1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
|
{
"metadata": {
"name": "Chapter6"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": "6: Conducting Materials"
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 6.1, Page number 170"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\n\n#Variable declaration\nm = 9.1*10**-31; #mass of electron\nvf = 1*10**6; #Fermi velocity(m/s)\ne = 1.6*10**-19; #conversion factor from J to eV\n\n#Calculation\nEF = m*(vf**2)/(2*e); #Fermi energy(eV)\nEF=math.ceil(EF*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"Fermi energy is\",EF,\"eV\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Fermi energy is 2.85 eV\n"
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 6.2, Page number 170"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\n\n#Variable declaration\nEF0 = 7.04; #Fermi energy at 0K(eV)\nT = 300; #temperature(K)\nk = 1.38*10**-23; #boltzmann constant\ne = 1.6*10**-19; #conversion factor from J to eV\n\n#Calculation\nEF = EF0*(1-(((math.pi**2)/12)*(k*T/(EF0*e))**2)); #Fermi energy(eV)\nEF=math.ceil(EF*10**5)/10**5; #rounding off to 5 decimals\n\n#Result\nprint \"Fermi energy is\",EF,\"eV\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Fermi energy is 7.03993 eV\n"
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 6.3, Page number 171"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\n\n#Variable declaration\nd = 2.7*10**3; #density of Al(kg/m**3)\nMat = 27; #atomic weight of Al\ntow = 10**-14; #relaxation time(sec)\nNa = 6.022*10**23; #avagadro constant\na = 3*10**3; #number of free electrons per atom\ne = 1.6*10**-19; #charge of electron\nme = 9.1*10**-31; #mass of electron\n\n#Calculation\nn = d*Na*a/Mat; #concentration of atoms(per m**3)\nsigma = n*e**2*tow/me; #conductivity(ohm m)\nsigma = sigma*10**-7;\nsigma=math.ceil(sigma*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint \"conductivity of Al is\",sigma,\"*10**7 ohm m\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "conductivity of Al is 5.0824 *10**7 ohm m\n"
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 6.4, Page number 171"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\n\n#Variable declaration\nsigma = 5.87*10**7; #electrical conductivity(per ohm m)\nK = 390; #thermal conductivity(W/mK)\nT = 20; #temperature(C)\n\n#Calculation\nT = T+273; #temperature(K)\nL = K/(sigma*T); #Lorentz number(W ohm/K**2)\n\n#Result\nprint \"Lorentz number is\",L,\"W ohm/K**2\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Lorentz number is 2.26756051189e-08 W ohm/K**2\n"
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 6.5, Page number 172"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\n\n#Variable declaration\nd = 8900; #density of Cu(kg/m**3)\nMat = 63.5; #atomic weight of Cu\ntow = 10**-14; #relaxation time(sec)\nNa = 6.022*10**23; #avagadro constant\na = 1*10**3; #number of free electrons per atom\ne = 1.6*10**-19; #charge of electron\nme = 9.1*10**-31; #mass of electron\n\n#Calculation\nn = d*Na*a/Mat; #concentration of atoms(per m**3)\nsigma = n*e**2*tow/me; #electrical conductivity(ohm m)\nsigma = sigma*10**-7;\nsigma=math.ceil(sigma*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint \"electrical conductivity is\",sigma,\"*10**7 ohm m\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "electrical conductivity is 2.3745 *10**7 ohm m\n"
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 6.6, Page number 172"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\n\n#Variable declaration\nrho = 1.54*10**-8; #resistivity(ohm m)\nEF = 5.5; #fermi energy(eV)\nme = 9.1*10**-31; #mass of electron\nepsilon = 100;\ne = 1.6*10**-19; #charge of electron\nn = 5.8*10**28; #concentration of electrons(per m**3)\n\n#Calculation\ntow = me/(rho*n*e**2); #relaxation time(sec)\nmew = e*tow/me; #mobility of electrons(m**2/Vs)\nmew = mew*10**3;\nvd = e*tow*epsilon/me; #drift velocity(m/s)\nvd=math.ceil(vd*10)/10; #rounding off to 1 decimal\nEF = EF*e; #fermi energy((J)\nvF = math.sqrt(2*EF/me); #fermi velocity(m/s)\nvf = vF*10**-6;\nvf=math.ceil(vf*10**3)/10**3; #rounding off to 3 decimals\nlamda_m = vF*tow; #mean free path(m)\n\n#Result\nprint \"relaxation time of electrons is\",tow,\"sec\"\nprint \"mobility of electrons is\",mew,\"*10**-3 m**2/Vs\"\nprint \"drift velocity of electrons is\",vd,\"m/s\"\nprint \"drift velocity given in the book is wrong\"\nprint \"fermi velocity of electrons is\",vf,\"*10**6 m/s\"\nprint \"mean free path is\",lamda_m,\"m\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "relaxation time of electrons is 3.97972178683e-14 sec\nmobility of electrons is 6.9973130318 *10**-3 m**2/Vs\ndrift velocity of electrons is 0.7 m/s\ndrift velocity given in the book is wrong\nfermi velocity of electrons is 1.391 *10**6 m/s\nmean free path is 5.53462691011e-08 m\n"
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 6.7, Page number 174"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\n\n#Variable declaration\nrho = 1.72*10**-8; #electrical resistivity(ohm m)\nL = 2.26*10**-8; #Lorentz number(ohm W/K**2)\nT = 27; #temperature(C)\n\n#Calculation\nT = T+273; #temperature(K)\nK = L*T/rho; #thermal conductivity(W/mK)\n\n#Result\nprint \"thermal conductivity is\",int(K),\"W/mK\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "thermal conductivity is 394 W/mK\n"
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 6.8, Page number 174"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\n\n#Variable declaration\nsigma = 5.87*10**7; #electrical conductivity(per ohm m)\nK = 390; #thermal conductivity(W/mK)\nT = 20; #temperature(C)\n\n#Calculation\nT = T+273; #temperature(K)\nL = K/(sigma*T); #Lorentz number(W ohm/K**2)\n\n#Result\nprint \"Lorentz number is\",L,\"W ohm/K**2\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Lorentz number is 2.26756051189e-08 W ohm/K**2\n"
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 6.9, Page number 174"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\n\n#Variable declaration\nE_EF = 0.01; #energy(eV)\ne = 1.6*10**-19; #conversion factor from eV to J\nT = 200; #temperature(K)\nk = 1.38*10**-23; #boltzmann constant(J/K)\n\n#Calculation\nE_EF = E_EF*e; #energy(J)\nA = E_EF/(k*T);\nFofE = 1/(1+(math.exp(A))); #value of F(E)\nFofE=math.ceil(FofE*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint \"value of F(E) is\",FofE",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "value of F(E) is 0.36\n"
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 6.10, Page number 175"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\n\n#Variable declaration\nlamda = 4*10**-8; #mean free path(m)\nn = 8.4*10**28; #density(per m**3)\nvthbar = 1.6*10**6; #average thermal velocity(m/s)\ne = 1.6*10**-19; #charge of electron(c)\nm = 9.11*10**-31; #mass of electron\n\n#Calculation\nsigma = n*e**2*lamda/(m*vthbar); #electrical conductivity(ohm-1 m-1)\nsigma = sigma*10**-7;\nsigma=math.ceil(sigma*100)/100; #rounding off to 2 decimals\n\n#Result\nprint \"electrical conductivity is\",sigma,\"*10**7 ohm-1 m-1\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "electrical conductivity is 5.91 *10**7 ohm-1 m-1\n"
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 6.11, Page number 176"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\n\n#Variable declaration\ntow = 10**-14; #relaxation time(sec)\nT = 300; #temperature(K)\nn = 6*10**28; #electron concentration(per m**3)\ne = 1.6*10**-19; #charge of electron(c)\nme = 9.1*10**-31; #mass of electron\nk = 1.38*10**-23; #boltzmann constant(J/K)\n\n#Calculation\nsigma = n*e**2*tow/me; #electrical conductivity(ohm-1 m-1)\nsigmaa = sigma*10**-7;\nsigmaa=math.ceil(sigmaa*100)/100; #rounding off to 2 decimals\nK = 3*n*(k**2)*tow*T/(2*me); #thermal conductivity(W/mK)\nK=math.ceil(K*10)/10; #rounding off to 1 decimal\nL = K/(sigma*T); #Lorentz number(W ohm/K**2)\n\n#Result\nprint \"electrical conductivity is\",sigmaa,\"*10**7 ohm-1 m-1\"\nprint \"thermal conductivity is\",K,\"W/mK\"\nprint \"Lorentz number is\",L,\"W ohm/K**2\"\nprint \"answer for thermal conductivity and Lorentz number given in the book are wrong\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "electrical conductivity is 1.69 *10**7 ohm-1 m-1\nthermal conductivity is 56.6 W/mK\nLorentz number is 1.11775173611e-08 W ohm/K**2\nanswer for thermal conductivity and Lorentz number given in the book are wrong\n"
