summaryrefslogtreecommitdiff
path: root/OSCAD/LPCSim/report/simulationReport.tex
diff options
context:
space:
mode:
authorFahim2014-09-09 16:11:17 +0530
committerFahim2014-09-09 16:11:17 +0530
commitc632c1009c9e095135220c809d7c799841f160b3 (patch)
tree3be2def8313164c3bf32799714ba53a4a1326ed6 /OSCAD/LPCSim/report/simulationReport.tex
parente338c2a59389c22b8cca9a78d75e626ae779c405 (diff)
downloadFreeEDA-c632c1009c9e095135220c809d7c799841f160b3.tar.gz
FreeEDA-c632c1009c9e095135220c809d7c799841f160b3.tar.bz2
FreeEDA-c632c1009c9e095135220c809d7c799841f160b3.zip
Subject: Changing all content and name of directory and file to FreeEDA
Description: The content of file,name of directory and file has been changed in the below format. 1. Oscad to FreeEDA 2. OSCAD to FreeEDA 3. oscad to freeeda
Diffstat (limited to 'OSCAD/LPCSim/report/simulationReport.tex')
-rw-r--r--OSCAD/LPCSim/report/simulationReport.tex173
1 files changed, 0 insertions, 173 deletions
diff --git a/OSCAD/LPCSim/report/simulationReport.tex b/OSCAD/LPCSim/report/simulationReport.tex
deleted file mode 100644
index 2e06242..0000000
--- a/OSCAD/LPCSim/report/simulationReport.tex
+++ /dev/null
@@ -1,173 +0,0 @@
-\documentclass[a4paper,10pt]{report}
-\pagestyle{plain}
-\usepackage{graphicx}
-\usepackage{caption}
-\usepackage{algorithmic}
-% Title Page
-\title{Half-Wave Rectifier}
-\author{Generated by SMCSim}
-
-\begin{document}
-\maketitle
-\hrule\vspace{5mm}
-\begin{center} {\bf Simulation of ckt/HWRectifierFilter.ckt} \end{center}
-\hrule\vspace{5mm}
-
-{\bf Circuit Diagram:} \\
-\vspace{2mm}
-\hrule\vspace{5mm}
-
-{\bf NetList:} \\
-{\it * Half-Wave Rectifier} \\
-V1 1 0 sine (5 50) \\
-D1 1 2 mymodel (1e-8 0.026) \\
-R1 2 0 10000 \\
-C1 2 0 10e-3 \\
-.tran 0 100 0.5 \\
-.plot v(1) v(2) \\
-.end
-\vspace{2mm}
-\hrule\vspace{5mm}
-
-{\bf System of Equations representing the electrical circuit:}
-\vspace{2mm}
-\begin{equation}
- i_{V_1} + D_{1f}(v_1,v_2) = 0
-\end{equation}
-\begin{equation}
- (R_1)v_2 + (C_1)\frac{dv_2}{dt} + -D_{1f}(v_1,v_2) = 0
-\end{equation}
-\begin{equation}
- v_1 = V_1
-\end{equation}
-\vspace{2mm}
-$$ D_{nf}(v_a,v_b)=Is_n(1-e^{(v_a-v_b)/vt_n})$$
- where $Is_n$=reverse saturation current and $vt_n$=threshold voltage of diode $n$\\
-\hrule\vspace{5mm}
-
-{\bf Matrix form:}\\
-The system of equations $\mathbf{A}\mathbf{x}+\mathbf{D}_f(\mathbf{\widehat{x}})+\mathbf{C}(d\mathbf{x}/dt)=b$ (Symbolically)\\
-Where $\mathbf{A}$, $\mathbf{D}_f$ and $\mathbf{C}$ represent matrices corresponding to linear,
- nonlinear and time dependent electrical elements respectively.
- $\mathbf{b}$ represents the vector corresponding to sources.
-
-\begin{equation}
-\mathbf{A}=
-\left[
-\begin{array}{ccc}
-0 &0 &1 \\
-0 &\widehat{R}_1 &0 \\
-1 &0 &0
-\end{array}
-\right]
-\end{equation}
-\begin{equation}
-\mathbf{b}=
-\left[
-\begin{array}{c}
-0 \\
-0 \\
-V_1
-\end{array}
-\right]
-\end{equation}
-\begin{equation}
-\mathbf{D}_f=
-\left[
-\begin{array}{c}
-D_{1f} \\
--D_{1f} \\
-0
-\end{array}
-\right]
-\end{equation}
-\begin{equation}
-\mathbf{C}=
-\left[
-\begin{array}{ccc}
-0 &0 &0 \\
-0 &C_1 &0 \\
-0 &0 &0
-\end{array}
-\right]
-\end{equation}
-\begin{equation}
-\mathbf{x}=
-\left[
-\begin{array}{c}
-v_1 \\
-v_2 \\
-i_{V_1}
-\end{array}
-\right]
-\end{equation}
-\begin{equation}
-\mathbf{\widehat{x}}=
-\left[
-\begin{array}{c}
-(v_1,v_2)
-\end{array}
-\right]
-\end{equation}
-Note that the matrix contains $\widehat{R}$ entries (corresponding to resistors) whose values are equal to 1/$R$\\
-\hrule\vspace{2mm}
-The number of equations are $3$ \\
-Unknowns: \\
- Node potentials: $2$ Current Variables: $1$ \\
-\hrule\vspace{5mm}
-
-{\bf Operating Point (DC) Analysis: } \\
-{\it All capacitors are open circuited and inductors are short circuited.}
-\vspace{2mm}
-
-{\bf System of Equations representing the electrical circuit:}
-\begin{equation}
- i_{V_1} + D_{1f}(v_1,v_2) = 0
-\end{equation}
-\begin{equation}
- (R_1)v_2 + -D_{1f}(v_1,v_2) = 0
-\end{equation}
-\begin{equation}
- v_1 = V_1
-\end{equation}
-\vspace{2mm}
-$$ D_{nf}(v_a,v_b)=Is_n(1-e^{(v_a-v_b)/vt_n})$$
- where $Is_n$=reverse saturation current and $vt_n$=threshold voltage of diode $n$\\
-\hrule\vspace{5mm}
-
-{\bf Application of Newton-Raphson method: }\\
-\vspace{2mm}
-{\it Nonliner models: }\\
-See linearized model for diode $D_1$ in diode\_D1.eps
-\begin{figure}[h]
-\centering
-\includegraphics{diode_D1.eps}
-\caption{linearization of diode $D_1$}
-\end{figure}
-\vspace{2mm}
-
-{\bf System of Equations representing the electrical circuit:}\\
-\begin{equation}
- (R_{D_1})v_1 + (-R_{D_1})v_2 + i_{V_1} = -i_{D_1}
-\end{equation}
-\begin{equation}
- (R_{D_1})v_1 + (R_{D_1}+R_1)v_2 = i_{D_1}
-\end{equation}
-\begin{equation}
- v_1 = V_1
-\end{equation}
-\hrule\vspace{5mm}
-
-{\bf Transient Analysis:} \\
-\hrule\vspace{5mm}
-
-{\bf Results:} \\
-\begin{figure}[h]
-\centering
-\includegraphics[scale=0.5]{output.eps}
-\caption{plot}
-\end{figure}
-
-
-\end{document}
-