diff options
Diffstat (limited to 'OSCAD/LPCSim/report/simulationReport.tex')
-rw-r--r-- | OSCAD/LPCSim/report/simulationReport.tex | 173 |
1 files changed, 0 insertions, 173 deletions
diff --git a/OSCAD/LPCSim/report/simulationReport.tex b/OSCAD/LPCSim/report/simulationReport.tex deleted file mode 100644 index 2e06242..0000000 --- a/OSCAD/LPCSim/report/simulationReport.tex +++ /dev/null @@ -1,173 +0,0 @@ -\documentclass[a4paper,10pt]{report} -\pagestyle{plain} -\usepackage{graphicx} -\usepackage{caption} -\usepackage{algorithmic} -% Title Page -\title{Half-Wave Rectifier} -\author{Generated by SMCSim} - -\begin{document} -\maketitle -\hrule\vspace{5mm} -\begin{center} {\bf Simulation of ckt/HWRectifierFilter.ckt} \end{center} -\hrule\vspace{5mm} - -{\bf Circuit Diagram:} \\ -\vspace{2mm} -\hrule\vspace{5mm} - -{\bf NetList:} \\ -{\it * Half-Wave Rectifier} \\ -V1 1 0 sine (5 50) \\ -D1 1 2 mymodel (1e-8 0.026) \\ -R1 2 0 10000 \\ -C1 2 0 10e-3 \\ -.tran 0 100 0.5 \\ -.plot v(1) v(2) \\ -.end -\vspace{2mm} -\hrule\vspace{5mm} - -{\bf System of Equations representing the electrical circuit:} -\vspace{2mm} -\begin{equation} - i_{V_1} + D_{1f}(v_1,v_2) = 0 -\end{equation} -\begin{equation} - (R_1)v_2 + (C_1)\frac{dv_2}{dt} + -D_{1f}(v_1,v_2) = 0 -\end{equation} -\begin{equation} - v_1 = V_1 -\end{equation} -\vspace{2mm} -$$ D_{nf}(v_a,v_b)=Is_n(1-e^{(v_a-v_b)/vt_n})$$ - where $Is_n$=reverse saturation current and $vt_n$=threshold voltage of diode $n$\\ -\hrule\vspace{5mm} - -{\bf Matrix form:}\\ -The system of equations $\mathbf{A}\mathbf{x}+\mathbf{D}_f(\mathbf{\widehat{x}})+\mathbf{C}(d\mathbf{x}/dt)=b$ (Symbolically)\\ -Where $\mathbf{A}$, $\mathbf{D}_f$ and $\mathbf{C}$ represent matrices corresponding to linear, - nonlinear and time dependent electrical elements respectively. - $\mathbf{b}$ represents the vector corresponding to sources. - -\begin{equation} -\mathbf{A}= -\left[ -\begin{array}{ccc} -0 &0 &1 \\ -0 &\widehat{R}_1 &0 \\ -1 &0 &0 -\end{array} -\right] -\end{equation} -\begin{equation} -\mathbf{b}= -\left[ -\begin{array}{c} -0 \\ -0 \\ -V_1 -\end{array} -\right] -\end{equation} -\begin{equation} -\mathbf{D}_f= -\left[ -\begin{array}{c} -D_{1f} \\ --D_{1f} \\ -0 -\end{array} -\right] -\end{equation} -\begin{equation} -\mathbf{C}= -\left[ -\begin{array}{ccc} -0 &0 &0 \\ -0 &C_1 &0 \\ -0 &0 &0 -\end{array} -\right] -\end{equation} -\begin{equation} -\mathbf{x}= -\left[ -\begin{array}{c} -v_1 \\ -v_2 \\ -i_{V_1} -\end{array} -\right] -\end{equation} -\begin{equation} -\mathbf{\widehat{x}}= -\left[ -\begin{array}{c} -(v_1,v_2) -\end{array} -\right] -\end{equation} -Note that the matrix contains $\widehat{R}$ entries (corresponding to resistors) whose values are equal to 1/$R$\\ -\hrule\vspace{2mm} -The number of equations are $3$ \\ -Unknowns: \\ - Node potentials: $2$ Current Variables: $1$ \\ -\hrule\vspace{5mm} - -{\bf Operating Point (DC) Analysis: } \\ -{\it All capacitors are open circuited and inductors are short circuited.} -\vspace{2mm} - -{\bf System of Equations representing the electrical circuit:} -\begin{equation} - i_{V_1} + D_{1f}(v_1,v_2) = 0 -\end{equation} -\begin{equation} - (R_1)v_2 + -D_{1f}(v_1,v_2) = 0 -\end{equation} -\begin{equation} - v_1 = V_1 -\end{equation} -\vspace{2mm} -$$ D_{nf}(v_a,v_b)=Is_n(1-e^{(v_a-v_b)/vt_n})$$ - where $Is_n$=reverse saturation current and $vt_n$=threshold voltage of diode $n$\\ -\hrule\vspace{5mm} - -{\bf Application of Newton-Raphson method: }\\ -\vspace{2mm} -{\it Nonliner models: }\\ -See linearized model for diode $D_1$ in diode\_D1.eps -\begin{figure}[h] -\centering -\includegraphics{diode_D1.eps} -\caption{linearization of diode $D_1$} -\end{figure} -\vspace{2mm} - -{\bf System of Equations representing the electrical circuit:}\\ -\begin{equation} - (R_{D_1})v_1 + (-R_{D_1})v_2 + i_{V_1} = -i_{D_1} -\end{equation} -\begin{equation} - (R_{D_1})v_1 + (R_{D_1}+R_1)v_2 = i_{D_1} -\end{equation} -\begin{equation} - v_1 = V_1 -\end{equation} -\hrule\vspace{5mm} - -{\bf Transient Analysis:} \\ -\hrule\vspace{5mm} - -{\bf Results:} \\ -\begin{figure}[h] -\centering -\includegraphics[scale=0.5]{output.eps} -\caption{plot} -\end{figure} - - -\end{document} - |