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 6.12, Page number 177"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\n\n#Variable declaration\nn = 5.8*10**28; #electron concentration(per m**3)\ne = 1.6*10**-19; #charge of electron(c)\nm = 9.1*10**-31; #mass of electron\nrho = 1.54*10**-8; #resistivity of metal(ohm m)\n\n#Calculation\ntow = m/(n*rho*e**2); #relaxation time(sec)\n\n#Result\nprint \"relaxation time is\",tow,\"sec\"\nprint \"answer given in the book is wrong\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "relaxation time is 3.97972178683e-14 sec\nanswer given in the book is wrong\n"
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 6.13, Page number 177"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\n\n#Variable declaration\nrho = 1.54*10**-8; #resistivity(ohm m)\nE = 1; #electric field(V/cm)\nme = 9.1*10**-31; #mass of electron\ne = 1.6*10**-19; #charge of electron\nn = 5.8*10**28; #concentration of electrons(per m**3)\n\n#Calculation\nE = E*10**2; #electric field(V/m)\ntow = me/(rho*n*e**2); #relaxation time(sec)\nvd = e*E*tow/me; #drift velocity(m/s)\nvd=math.ceil(vd*10)/10; #rounding off to 1 decimal\nmew = vd/E; #mobility of electrons(m**2/Vs)\nmew = mew*10**2;\n\n#Result\nprint \"relaxation time of electrons is\",tow,\"sec\"\nprint \"drift velocity of electrons is\",vd,\"m/s\"\nprint \"mobility of electrons is\",mew,\"*10**-2 m**2/Vs\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "relaxation time of electrons is 3.97972178683e-14 sec\ndrift velocity of electrons is 0.7 m/s\nmobility of electrons is 0.7 *10**-2 m**2/Vs\n"
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 6.14, Page number 178"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\n\n#Variable declaration\nT = 300; #temperature(K)\nl = 2; #length of wire(m)\nR = 0.02; #resistance(ohm)\nI = 15; #current(amp)\nmew = 4.3*10**-3; #mobility(m**2/Vs)\n\n#Calculation\nV = I*R; #voltage drop(V)\nE = V/l; #electric field(V/m)\nvd = mew*E; #drift velocity(m/s)\nvd = vd*10**3;\nvd=math.ceil(vd*100)/100; #rounding off to 2 decimals\n\n#Result\nprint \"drift velocity of electrons is\",vd,\"*10**-3 m/s\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "drift velocity of electrons is 0.65 *10**-3 m/s\n"
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 6.15, Page number 179"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\n\n#Variable declaration\nvf = 0.86*10**6; #fermi velocity(m/s)\nm = 9.1*10**-31; #mass of electron(kg)\ne = 1.6*10**-19; #charge of electron(C)\nk = 1.38*10**-23; #boltzmann constant\n\n#Calculation\nEF = m*vf**2/(2*e); #fermi energy(eV)\nEF=math.ceil(EF*100)/100; #rounding off to 2 decimals\nTF = EF*e/k; #fermi temperature(K)\n\n#Result\nprint \"Fermi energy is\",EF,\"eV\"\nprint \"Fermi temperature is\",int(TF),\"K\"\nprint \"answer for fermi temperature given in the book is wrong due to rounding off the value of EF\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Fermi energy is 2.11 eV\nFermi temperature is 24463 K\nanswer for fermi temperature given in the book is wrong due to rounding off the value of EF\n"
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example number 6.16, Page number 179"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#importing modules\nimport math\n\n#Variable declaration\nTF = 2460; #fermi temperature(K)\nm = 9.11*10**-31; #mass of electron(kg)\nk = 1.38*10**-23; #boltzmann constant\n\n#Calculation\nvF = math.sqrt(2*k*TF/m); #fermi velocity(m/s)\nvF = vF*10**-5;\nvF=math.ceil(vF*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"Fermi velocity is\",vF,\"*10**5 m/s\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Fermi velocity is 2.731 *10**5 m/s\n"
}
],
"prompt_number": 16
}
],
"metadata": {}
}
]
}
|