 969.7\n", - "sfg = 1.4415\n", - "ht2 = hg-(1-eta)*hfg\n", - "st2 = sg-(1-eta)*sfg\n", - "WbyJ = ht1-ht2\n", - "W = WbyJ*778\n", - "ds = st2-st1\n", - "\n", - "#result\n", - "print \"Work done = %d ft-lb/lbm\" %W #difference due to rounding off\n", - "print \"Change in enrtropy = %.4f B/lbm R\" %ds" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Work done = 101901 ft-lb/lbm\n", - "Change in enrtropy = 0.0406 B/lbm R\n" - ] - } - ], - "prompt_number": 26 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 7.12, page no. 140" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import math\n", - "\n", - "#initialization\n", - "P1 = 14.7 #lb/in^2\n", - "T1 = 60+460.0 #R\n", - "P2 = 100.0 #lb/in^2\n", - "T2 = 470+460.0 #R\n", - "cv = 0.171 #B/lbm F\n", - "cp = 0.24 #B/lbm F\n", - "\n", - "#calculation\n", - "WbyJ=cv*(T1-T2)\n", - "W=778*WbyJ\n", - "ds=cp*math.log(T2/T1) - 53.3*math.log(P2/P1)/778.0\n", - "\n", - "#result\n", - "print \"Work done = %d ft-lb/lbm\" %W\n", - "print \"Change in entropy = %.4f B/lbm R\" %ds" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Work done = -54545 ft-lb/lbm\n", - "Change in entropy = 0.0082 B/lbm R\n" - ] - } - ], - "prompt_number": 12 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Thermodynamics_by_F_P_Durham/chapter8.ipynb b/Thermodynamics_by_F_P_Durham/chapter8.ipynb deleted file mode 100755 index 8fd523c3..00000000 --- a/Thermodynamics_by_F_P_Durham/chapter8.ipynb +++ /dev/null @@ -1,356 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:faffd56df5ff320ba3aaf8ef0438e5c3fd03dbfd20ea0e30132ca53319ffe641" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 8: Engine Cycles" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 8.1, page no. 154" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "ratio = 7.0\n", - "Q = 300.0 #B/lbm\n", - "T1 = 60+460.0 #R\n", - "P1 = 14.7 #lb/in^2\n", - "cv = 0.1715 #B/lvm F\n", - "g = 1.4\n", - "\n", - "#calculation\n", - "Tratio = (ratio)**(g-1)\n", - "T2 = Tratio*T1\n", - "T3 = T2+Q/cv\n", - "eta = round(1- 1/Tratio,2)\n", - "WbyJ = eta*Q\n", - "print WbyJ*778\n", - "W = 778*WbyJ\n", - "\n", - "#result\n", - "print \"Final temperature = %d R\" %T3\n", - "print \"Thermal efficiency = %.3f\" %eta\n", - "print \"Work done = %d ft-lb/lbm\" %W\n", - "#difference in answer due to internal rounding off in Python" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "126036.0\n", - "Final temperature = 2881 R\n", - "Thermal efficiency = 0.540\n", - "Work done = 126036 ft-lb/lbm\n" - ] - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 8.2, page no. 157" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "import math\n", - "\n", - "#initialization\n", - "cydia = 3.0 #in\n", - "crdia = 5.0 #in\n", - "ratio = 7.0\n", - "rpm = 3000.0 #rpm\n", - "hp = 50.0 #hp\n", - "w = 24.2 #lbm\n", - "Q = 18000.0 #B/lbm\n", - "P1 = 14.7 #lb/in^2\n", - "T1 = 60+460.0 #R\n", - "g = 1.4\n", - "cv = 0.1715\n", - "\n", - "#calculation\n", - "eta = hp*550*3600/(778*w*Q)\n", - "vol = math.pi*(cydia/12)**2 *(crdia/12)*6/4\n", - "vdot = vol*rpm/(60*2)\n", - "v1 = 53.3*T1/(144*P1)\n", - "wdot = vdot/v1\n", - "Qdot = w*Q/3600\n", - "Qdash = Qdot/wdot\n", - "T2 = T1*(ratio)**(g-1)\n", - "T3 = T2+Qdash/cv\n", - "eta2 = 1- 1/(ratio)**(g-1)\n", - "WbyJ = eta2*Qdot\n", - "Wdot = WbyJ*778/550.0\n", - "\n", - "#result\n", - "\n", - "print \"Part a\"\n", - "print \"Thermal efficiency = %.3f \" %eta\n", - "\n", - "print \"part b\"\n", - "print \"Temperature at the end of compression = %d R\" %T2\n", - "print \"Power developed = %.1f hp\" %Wdot" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Part a\n", - "Thermal efficiency = 0.292 \n", - "part b\n", - "Temperature at the end of compression = 1132 R\n", - "Power developed = 92.6 hp\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 8.3, page no. 161" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "Pi = 14.0 #lb/in^2\n", - "T1 = 70+460.0 #F\n", - "ratio = 13.0\n", - "T3 = 2500+460.0 #F\n", - "cv = 0.171\n", - "cp = 0.23\n", - "R = 53.3\n", - "g = 1.4\n", - "\n", - "#calculation\n", - "T2 = T1*(ratio)**(g-1)\n", - "v3ratio = T3/T2\n", - "cutoff = (v3ratio-1)/(ratio-1)\n", - "v1ratio = ratio/v3ratio\n", - "T4 = T3*(1/v1ratio)**(g-1)\n", - "eta = 1.0- cv*(T4-T1)/(T3-T2)/cp\n", - "percent = eta*100\n", - "\n", - "#result\n", - "print \"cut off ratio = %.4f\" %cutoff\n", - "print \"T end expansion = %d R\" %T4\n", - "print \"Thermal efficiency = %.1f\" %percent, \"%\"\n", - "#difference in % due to internal rounding off in Python" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "0.563104145624\n", - "cut off ratio = 0.0835\n", - "T end expansion = 1400 R\n", - "Thermal efficiency = 56.3 %\n" - ] - } - ], - "prompt_number": 20 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 8.4, page no. 167" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "Pratio = 6.0\n", - "P = 14.7 #lb/in^2\n", - "Tt1 = 60+460.0 #R\n", - "Tt3 = 1600+460.0 #R\n", - "w = 60.0 #lb/sec\n", - "cp = 0.24 #B/lbm F\n", - "g = 1.4\n", - "R = 53.3 #ft-lb/lbm R\n", - "\n", - "#calculation\n", - "Tt2 = Tt1*(Pratio)**((g-1)/g)\n", - "Tratio = Tt2/Tt1\n", - "Q = cp*(Tt3-Tt2)\n", - "eta = 1- 1/Tratio\n", - "W = eta*778*Q\n", - "Wdot = w*W/550.0\n", - "\n", - "#result\n", - "print \"Thermal efficiency = %.3f\" %eta\n", - "print \"Horsepower output = %d hp\" %Wdot" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Thermal efficiency = 0.401\n", - "Horsepower output = 9731 hp\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 8.5, page no. 169" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "P = 14.7 #lb/in^2\n", - "T = 60+460 #R\n", - "e1 = 0.8\n", - "P2 = 3 #lb/in^2\n", - "T2 = 1600+460 #R\n", - "Pt4 = 15.6 #lb/in^2\n", - "w = 60 #lbm/sec\n", - "e2 = 0.85\n", - "\n", - "#calculation\n", - "# from table 6, initial conditions are\n", - "ht1 = 124.3\n", - "Prt1 = 1.215\n", - "Prt2s = 6*Prt1\n", - "ht2s = 207.6\n", - "ht2 = ht1+(ht2s-ht1)/e1\n", - "dht1 = round((ht2s-ht1)/e1, 1)\n", - "ht3 = 521.4\n", - "Prt3 = 196.2\n", - "Pt3 = 6*P-P2\n", - "Pratio = Pt3/Pt4\n", - "Prt4s = Prt3/Pratio\n", - "ht4 = 326.5\n", - "dht3 = round(e2*(ht3-ht4), 1)\n", - "W = 778*(dht3-dht1)\n", - "Q = ht3-ht2\n", - "etaf = W/778.0/Q\n", - "Wdot = w*W/550.0\n", - "\n", - "#result\n", - "print \"Thermal efficiency = %.3f\" %(round(W))\n", - "print \"Horsepower output = %d hp\" %Wdot\n", - "#difference due to internal rounding off in Python." - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Thermal efficiency = 47925.000\n", - "Horsepower output = 5228 hp\n" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Exmaple 8.6, page no. 172" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "g = 1.4\n", - "Tt4 = 2060 #R\n", - "cp = 0.24\n", - "\n", - "#calculation\n", - "Tt5 = Tt4/1.67\n", - "Tt2 = 868 #R\n", - "Tt3s = 1234\n", - "dTt3 = (Tt3s-Tt2)/2.0\n", - "Tt3 = Tt2+dTt3\n", - "Q = cp*(Tt4-Tt3)\n", - "eta = 286*0.401/Q\n", - "\n", - "#result\n", - "\n", - "print \"Heat Added is \", round(Q),\"B/lbm\"\n", - "print \"eta is \", round(eta, 3)\n", - "print \"Improvement is around 6.2 percent in overall efficiency\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Heat Added is 242.0 B/lbm\n", - "eta is 0.474\n", - "Improvement is around 6.2 percent in overall efficiency\n" - ] - } - ], - "prompt_number": 1 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Thermodynamics_by_F_P_Durham/chapter9.ipynb b/Thermodynamics_by_F_P_Durham/chapter9.ipynb deleted file mode 100755 index 5adb2219..00000000 --- a/Thermodynamics_by_F_P_Durham/chapter9.ipynb +++ /dev/null @@ -1,229 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:1b345bcc6f6116aaf7adbb12f98cd555cc881aca2c20462b022b19355831b872" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 9: Vapour Power Cycles" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 9.1, page no. 179" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "P = 500 #lb/in^2\n", - "T = 800+460.0 #R\n", - "Pf = 1.0 #lb/in^2\n", - "\n", - "#calculation\n", - "#From table 4 of appendix\n", - "ht1 = 69.7\n", - "vt1 = 0.01614\n", - "W = vt1*(P-Pf)*144\n", - "ht2 = W/778 +ht1\n", - "ht3 = 1412.1\n", - "s3 = 1.6571\n", - "ht4 = 925.8\n", - "WbyJ = ht3-ht4\n", - "W3 = 778*WbyJ\n", - "dW = W3-W\n", - "eta = 1-((ht4-ht1)/(ht3-ht2))\n", - "\n", - "#result\n", - "print \"Neglecting pump work, Work = %d ft-lb/lbm\" %W3\n", - "print \"Considering pump work, Work = %d ft-lb/lbm\" %dW\n", - "print \"Considering pump work, Thermal efficiency = %.3f\" %(eta-0.001)\n", - "print \"Neglecting pump work, Thermal efficiency = 0.362\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Neglecting pump work, Work = 378341 ft-lb/lbm\n", - "Considering pump work, Work = 377181 ft-lb/lbm\n", - "Considering pump work, Thermal efficiency = 0.361\n", - "Neglecting pump work, Thermal efficiency = 0.362\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 9.2, page no. 181" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "P1 = 400.0 #lb/in^2\n", - "T1 = 800+460.0 #R\n", - "Pt1 = 1.0 #lb/in^2\n", - "T2 = 95+460.0 #R\n", - "Pt2 = 500.0 #lb/in^2\n", - "es = 0.8\n", - "ep = 0.75\n", - "et = 0.8\n", - "\n", - "#calculation\n", - "#From Appendix steam tables and mollier chart\n", - "ht1 = 62.98\n", - "ht3 = 1416.4\n", - "ht4s = 941.1\n", - "vt1 = 0.0161\n", - "WbyJ = vt1*(Pt2-Pt1)/(ep*778)\n", - "ht2 = WbyJ+ht1\n", - "Q = (ht3-ht2)/et\n", - "WtbyJ = et*(ht3-ht4s)\n", - "dW = 778*(WtbyJ-WbyJ)\n", - "eta = WtbyJ/Q\n", - "\n", - "#result\n", - "print \"Thermal efficiency = %.3f\" %eta\n", - "print \"Specific net work = %d B/lbm\" %dW" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Thermal efficiency = 0.225\n", - "Specific net work = 295816 B/lbm\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 9.3, page no. 184" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "P1 = 500 #lb/in^2\n", - "T1 = 800 #F\n", - "\n", - "#calculation\n", - "#From steam tables\n", - "ht1 = 69.7\n", - "ht3 = 1412.1\n", - "s3 = 1.6571\n", - "ht4 = 1175\n", - "Pt4 = 53 \n", - "ht5 = 1430\n", - "s5 = 1.917\n", - "ht6 = 1070\n", - "X6 = 0.966\n", - "Wsum = 778*(ht3-ht4+ht5-ht6)\n", - "Qsum = ht3-ht1+ht5-ht4\n", - "eta = Wsum/(778*Qsum)\n", - "\n", - "#result\n", - "print \"Specific work = %d ft-lb/lbm\" %Wsum\n", - "print \"Thermal efficiency = %.3f \" %eta" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Specific work = 464543 ft-lb/lbm\n", - "Thermal efficiency = 0.374 \n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Exmaple 9.4, page no. 186" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#initialization\n", - "# From steam tables\n", - "\n", - "ht1 = 218.12\n", - "ht3 = 1412.1\n", - "st3 = 1.6571\n", - "ht4 = 1134.6\n", - "ht5 = 925.8\n", - "ht6 = 69.7\n", - "\n", - "#calculation\n", - "w = (ht1-ht6)/(ht4-ht6)\n", - "WbyJ = ht3-ht4+(1-w)*(ht4-ht5)\n", - "W = 778*WbyJ\n", - "Q = ht3-ht1\n", - "eta = WbyJ/Q\n", - "\n", - "#result\n", - "print \"Specific work = %d ft-lb/lbm\" %W\n", - "print \"Efficiency = %.3f\" %eta" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Specific work = 355700 ft-lb/lbm\n", - "Efficiency = 0.383\n" - ] - } - ], - "prompt_number": 2 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file diff --git a/Thermodynamics_by_F_P_Durham/screenshots/energy.png b/Thermodynamics_by_F_P_Durham/screenshots/energy.png Binary files differdeleted file mode 100755 index 67a7242e..00000000 --- a/Thermodynamics_by_F_P_Durham/screenshots/energy.png +++ /dev/null diff --git a/Thermodynamics_by_F_P_Durham/screenshots/internal-energy.png b/Thermodynamics_by_F_P_Durham/screenshots/internal-energy.png Binary files differdeleted file mode 100755 index e2055783..00000000 --- a/Thermodynamics_by_F_P_Durham/screenshots/internal-energy.png +++ /dev/null diff --git a/Thermodynamics_by_F_P_Durham/screenshots/temprature.png b/Thermodynamics_by_F_P_Durham/screenshots/temprature.png Binary files differdeleted file mode 100755 index 24557a42..00000000 --- a/Thermodynamics_by_F_P_Durham/screenshots/temprature.png +++ /dev/null |